
VOLUME XX, 2024 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.
Digital Object Identifier 10.1109/ACCESS.2024.Doi Number

A Novel Robotic Grasp Framework for
Accurate Grasping under Complex
Packaging Factory Environments
(september 2024)
Guirong Dong1, Fuqiang Zhang1, Xin Li1, Zonghui Yang1, and Dianzi Liu2
1Faculty of Printing, Packaging and Digital Media Technology, Xi’an University of Technology, Xian 710058, China.
2School of Engineering, University of East Anglia, NR4 7TJ Norwich, U.K.

Corresponding author: Guirong Dong (dongguirong2005@xaut.edu.cn).

This work was supported by Collaborative Innovation Center of Shaanxi Provincial Education Department (No. 23JY064), Special Project
for Talent Cultivation in Western Region from China Scholarship Council (No. 2208615060).

ABSTRACT As grasping behaviors in real packaging scenarios are apt to be influenced by various
disturbances, visual grasping prediction systems have suffered from the poor robustness and low detection
accuracy. In this study, an intelligent robotic grasp framework (RTnet) underpinned by a linear global
attention mechanism has been proposed to achieve the highly robust robot grasp prediction in real
packaging factory scenarios. First, to reduce the computational resources, an optimized linear attention
mechanism has been developed in the robotic grasping process. Then, a local window shifting algorithm
has been adapted to collect feature information and then integrate global features through the hierarchical
design of up and down sampling. To further improve the developed framework with the capability of
mitigating noise interference, a self-normalizing feature architecture has been established to empower its
robust learning capabilities. Moreover, a grasping dataset in the real operational environment (RealCornell)
has been generated to realize a transition to real grasping scenarios. To evaluate the performance of the
proposed model, its grasp prediction has been experimentally examined on the Cornell dataset, the
RealCornell dataset, and the real scenarios. Results have shown that RTnet has achieved a maximum
accuracy of 98.31% on the Cornell dataset and 93.87% on complex RealCornell dataset. Under the
consideration of real packaging situations, the proposed model have also demonstrated the high levels of
accuracy and robustness in terms of grasping detection. Summarily, RTnet has provided a valuable insight
into the advanced deployment and implementation of robotic grasping in the packaging industry.

INDEX TERMS Attention Mechanism, Packaging Factory, Robot Grasping, Stylistic Reconstruction.

I. INTRODUCTION
Packaging factory, as a typical discrete manufacturing
industry, has been an indispensable part of industrial
development. With the introduction of industrial automation,
intelligent grasping robots are widely used in packaging
factories due to their high efficiency and ease of management,
enabling the grasping robots to replace traditional human
hands for daily packaging and handling work [1]. However,
due to the limitations of perception, robots are not able to
recognize objects and understand the spatial layout of the
target in the same way as people perform. That is the
reason why robots do not work well and precisely when
complex scenarios such as packaging factory, must be

considered or when the grasping unknown objects is
required. Deep learning enables robots to intelligently
learn, allowing grasping robots to predict grasping points
autonomously without human assistance [2]. The popular
method for representing grasping points is achieving the
rectangle representation grasp [3]. For grasping tasks, an
accurate point cloud segmentation is essential. Techniques to
achieve this goal are categorized into deep learning-based or
clustering-based approaches [4]. The existing methods for
robot grasping include the parallel grasping method and 6D
pose estimation [5]. However, in the packaging factory
environment, parallel grasping methods are more efficient.
Most existing deep learning-based grasping detection
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methods rely on convolutional neural networks to extract
features and map them between the object being grasped and
the predicted grasping rectangle [6]. Recently initially
proposed SSDResNet, a composite network for object
detection. Subsequently, the identified targets were utilized
to utilized four-dimensional grasp predictions [7]. To tackle
the issue of the inefficient computation caused by
candidate bounding boxes extraction, GGCNN [8], a
typical closed-loop single-stage grasp prediction network,
was developed to directly generate grasp poses on pixels
and achieved a lightweight representation of grasp
predictions. Cheng et al. [9] regarded the grasp pose as a
rotating enclosing frame in the image plane and proposed
a single-stage fully convolutional grasp generation
network, which eliminate the intermediate grasp candidate
stage and achieves accurate pixel-level grasp directly.

Research on robotic grasp prediction belongs to the field
of computer vision, and the above methods have achieved
excellent performance. Nevertheless, determining an
appropriate grasping posture for a captured object entails a
process of extensive information search. CNN, while suitable
for target detection and object recognition, lack the ability to
achieve remote modeling and extract global features. As a
result, these networks cannot effectively utilize the continuity
and correlation of grasping posture for feature extraction.
The attention mechanism with its global interaction
capability provides a solution to this issue.

The attention mechanism was initially introduced in the
transformer [10]. The powerful global interaction and remote
modeling capabilities have garnered significant attention in
the field of natural language processing and image
processing. Compared to CNN, transformer captures more
spatial and contextual information. The well-known
transformer vision networks include VIT [11], and Swin
Transformer [12]. Apart from the above research, many
scholars have also applied attention mechanisms to robotic
grasping tasks. With the development of point cloud
segmentation technology, 6D pose estimation method has
been widely applied in the field of robot grasping [13]. Zou
et al. [14] proposed a transformer-based 6D vision
transformer, primarily utilized for estimating target poses on
RGB-D images to achieve high-precision robotic grasping.
Wang et al. [15] applied the global attention mechanism to
enhance robot grasping prediction task and utilized local
window attention to extract local information, achieving a
remarkable accuracy of 97.99% on the Cornell Grasp Dataset.

In industrial settings, robots require visual grasping
capabilities that exhibit high model accuracy and robustness
to successfully execute a variety of complex grasping tasks
[16]. Jiang et al. [17] converted the six degrees of freedom
grasping attitude estimation task into a two-dimensional
registration problem and achieved its application in industrial
parts grasping with reflective surfaces through information
coding and feature alignment. Ge et al. [18] improved the
accuracy of grasping prediction by assigning categories to

each pixel, and utilizes residual pyramid feature module to
achieve accurate grasping prediction of medical devices in
unstructured scenes. Wei et al. [19] proposed a robust, two-
stage grasping attitude network that fine-tuned the low-
quality grasping and reduced local noise to enhance the
estimation of object grasping attitudes in complex settings.
Niu et al. [20] proposed a visual enhanced grasping detection
model (VERGNet) to improve the robustness of robot
grasping in low light imaging scenes, in response to poor
grasping prediction performance under low light conditions.

Current research is focused on enhancing the performance
and robustness of models in complex scenarios by improving
algorithmic robustness. However, there has been limited
investigation into samples across various scenarios. Since
most of grasp detection methods on deep learning are trained
and tested in the laboratory settings, their high accuracy
during training using simulated data often fails to translate
into effective performance in industrial settings. Therefore,
the limited scope of the training dataset and the presence of
various types of noise significantly compromise data quality,
making it challenging to obtain high-resolution, single
background images in real factory scenarios as those found in
Cornell datasets. In this case, one possible solution is to
enhance the diversity of the training dataset by introducing
noise from the real industrial capture settings. This approach
not only improve the performance of the model in the
packaging factory grasping environment but also ensures its
adaptability to various situations.

In this paper, focusing on poor generalization and low
accuracy of robot grasping under the environment of
producing the real packaging production, especially in
industrial packaging and grasping applications, a highly
robust robot grasping detection model (RTnet) is proposed.
The model not only inherits the Swin Transformer
mechanism for extracting local features through window
sliding, but also linearly reduces attention calculation while
ensuring global feature extraction. With weight initialization
assumed, scaled exponential linear units (selus) are applied to
endow the model with self-normalization property, thereby,
enhancing its robustness in complex settings. Subsequently, a
U-shaped architecture is employed to endow the model with
ability to learn detailed features. Additionally, a practical
dataset (RealCornell) is generated through stylistic transfer of
the original Cornell dataset, which captures real-world
packaging factory grasping scenarios and enhances the
robustness and generalization capability of RTnet.

II. THE PROPOSED RTNET FRAMEWORK

A. GRASP REPRESENTATION
Accurate determination of the grasping position is a
prerequisite for robotic manipulation. In the case of two-
finger grasping, a five-dimensional formulation [3] is defined
to transform robot grasp into representative rectangles as
shown in (1).
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 , , , ,g x y w h  (1)

where ( , )x y is the center of the grasping rectangle, ( , )w h is
the grasping width and the parallel grippers width, 
indicates the angle of the grasping rectangle for the
horizontal axis.

For a 2D image, the rectangular grasp of each pixel points
( , )x y for a known width of the parallel fixture as ( , )G x y is
formulated in (2).

   , , , n W H
x yG Q w R     (2)

where Q , the grasp quality, indicates the success rate of
capturing per pixel, with a value range of [0,1]. The closer
the value is to 1, the higher the success rate of grabbing. w is
the width of each pixel location at the time of capture. In real
scenarios, width is defined within a range of [0,150] pixels.
 is the orientation angle within the range of -90 to 90.

B. RTNET FRAMEWORK
To achieve effective grasping in real packaging industrial
settings, an efficient and robust robot grasping detection
framework (RTnet) is proposed in this section. Based on
Swin-transformer, the developed framework comprises four
modules including Linear Embedding, Encoder, Decoder,
and Linear Project. The Encoder and Decoder are connected
by a skip-connection and Robust Transformer Block (RT
Block) as shown in Fig. 1. Skip-connections facilitate the
direct transfer of multi-scale feature information extracted by
the encoder to the decoder. By means of feature graph fusion,
this connection approach effectively integrates the original
encoder features with those obtained after up-sampling in the
channel dimension, thereby compensating for information
loss caused by down-sampling and restoring crucial spatial
information. The incorporation of skip-connections not only
enhances the model's ability to capture features across
different scales, leading to the improvement of prediction
accuracy, but also expedites both training and reasoning
processes by alleviating computational burden on the decoder.
A detailed exposition of the model is provided below.
1) IMAGE SEGMENTATION AND LINEAR EMBEDDING
The image information will be partitioned into numerous
small blocks by RTnet and each block represents adjacent
and non-repeating pixels. These blocks are then expanded
based on the channel direction. Subsequently, the segmented
small block images are inputted into a linear embedding layer
for dimensionality conversion, ensuring efficient feature
extraction and speeding up the process of subsequent data.
2) ENCODING AND DECODING STAGE
The encoding-decoding stage is the core component of the
entire model and an important phase for feature extraction.
Referring to the U-shaped network architecture, there are two
parts contained in the encoding and decoding stages of the
RTnet, respectively. The encoding stage include a Robust
Transformer Block (RT Block) and a Feature Merging Block
(Patch Merging). In the decoding stage, there is also a Robust

Transformer Block to improve the robustness of model. In
addition, Feature Expansion Block (Patch Expanding) is also
implemented.

Linear Embedding divides the input image into non-
overlapping Patches of size 4 4 . Taking RGB image as an
example, each Patch with a feature dimension of 4 4 3  is
linearly mapped to a linear vector of size 96. The encoder
section employs RT block to perform attention and shift
window mechanism, which are introduced in the following
Section C. Additionally, the Patch Merging section gradually
expands channel size to achieve downsampling functionality.
With the synergy of these two modules, RTnet achieves
multi-scale feature extractions. The decoder section is
upsampled and comprises a RT block and Patch Expanding,
which reshape the feature map into a high-resolution one
while halving the feature dimension accordingly.

To generate the feature map extracted from each
downsampling with the new feature map obtained from the
upsampling in channel dimension, the entire framework
employs a skip-connection module to combine the features
together by adding a stitching layer. Through integrating the
underlying features with the higher-level characters, RTnet
can recover spatial information while restoring high image
resolution simultaneously. Ultimately, the feature
information is delivered throughout Linear Projection to
obtain the output information including the grasping point,
angle, and grasping success rate.

FIGURE 1. RTnet network architecture.

C. RT BLOCK
RT block is a crucial component of RTnet, enabling highly
robust and accurate grasp prediction. The attention
mechanism typically involves complex computation for each
patch, leading to significant increases in computational
complexity when dealing with numerous patches or large
size image. To enhance the robustness and computational
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efficiency of the model, a RT block is developed to leverage
the powerful shift window modeling and self-normalization
capability. Typically, RT block uses a global attention
mechanism to facilitate information interaction across all
regions. Its working mechanism which optimizes both
attention computation and MLP processing is based on the
Swin-transformer. This process is formulated by (3). Fig. 2 is
the flowchart of RT block, Robust Multilayer Perceptron (R-
MLP), and Robust Linear Attention (RLAttention).
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1

1 1 1

ˆ ˆW MRLA(LN( ))
ˆ ˆR MLP( )

ˆ SW MRLA(LN( ))
ˆ ˆR MLP( ))

l l l

l l l

l l l

l l l

z z z
z z z
z z z
z z z

 



  

  
  
  
  

(3)

where W-MRLA and SW-MRLA denote robust multi-
headed attention mechanism modules based on the window
and shift window partitioning, respectively. R-MLP denotes
the robust multilayer perceptron module. l 1z  denotes the
input, ˆlz and 1ˆlz  denote the output feature variables of the
W-MRLA and SW-MRLA modules, respectively. The lz
denotes the output of the R-MLP module.

R-MLP module is one of the key components in
established model. It enhances the robustness of the network
through the utilization of self-normalizing functions, for
example, Selu and Layer Normalization. The Relu activation
function is generally utilized in the standard transformer
block, however, the negative gradient of Relu causes the
feature information masking and ultimately lead to the
suboptimal network performance when tackling complex
tasks. With the implementation of self-normalization (SN) in
the RTnet framework, the output of each layer can converge
to zero mean and unit variance during training. This reduces
turbulence in the training output and makes the network less
susceptible to disorder while highly robust against noise
disturbances [21]. Therefore, the RTnet framework
incorporates a self-normalization capability to enhance
network robustness and generality. The Self-normalization is
realized by the Selu activation function defined in (4), which
prevent gradient explosion and disappearance by stabilizing
variance. As a result, all parameters including weights, biases
and activation values have a mean value of 0 and standard
deviation of 1.

 
if 

Selu( )
if x

x x 0
x

e x 0


    
(4)

where 1.67326324235 and 1.050700987 are
determined by numerical tests.

Furthermore, weight normalization and alpha dropout are
crucial factors that impact self-normalization. The Lecun
Norm is employed as weight normalization technique to
maintain zero mean and unit variance of the weights. Alpha
Dropout is utilized to maintain the self-normalizing property
by randomly setting certain elements to zero based on
Bernoulli distribution, which reduces output variance. During
each forward call, the remaining elements are randomly
scaled and shifted to preserve the same mean and variance as

that of the input. Thus, Alpha Dropout-assisted Selu enables
the RTnet with self-normalization capabilities. To further
improve the robustness of the network, R-MLP in Fig. 2 is
proposed by eliminating the Layer Norm operation of the
MLP and introducing the self-normalization operation in the
MLP of each RT block. The R-MLP is defined by (5).

 ˆ̂ ˆAD(Selu(Linear(LNorm( ))))z z (5)
where LNorm is an abbreviation for Lecun Norm, indicating
the weights normalization. Linear means the fully connected
layer and means the Alpha Dropout operation. The input ẑ is
passed through the first four modules to generate the output ˆ̂z .

RLAttention module is designed to enhance the
computational efficiency of the attention mechanism. In
contrast to the traditional softmax attention, RLAttention
combine L2 normalization with Relu activation function to
reduce computational complexity while improving prediction
accuracy effectively. Due to the unique Self-Attention
mechanism, the Transformer module that focusing on the
global attention mechanism has garnered significant attention
in various fields such as natural language processing and
computer vision. To enhance the fitting capability of
developed framework, input features are transformed using
linear matrices to generate three equal-size vectors including
the query, key and value. The attention is then calculated by
(6).

Attention( , , ) SoftMax
TQKQ K V V
d

 
  

 
(6)

where , , n dQ K V R  , n is the number of patches and d
refers to the dimension of patches.

The vector dimension in the standard transformer attention
mechanism is defined as n d , and the complexity of the
calculation step is estimated as  2O n d . However, due to its
quadratic complexity, this attention calculation requires
expensive computation resources, making it challenging to
apply in real-world scenarios beyond laboratory environment.
In this study, a novel linear attention called RLAttention is
proposed for computing attention in the RT Block design, as
presented in (7-8).

ˆ ˆ ,d d
2 2

Q KQ K
Q K

 
   

(7)

FIGURE 2. RT BLOCK.
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ˆˆ
RLAttention( , , ) (ReLu )

TK QQ K V V
d

 
   

 
(8)

where Q̂ is the L 2 normalization of Q along the direction of
dimension d , and K̂ is the same.

The RLAttention applies L 2 normalization to theQ and K
vectors along the patch dimensionality, constraining attention
output within a fixed range and demonstrating superior
performance compared to standard attention calculation. The
rationale behind this modification is to use Relu activation to
ensure the relative independence of each mask window in
attention calculation through the non-negativity of L2
normalization, address the redundant and complex SoftMax
of the standard attention calculation, achieving a lightweight
effect. Additionally, RLAttention reduces the computation
order of , ,Q K V in the attention mechanism from  2n dO to
 2ndO , resulting in a significantly reduced computational

complexity for RTnet. To prevent overfitting, the sets of WQ,
WK, Wv are applied to the Multi-Heads RLAttention
calculations (MRLA).

D. LOSS FUNCTION
The developed RTnet for robotic grasping prediction
achieves the conversion of flat object grasp detection to
pixel-level identification. Additionally, a unique orientation
angle is determined by    1/2 arcta on sin / c s   , which
is used to represent the unique grasp value of each
pixel  , ,Q w  . To improve the robustness of RTnet
processing discrete points, the loss regression
function

1Lsmooth is designed to combine the 1L and 2L loss
function synergizing the advantages including the
smoothness of function for the small value of x and the
stability of function for the large value of x .

For an object represented X ( , , , , )1 2 3 nx x x x  and its
corresponding grasp token L ( , , , , )1 2 3 nl l l l  in the dataset,
Equations (9-11) define four predicted values of the RTnet
output for grasp prediction, as well as the difference between
predicted and true values through a loss function.

( , ,sin ,cos )n n n nG q w   (9)

0.5 if | | 1
smooth

| | 0.5 otherwise1

2

L
x x

x
 

 


(10)

 
1{ , ,sin ,cos }Loss( , ) smooth m m

i m q w L i iG L G L    (11)

E. REPRESENTATION OF PACKAGING GRASP
SCENARIOS
Robotic grasping prediction in industrial settings requires
high robustness to achieve precise grasping detection, given
the presence of numerous complex distractions in the real-
world environment. However, existing grasping datasets
related to industrial packaging environments are generated
under the assumption of neat and smooth scenarios, resulting
in a significant discrepancy between RGB information of the
target object and surrounding environmental data, as shown
in Fig. 3. Moreover, the grasping data obtained from the

factory scenarios is subject to various interference and noise.
Therefore, a remarkable offset between these two
representations is indispensable, causing the disagreement
between the results based on the current dataset and those
derived from real factory scenarios.

FIGURE 3. Example of an idealized dataset. (a), (b) and (c) from
Jacquard dataset; (d), (e), and (f) from Cornell dataset.

As subtle interference or noise in the real-world scenarios
affect the accuracy of predictions, high-quality images of
inputs are crucial for neural networks. However, low quality
and noisy data are often prevalent in such environment.
Therefore, training a network on datasets with complex
backgrounds will demonstrate higher robustness and better
performance. With the incorporation of the dataset through
style transfer into the original Cornell dataset, texture noise is
successfully integrated, and new captured data information
are generated to assess the performance of RTnet for robotic
grasping in complex packaging scenarios.

To accurately depict real packaging factory scenarios, the
interference that occur in industrial capture scenarios are
developed by the integration of different packaging products
in the Cornell database with white background shown in (1)
of Fig. 4(a-d) and four kinds of realistic factory environments,
which include low-resolution grasping environment ((2) in
Fig. 4(a)), colored grasping background ((2) in Fig. 4(b)),
wooden grasping background ((2) in Fig. 4(c)) and blocky
oiled background ((2) in Fig. 4(d)). The primary principle for
the above combination is to ensure the representation
separation of image style and content, thereby maximizing
preservation while transforming styles during style migration.

FIGURE 4. Data argumentation by style transfer. In (a-d), Packaging
products in Cornell database with white background (1); Four realistic
factory environments (2); Four transferred styles (3)
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Thus, four transferred styles in (3) of Fig. 4(a-d) are
generated and called RealCornell (see Section 3.4). It is
noted that data argumentation by style transfer enhances the
generality and style transfer ability of the developed RTnet
for the realization of various real grasping scenarios.

III. EXPERIMENT AND RESULTS
During the experimental phase, the accuracy and
effectiveness of the RTnet model is evaluated through
experimental validation on both the Cornell grasping dataset
and the developed RealCornell dataset, as well as real
grasping experiments conducted on physical robots.

A. DATASETS
The Cornell dataset consists of 885 RGB-D images of 240
objects, while the RealCornell dataset contains 4 885 RGB-
D images of 240 objects generated by style transfer in
Section 2.5. For each dataset, a random selection of 90% data
is used for training the model and the remaining 10% is
served as the validation set.

B. EVALUATION INDICATORS AND IMPLEMENTATION
DETAIL
To enhance the realism of the grasp, the rectangle metric is
accurate provided that certain conditions are satisfied.
 The difference between the predicted grasping angle and

the actual grasping scenario is less than 30 degrees.
 The overlap area between the predicted rectangle and the

correct rectangular grasp is greater than 0.25 and can be
calculated according to (12). PG is the grasping data of
prediction and RG is the correct grasping value.

| |
( , )

| |
P R

P R
P R

G G
Jac G G

G G





(12)

The model is constructed utilizing Pytorch on Ubuntu
20.04 with an NVIDIA 3060 GPU, employing Adam as the
optimizer and a default learning rate of 0.001 that is
dynamically adjusted during training.

C. CORNELL DATASET EXPERIMENTS
In the experiments conducted on the Cornell dataset, two
methods of partitioning the dataset are employed: image wise
(Iw) and object wise (Ow). Table I presents the accuracy of
grasping results. The end-to-end grasping prediction network
[8] achieved accuracies of 73% and 69% using only Depth as
the input. Subsequently, RGB information is incorporated
into the prediction model [22]. When the input consists of
multi-source information including RGB and Depth, the
accuracy can reach nearly 98%, as demonstrated in [15], [23].

The proposed RTnet achieves a superior accuracy of
98.31% on the Cornell dataset when both RGB and Depth
data are employed. As compared with the results by other
researchers in Table I, RTnet achieves a better accuracy of
96.61% when only RGB is utilized as the input. Overall,
RTnet demonstrates a high level of performance in
completing the capture task.

TABLE I
CORNELL DATASET TESTING RESULTS

Model Input IW accuracy OW accuracy

GGCNN[8] D 73.0% 69.0%
GraspNet[22] RGB-D 90.2% 90.6%

GR-ConvNet[23]
D

RGB
RGB-D

93.2%
96.6%
97.7%

94.3%
95.5%
96.6%

TF-Grasp[15]
D

RGB
RGB-D

95.2%
96.6%

97.99%

94.9%
95.0%
96.7%

RRnet
D

RGB
RGB-D

94.91%
96.61%
98.31%

94.87%
95.92%
97.65%

D. REALCORNELL DATASET EXPERIMENTS
To assess the robustness of the models, GRnet and TF-Grasp
are popular tools used to evaluate the accuracy of robot
grasping prediction. In this study, only RGB-D as the input
of the model is examined on the RealCornell dataset. It is
noted in Table II that GRnet and TF-Grasp have the same
level of accuracy, which is lower than 92%. The accuracy by
RTnet’s has remarkably increased by over 2% than the
results by GRnet and TF-Grasp, reaching a value of 93.878%.

In order to visualize the accuracy of grasping prediction, it
is necessary to generate grasping heat maps. In Fig. 5, typical
packaging products from the RealCornell dataset are selected,
including regular cylindrical can packaging and irregular
packaging, e.g., toothpaste packaging, cosmetics packaging
and wine bottle. Through heat map analysis on each pixel of
the grasping points, the quality, deflection angle and grasping
width are obtained. The blue rectangular boxes labeled in the
first row of Fig. 5 illustrate the grasping locations predicted
by the RTnet in the four scenarios. The closer to the object
the graspable area (red zone in the second row in Fig. 5) is,
the higher the grasping accuracy is. The Angle and Width
diagrams show the best grasping angle and grasping width
predicted by RTnet. Therefore, RTnet has the ability to
effectively grasp the objects by identifying the graspable
characteristics and its grasping accuracy is evaluated by the
quality, angle, and width heat maps. Summarily, the results
demonstrate that the proposed grasping network has superior
grasp prediction performance in terms of accurate and robust
feature extractions under the complex working scenarios.

The robustness of RTnet is further validated on the
RealCornell dataset by experimental tests with the Jacc
indexes in range of 0.3 to 0.5 in terms of object grasping
accuracy. Fig. 6 demonstrates that RTnet outperforms the
other two models in terms of the increased accuracy in object
grasping. It is noted that when the number of the sample
batch reaches 100, the accuracy of grasping is slightly
influenced if the batch number is further increased to 200.
Therefore, it is recommended to set the batch number to 200
in the experiments from an efficient computation point of
view. In summary, RTnet can achieve excellent accuracy and
complete the task of grasping prediction.
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TABLE II
REALCORNELL DATASET TESTING RESULTS

Model GR-ConvNet[23] TF-Grasp[15] RTnet
Accuracy 91.304% 91.836% 93.878%

FIGURE 5. Visualization of the results of the RealCornell dataset.
Toothpaste packaging (a); Cylindrical cans (b); Cosmetics packaging (c);
Wine bottle (d).

FIGURE 6. Visualization of the results of the RealCornell dataset.
Accuracy when the batch is 100 (a); Accuracy when the batch is 200 (b).

E. ABLATION EXPERIMENT
To explore the impact of the developed core modules, e.g.,
RLAttention and R-MLP, on the overall performance of the
RTnet model, ablation experiments are conducted on the
Cornell dataset and RealCornell dataset. A model equipped
only with Swin transformer block is selected as the
benchmark model for the ablation experiment. On this basis,
RLAttention and R-MLP are sequentially added for the
experiment. The experimental results are assessed by the
accuracy index.

Results of Ablation Experiment are presented in Table III.
As compared to the baseline model using the Cornell dataset,
the model implemented by RLAttention only has a slight
improvement in accuracy, which is from 79.78% to 80.48%.

Moreover, with the addition of R-MLP into the model, an
accuracy of nearly 2% is further increased. The similar
conclusion is drawn by the experimental results using
RealCornell dataset. It is noted that the RealCornell dataset
contains significant noise interference, therefore the
implementation of R-MLP has a more significant impact on
the model accuracy by the increase of 3.35% from 69.43% to
72.78%.

TABLE III
RESULTS OF ABLATION EXPERIMENT ACCURACY

Base RLAttention R-MLP Cornell RealCorell
√
√
√

-
√
√

-
-
√

79.78%
80.48%
82.23%

68.86%
69.43%
72.78%

Note: "√" indicates the adopted module in the model , "-" means there is
no module adopted in the model .

In summary, the implementations of RLAttention and R-
MLP for enhanced self-normalized attributes improves the
robustness of the model, enable the suppression of irrelevant
features, prioritize target features, and make more accurate
predictions of grasping posture in complex packaging factory
grasping environment.

F. REAL ROBOT GRASPING EXPERIMENTS
Some advanced robotic grasp models have been developed in
the grasping experiments by many researchers and provided
useful guidance to accurate prediction for the solution to
industrial problems. Nevertheless, these models could only
work well under the flat color background, leading to the
poor model generalization. Therefore, applications of the
grasping models to solve the problems arising from the real
production process are severely limited.

To address the above issue, a robot grasping platform
based on visual perception is established in this study. A
depth camera with a measurement accuracy of 0.1mm and
the resolution of1920 1200 pixels, is installed in the KUKA
KR10 robot, enabling the capability of solving the real
grasping problems. The view field of the depth specified by
the camera provides the measurement of 800mm  450mm,
which aligns with the robot’s achievable range. The camera
is also equipped with a blue LED light source and positioned
at a distance of 1 meter from the desktop in Fig. 7. The
repetitive positioning accuracy of the robot is 0.05 mm. The
settings of these parameters effectively reflect the grasping
environment of the factory.

To validate the model, the prediction results of RTnet are
compared with other models in real scenarios. The results are
shown in Fig 8(a), where the prediction results for the
eyeglass case by different models are provided. Results
demonstrate that RTnet accurately predicts the grasping
position aligned with the center of gravity of the target object,
whereas TF-Grasp exhibits a biased prediction. On the other
hand, GRnet erroneously identifies the background as an
object, leading to inaccurate predictions. In Fig. 8(b), it is
noted that RTnet exhibits the superior capability in accurately
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recognizing the complete appearance contour of the
toothpick box, while TF-Grasp manifests a significant error
and GRnet only captures a partial object contour.
Consequently, it can be inferred that as compared to other
models, RTnet offers more precise predictions of grasping
positions and possesses an enhanced accuracy in discerning
object contours.

FIGURE 7. Execution process of grasping robot system.

FIGURE 8. Prediction results in real grasp scenarios. Prediction results
of eyeglass case(a); Prediction results of toothpick box(b).

The depth camera captures an image of an object in each
grasp and transmits the visual information to the computer,
providing computers the grasping messages through model
processing. The extracted information is then fed to robots
end effector, which approaches the optimal target grasping
pose by motion planning techniques till the completion of the
grasp operation, as depicted in Fig. 9.

To realistically mimic the factory environment, three
representative interfaces in (2) of Fig. 4(b-d) (The colored
grasping background, The wooden grasping background and
the blocky oiled grasping background) are selected for
conducting real robot grasping experiments, shown in (1) of
Fig. 9(a-c). Three types of irregular shaped objects are used
in grasping experiments, including the candy packaging, the
cosmetic packaging and the toy packaging, as shown in (2) of
Fig. 9(a-c). The entire process of robot grasping experiments
are illustrated in (3) of Fig. 9(a-c). In the grasping

experiments, each object is placed in the one of three
interfaces and then grasped 9 times in one scenario.
Therefore, a total number of 81 grasps are determined.

FIGURE 9. Real robot grasping experiments. Grasping background (1);
The target object (2); Robot grasping process (3).

The statistical analysis of all data is shown in Table IV,
where indicates a successful rate of the grasping experiments
in the different scenarios. In terms of the grasp accuracy, the
highest success rate of 92.59% in the wooden background
and the lowest success rate of 70.37% in the colored working
environment are observed. The reason for this lies in that the
more remarkable difference between the RGB information in
the wooden grasping scenario and that in the colored working
environment exists, the more successful grasping rates are
distinguished. Thus, the higher success rate with the less the
RGB information in the wooden background is achieved.
Considering the grasped object, a highest success rate of
88.89% is observed for the candy packaging product due to
its regular shape and a successful rate of 77.78% for the
toothpick packaging product is also acceptable. In general,
the proposed RTnet has ultimately the ability to achieve a
high average accuracy of 82.76% and demonstrates a
testimony to the model’s superior capability of grasping. In
summary, the designed experiments in this paper realize the
real factory robot grasping and provide an environment
setting that reflects the complex scenario of a factory,
securing higher levels of model robustness and generalization.

TABLE IV
TEST RESULTS FOR THE REAL ROBOT GRASP

Grasping
Back ground

Candy
packaging

Toy
packaging

Cosmetic
packaging

Total
result

Colored interface
Wooden interface

Oiled interface

7/9
9/9
8/9

6/9
8/9
7/9

6/9
8/9
8/9

19/27
25/27
23/27

Total 88.89% 77.78% 81.48% 82.76%
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IV. CONCLUSION
In this study, a novel robot grasping prediction model based
on a linear global attention mechanism (RTnet) is proposed.
RTnet linearly optimizes the quadratic complexity of
traditional attention mechanisms. To accomplish the task of
capturing in complex scenes, RTnet adopts a self- normalized
combination of Lecun Norm, Selu and Alpha. Dropout to
enhance the model filtering and adaptability to noise
interference while improving the robustness of feature
learning. An amplified dataset (RealCornell) is generated
through style transfer to accurately mimic the packaging
factory capture scenes. Experimental tests are evaluated by
the Cornell dataset, the RealCornell dataset and real grasping
scenarios. Compare with the existing results, the proposed
RTnet achieves a better accuracy of grasping predictions
(98.31% and 93.88%) on the Cornell and the RealCornell
datasets, respectively. In this research, the ablation
experiments are also carried out to demonstrate the R-MLP
remarkable contributions to the enhancement of the model
generalization and the effectiveness in handling complex
capture scenarios. In conclusion, RTnet achieves an
acceptable accuracy in real robot grasp experiments,
demonstrating its generalization ability under variety of
packaging scenarios.

Although RTnet achieves precise and robust grasping in
complex packaging factory scenarios, practical deployment
and widespread applications of the developed model still
need to be explored. Firstly, the capture priority can be
adjusted to accommodate more complex environments, such
as situations involving object overlaps. In scenarios where
multiple targets are overlapped, the robot can determine the
order of grasping by assessing factors like the difficulty level,
importance, and urgency associated with each object.
Secondly, in practical applications of robotic grasping,
grasping scenarios such as the object inclined positioning is
frequently encountered, the robot ’ s capability to execute
grasps on slopes is necessary. Therefore, 6D pose estimation
technique should be employed in the robotic slope grasping
tasks in the future to acquire the precise object positioning
and orientation information. Furthermore, to enhance the
robustness and intelligence of grasping strategies, future
research studies will include the effective integration of
information from diverse sensors in the industrial
environment, such as amalgamating visual data with force or
touch data. Moreover, the RTnet framework has the potential
to be extended for the applications beyond packaging factory
environments, including medical surgical assistance, disaster
relief, home service robots, and different sectors. These
domains present distinct requirements and challenges related
to grasping accuracy and robustness, which prove to be
worth of further investigations.
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