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ABSTRACT For a millimeter wave (mmWave) intelligent re-configurable surface (IRS)-MIMO system,
if it can correctly detect the interference occurrence and their locations, the patterns of interference signal
can be collected and learned using machine learning for the prediction of interference arrival. With the
information of interference location and activity pattern, the capacity of the system can be largely improved
using many techniques such as beamforming, interference cancellation, and transmission scheduling. This
paper aims to detect interference occurrence using a low-complexity MUSIC (MUSIC: multiple signal
classification) spectrum-based method, and then localize their sources for mmWave IRS-MIMO system.
The MUSIC spectrum of wireless system can be regarded as somehow the ‘signature’ related to the
signals transmitted from different users or interference. We utilize such property to detect the occurrence
of interference, and then localize their sources in a low-complexity way. Finally, the pattern of interference
occurrence can be learned to predict the interference arrival from the collected data. This paper also proposed
an efficient probabilistic neural network (PNN)-based predictor for the interference arrival prediction and
showed its prediction accuracy. From simulated results, our proposed method can achieve the correct results
with the accuracy near to 100% when the fingerprint samples is over 10. In addition, the localization error
can be within 1 m with more than 65% and 43% for Y-axis and X-axis, respectively. Finally, based on
the results of the interference occurrence, the proposed PNN-based predictor for the interference arrival
prediction can capture correctly the similar distribution function of the coming continuous idle status.

INDEX TERMS Interference detection, MUSIC spectrum, Interference localization, Prediction of interfer-
ence arrival, Probabilistic neural network.

I. INTRODUCTION

For the coming B5G era, wireless system is aiming to
be more sophisticated with diverse applications like virtual
reality, augmented reality, remote monitoring, telemedicine
and remote healthcare which require ultra-high-speed, high-
capacity communication [1]. The amount of wireless traffic
will continue to increase explosively. It is challenging to
achieve the highly reliable and large-capacity wireless com-

munication and to provide the sufficient wireless infrastruc-
ture for applications in the B5G era. To realize such targets
for the coming B5G and 6G era, wireless system needs
to not only utilize new high-frequency bands with unused
large bandwidth for ultra-high-speed wireless system, but
also develop technology to suppress interference that occurs
between different wireless systems over the same frequency
band [2]. In addition, to accommodate massive devices, it is
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necessary to further reduce the traffic density by reducing the
distance between wireless devices or the spatial separation
among wireless cells [3]. In such high-density environment,
the interference among different systems is more severe
which needs for more sophisticated technology to reduce
interference for the private communication systems such as
wireless LAN and radar systems, etc [4].

In response to this, recently, a powerful and novel low-
cost intelligent re-configurable surface (IRS) is becoming
one of hot and important research topics. Massive unit cells
are designed and integrated into IRS devices without or
with several radio frequency (RF) chains. Each designed cell
can control the reflected waves to the appropriate directions
according to the different design targets. This novel device is
promising to be employed to configure some cognitive/smart
radio environments for the different purposes of wireless
systems [5]. IRS devices can be utilized for many scenarios
such as at building, wall/ceil of room, building, shopping
mall, vehicular, etc. Due to these merits, in recent years,
many interesting research topics and projects related to the
usage of IRS appeared, especially over Millimeter (mm)
wave band where one IRS can hold more cells. IRS is
attracting worldwide attention as one of the technological
elements that will be utilized for B5G system.

To share the same frequency band with other systems
and transmit data with sufficient communication quality to
as many users as possible, mmWave MIMO (multiple-input
and multiple-output) technique is employed as one major
technology for B5G wireless systems [6]. MmWave MIMO
systems can hold massive antennas as an antenna array
because of its short wavelength, which significantly enhances
the system capacity, and supports more accesses from users
[7]. In addition, the vast frequency resource over mmWave
band (30∼300 GHz) can be utilized to achieve over 100
times capacity than that of current wireless system [8]. Such
high capacity further excites novel wireless applications for
B5G/6G era, including V2V/V2I communication, wireless
high definition television, medicare etc [9]. Therefore, many
researches aim to utilize IRS technologies to further improve
the spectral efficiency or capacity of mmWave system.

One important topic for mmWave system is to mitigate or
reduce the cochannel interference (CCI) generated from the
undesired users. It is assisted by two technologies: the inter-
ference detection and the prediction of interference arrival.
The purpose of interference detection [10] is to correctly
judge whether the collected signal is mixed with the signal
transmitted from some undesired users and then estimate
their directions or locations correctly if interference occurs.
The interference arrival prediction tries to predict the tim-
ing of the interference occurrence, interference duration, its
transmission pattern based on the collected data and infor-
mation [11]. The correct interference detection is essential
to find the correct pattern of interference arrival. Without
correct detection, the collected data and information on in-
terference arrival is totally mismatched with the real case
which results in the wrong prediction results. These ongoing

researches are important for the next generation mmWave
wireless system. If the correct directions or locations of
these interference sources are correctly captured, some smart
beamforming control techniques can alleviate or suppress the
interfering signals by change the nulls of the beamforming
to face to the directions of these interference signal. For
a mmWave massive MIMO system combined with an IRS
device, the more accurate localization the transmitter can
obtain, the higher capacity the whole wireless system can
achieve. In addition, if it knows the start, end of interference
duration and transmission pattern of the interference sources,
the transmitter can avoid its useless transmission and save the
energy by rescheduling its beamforming patterns.

Many researches have focused on the interference de-
tection for different systems [12]. Some researches have
proposed a time-frequency signal detection method for a
microwave oven (MWO) system [13, 14] to achieve reli-
able wireless communication with the experimental signal
data captured in a shielded room. They showed that the
proposed methods can correctly detect the interference sig-
nal of inverter MWO. In addition, the proposed method is
robust against many products, environments, and different
signals. The authors in [12] have proposed a lightweight
method for identifying the interference using the data of the
model-aided spectral features and the real-time extraction
of envelope from the IEEE 802.15.4, 802.11b/g/n, 802.15.1,
and Bluetooth Low Energy (BLE) wireless systems. Some
researches focus attentions on the coexistence between the
radar systems and IEEE 802.11 WLAN systems in adjacent
or coherent channel scenarios. The authors in [15] have
designed one modified receiver. This new receiver includes a
log-likelihood ratio mapping function and a new inter-leaver
layer to suppress the interference from the radar systems.
Our early work has proposed a methodology for classifying
the interference type to improve the accuracy of wireless
throughput prediction using the received signal strength in-
dicator (RSSI) data collected from both the measurement
campaign and simulation [16]. With multiple time-frequency
scalogram images calculated from the collected data, the
interference classification and spectral features can be clas-
sified correctly on over 65% of the occasions when using the
convolutional neural network.

In addition, for the localization of users over indoor sce-
narios, there also exists many research results [17]. Most of
the radio-based localization methods in wireless communi-
cation measure the received signal strength indicator (RSSI),
angle of arrival (AOA), time of arrival (TOA), and time
difference of arrival (TDOA), and then convert these signal
characteristic information into target location. To improve
localization accuracy, some fingerprinting-based systems are
adopted to mitigate the negative effects of multi-path prop-
agation [18]. Many machine learning (ML)-based localiza-
tion schemes such as K nearest neighbors (KNN), support
vector machine (SVM), and artificial neural network (ANN)
have been proposed in the past years [19]. Recent advanced
IRS technology also stimulates the usage of IRS and signal
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process on the user localization. The reference [20] has
provided a systematic overview of existing researches on
IRS usage from the signal processing point of view, which
focusing on channel estimation, transmission design and
radio localization. In addition, for IRS usage on localization
over mmWave or high-frequency terahertz (THz) band, the
reference [21] has proposed a near-field channel estimation
and localization algorithm based on the derived second-
order Fresnel approximation of the near-field channel model.
These methods provided some trade-off results between the
localization accuracy and computational complexity.

In this paper, we will propose a MUSIC (multiple signal
Classification) [22] spectrum-based method to detect the
occurrence of interference, and then localize its interference
source for a mmWave IRS-MIMO wireless system. After
that, the pattern of interference occurrence is learned from
the collected data to learn and predict the interference arrival.
This paper also shows the prediction accuracy when it utilizes
a probabilistic neural network (PNN) for prediction. Com-
pared with the other MUSIC spectrum based methods for
mmWave MIMO system, our research utilizes the MUSIC
spectrum calculated from the mmWave IRS-MIMO chan-
nel. Due to IRS usage, the distribution of multipaths and
link amplitudes between the transmitter and receiver will be
changed, which largely impacts the MUSIC spectrum and
makes the results of occurrence detection and localization be
different compared with that of mmWave MIMO system. The
novelties and major contributions are listed as follows.

1) Usually, for a mmWave IRS-MIMO system with mul-
tiple antennas set with a uniform linear array (ULA),
the auto-correlation operation process on the ULA
signal can benefit the estimation of the arrival of an-
gles (AoAs) of all signals transmitted from different
users [24]. The MUSIC method can estimate the noise
subspace from the available auto-correlation vectors
and search the user related steering vectors that are or-
thogonal to the noise subspace. Usually, the AoAs are
expressed by the peaks values of the MUSIC spectrum.
Therefore, the MUSIC spectrum can be regarded as a
kind of ‘signature’ related to the signals transmitted
from different users at different locations. In this paper,
we will utilize this property to detect the interference
occurrence in a low-complexity way.

2) Since the signals transmitted from different locations
can generate different MUSIC spectrums, in a simi-
lar way, the MUSIC spectrum can also be used for
fingerprint-based localization. This paper also pro-
poses a low-complexity MUSIC spectrum-based local-
ization method to estimate the interference locations
correctly considering two different IRS patterns.

3) After obtaining the data related to the pattern of inter-

ference occurrence, it is possible to utilize the time-
series data to learn the correlation and predict the
probability of interference arrivals. In this paper, we
also propose a prediction method for estimating the

probability of interference arrival using a PNN-based
predictor.

This paper is organized as follows. In Section II, we describe
the used channel model of mmWave IRS-MIMO system. In
Section III, the proposed MUSIC spectrum-based interfer-
ence detection and localization method are explained. Then
the simulated results of the proposed interference detection
and localization are shown in Section IV. The PNN-based
predictor for interference arrival and its prediction perfor-
mance are discussed in Section V. In Section VI, the paper
concludes the main results and some issues.

II. THE CHANNEL MODEL OF MMWAVE IRS-MIMO
COMMUNICATION SYSTEM
The uplink channel model with multiple users of a mmWave
IRS-MIMO wireless system which we used in this paper is
shown in Fig. 1. We assume there are NU user equipment
(UEs) with L antennas each and one base station (BS) with K
antennas, respectively. The system has one IRS device which
includes M cells and the ith cell can control or adjust its
phase of radio wave as ωi,t at the time t. Therefore, the IRS
pattern can be represented using an M × M size matrix Ωt

with the diagonal values as [ω1,t, ...ωM,t].
We define the center of IRS to be the origin of 3-D

space (0,0,0), and utilize Pm to represent the 3D location
(xm, ym, zm) of the mth UE. For mmWave wireless system
used for indoor scenarios, usually, the near-field wireless
channel model [25, 26] is represented using a spherical wave
model with three parameters (dm, ϑm, φm) as shown in the
right side of Fig. 1. Here the distance between the center of
IRS and the mth UE is represented with dm. The AoAs φm

∈ [0, 2π] and ϑm ∈ [0, π/2] are the angle between the X-axis
and the projection of Pm on the X-Y plane, and the angle
between input wave and the Z-axis, respectively.

Therefore, a wave-vector function κ(ϑm, φm) with param-
eters ϑm and φm can be shown as

κ(ϑm, φm) = −2π

λ

sinϑm cosφm

sinϑm sinφm

cosϑm

 . (1)

κ(ϑm, φm) can be used to calculate the position of the UE as
pm = −λdmκ(ϑm, φm)/2π with dm = ∥pm∥.

The received wireless signal ykm(t) at the kth re-
ceiver antenna of BS over the channel from the
mth UE with symbols sml(t) at the lth transmit-
ter antenna (l = 1, ..., L) can be represented as

ykm(t) =

L∑
l=1

{
ejθkml(ρ(Pk) ◦ ejα(Pk))TΩt(ρ(Pml) ◦ ejα(Pml))(t) + hkml

UEBSLOS(t) +

Nlm∑
a=1

hkma
UEBSNLOS(t)

}
sml(t). (2)
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FIGURE 1. The channel model of IRS-MIMO wireless uplink system.

Here ejθkml shows the phase offset generated from the
imperfect system mismatch and operation between the lth
transmit antenna of the mth UE and the kth receive antenna.
Usually, the phase offset can be assumed as 0. We use the
operator ◦ here as the point-wise product of two same size
vectors. ρ(Pml) ∈ RM×1 and α(Pml) ∈ RM×1 are the
amplitude and phase values of the wireless path among the
IRS elements and the lth transmit antenna of the mth UE. The
value of ρ(Pml) and α(Pml) are calculated using the value of
distance and wavelength and path loss model. Therefore, the
complexity-value vector ρ(Pml) ◦ ejα(Pml) ∈ CM×1 is the
wireless channels between the lth transmit antenna of the mth
UE and the IRS elements. In a similar way, the parameters
ρ(Pk) ◦ ejα(Pk) represent the amplitude and phase values of
wireless path between the IRS elements and the kth receive
antenna of BS. The superscripts [.]T used here represents
the transpose value of its argument. Therefore, the value as
ρ(Pk) ◦ ejα(Pk))TΩt(ρ(Pml) ◦ ejα(Pml) can be treated as the
channel link between the lth transmit antenna of the mth UE
via IRS device and the kth receive antenna.

We use hkml
UEBSLOS , and hkma

UEBSNLOS to represent the
LOS part and the ath reflected wave of NLOS part with Nkm

reflected multiple paths between the kth receive antenna and
the mth UE.

With Eq. (2), the received symbol yk(t) at the kth receive
antenna of BS from NU UEs can be represented as

yk(t) =

NU∑
m=1

ykm(t) + nk(t) (3)

where nk(t) is the additive Gaussian noise (AWGN) with its
variance as N0/2 at the kth receive antenna.

The channel model used for the link between one IRS
device and the receive/transmit side such as ρ(Pk) ◦ α(Pk)
is classified with two types. When the distance between
the IRS device and receive/transmit is larger than Rayleigh
distance 2D2/λ (D: radiation aperture of IRS) which called
as far-field (Fraunhofer region), the channel model is usually
treated as the plane-wave model. On the other hand, if the
distance is smaller than 2D2/λ, the near-field spherical-wave
model is usually used for representing the channel model.

The channel model of IRS device [25, 26] considering for
the far-field case can be represented as

ρ(P ) = ρ1M , [α(P )]i = exp(−jqT
i κ(ϑ, φ)) (4)

where ρ2 = f(ϑ, φ)A cosϑ
4πd2 , qi is the 3D location of the ith

IRS cell center. Here parameter A is represented as the size
or area of IRS element. f(ϑ, φ) is a correction factor for the
adjustment of the signal input power as 1− sin2(ϑ) sin2(φ).
This equation also shows that for the far-field channel model,
the distance between the antenna and center point of each
IRS element has no impact on the phase value.

For other indoor cases, channel models for the mmWave
system with short wavelengths are usually assumed as the
near-field one. For the near-field case, the channel model
between the mth UE and the IRS device can be calculated
as

ρ(P ) = ρ1M , [α(P )]i = exp(−j
2π

λ
(||Pm − qi|| − dm)). (5)

Due to the short distance and wavelength, the distance be-
tween the location of UE (Pm) and the center point of each
IRS element can largely change the phase value. In addition,
When dm ≫ qi,∀i, the near-field channel model will revert
to that of the far-field one. Usually, the channel model is
related to the transmission distance. If the wireless system
is assumed to be operated over 60 GHz with a scenario like a
small indoor office. From Rayleigh distance and Fraunhofer
condition [27] , the channel model can be treated as near-field
one.

It should be noted that, in Eqs. (4) and (5), the power loss
model is related with d−2. The different power loss model
for different frequency band can also be used in our proposed
method.

III. THE PROPOSED INTERFERENCE DETECTION AND
LOCALIZATION USING MUSIC SPECTRUM
To find the accurate interference status and their locations, it
is necessary to correctly estimate much information on the
transmit and the interference sources such as their AoAs,
received powers, channel models etc. Generally, it is impos-
sible to realize such target due to the limitation of computa-
tional complexity (CC) and the execution time [28, 29]. For
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some application scenarios, the requirement of interference
detection level and localization accuracy are different. The
higher accuracy of interference detection is better. However,
for the localization accuracy, it is enough if the estimation
error can be achieved within 1 m or 2 m for some location-
aware applications. This eased requirement largely reduces
the difficulty of realization for the real-time usage of the
proposed MUSIC spectrum-based interference detection and
localization.

Many MUSIC spectrum-based AoA estimation methods
have been investigated and proposed especially for the chan-
nel model with far-field case. In these scenarios, the plane-
wave model is utilized for algorithm design in an easy and
simple way. Among them, one popular and important method
is the MUSIC method [30] which employs the SVD decom-
position on the autocorrelation matrix calculated from the
received signal to find its eigenvectors and eigenvalues. Then
by searching and calculating the steering vectors which are
almost orthogonal to the noise subspace, the AoAs informa-
tion can be estimated using these steering vectors. Generally,
these important steering vectors are also called as MUSIC
spectrum.

From Eqs. (2) and (3), one simplified equation can be used
to show the received signal at the kth antenna related to the
AoAs (ϑm, φm) from the mth UE as follows

yk(t) =

L∑
l=1

f l
m(ϑm, φm)sl(t) + nk(t). (6)

It should be noted that the above equation only includes a
single UE. It is easy to change the equation for considering
the case with multiple UEs.

Let us suppose the received signal at all K receive anten-
nas to be represented as

yt = Ast + nt. (7)

Here A is [η(ϑ1, φ1), ..., η(ϑL, φL)] and η(ϑk, φk) =
[f1

k (ϑk, φk), ..., f
K
k (ϑk, φk)]

T . st is [s1(t), ..., sL(t)]T and
nt is [n1(t), ..., nK(t)]T . Therefore, the auto-correlation op-
eration on the received signal yt can be shown as

ℜyy = E{yty
H
t } = AE{stsHt }AH + σ2

nI. (8)

Here E and superscript [.]H represent the average operator
and the conjugate transpose, respectively.

The MUSIC spectrum can be obtained with the eigenvalue
decomposition operation on the K-by-K matrix ℜyy. We
assume that stsHt is a matrix as I with unit power, then the
Eq. (8) can be decomposed as

ℜyyei = [AE{stsHt }AH + σ2
nI]ei = (µi + σ2

n)ei = λiei, (9)

where ei and λi are eigenvector and its corresponding eigen-
value of ℜyy . In addition, these eigenvalues λi have follow-
ing property as

λ1 ≥ λ2 ≥ . . . ≥ λL ≥ λL+1 = · · · = λK = σ2
n. (10)

These (K − L) eigenvectors as the set with eL+1, · · · , eK
which related to the eigenvalues λL+1, · · · , λK with values
as the noise power σ2

n can be utilized for calculating the noise
subspace from ℜyy .

AoA estimation algorithm usually search the MUSIC
spectrum P (ϑ, φ) to find the angle area where is almost
orthogonal to the noise subspace. Here the MUSIC spectrum
P (ϑ, φ) can be represented with the following equation as

P (ϑ, φ) =
η(ϑ, φ)ηH(ϑ, φ)

η(ϑ, φ)ENEH
NηH(ϑ, φ)

, (11)

where EN = [eL+1, · · · , eK ]. The MUSIC-based AoA
estimation algorithm searches all possible angles to find the
L peak values over P (ϑ, φ) by testing all possible com-
binations of (ϑ, φ). This calculation process has a large
increase on the computational complexity (CC) especially
when considering the AoA estimation of multiple UEs and
channel model with many reflected waves over the near-field
spherical wave space.

Using MUSIC spectrum to estimate AoAs has been largely
employed for the far-field case, because most wireless waves
of channel are treated as plane wave model with only un-
known AoAs ϑ. Therefore, the CC of estimation algorithm is
reduced for searching ϑ only. In addition, to estimate all pos-
sible AoAs, the MUSIC spectrum needs to hold more peak
values related to their eigenvectors. This requirement leads
to increase value of K, the number of BS antenna of ULA.
Furthermore, due to the reflected waves from scatterers and
the IRS device, the MUSIC spectrum related to AoAs at the
receiver side appears to have complicated properties with an
unrecognizable distribution. Therefore, finding the accurate
AoAs extremely over a mmWave channel is difficult.

However, it is not necessary to extremely estimate the
correct AoAs of all UEs from the MUSIC spectrum. Since
MUSIC spectrum could be regarded as the ‘signature’ re-
lated to all the signal transmitted from different users at
different locations, it can be processed and utilized as one
indicator parameter to show whether the interference signal
or interference occurrence appears or not. In addition, by
collecting the MUSIC spectrum with interference signal as a
fingerprint (FP) of some specific pre-decided locations where
the interference source is located, the new calculated MUSIC
spectrum, when new interference occurs, can be utilized to
localize the unknown interference source coarsely. Based on
this idea, we proposed the low-complexity MUSIC spectrum-
based method for the interference detection and localization.

The proposed interference detection includes two stages.
Firstly, when no interference occurs, one MUSIC spectrum
is generated as one fingerprint sample. Since the known UEs
usually is not moving or moving with a low speed, these
fingerprint samples or MUSIC spectrums have high corre-
lation. The minimum correlation value among these MUSIC
spectrums ρThes can be used as the threshold or indicator to
decide whether the interference occurs or not. Let us assume
there are NS fingerprint samples as P i

FP (ϑ), (i = 1, ..., NS).
In the next stage of the interference detection, BS only
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calculate the correlation values between the new MUSIC
spectrum Pnew(ϑ) and NS fingerprint samples P i

FP (ϑ), (i =
1, ..., NS). Using the following criterion, the indicator of
interference occurrence can be easily judged,

∃i ∈ [1, ..., NS ], Cor(Pnew(ϑ), P
i
FP (ϑ)) ≥ ρThes

⇒ No interference occurs (12)
∀i ∈ [1, ..., NS ], Cor(Pnew(ϑ), P

i
FP (ϑ)) < ρThes

⇒ Interference occurs (13)

In a similar way, using MUSIC spectrum as fingerprint, we
can localize the interference source coarsely when interfer-
ence occurs. Firstly, the BS divides the whole room space into
several small grids and select their centers as known locations
where interference source is assumed to be located. Then it
builds these known MUSIC spectrums with the interference
source located to these selected centers as fingerprint sam-
ples. For the stage of localizing the interference source which
is randomly located whole room space, if the BS judges
that interference occurs, it calculates the correlation degree
between the new MUSIC spectrum and these known MUSIC
spectrums, and finds the maximum correlation value. Then
the location of the random-located interference source is
decided as the center position of the grid with this maximum
correlation value.

It is easy to understand that the proposed method only
localizes the interference source coarsely and the accuracy
depends on the size of grids. However, for conventional inter-
ference detection and localization, it usually needs to capture
the channel status information (CSI) or AoAs correctly which
requires more time and computational resources. Our pro-
posed MUSIC spectrum-based method only uses the received
signal, and does not calculate any CSI, AoAs between the
UEs, BS and IRS devices. Therefore, the proposed method
can largely reduce the resource requirement of channel es-
timation and the computational complexity. It is sure that
the proposed localization method has limited localization ac-
curacy. However, such accuracy performance can be further
improved using the technique of distributed BSs cooperation,
adjustable IRS pattern and machine learning.

IV. SIMULATION RESULTS OF PROPOSED
INTERFERENCE DETECTION AND LOCALIZATION
A. SIMULATED SCENARIO AND PARAMETERS
This section shows the simulated performance of the pro-
posed MUSIC spectrum-based method for interference de-
tection and localization. Fig. 2 provides the simulated sce-
nario. We assume that two UEs and one BS are set at
(10 m, 5 m, 1.2 m), (5 m, 10 m, 1.2 m) and (0, 5 m, 2 m),
respectively. IRS is set at X-axis and its origin points is
located at (5 m, 0, 2 m). The reflected surface of IRS faces to
the Y-axis direction.

For the IRS pattern Ωt, two different cases have been
simulated. The first pattern (ΩIRS→BS

t ) is set to make the
link power between the BS antennas and IRS cells as max-
imum as possible. This can be realized by separating the

FIGURE 2. The simulated indoor scenario.

IRS cells into several non-overlapped groups according to the
number of BS antennas. Then the cells of each group design
their reflected phases equal to the conjugate value of channel
between the corresponding BS antenna and these cells [25].
In a similar way, the second pattern (ΩIRS→UEs

t ) is adjusted
to make the value of link power between the UE and IRS cells
as maximum as possible.

Table 1 lists the major parameters of the simulated system.
We assume the signal of interference and BS-UEs is gener-
ated using OFDM symbols and the IFFT size of the system
is 2048. The data is transmitted with 1200 subcarriers. The
bandwidth is 30.72 MHz which means that one millisecond
can hold 14 OFDM symbols similar to the 3GPP standards
[31]. The MUSIC spectrum is calculated using one OFDM
symbol. In addition, the path loss model is given as follow-
ings for indoor scenarios [32].

PL = 32.4 + 20 log10(fc) + 17.3 log10(d) [dB], (14)

where fc is center frequency of wireless system with unit
as [GHz]. The IRS channel is generated with the near-field
model. The NLOS paths and LOS path are generated using
a Ray-tracing model which calculates phase value and the
power using link distance between transmit and receive with
the path loss model as Eq. (14). The locations of scatterers,
which used for calculating the reflected waves for NLOS
paths, are generated randomly within the simulated indoor
room.

The simulation decides whether the interference occurs
or not randomly and runs 4000 times. For each time, if
interference occurs, the interference signal is transmitted
by an 1.5m-height interference source and its location is
randomly generated from [0 m, 10 m] of both Y-axis and
X-axis as shown in Fig. 2. Otherwise, the received signal
at BS side only includes the signal transmitted from two
UEs with the fixed locations as shown in Fig. 2. In addition,
the whole indoor space is divided into Area A (left half)
and Area B (right half) to compare the influence from the
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distance between BS and UEs on the accuracy of interference
detection and localization.

TABLE 1. Specifications of simulation

Size of simulation room X:10 m, Y:10 m, Z(height):5 m
Number of antenna: BS (K) /UE (L) 16 / 4 for two UEs
Spacing among antennas λ/2
Number of antenna: interference 1
Center frequency, bandwidth 60 GHz, 30.72 MHz
IRS cells (M ), cell spacing 50×50, λ/2
Transmit power of interference, UE 20 dBm
Used subcarriers /spacing, IFFT size 1200/15 kHz, 2048
Number of scatterers 30
OFDM symbols per 1 ms 14

B. THE SIMULATED PERFORMANCES OF
INTERFERENCE DETECTION
Before evaluating the accuracy of interference detection, we
need to decide the threshold value of minimum correlation
value ρThes. This is achieved based on the minimum corre-
lation value of 100 times trial fingerprint samples. After trial
test, the threshold ρThes are selected as 0.997 for the first case
with IRS pattern (ΩIRS→BS

t ), and as 0.994 for the second
case with IRS pattern (ΩIRS→UEs

t ), respectively.
The results of the interference detection accuracy are

shown in Fig. 3 for the first case with IRS pattern as
ΩIRS→BS

t , and in Fig. 4 for the second case with IRS pattern
as ΩIRS→UEs

t , respectively. From the results of both figures,
when no interference occurs, the proposed MUSIC spectrum-
based method can judge the correct results with the accuracy
near to 100% when the FP samples NS is increased to 10.
The reason is that large FP samples increase the similarity
of among the MUSIC spectrums when no interference oc-
curs. On the other hand, if interference occurs, the detection
accuracy is reduced lightly when NS is increased to 10. It
implies that more conditions are necessary in the Eq. (13)
to correctly decide the interference occurrence. In addition,
when the locations of interference sources are from Area
B, the detection accuracy is little degraded due to the high
link power loss between BS and the interference source. In
both figures, our proposed method can correctly detect the
interference occurrence more than 98%.

C. THE SIMULATED RESULTS OF PROPOSED
LOCALIZATION METHOD
As shown in Fig. 2, to localize the interference source,
we first divided the 2D X-Y plane into 400 grids, and the
size of each grid is 0.25 m × 0.25 m. For each grid, as
reference for fingerprint sample, the interference source is
assumed to be located in the center of the grid. Therefore,
400 kinds of known MUSIC spectrums as fingerprint samples
are generated at the BS side in advance. For the stage of
localization, BS firstly calculated the new MUSIC spectrum
and detected that the interference occurs with the method
of previous subsection. Then, the location of interference
source is decided as the position of the grid center which

FIGURE 3. The accuracy performance of interference detection (IRS pattern:
ΩIRS→BS

t ) .

FIGURE 4. The accuracy performance of interference detection (IRS pattern:
ΩIRS→UEs

t ).

has the maximum correlation level among the 400 kinds of
known MUSIC spectrums and new MUSIC spectrum. Since
the interference sources are randomly generated from the X-
Y plane, the localization accuracy is largely decided by the
size of grid. Therefore the proposed method only coarsely
localizes the interference source.

We use the CDF (cumulative distribution function) of
the normalized localization error calculated as (|Xtrue −
Xestimate|) to show the localization performance. The re-
sults of location accuracy in X-axis and Y-axis are given
in Fig. 5 and Fig. 6 when the IRS patterns are ΩIRS→BS

t

and ΩIRS→UEs
t , respectively. The results in both figures

show the proposed MUSIC spectrum-based localization can
coarsely localize the source when interference occurs. For
both cases with different IRS patterns, the localization error
can be within 1 m with more than 65% and 43% for Y-axis
and X-axis, respectively. If the interference source is located
in Area A, the probability will be larger for that the error
is within 1 m. In addition, as shown in both figures, the

VOLUME 4, 2016 7

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3470894

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Y. HOU et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 5. The localization performance of interference source (IRS pattern:
ΩIRS→BS

t ).

FIGURE 6. The localization performance of interference source (IRS pattern:
ΩIRS→UEs

t ).

localization accuracy at Y-axis of interference source is little
higher than that of at X-axis. The reason comes from that the
ULA at BS is set to be parallel to the Y-axis which makes
the method have larger spatial resolution than that of X-
axis. However, it also shows that the IRS patterns have little
impact on the localization accuracy in both figures. These
results imply that the optimal IRS pattern for maximizing
is different from the pattern for the optimal interference
detection/localization.

We should note that the proposed method belongs to one
kind of fingerprint-based way which is sensitive to the real
environments such as adding some new UEs, increasing or
decreasing the obstacles. However, the proposed method can
still work well if the pre-selected fingerprint samples can be
fully updated when the environment of channel is changed.

For the different indoor structural scenes, the proposed
method perhaps appears different localization performance.
The reason is that the accuracy of the fingerprint-based
localization method usually depends on the grid size dur-

ing the training stage. For some indoor structural scenes,
such as factory with many metal objects, the complicated
wireless environments will make the variation among these
known MUSIC spectrums located to these selected centers
more complicated and be hard to be analyzed. Therefore,
the localization accuracy could be largely reduced. However,
the fingerprint-based localization method has low complexity
and can coarsely detect the correct location for some simple
indoor scenarios.

In addition, changing the number of BS antennas N and
IRS cells M has largely impact the experimental results.
When the number of BS antennas N is changed, the MUSIC
spectrum will be different. Usually, the value N decides the
AoA resolution. The larger value N is, the better resolution
is. For the number of IRS cell M , the large value M will
increase the link power between the BS and UEs via IRS
device. The partial MUSIC spectrum signal which related to
these links will be enlarged. Therefore, increasing the values
of N and M will further improve the accuracy of interference
detection and localization, and vice versa.

V. PROBABILISTIC NEURAL NETWORK-BASED
PREDICTOR FOR INTERFERENCE ARRIVAL
Using the previous proposal, the interference occurrence can
be detected, and the locations of interference sources can also
be estimated. These results provide the possibility of that the
activity data of interference source can be collected and then
be predicted based on these data.

Figure 7 shows the main process of the proposed method
to predict the interference arrival. We assume there are two
interference sources: Interf#1 and Interf#2 which generate
interference packets according to some arrival processes.
We assume that the BS and two UEs are transmitting or
receiving continuous signal using precoding or beamforming
technique for multiple-user MIMO communication. The BS
calculates the MUSIC spectrum using Ts duration of received
signal and then decides whether interference exists or not. If
interference occurs, BS will localize the interference source
using the proposed method in previous sections. After that,
the duration of Ts and next TI duration of the localized
interference source will be judged as busy (1). In a similar
way, the duration of Ts + TI duration of localized interfer-
ence source will be judged as idle (0) if BS judges that no
interference signal transmits. After obtaining enough data of
the busy/idle (1/0), the BS can learn the property of the data
and utilize the learned properties to predict the interference
arrival using the technology of machine learning. In this
paper, we select the PNN [33] for the target of learning and
prediction.

A. PROBABILISTIC NEURAL NETWORK
Based on a radial-basis function, PNN can be classified as
a developed feed-forward Bayesian network. The core of
PNN employs one statistical method named as Kernel den-
sity estimation which classifies the input data into different
classes according to the estimated PDF of each class and
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FIGURE 7. The prediction of interference arrival for mmWave IRS-MIMO system.

FIGURE 8. The basic model of probabilistic neural network.

optimizing the neurons weights. Fig. 8 shows the main PNN
architecture which includes four major layers called as input
layer, pattern layer, summation layer and final output layer,
respectively. For the training stage of PNN, the data is input at
the input layer and then moved to the pattern layer. Here, the
Kernel density estimation is used to estimate the PDF of each
class, and then classify the data into different classes. The
Euclidean distance between the input data and the reference
data is calculated and then multiplied by each neuron weight

with a Gaussian activation function. The contribution of the
ith class is then summed to get a probability value contributed
from all neurons in the summation layer. Such probability can
be represented as following equation,

Pi(x) =
1

σ
√
2π

NEi∑
j=1

e−
∥v−vi,j∥2

2σ2 . (15)

Here vectors vc,j , v are the jth training data and the sam-
ple data, respectively. NEC

and σ represent the number of
the ith class training vector and Gaussian spread of PNN,
respectively. Therefore, the value of ||v − vi,j ||2 shows the
squared Euclidean distance between the input data vector and
the jth training data vector from the ith class. Finally, the
output layer selects the class with the highest probability.

FIGURE 9. The continuous status prediction using probabilistic neural network

Using PNN, the correlation property between the input
data and the output can be found. Then the new output can be
predicted using the training all neurons weights. The similar

VOLUME 4, 2016 9

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3470894

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Y. HOU et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

idea can be used for the continuous status busy/idle predic-
tion [34, 35] which is shown in Fig. 9. After the interference
detection and localization of each interference sources as
explained in previous section, the time-series status of each
interference source can be represented as 0/1 data stream
which also shown and explained in Fig. 7. Therefore, the
detection accuracy of interference occurrence and its location
highly impacts the value of the 0/1 data stream. For example,
with the perfect detection of interference occurrence and
location, the 0/1 data stream can represent the correct time-
series statuses of the interference and vice versa. If such time-
series statuses has some correlation property, using PNN can
find such relationship and predict its coming arrival correctly.

To training and testing the PNN predictor, the estimated
0/1 data stream of each interference source is used to find the
correlation property. As shown in Fig. 9, the idle/busy (0/1)
data stream of each interference source is divided into two
parts for two different stages: learning stage and prediction
stage. During learning stage, the 0/1 data is arranged as
several continuous statuses or sequences which include V+Z
samples by shifting the data stream with an interval of one
or several samples. The continuous V samples data as input
data for PNN predictor is assumed to be obtained till the
current time. The next continuous Z samples are assumed as
the coming idle/busy data which needs to be predicted. After
that, the number of continuous idle or busy samples in V data
is used for classifying the different classes. For example, as
shown in Fig. 9, the Sequence #2 and Sequence #3, which has
5 continuous idle samples, are classified as the same class.
After that, the correlation between the input continuous V
samples and each class can be learned using PNN with op-
timal weights for all neurons. Finally, the number of coming
continuous idle samples can be predicted using the PNN with
these trained weights for all neurons.

B. SIMULATION PARAMETERS OF PROBABILISTIC
NEURAL NETWORK
Figure 7 also shows the simulated scenario. The parameters
for interference detection and localization are the same with
that in Sect. IV. Two interference sources (Interf #1, Interf
#2) are located as (9.5 m, 1.5 m) and (2.5 m, 8.5 m) with
1.5 m-height antennas, respectively. For IRS pattern, we only
consider the case of ΩIRS→UEs

t where the IRS device is
pointing to two UEs.

FIGURE 10. The simulated interference arrival patterns.

For interference arrival pattern, we simulated two patterns:
Poisson arrival and fixed transmission pattern with offset as

shown in Fig. 10(a) and Fig. 10(b), respectively. For Poisson
arrival, the probability of the interval Ti between two packets
is distributed as p(Ti) = λe−λTi , where λ is the average
arrival rate. Poisson arrival process is one of the most widely-
used processes. It is usually employed for the scenario count-
ing the occurrence of certain event that occurs with a certain
rate but randomly and no correlation among the arrival time.
This means that it is difficult to be predicted if interference
arrival obeys the Poisson arrival process. On the contrary,
for the fixed transmission pattern, we assume the interval is
fixed with T . To reduce the correlation between the arrivals,
some random offsets between the arrival intervals are used.
The fixed transmission pattern with random offset can be
assumed for some scenarios that some WLAN devices send
the packets after fixed intervals but with some offset for the
random backoff sensing before the start of the transmission.
In this paper, we set that the random intervals are among
[T − α, T + α]. Large value α can reduce the correlation
among the intervals.

Table. 2 lists the PNN parameters. The duration of all
packets TP are the same set as 0.2 s. For training and
prediction with PNN, the row value W is fixed as 400, and the
V samples and Z samples are set with the same values. We
simulate the scenario as shown in Fig. 7 for two hours which
generates about 144000 busy/idle samples (50 ms/sample).
In addition, according to the previous simulated results, the
accuracy of interference detection for that interference signal
is from one source (PI ) and two sources (PII ) are the same
and set as 0.97. We use PLO to show the probability that the
interference source is correctly localized. This means that the
interference sources of Interf #1 and Interf #2 are mismatched
with the probability as (1-PLO). From preparatory simula-
tion, we set PLO as 0.96. The high value is attributed to the
stationary nature of Interf #1 and Interf #2, which are situated
at a considerable distance from each other. It’s important to
highlight that the values of PI , PII and PLO significantly
influence the time-series samples, indicating busy or idle
states (1/0).

TABLE 2. PNN parameters

Parameter Value
Arrival of Poisson rate (λ) One packet per 1.2 s.
Packet duration (TP ) 0.2 s.
Fixed interval T 1 s
MUSIC spectrum duration (TS ) 1 ms
State duration (TI ) 49 ms
Simulation duration 2 hours
Percentage of training, prediction samples (70% ,30%), (50%, 50%)
PNN row value (W ) 400
Row samples for PNN V (We set V = R) 200, 800
Gaussian spread value σ 0.1, 0.8

C. SIMULATION RESULTS OF INTERFERENCE ARRIVAL
We use the CCDF (complementary cumulative distribution
function) of the coming continuous idle status to show the
prediction results. For comparison, the real CCDF of contin-
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FIGURE 11. The prediction results of interference arrival (Interf#1, Poisson arrival, σ = 0.1).

uous idle status with the perfect time-series busy/idle sam-
ples of the interference source is given. Two CCDF curves
will coincide each other if the prediction using PNN works
perfectly.

Fig. 11(a) to Fig. 11(d) show the simulated prediction
results of the interference arrival when the PNN sets σ = 0.1
with different V and ratio of training samples (TR). The
interference packets are generated with a Poisson arrival
process. We only show the results of Interf#1 because In-
terf#2 has the similar performance. As shown in all figures,
the predicted results are totally inconsistent with the real
results. The predicted CCDF of continuous idle duration
seems to be inverse-square with the continuous idle duration
which is totally different with that of the real results. The
reason is that the interference arrivals occur randomly and
have no correlation among the arrival time due to Poisson
arrival process. Therefore, Fig. 11 shows the failure case of
our proposed prediction method because Poisson arrival is
independent and hard to be predicted. The PNN cannot find
the correlation among the continuous idle duration during the
training stage.

Fig. 12(a) to Fig. 12(d) show the simulated prediction
results of the interference arrival when the PNN sets σ = 0.1
and with different V and TR when interference packets are
generated as the fixed transmission pattern with offset α. The
predicted CCDF results become almost consistent with the
real results especially when the continuous idle duration is
less than 0.8 s for both α = 0.1 s and α = 0.2 s. This is
because the probability that the interference arrival is longer
than 0.8 s is very high for the fixed transmission pattern
even with offset α = 0.2 s. However, the CCDF curve of

the predicted result deviates from the real result for longer
continuous duration. The larger α makes the higher level of
deviation. The reason is that the error of interference detec-
tion and localization change the correct busy/idle samples
to opposite values which weakens the correlation property
among the time-series samples. In addition, a random offset
increases the randomness of time-series samples which dete-
riorates the prediction accuracy.

Fig. 13(a) to Fig. 13(d) show the simulated prediction
results using PNN with σ = 0.8 and with the different V
and TR for the same transmission pattern in Fig. 12. The
simulated results are similar to that of in Fig. 12. From
both Fig. 12 and Fig. 13, changing the value V seems to
have less impact on the prediction results. The reason is
that it is enough to capture the correlation among time-series
busy/idle samples when V is set as 200 (10 seconds) because
the average packet generation time is 1.2 s. Increasing V
to 800 (40 seconds) cannot dramatically change the correla-
tion property among time-series busy/idle samples. With the
similar reason, changing the ratio of training data has little
influence on the prediction performance when the average
packet generation time is short, and the correlation property
is easily captured using only 50% of the two-hour status data.

VI. CONCLUSION
This paper has proposed a MUSIC spectrum-based low-
complexity method to detect interference occurrence, local-
ize the interference sources and then predict the interference
arrival for mmWave IRS-MIMO system. The main idea is
that the MUSIC spectrum can be treated as the ‘signature’
of the transmit/interference signals from different users at

VOLUME 4, 2016 11

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3470894

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Y. HOU et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 12. The prediction results of interference arrival (Interf#1, Fixed transmission pattern +offset (α), σ = 0.1).

different locations. This property can be used to detect the
occurrence of interference and localize the their sources by
only calculating the one-dimension MUSIC spectrum with
less computational complexity. The simulated results con-
firmed that the proposed low-complexity method can provide
a high accuracy of detection and the coarse information of
their locations. Finally, the pattern of interference occurrence
can be learned from the collected data which can be used
to learn and predict the interference arrival. This paper also
proposed an efficient PNN-based predictor for the prediction
of interference arrival and showed its prediction accuracy.
From simulated results, our proposed method can achieve
the correct results with the accuracy near to 100% when the
fingerprint samples is over 10. In addition, the localization
error can be within 1 m with more than 65% and 43%
for Y-axis and X-axis, respectively. Finally, based on the
results of the interference occurrence, the proposed PNN-
based predictor for the interference arrival prediction can
almost capture the correct CCDF of the coming continuous
idle status.

There are still many issues on this research topic. The in-
terference detection will be difficult for moving interference
sources because of the changeable AoA which generates the
variable MUSIC spectrum for the same interference source.
In addition, these variable MUSIC spectrums make the local-
ization difficult using a simple fingerprint-based method. On
the other hand, the interference arrival pattern highly relies
on the accuracy of the detection and localization. How to
find the correct pattern and realize good prediction accuracy
becomes a sizeable issue when considering moving interfer-
ence sources with a large path loss on the transmission link.
Some solutions perhaps depend on the joint optimization of

the MIMO system and IRS devices. In addition, this paper is
less consideration for usage of IRS. The main usage of IRS in
this research is to increase the link power by making the IRS
point to the BS or UEs. It should bring new and interesting
technical challenges if the target of introducing IRS for the
detection of interference occurrence or localization the inter-
ference sources. Finally, the results are all from simulation
but not from real experimental results. These research topics
will be our future research directions.
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