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ABSTRACT In the medical field, precise segmentation of skin lesion areas is essential for accurate diagnosis 

and treatment of diseases. Due to the varied morphologies and fuzzy boundaries of skin lesions, as well as 

interference from hair coverage, segmentation tasks are extremely challenging. To address the problem, a 

network called TrUNet is proposed, which combines the advantages of Transformer and convolutional neural 

networks (CNNs). Transformer and Res2Net are taken as two branches of the encoder in this network, with 

the goal of extracting rich global information for precise lesion segmentation in medical images. Firstly, the 

TrFusion module was designed to selectively fuse complementary features extracted by the Transformer 

branch and the Res2Net branch in the encoder, enhancing important information while suppressing irrelevant 

details. Secondly, the Multi-Scale Feature Aggregation (MFA) module was designed to fuse feature 

representations from different stages of the same branch to complement positional and spatial information. 

Finally, to validate the effectiveness of the proposed method, experiments were conducted on the ISIC2017, 

ISIC2018, and PH2 datasets. TrUNet achieved Dice coefficient of 90.61%, IoU of 84.25%, and Accuracy of 

94.74% on the ISIC2018 dataset. This indicates that our model has enormous potential in the field of medical 

image segmentation. 

INDEX TERMS Deep learning, convolutional neural network, transformer, skin lesion segmentation

I. INTRODUCTION 

The skin is one of the largest organs in the human body and 

a critical line of defense for the immune system. Exposed 

to the external environment, the skin is vulnerable to factors 

such as ultraviolet (UV) radiation, temperature changes, 

and pathogens, which increase the risk of diseases. 

Melanoma is a fatal skin cancer [1], with early-stage cure 

rates as high as 90%. However, once melanoma cells spread 

through the body's circulatory system into other normal 

tissues in late stages, the cure rate drops to only 10%. 

Therefore, early diagnosis and treatment are essential. 

In clinical diagnosis, dermatoscopy is commonly used to 

generate high-resolution images of skin lesions for lesion 

area segmentation. However, lesion areas often have blurry 

boundaries, low contrast, and can be obscured by hair. 

Traditional manual segmentation methods are slow, labor-

intensive, and prone to subjective biases. Therefore, it is 

particularly important to develop automated skin lesion 

segmentation techniques. 

Computer vision and deep learning algorithms can 

automatically recognize and accurately delineate abnormal 

regions in skin images. This technology is crucial in clinical 

practice because precise segmentation of skin lesions 

enables doctors to identify and locate affected areas with 

greater accuracy. This capability supports early diagnosis 

and treatment, leading to improved recovery rates and 

enhanced quality of life for patients. 

Deep learning is a machine learning method that can 

imitate the information transmission process between 

neurons in the human brain to learn the representation and 

characteristics of data. With the rapid development of deep 

learning, CNNs is also widely used in the field of medical 

image segmentation. Researchers have also proposed 

various algorithms to solve the problems of blurred edge of 

skin lesions and low segmentation accuracy. Long et al. [2] 

proposed the Fully Convolutional Network (FCN), which 

was the first network to introduce a fully convolutional 

structure for image segmentation, pioneering the field of 

semantic segmentation. Ronneberger et al. [3] proposed U-

Net, a U-shaped network with an encoder-decoder 

architecture. This network connects the encoder to the 

decoder through skip connections, enabling the fusion of 

high-level and low-level semantic features. Subsequently, 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3463713

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

mailto:22207223135@stu.xust.edu.cn


 Author Name: Preparation of Papers for IEEE Access (February 2017) 

4  VOLUME XX, 2017 

networks based on the U-shaped structure were proposed, 

such as UNet++ [4], U2-Net [5], UNet3+ [6], Res-UNet [7], 

and Dense U-Net [8], among others.  

In addition, in the field of object detection, researchers 

have proposed a feature disentanglement module to address 

the inherent feature misalignment between classification 

and regression tasks [9]. This method disentangles features 

in the Feature Pyramid Network (FPN) and reduces 

inconsistent responses and suppresses inferior predictions 

through a response alignment strategy. These methods 

significantly improve the performance of object detection 

and demonstrate the effectiveness of feature 

disentanglement in complex tasks. 

However, the context of medical images is complex, so 

it is necessary to effectively extract and utilize contextual 

feature information at multiple scales. Recently, 

researchers have proposed methods to integrate multi-scale 

information, such as PsPNet [10], DeepLabV3+ [11], CE-

Net [12] and HrNet [13], among others. These networks 

capture rich contextual information at different scales, 

which helps improve the model's ability to recognize and 

segment objects at different scales. Despite their powerful 

feature extraction capabilities, methods based on CNNs are 

unable to capture long-distance dependency information 

due to the limitations of the convolution operation itself. As 

a result, it is less effective in processing images with 

significant structural differences. 

Vaswani et al. [14] proposed the Transformer model, 

which is good at modeling global context and has 

limitations in capturing fine-grained details, whereas CNN 

is good at capturing local features in an image. Therefore, 

both feature extraction functions complement each other. 

Some recent studies have combined CNN and Transformer 

for medical segmentation. TransUNet proposed by Chen et 

al. [15] and Swin-Unet proposed by Cao et al. [16], along 

with subsequent research, have achieved breakthroughs in 

segmentation effectiveness compared to previous 

algorithms. However, shallow networks frequently 

underutilize the copious spatial information inherent in 

their data. They typically confine their contextual modeling 

to a singular scale, thereby disregarding the interrelated 

dependencies and coherence that span various scales within 

the data. Wu et al. [17] proposed a HorUNet model with 

higher-order spatial interactions based on recursive gated 

convolution and added a multi-stage dimensional fusion 

mechanism to the skip connection part, resulting in the 

MHorUNet model architecture. This model exhibits high 

segmentation accuracy. Zhang et al. [18] proposed 

TransFuse, a network that combines Transformer and CNN 

in a parallel manner to efficiently capture both global 

dependencies and low-level spatial details in a shallower 

manner for medical image segmentation. The above 

method combines the models of Transformer and CNN to 

show significant advantages in medical image 

segmentation. Transformers excel in extracting global 

features and modeling long-range dependencies, while 

CNNs are skilled at accurately extracting local features and 

capturing fine-grained details. Their integration 

complements each other, resulting in a significant 

enhancement in segmentation accuracy and effectiveness. 

The skin lesion areas exhibit characteristics such as 

uneven pixel distribution, significant morphological 

variations, and blurred edge contours. These features 

severely weaken the correlation among the lesion areas. 

During image segmentation, these issues lead to the loss of 

detailed information and mis-segmentation of the lesion 

areas. Inspired by the above studies, this paper proposes a 

novel network architecture for medical image segmentation 

called TrUNet, using the U-shaped architecture as a 

reference. TrUNet consists of two branches of Res2Net [19] 

and Transformer as encoders. The network utilizes the two 

branches of the encoder to extract rich global information. 

In addition, it introduces MFA module and TrFusion 

module for complementary information integration and 

feature fusion. 

The main contributions are summarized below: 

(1) This paper introduces TrUNet, a novel dual-encoding 

medical segmentation framework. The network utilizes a 

dual-encoding architecture incorporating Res2Net and 

Transformer to extract both global and local features, 

establishing multiscale long-range dependencies without 

the need for deep hierarchical networks, effectively 

capturing global information. 

(2) The MFA module is designed to fuse features from 

different stages of the same branch, supplementing 

positional and spatial information. The TrFusion module 

selectively integrates features from different branches at 

the same stage to enhance important information while 

suppressing irrelevant details. 

(3) To validate the effectiveness and generalization 

capability of the network, experiments were conducted on 

skin lesion datasets ISIC2017, ISIC2018, and PH2, 

comparing them with currently popular methods. The 

experimental results clearly show that the proposed 

algorithm outperforms other state-of-the-art (SOTA) 

algorithms, indicating its superior performance compared 

to existing methods. 

The main research of this paper is as follows: Section 2 

will introduce the SOTA of medical image segmentation 

research. Section 3 describes in detail the methodology 

used in this paper. Section 4 presents experiments. Section 

5 provides conclusions. 

II. RELATED WORK 

A. CNN IN MEDICAL IMAGE SEGMENTATION 

In recent years, deep learning methods based on CNNs have 

been widely applied in the field of medical image 

segmentation [20-22]. Researchers have also proposed 

various algorithms to address issues such as fuzzy edges of 
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skin lesion regions and low segmentation accuracy. Yuan et al. 

[23] proposed a deep fully convolutional automatic skin lesion 

segmentation algorithm based on the Jaccard distance. He et 

al. [24] used chained residual pooling to capture contextual 

information and further improved the performance of skin 

lesion segmentation by integrating network with Conditional 

Random Field post-processing. Bi et al. [25] utilized 

Generative Adversarial Networks (GANs) for stacked 

adversarial learning of skin lesion features, enhancing the 

segmentation performance of FCN. Huang et al. [26] 

introduced an end-to-end object scale-oriented FCN (OSO-

FCNs) for lesion segmentation. Berseth et al. [27] applied U-

shaped networks in skin lesion segmentation. U-shaped 

networks based on encoder-decoder structures have become 

mainstream for segmentation tasks. As research progresses, 

improved versions of U-shaped networks continue to emerge. 

Tang et al. [28] developed a multi-stage UNet (MS-UNet) that 

integrates a deeply supervised learning strategy. They 

incorporated multiple U-Nets into the auto-context scheme to 

improve skin lesion segmentation. To better represent feature 

maps, Schlemper et al. [29] proposed the Attention U-Net, 

which introduces attention mechanisms that adaptively adjust 

feature weights for different spatial positions, thereby 

enhancing focus on important regions. Alom et al. [30] 

proposed R2U-Net, a model that adds residual and recurrent 

networks to U-Net to avoid the network being too deep to learn 

the gradient. 

Improvements to U-Net include modifications to its 

encoder, decoder, and jump connections, but fail to address 

significant long-range dependencies between pixels. 

B. TRANSFORMER IN MEDICAL IMAGE SEGMENTATION 

The Transformer is a neural network architecture based on the 

self-attention mechanism, widely used in the field of Natural 

Language Processing (NLP). The core idea is to utilize self-

attention mechanism to process sequential data, taking into 

account information from different positions in the sequence, 

thus avoiding the limitations of local receptive fields in CNNs. 

Researchers combined knowledge from computer vision 

(CV) and NLP fields to apply the Transformer architecture 

with global attention mechanism to full-sized images, leading 

to the development of the Vision Transformer (ViT) [31]. 

Song et al. [32] proposed a TGDAUNet network consisting of 

a dual-branch backbone of CNNs and Transformers and a 

parallel attention mechanism, and explored the potential 

semantic relationships between boundaries and regions to 

further refine the target boundaries. Chen et al. [33] proposed 

the CoTrFuse network, which consists of EfficientNet and 

Swin Transformer [34] architectures, to improve the 

performance of medical image segmentation through the use 

of skip connections and feature fusion. Chen et al. [35] 

propose TransAttUNet, which combines Transformer's self-

attention mechanism with convolutional global spatial 

attention for semantic segmentation tasks. Lin et al. [36] 

proposed DS-TransUNet, a Swin Transformer based model 

for medical image segmentation tasks that incorporates 

parallel dual-scale encoding and a Transformer Interactive 

Fusion module for complementary encoding information 

across different scale patches. 

The introduction of these methods has enriched research in 

the field of medical image segmentation, providing novel 

insights and technical means for medical image processing. It 

holds promise for achieving better outcomes in clinical 

practice. 

III. PROPOSED METHOD 

In this section, the architecture of the TrUNet network will 

be described, providing detailed information about its 

constituent modules. The overall structure of the network, 

which includes key components such as the MFA module 

and TrFusion module, will be outlined first. 

A. OVERALL STRUCTURE 

CNNs are effective in capturing local features in the field of 

image processing, but they have limitations in capturing 

long-range dependencies. Conversely, Transformer models 

excel at modeling global contexts but perform poorly in 

capturing fine-grained details. Given the complementary 

nature of feature extraction between the two, recent research 

has started to combine CNNs and Transformers to enhance 

the effectiveness of medical image segmentation tasks. 

Based on the above inspiration, this paper introduces 

TrUNet, a novel architecture for medical image 

segmentation. Firstly, TrUNet utilizes Res2Net and 

Transformer as two branches of the encoder to jointly extract 

multi-scale feature information and establish long-range 

dependencies. Secondly, the features extracted from the two 

branches are passed to the MFA module to generate fused 

high-level semantic feature information, thereby enhancing 

the network's understanding of complex scenes. Thirdly, 

features with the same resolution are input into the TrFusion 

module to effectively fuse feature information. Finally, by 

combining the fused feature map information, segmentation 

predictions are generated using the attention-gated (AG) skip 

connections. The architecture of the TrUNet network is 

shown in FIGURE 1. 

The network proposed in this paper has the following 

advantages: (1) By employing two independent encoders to 

extract features from different perspectives, it enables the 

acquisition of rich and diversified feature information. (2) 

The interaction and fusion of information between the two 

encoders can establish an effective link between features at 

different levels and resolutions, enhancing the network's 

ability to utilize features across various scales and levels, 

while also enhancing the suppression of irrelevant details 

and highlighting important information. (3) It integrates 

feature representations from different stages of the same 

branch to generate fused high-level semantic feature 

information, without increasing model complexity or 

computational burden.
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FIGURE 1. Illustration of the proposed TrUNet. 

B. TRANSFORMER BRANCH 

Transformer is a neural network architecture based on self-

attention mechanism, primarily applied in the field of NLP. 

It processes sequence data through self-attention mechanism, 

possessing high parallelism and suitability for handling long 

sequences and capturing long-range dependencies. In image 

processing, Transformer effectively captures global 

information, enabling better extraction of complex structures 

and features from images.

 

FIGURE 2. Illustration of the Transformer branch. 

The design of the Transformer branch follows the typical 

encoder-decoder architecture. The Transformer Encoder 

consists of multiple layers of Multi-head Self-Attention 

(MSA) and Multi-Layer Perceptron (MLP). MSA is an 

extended form of Self-Attention, and the calculation of SA 

is as follows: 
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 ( , , ) softmax( )
T
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Attention Q K V V

d
=  (1) 

In the formula, Q  is the query matrix, K  is the key matrix, 

V  is the value matrix, and 
kd  is the dimension of the key 

vectors.  

In this paper, firstly, the input image 3H Wx    is divided 

into 
H W

N
S S

=   patches, where H  represents the height of 

the input image, W represents the width, and S  represents 

the side length of each image patch. Secondly, these patches 

are flattened and passed through a linear embedding layer with 

an output dimension of 
1D  to generate the raw embedding 

sequence. Finally, add trainable positional embeddings of the 

same dimension as the original embeddings to the original 

embedding sequence. This results in the embedding vector 
10 N D

Z


 . 0Z is fed into the Transformer encoder to obtain 

the encoded sequence 1N DLZ


 . For the decoder part, 𝑍𝐿  

is reshaped back to 
11 16 16

H W
D

t R
 

  by progressive upsampling 

(PUP) method. Followed by two consecutive standard 

upsampling-convolution layers to recover to recover the 

spatial resolution, yielding 
22 8 8

H W
D

t R
 

  and 
33 4 4

H W
D

t R
 

 . 

The feature maps at different scales 1t , 2t  and 3t  are saved 

and fused with the corresponding stage feature maps from the 

Res2Net branch. The architecture of the Transformer branch 

is shown in FIGURE 2. 

C. CNN BRANCH 

The core idea of Res2Net lies in enhancing the perceptual 

capabilities of neural networks by constructing multi-scale 

feature maps. The approach is realized by introducing a 

hierarchical level of parallel connections, containing 

multiple parallel sub-network modules inside each level. 

These sub-network modules process feature maps at 

different scales separately and integrate them together to 

represent multi-scale features at a finer granularity and 

expand the perceptual field of each network layer. 

Considering the characteristics of Transformer, this study 

removes the Layer4 and FC layers from Res2Net and uses 

the Transformer branch to obtain global context information. 

A relatively shallow model is designed while retaining rich 

local information. Typically, Res2Net consists of five blocks, 

each of which downsamples the feature map twice. In this 

paper, the outputs of Layer1, Layer2 and Layer3 are 

extracted and fused with the outputs of 1t , 2t  and 3t  of the 

corresponding stages of Transformer respectively. This 

fusion strategy can effectively combine local details and 

global information to improve the performance of the model 

in complex tasks. 

D. MFA MODULE 

The morphological differences of skin lesions are notable, 

frequently leading to issues such as under-segmentation and 

over-segmentation, thereby complicating the segmentation 

process. To address this challenge, this paper proposes a 

MFA module, specifically tailored to effectively merge 

feature representations from various stages of the same 

branch, resulting in enhanced fused high-level semantic 

feature information. 

In the MFA module, feature information from different 

stages of the same branch is fused with each other through 

upsampling and downsampling operations, and the 

information at different levels are effectively integrated to 

fully utilize the location information and spatial information 

to generate more comprehensive and rich high-level 

semantic feature information, and to improve the network's 

comprehension of the complex scene. The structure of the 

MFA module is shown in FIGURE 3.

 

FIGURE 3. Illustration of the proposed MFA module. 

E. TRFUSION MODULE 

CNN excels at capturing local features and details in images, 

while Transformers are adept at handling global 

relationships and semantic information. To effectively 

combine the encoding advantages from both branches, the 

TrFusion module is proposed to mutually integrate features 

extracted from the two branches, enhancing important 

information and suppressing irrelevant details.In this paper, 

the Channel Attention mechanism SENet is employed to 

enhance the global information of the Transformer branch, 

while the Spatial Attention mechanism serves as a spatial 

filter to process features extracted by the CNN branch, 

enhancing local details and suppressing irrelevant regions. 

To better integrate complementary information from the two 

branches, a combination of Depthwise Separable 
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Convolution (DSC) and Convolution is utilized, making 

communication between the two branches more efficient. 

The TrFusion module utilizes both channel attention and 

spatial attention to enhance global information while 

boosting local details, ultimately generating a fused feature 

representation to improve the network's understanding and 

representation capability of image data. The features 

extracted by the Transformer branch are denoted as 𝑡𝑖, those 

extracted by the CNN branch as 𝑟𝑖 , and the fused features as 

𝑓𝑖. The following equations represent the process of fusing 

features from the dual branches: 

 ˆ ( )i it ChannelAttention t=  (2) 

 ˆ ( )i ir SpatialAttention r=  (3) 

 1̂
ˆ( )i it DSConv t=  (4) 

 2̂
ˆ( )i it Conv t=  (5) 

 1̂
ˆ( )i ir DSConv r=  (6) 

 2̂
ˆ( )i ir Conv r=  (7) 

 
1 2

ˆ ˆ ˆi i i

ft t r=   (8) 

 
2 1
ˆˆ ˆi i i

fr t r=   (9) 

 
1 2

ˆ ( )i i i i ib Conv t W r W=  (10) 

 ˆ ˆ ˆ([ , , ])i i i i

f ff Residual b t r=  (11) 

| |  is the Hadamard product and Conv is a 3×3 

convolution layer. The Hadamard product models fine-

grained interactions between features from two branches to 

obtain 𝑏̂𝑖 . 𝑏̂𝑖  is concatenated with attention features 𝑡̂𝑓
𝑖  and 

𝑟̂𝑓
𝑖  to form the fused feature 𝑓𝑖 . The fused feature 𝑓𝑖 

effectively captures both global and local information at the 

current spatial resolution. The structure of the TrFusion 

module is shown in FIGURE 4.

 

FIGURE 4. Illustration of the proposed TrFusion module. 

IV. EXPERIMENT 

In this section, specific details of the experiments are 

presented, including the dataset used, implementation details, 

and comparisons with currently popular methods as 

benchmarks. Additionally, ablation experiments are 

conducted to analyze the validity of the proposed model. 

A. DATASET 

To better evaluate the effectiveness of the network, this study 

utilizes three publicly available datasets: ISIC2017 [37], 

ISIC2018 [38,39], and PH2 [40], released by the International 

Skin Imaging Collaboration (ISIC) and by Mendonca et al., 

respectively, as experimental samples.  
TABLE I 

 SUMMARY OF DATASET QUANTITIES 

Datasets Usage Structure 

ISIC2017 
Training/Validation/Testing 

Ablation study 
2000/150/600 

ISIC2018 Training/Validation/Testing 2594/100/1000 

PH2 External Testing 0/0/200 

The ISIC2017 dataset comprises 2000 training images, 150 

validation images, and 600 test images. The ISIC2018 dataset 

consists of 2594 training images, 100 validation images, and 

1000 test images. The PH2 dataset includes 200 images of skin 

lesions, serving as an additional test set for the ISIC2017 

dataset. PH2 is not involved in the model training process. The 

summary of the quantities of the three public datasets is shown 

in TABLE I. 

B. DATA PREPROCESSING 

The dataset is one of the important factors affecting the deep 

learning network, and in this paper, three datasets, ISIC2017, 

ISIC2018, and PH2, are used respectively. Skin lesion regions 

are all characterized by low contrast, fuzzy boundaries, and 

hair occlusion, which affect the segmentation accuracy. In 

order to improve the segmentation accuracy of the lesion 

region, this paper carries out preprocessing operations on 

images with the following steps: 

 (1) Hair removal: This paper utilizes morphological 

operations and black hat transformation to detect hair contours. 

Hair contours are enhanced through threshold operations, and 

the original image is restored based on these contours, 

resulting in the image after hair removal. 

(2) Contrast enhancement: Custom adjustments of 

brightness and contrast are applied to adapt the image to 

application requirements. The mean and standard deviation of 

each image are computed and normalized. Subsequently, the 

normalized pixel values are mapped to a preset target range of 
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mean and standard deviation to enhance the contrast and 

brightness of the image. 

   

   

   
(a)original image (b)hair removal 

(c)contrast 
enhancement 

FIGURE 5. Comparison of preprocessed skin lesion images. 

FIGURE 5 illustrates the contrast results of skin lesion 

images before and after preprocessing. (a) shows the original 

image, which is affected by hair occlusion and blurred 

boundaries of lesion areas. The image after hair removal in (b) 

largely addresses the issue of hair occlusion, yet the contrast 

remains low, and the boundaries remain blurred. (c) presents 

the result after contrast enhancement applied to the image in 

(b), where the contrast between lesion areas and surrounding 

regions is significantly enhanced, and there is no hair 

occlusion. 

C. TRAINING SETTINGS AND COMPARISON METRICS 

The experiments in this paper were conducted on the Ubuntu 

20.04 operating system. The deep learning environment was 

set up with CUDA 11.3 and PyTorch 1.8.1 framework, 

utilizing the NVIDIA RTX 3090 GPU for accelerated model 

training. To enhance the model's generalization capability, 

data augmentation was performed on the ISIC2017 and 

ISIC20180 training datasets, including random translations, 

scaling, rotations, and flips. The input image size for all three 

datasets was standardized to 192×256 pixels. Processed 

images and labels were saved as NumPy array files for training 

purposes. The Adam optimizer was utilized with a learning 

rate of 1e-4, employing a patch size of 16×16. Model training 

iterated for 100 epochs with a batch size of 32. 

Evaluation metrics are direct representations of measuring 

the segmentation effectiveness of a model. In this paper, Dice 

Similarity Coefficient (Dice), Intersection over Union (IoU), 

Accuracy, Recall, Precision, and Hausdorff distance (HD) are 

utilized as evaluation metrics for segmentation results, with 

calculation methods as follows: 

 
2

2

TP
Dice

TP FN FP


=

 + +
 (12) 

 
TP

IoU
TP FN FP

=
+ +

 (13) 

 
TP TN

Accuracy
TP FP TN FN

+
=

+ + +
 (14) 

 
TP

Recall
TP FN

=
+

 (15) 

 
TP

Precision
TP FP

=
+

 (16) 

 
0

1
( , ) max( ( , ), ( , ))

1

N

i

HD A B h A B h B A
N =

=
+
  (17) 

Where TP represents true positives, indicating the number 

of pixels correctly segmented within the lesion area. TN 

represents true negatives, indicating the number of pixels 

correctly segmented outside the lesion area. FP represents 

false positives, indicating the number of pixels incorrectly 

segmented within the lesion area. FN represents false 

negatives, indicating the number of pixels incorrectly 

segmented outside the lesion area. 

D. EXPERIMENTAL RESULTS 

Experiments were conducted on three datasets: ISIC2017, 

ISIC2018, and PH2, comparing the TrUNet model with six 

mainstream segmentation methods: U-Net, Deeplabv3+, 

PsPNet, HrNet, TransFuse, and MHorUNet. The 

segmentation performance of these methods was evaluated 

using metrics including Dice, IoU, Accuracy, Recall, 

Precision, and HD to validate the effectiveness of the TrUNet 

segmentation model. 

1) RESULTS ON THE ISIC2017 DATASET 

The experimental results of comparing the TrUNet model 

proposed in this paper with the current mainstream methods 

on the ISIC2017 dataset are shown in TABLE II. The Dice of 

TrUNet is 87.83%, the IoU is 80.27%, the Accuracy is 94.58%, 

the Recall is 88.88%, the Precision is 90.88% and the HD is 

4.21. While TrUNet did not achieve the highest Precision and 

HD, it demonstrated the best performance across the 

remaining four evaluation metrics. 

To verify the generalization of the model, this paper uses 

the PH2 dataset as an additional test set to the ISIC2017 

dataset, and PH2 is not involved in the training process of the 

model. TrUNet compared to the U-Net network, Dice 

improved from 80.44% to 87.83%, an increase of 7.39%. IoU 

improved from 71.98% to 80.27%, an increase of 8.29%. 

Accuracy improved from 92.10% to 94.58%, an increase of 

2.48%. Recall improved from 78.04% to 88.88%, an increase 

of 10.84%. Precision decreases from 91.45% to 90.88%, a 

decrease of 0.57%. HD decreases from 7.94 to 4.21, a decrease 

of 3.73, with smaller HD values indicating better segmentation, 

reflecting better boundary alignment and overall performance.  

The results clearly demonstrate that the combination of 

CNN and Transformer in TrUNet can give full play to the 

advantages of both, accurately predict the location and 

boundary of skin lesions, and effectively solve the problems 

of over-segmentation and under-segmentation. This structure 

is advantageous for skin lesion segmentation to achieve 

accurate segmentation. The visualization of the segmentation 

results of different algorithms on the ISIC2017 dataset are 

shown in FIGURE 6. 
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FIGURE 6. Visual results of different methods on the ISIC2017 dataset. 

TABLE II 
TABLE IIISEGMENTATION PERFORMANCE OF DIFFERENT METHODS ON THE ISIC2017 DATASET 

Method Dice ↑ IoU ↑ Accuracy ↑ Recall ↑ Precision ↑ HD ↓ 

U-Net[3] 80.44% 71.98% 92.10% 78.04% 91.45% 7.94 

Deeplabv3+[11] 82.64% 74.29% 92.98% 80.15% 93.16% 7.53 

PsPNet[10] 78.21% 69.12% 92.08% 75.33% 92.36% 7.72 

HrNet[13] 81.46% 72.77% 92.71% 80.51% 90.57% 8.09 

TransFuse[18] 86.13% 78.05% 93.95% 83.72% 93.61% 4.28 

MHorUNet[17] 82.67% 70.46% 92.47% 76.13% 90.44% 3.77 

Ours 87.83% 80.27% 94.58% 88.88% 90.88% 4.21 

2) RESULTS ON THE PH2 DATASET 

To verify the generalization ability of the TrUNet model, the 

ISIC2017 dataset was used for training, while the PH2 dataset 

served as an independent test set. The training weights from 

ISIC2017 were first loaded. Subsequently, TrUNet's test 

results on PH2 were compared with those of mainstream 

methods to evaluate its performance, and the results are shown 

in TABLE III. The Dice of TrUNet is 90.97%, the IoU is 

83.98%, the Accuracy is 94.89%, the Recall is 98.81%, the 

Precision is 84.97%, and the HD is 4.48. While TrUNet did 

not achieve the highest Precision and HD, it still demonstrated 

the best performance across the remaining four evaluation 

metrics. 

TrUNet compared to the U-Net network, Dice improved 

from 85.77% to 90.97%, an increase of 5.20%. IoU improved 

from 76.86% to 83.98%, an increase of 7.12%. Accuracy 

improved from 91.20% to 94.89%, an increase of 3.69%. 

Recall improved from 87.16% to 98.81%, an increase of 

11.65%. Precision decreases from 87.47% to 84.97%, a 

decrease of 2.50%. HD decreases from 10.77 to 4.48, a 

decrease of 6.29. The visualization of the segmentation results 

of different algorithms on the PH2 dataset are shown in 

FIGURE 7.  
TABLE III 

SEGMENTATION PERFORMANCE OF DIFFERENT METHODS ON THE PH2 DATASET 

Method Dice ↑ IoU ↑ Accuracy ↑ Recall ↑ Precision ↑ HD ↓ 

U-Net[3] 85.77% 76.86% 91.20% 87.16% 87.47% 10.77 

Deeplabv3+[11] 85.91% 76.32% 91.91% 92.60% 82.70% 11.18 

PsPNet[10] 89.99% 82.54% 93.81% 96.74% 85.43% 9.31 

HrNet[13] 89.91% 82.36% 93.50% 96.76% 85.25% 9.22 

TransFuse[18] 90.83% 83.96% 94.15% 97.92% 85.98% 4.67 

MHorUNet[17] 88.61% 77.74% 92.11% 89.32% 86.71% 4.19 

Ours 90.97% 83.98% 94.89% 98.81% 84.97% 4.48 
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FIGURE 7. Visual results of different methods on the PH2 dataset. 

3) RESULTS ON THE ISIC2018 DATASET 

The experimental results of comparing the TrUNet model 

proposed in this paper with the current mainstream methods 

on the ISIC2018 dataset are shown in TABLE IV. The Dice of 

TrUNet is 90.61%, the IoU is 84.25%, the Accuracy is 94.74%, 

the Recall is 94.27%, the Precision is 89.54% and the HD is 

4.62. Although TrUNet is not the best on Recall and HD, it 

produces the best performance on the other four metrics.
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FIGURE 8. Visual results of different methods on the ISIC2018 dataset 

TABLE IV 
SEGMENTATION PERFORMANCE OF DIFFERENT METHODS ON THE ISIC2018 DATASET 

Method Dice ↑ IoU ↑ Accuracy ↑ Recall ↑ Precision ↑ HD ↓ 

U-Net[3] 82.89% 73.47% 90.76% 93.46% 78.45% 15.66 

DeepLabv3+[11] 87.00% 78.90% 92.81% 92.37% 85.43% 15.58 

PsPNet[10] 87.49% 79.55% 93.23% 92.07% 86.36% 15.14 

HrNet[13] 86.43% 77.95% 92.30% 94.99% 82.05% 16.30 

TransFuse[18] 88.67% 81.35% 94.00% 94.49% 86.36% 4.75 

MHorUNet[17] 85.71% 74.99% 92.31% 82.36% 89.33% 4.03 

Ours 90.61% 84.25% 94.74% 94.27% 89.54% 4.62 
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TrUNet compared to the U-Net network, Dice improved 

from 82.89% to 90.61%, an increase of 7.72%. IoU improved 

from 73.47% to 84.25%, an increase of 10.78%. Accuracy 

improved from 90.76% to 94.74%, an increase of 3.98%. 

Recall improved from 93.46% to 94.27%, an increase of 

0.81%. Precision improved from 78.45% to 89.54%, an 

increase of 11.09%. HD decreases from 15.66 to 4.62, a 

decrease of 11.04. The HD metric results show that TrUNet is 

more sensitive to boundary features and can accurately depict 

the target region. In order to demonstrate more intuitively the 

difference between TrUNet and the current popular methods, 

the visualization of the segmentation results of different 

algorithms on the ISIC2018 dataset are shown in FIGURE 8. 

As can be seen from the figure, for smaller target regions, 

the prediction results of TrUNet are still optimal, and it can 

capture the remote dependencies well and reduce the loss of 

feature information. Obviously, the method proposed in this 

paper demonstrates the capability to segment the lesion edge 

region with remarkable accuracy. Even for minuscule lesions, 

it can achieve precise lesion localization and segmentation of 

lesion boundaries, showcasing its robust performance. 

4) ABLATION STUDY 

TrUNet is a dual-branch encoder-decoder network composed 

of the MFA module, TrFusion module, Res2Net branch, and 

Transformer branch. To verify the validity of individual 

modules in the TrUNet model, individual modules were 

selectively removed for ablation experiments, where PH2 was 

not used as an additional test data set. The results of the 

experiments are shown in TABLE V, and the visualization of 

the segmentation results are shown in FIGURE 9. 

In the ablation experiments, the segmentation performance 

is evaluated by systematically removing each module from the 

TrUNet model and examining the resultant impact. By 

comparing the results of these ablation experiments, the 

contribution of each module can be accurately assessed, 

thereby leading to a deeper understanding of the overall 

performance of the TrUNet model and the roles of its 

individual components. In this paper, Transformer and 

Res2Net are chosen as the encoder branches of the baseline 

network to jointly construct the baseline network. 

In summary, the TrUNet model designed in this paper is 

superior to other methods for the following reasons: (1) 

Combining CNN and Transformer for feature extraction 

provides richer information than when only a single network 

is used for feature extraction. (2) The preprocessing operation 

effectively solves the problems of hair occlusion, low contrast 

and boundary blurring in skin lesions, clarifies the 

segmentation target, and improves the segmentation accuracy. 

(3) Designing the MFA module to fuse different scale features 

extracted from the same branch at different stages with each 

other to complement spatial and positional information to 

achieve accurate grasp of segmentation edges. (4) Designing 

the TrFusion module to selectively fuse features extracted 

from different branches at the same stage to enhance important 

information and suppress irrelevant details. This fusion is not 

a simple addition or splicing, but reduces the effect of 

redundant information brought by two-branch fusion, and 

improves the robustness and generalization ability of the 

model.

       

       

       

Image GT (a) (b) (c) (d) (e) 

FIGURE 9. Visualization of ablation study of TrUNet on skin lesion segmentation in ISIC2017 dataset. 

TABLE V 

ABLATION STUDY OF TRUNET FOR SKIN LESION SEGMENTATION ON THE ISIC2017 DATASET. 

 Method Dice ↑ IoU ↑ Accuracy ↑ Recall ↑ Precision ↑ HD ↓ 

(a) baseline+Pre-process 85.34% 77.31% 94.05% 81.67% 94.05% 4.11 

(b) baseline+Pre-process+TrFusion 86.04% 78.15% 94.19% 83.77% 94.19% 4.14 

(c) baseline+Pre-process+MFA 86.58% 78.69% 94.34% 84.42% 94.34% 4.25 

(d) baseline +TrFusion+MFA 86.08% 78.10% 94.04% 84.53% 94.04% 4.27 

(e) baseline+Pre-process+TrFusion+MFA 86.78% 79.03% 94.49% 85.55% 94.49% 4.1 
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V. CONCLUSION 

In this study, an overview of the application of CV and image 

processing techniques in skin lesion segmentation is initially 

presented, accompanied by an analysis of prevalent methods. 

Subsequently, the skin lesion segmentation network based 

on deep learning was introduced in detail. To address issues 

such as hair occlusion and low contrast in skin lesion images, 

preprocessing methods are proposed to improve hair 

occlusion and enhance the contrast between lesion and 

surrounding areas. To tackle the problem of insufficient 

feature interaction, an MFA module is introduced to 

supplement positional and spatial information, aiming to 

enhance the model's representation capability. Addressing 

the inadequate fusion of features from the two branches of 

the encoder, a TrFusion module is proposed to selectively 

fuse feature information extracted by the encoder branches 

and utilize attention mechanisms to suppress irrelevant 

details, thus improving network performance. Experimental 

results demonstrate that the proposed TrUNet network 

exhibits competitive segmentation performance on multiple 

datasets. Future research will focus on further enhancing the 

performance of skin lesion segmentation to achieve more 

precise segmentation results. 
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