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ABSTRACT The increasing interest from research agencies, governments, and universities in understanding
research funding and prioritising research efforts has highlighted the need for reliable and efficient methods
for exploring research portfolios. In biomedical research, this involves exploring research across what
is normally considered fundamental and applied research. As research done in these different categories
does not have the same behaviour, such as time to impact or citation behaviour, it is often important to
address them separately. Moreover, research is increasingly complex, interdisciplinary and transversal, and
increasingly of translational nature. Currently, there are no available tools, as far as we know, that do this.
Scientific publications offer a valuable source of information for this purpose, but the growth in the number
of biomedical publications makes manual inspection and classification of papers unfeasible. To address this
challenge, we present BATRACIO, a new task that aims to classify biomedical publications into the following
research types:Basic, Translational,Clinical, andPublic Health. We develop and release an expert annotated
dataset for the task and evaluate state-of-the-art models to determine the effectiveness of domain-specific
pre-trained language models in comparison to general pre-trained language models. We also investigate
methods for handling imbalanced datasets in the biomedical domain with adjacent categories. Our results
demonstrate that domain-specific pre-trained languagemodels can effectively classify scientific papers based
on the research type, overcoming challenges such as the use of abbreviations and acronyms. These findings
have important implications for policymakers and funding agencies in understanding research activities and
allocating resources effectively.

INDEX TERMS biomedical research, natural language processing, scholarly document processing, science
mapping, text mining

I. INTRODUCTION

Research funding agencies, governments, and research insti-
tutions are becoming increasingly interested in understanding
the overall impact of their work or the research they finance.
This is crucial for improving decision-making practices on
priority setting and resource allocation (PSRA) [1], [2]. Given
that resources are limited, it is essential to prioritise research

efforts effectively. In fields like biomedicine, where research
is costly and sometimes inefficient [3], there is a risk of du-
plicating resources or inadequately funding critical priorities.
Since early 2000s, and with the increasingly complex nature
of biomedical research, its exponential growth (in publica-
tion volume) and the pressing need to serve better patients
and society [4], [5], biomedical fundamental research started

VOLUME 11, 2023 1

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3463717

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

to suffer pressures to have its discoveries better applied to
clinical practice, and the concept of “translational research”
was born. The last decades have seen a push for policies,
funding and infrastructures on translational research, as well
as an overall attempt of changing biomedical research to be
more interdisciplinary and interconnected (policies in US [4],
UK [6], and Europe [7] and the creation of eatris1). Although
these are laudable efforts, the research types that are part of
this virtuous circle (fundamental, translational and clinical re-
search) are distinct: in its times to impact, citation behaviours,
time to publication and often funding required, but precisely
because there are specific funding policies and aims, for
example to push translational research into applications, it is
useful to be able to assess them separately.

Classifying research outputs into distinct research types
can be very useful for a wide range of stakeholders. For
research funding agencies and governments, such classifica-
tions can help map the actors researching a specific area of
interest in their territory, assess if specific policies supporting
a specific type of research are successful, assess the balance
on research portfolio and/or if there are gaps to be filled
in the support of a specific type of research for the overall
success of research applicability. Universities, on the other
hand, can use this information to understand their strengths
and weaknesses, prioritise or adjust their research strategy,
and identify areas of improvement and healthy areas to have
continued support. Researchers can also benefit from classi-
fications by more easily extracting relevant information from
large collections of scientific articles.

Scientific publications provide a valuable source of infor-
mation for exploring research portfolios and understanding
the different contributions of research activities [1]. Auto-
matically understanding the topics addressed by scientific
publications in the biomedical domain has been a challenge
for over two decades. With more than 3,000 publications
generated daily [8], and also the substantial growth of trans-
lational research since the 2000s [9] manual inspection and
classification are no longer feasible. To address this chal-
lenge, various research tasks such as text summarization [10],
relation extraction [11], [12], question-answering [13], and
text classification [14]–[16] have been investigated by the
research community.

In recent years, Transformer-based neural languagemodels
such as BERT [17] or RoBERTa [18] have achieved impres-
sive results in these tasks. These models are pre-trained on
large-scale unlabelled documents and can learn universal lan-
guage representation, which is then adapted to downstream
tasks. While most models are pre-trained on general do-
main data, some are pre-trained or adapted to the biomedical
and clinical domains [19]–[21], offering promising results in
those areas. The use of these models has helped overcome
some of the main difficulties of BioNLP, which include lexi-
cal ambiguities, the use of acronyms and abbreviations [22],

1https://eatris.eu/

detection of negations, and determination of temporal context
[23].
One common challenge that these approaches face is that

individual publications may be inaccurately classified be-
cause traditional categorization methods rely on scientific
journals and do not account for overlap or emergent fields [1].
This is even more challenging in the identification of research
themes in the biomedical field, as existing categorisations
do not take into account the multidisciplinary complexity of
the research or the overlap of biomedicine and biology fields
[24].This disciplinary characterization can become outdated
and may not align with the increasingly interdisciplinary
nature of modern science. Specifically, areas that are highly
interconnected often require the participation of multiple ac-
tors from diverse disciplines to achieve a complete discovery.
This emphasizes the limitations of traditional disciplinary
boundaries and existing categorisations of research, which do
not accurately reflect the collaborative, interdisciplinary and
interconnected nature of contemporary research.
Our work makes three significant contributions [25].

Firstly, we introduce a new detailed definition of research
types, which has been created by domain experts. We have
conducted an exhaustive review of scientific publications
and manually classified them to identify the clear bound-
aries between the different types of research. As a re-
sult, we propose a classification of biomedical research by
types that includes four categories: basic research,
translational research, clinical research,
and public health. Secondly, to facilitate the devel-
opment of machine learning models capable of accurately
classifying scientific outputs according to research types, it
is essential to have labelled datasets for training such sys-
tems. However, as far as we are aware, no datasets cur-
rently exist that assign research types to scientific publi-
cations in the biomedical field. Thus, our second contri-
bution involves creating a manual dataset for classifying
scientific publications into their respective research types
in the biomedical domain. Thirdly, we introduce and de-
fine a new NLP task, BATRACIO (BAsic-TRAnslational-
Clinical research types classification in biomedical publica-
tions), which aims to classify biomedical literature into the
different research types. We evaluate state-of-the-art models
to determine whether domain-specific pre-trained language
models outperform general pre-trained language models and
investigate methods for adapting them to handle imbalanced
datasets in the biomedical domain with adjacent categories.
Our results indicate that domain-specific pre-trained lan-

guage models can effectively classify scientific papers based
on the research types. These models can also overcome some
of the challenges of biomedical language, such as the use
of abbreviations and acronyms. However, some text pre-
processing may still be necessary to optimize their perfor-
mance.
The remaining sections of the article are organized as

follows. In Section II, we present the state-of-the art in the
area of biomedical text classification. Section III describes
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the dataset developed to assist and promote research in the
proposed task. In Section IV, we present the different exper-
iments performed to evaluate the suitability of transformer-
based architectures to classify scientific articles according to
the different types of biomedical research. Section V presents
the evaluation results. Finally, in Section VII, we discuss the
conclusions of the study and propose future lines of work.

II. RELATED WORK
Natural language processing (NLP) in the biomedical do-
main, also known as BioNLP, is a highly challenging task.
The language used in this domain involves a lot of specific
words and terminology, polysemic words, frequent use of
acronyms and abbreviations, and requires knowledge of the
domain that is expected to be known or inferred from the
context. Omitted information is especially problematic for
BioNLP because a system must have additional knowledge
to be able to gather all the implicit information [26]. In fact,
many documents in the biomedical domain are not easily
accessible or understandable by humans without sufficient
domain expertise.

In the past twenty years, the field of BioNLP has seen
significant growth [26]–[30]. The availability of databases
such as PubMed/ MEDLINE [31] and a wide range of cor-
pora, semantic resources, and ontologies, such as UMLS
[31], Gene Ontology [32], and MeSH [33], has contributed
to this growth. In recent years, the advancement of deep
learning in natural language processing has further fueled
the development of BioNLP tasks [34]. Transformer-based
Pre-trained Language Models (PLMs) are explored in the
overwhelming majority of the papers in the Proceedings of
the 20th Workshop on Biomedical Language Processing to
solve various NLP tasks in the biomedical domain [34].
However, deep learning approaches typically require large
amounts of annotated data, and there are limited labeled data
due to the high annotation costs. Moreover, incorporating
external knowledge of the domain into the models remains
a significant challenge in BioNLP [34].

Text classification is a well-known challenge in natural
language processing. It involves labeling natural language
texts with a set of predefined tags or assigning classes or
categories to different text units like sentences, paragraphs,
or documents [35], [36]. Over the past two decades, text
classification techniques have seen significant advancements
[36], [37]. However, in the biomedical and medical records
domain, text classification is especially challenging due to
imbalanced datasets, misspellings, acronyms and abbrevia-
tions, negations, and semantic ambiguity [23], [38], [39].

While early text classification techniques relied on rule-
based systems, defining the necessary rules requires exten-
sive domain knowledge and manual effort [36]. Furthermore,
complex domains can pose a challenge to these systems, as
they may struggle to capture nuanced messages and hidden
patterns [40]. In some biomedical applications, however, rule-
based systems remain prevalent due to their ability to incorpo-
rate domain-specific knowledge and tackle feature extraction

challenges. [38], [39].
Machine learning-based techniques have improved the re-

sults of rule-based systems, but they typically require a large
annotated corpus [41], which is especially challenging in
small and limited datasets like those found in the biomedi-
cal domain. These methods typically involve a two-step ap-
proach of feature extraction and classifier feeding, but feature
extraction is costly and time-consuming [42]. Furthermore,
selected features may not cover all linguistic variants, lim-
iting the portability or generalization of systems for further
applications in new domains [11]. Biomedical and clinical
documents often require more complex features than general
domain texts. For instance, citation information [43] and
ontological information [44] have been used to improve text
classification accuracy in these domains.
In the last years, deep neural network-based techniques

have stood out because of their simplicity, reducing the costs
of manual feature extraction, higher processing efficiency,
and, in general, because they have managed to match or
improve state-of-the-art results in many NLP tasks [29]. They
generally include feature extraction in the model fitting pro-
cess by learning a set of non-linear transformations that allow
the mapping of features directly to outputs [42]. Many archi-
tectures have been proposed such as Convolutional Neural
Networks (CNN) or Recurrent Neural Networks (RNN); but
nevertheless, Transformer seems to capture better long depen-
dencies in text, improve in computationally and take less time
to train. It treats text as a fully-connected graph with attention
features between different words by self-attention, which can
extract features and relations between words efficiently and
solves short-term memory problems [42].
Pre-trained Language Models (PLMs) like BERT, GPT-2,

and RoBERTa have been adapted to the text classification task
by stacking a linear classifier on top of the last hidden state
of the model and fine-tuning the parameters from the model
by maximizing the log-probability of the correct label [45].
Further pre-training and in-domain pre-training have been
shown to improve the performance of text classification tasks,
but cross-domain pre-training does not provide much benefit.
BERT has also been shown to improve the task’s performance
with small-sized data [45].
PLMs based on Transformer, such as BERT or RoBERTa,

have been successful in solving many NLP tasks by learning
global semantic representations from large datasets. These
models typically use unsupervised methods on large datasets
and are then fine-tuned on downstream tasks without having
to train the entire model from scratch. However, the per-
formance of general-domain PLMs in the biomedical do-
main has been limited in some cases, prompting researchers
to focus on developing PLMs specifically for biomedical
texts [46]. Pretraining PLMs on biomedical corpora has been
shown to improve their performance [19], [20]. As a result,
several BERT models have been developed to tackle texts
in the biomedical domain using different domain-adaptation
strategies and corpora [19], [20], such as BioBERT [19],
SciBERT [47], BioMedBERT [48], OuBioBERT [49], Pub-
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MedBERT [20] or BlueBERT [50]. However, while each
PLM implements a different strategy for specific-domain
adaptation or pre-training, their success varies. General-
domain BERT models that have been pre-trained on the med-
ical subset of Wikipedia should perform better in the biomed-
ical domain than other general-domain architectures [51].
Nonetheless, the performance of general-domain PLMs in the
biomedical domain has been limited in some cases. There-
fore, researchers have developed PLMs specifically designed
to handle biomedical texts [46] and have pre-trained them on
biomedical corpora to improve their performance [19], [20].
Several BioNLP shared tasks have boosted research in the
field and supported the evaluation of methods, as it is the case
of BioASQ [52] focused on answering questions for COVID-
19, MEDIQA [53] aimed for different summarisation tasks
of medical texts, or DDIExtraction [54] and PharmaCoNER
[55] aimed at identifying entities and relations between drugs,
proteins, among other entities.

Some recent text classification tasks have aimed to classify
scientific publications according to the Hallmarks of Cancer
taxonomy [56], classify medical scientific documents accord-
ing to disease classes from the Medical Subject Heading
(MeSH) vocabulary [57], label medical notes with codes
from the ICD taxonomy [58], or detect biomedical claims in
tweets [59]. For instance, [58] explore automatic International
Classification of Disease (ICD) coding, which is a multi-label
classification problem. However, they face a challenge with
the length limitation of BERT-based models, which can only
process a maximum length of 512 tokens, whereas clinical
notes usually exceed this maximum input length. Given these
limitations, they opt for feature extraction and classification,
using PubMedBERT. They pre-process the text by converting
to lower case and removing all numbers, but they do not
remove infrequent words since BERT does not suffer from
out-of-vocabulary terms. On the other hand, [59] focus on
the text classification of claims in biomedical tweets. They
experiment with different combinations of fine-tuning hy-
perparameters from [17]. They also oversample the minority
class of implicit claims to achieve a balanced training set.
However, their experiments reveal that more complexmodels,
such as BERT or LSTM, do not outperform the linear models,
which they attribute to the small size of the dataset and the
inability of complex models to learn from the training set.

In recent years, there has been a surge in research focus-
ing on biomedical document classification using advanced
PLMs. Models like LinkBERT, which integrates link predic-
tion tasks during pretraining, have demonstrated enhanced
understanding of document context and improved classifi-
cation performance in biomedical domains [60]. Addition-
ally, other models such as ClinicalBERT and BioLinkBERT
have been tailored to integrate clinical knowledge and link
prediction respectively, to further enhance their applicability
in clinical and biomedical contexts [61], [62]. These models
leverage the specificity of domain knowledge to improve the
accuracy and reliability of biomedical document classifica-
tion tasks.

Fine-tuning strategies and the incorporation of domain-
specific corpora continue to show significant promise. A
recent study by Kim et al. [63] highlighted the efficacy of
integrating electronic health records (EHRs) with PLMs to
achieve superior classification accuracy for clinical notes.
This approach allows models to capture the nuances and
specific terminologies used in clinical documentation, thus
enhancing their overall performance in real-world applica-
tions. Moreover, recent advancements have explored multi-
task learning frameworks that enable models to be fine-tuned
on multiple related tasks simultaneously, thereby improving
their generalization capabilities across various biomedical
text classification problems [64].
The development of hybrid models that combine rule-

based systems with machine learning techniques has also
been an area of active research. For instance, Luo et al. [65]
proposed a hybrid approach that integrates domain-specific
rules with PLM-based classifiers to improve the classifica-
tion of rare biomedical entities. This method leverages the
precision of rule-based systems and the adaptability of PLMs,
achieving better performance in tasks where annotated data is
scarce.
Another notable advancement is the application of weak

supervision techniques to generate large-scale annotated
datasets from unstructured biomedical texts. Ratner et al. [66]
demonstrated the use of weak supervision to create training
data for PLMs, significantly reducing the cost and time asso-
ciated with manual annotation. This approach has shown to
improve model performance by providing a more diverse and
comprehensive set of training examples.
These advancements underline the importance of contin-

ued innovation in pretraining techniques and the develop-
ment of domain-specific models to tackle the unique chal-
lenges presented by biomedical texts. The integration of ex-
ternal knowledge sources, such as medical ontologies and
databases, into PLMs remains a critical area of research, as
it holds the potential to further enhance model performance
and reliability in the biomedical domain. For example, recent
efforts to incorporate the Unified Medical Language System
(UMLS) into PLMs have shown promising results in im-
proving the interpretability and accuracy of biomedical text
classification [67].
As far as we know, this is the first study that aims to classify

scientific biomedical articles based on the research type in
which the described investigation takes place [25]. Trans-
formers have shown to be the best performing architecture
to date, but they require annotated data. Therefore, our first
contribution is a dataset annotated by experts that can aid in
the development of transformers capable of addressing our
novel task.

III. THE BATRACIO DATASET
The task of classifying biomedical publications according to
research type in the biomedical domain is a multi-class classi-
fication problem: given an input, the system must identify the
most appropriate category according to the content described
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in the text. The dataset is composed of titles and abstracts of
scientific articles, which are the minimum annotation units
to differentiate between the categories proposed. We have
ensured a real-world distribution, where classes are not bal-
anced, to improve the system’s generalizability and use in real
cases.

A. DATA SELECTION
To create our dataset, we started by gathering a diverse sample
of publications from PubMed. Using the API, we randomly
selected 500,000 publication IDs and retrieved data for each
of those records. We limited our search to a temporal range
of five years (2015-2019) to maintain temporal balance. We
excluded earlier years to account for the growing trend of
translational research, and we excluded publications from
2020 due to the significant focus on COVID-19 research. We
specifically chose "journal articles" in English as the type of
records for our dataset. This decision was based on the fact
that they comprise themajority of publications, follow similar
patterns and structures in their abstracts, and have a certain
level of homogeneity in their writing.

In the second step of our data processing, we aimed to
filter out records that were not directly relevant to our study
on biomedical research. While the database contained a wide
range of records in health and life sciences, we only wanted to
include publications in the biomedical domain for annotation
by experts. To achieve this, we used ontological classification
based on rules defined by discarding and selecting branches
associated with biomedical research in the Medical Subject
Headings (MeSH) [33]. We worked with domain experts to
select MeSH branches at different levels for filtering pub-
lications. Despite this effort, some publications outside the
domain remained, so we included a second filtering step
to eliminate them. To achieve this, we used the alignment
between journals and subjects proposed by Science-Metrix
[68]. Science-Metrix offers an open ontology for classifying
scientific journals into bibliometric categories based on ISSN
and ESSN codes. The taxonomy consists of 22 research
fields, each containing subfields, which helped us remove
publications outside our areas of interest2.
To ensure the effectiveness of our filtering approach, we

manually evaluated 100 filtered publications with the help of
domain experts. The goal was to confirm that the publications
were relevant to the biomedical domain. The experts evalu-
ated both filters on a random set of 100 publications, and the
double filtering was found to have a precision of 92.8%. The
final subset of publications was selected using this filtering
approach, and any publications that were outside the scope of
biomedical research and were discovered by the annotators
during the annotation process were discarded.

We applied a filtering step to the initial dataset, resulting
in 145,821 publications. From this pool, we selected 1,100
candidate publications for annotation. We ensured that the
sampling was representative and maintained an appropriate

2Both files will be made available upon acceptance

distribution in the features of interest, including publication
year, affiliation country of the authors, journal, anatomy
(MeSH branch A), organism (MeSH branch B), diseases
(MeSH branch C), and chemicals and drugs (MeSH branch
D). This approach allowed for the generalizability of the
dataset, as a very large sample of a specific disease in any of
the annotated categories could add noise and bias the dataset,
making it difficult to identify generalizable patterns in the
texts.

B. ANNOTATION PROCESS
A manual annotation process is preferred, since especially in
this domain, the quality of the annotations has been shown
to be more important than the quantity of annotations [41].
For the dataset annotation process, we have been inspired and
oriented by the corpus creation methodologies proposed by
[41], [69], [70]. We consider the following steps:
1) Annotation guide development and study of sample

examples to create the guide.
2) Training of the annotators.

a) Labelling a sample of texts.
b) Discussion about conflicts.
c) Updating the annotation guide to cover conflicts.

3) Annotation of the dataset.
a) Annotation of the 20% of the records.
b) Agreement at first 20%.
c) Redefinition of the annotation guideline.
d) Annotation of the whole dataset.
e) Final agreement.

4) Dataset statistics and description.

1) Defining Research Types
To start, this task is crucial to firstly define the different
research types that one wants to classify. The simpler way is
to separate between what is often called basic or fundamental
and clinical or applied research, as we have done in the past
[71]–[73]. However, by doing so we are losing information on
a research type that has become key in policy discussions, that
of Translational Research (see also introduction). Although
it is very important to have this category to be able to map
research outputs and answer questions related to translational
research, it is also the most hard to classify. Its borders are
“fuzzy”, especially so in what is basic research and what is
translational research, and its definitions vary substantially
[9], [74]. Even if various attempts to define the types of
biomedical research can be found in the literature [75]–[77],
there is no widely accepted definition. We have used the
following definition for Translational Research, knowing that
this is only one of possible definitions: biomedical research in
a pre-clinical phase and explicitly with an intent to treat. This
is, for example, different from a definition of translational
research that more broadly deals with mechanisms of disease
in addition to specific pre-clinical testing, even if not a direct
intent to treat is the aim. We do not make judgments as to
which is the best definition. Both are valid and can be useful
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depending on the aim; we have chosen a stricter definition
because it would allow us to map more precisely what is
solely Translational/pre-clinical research. The definitions of
basic and clinical research are less debatable and are, thus,
easier to pinpoint. Public health research was originally added
to the clinical research category, but during testing of the
system, it was thought best to keep it as a separate category
as they didn’t represent the same type of studies, and most
importantly it became increasingly obvious that is a specific
type of work, often intersectoral.

The other category has been included to cover those
documents that annotators have discarded during the anno-
tation process as not being properly biomedical research or
not fitting into any of the four categories proposed.

Once definitions are agreed upon, it is key to define very
clear guidelines for deciding what belongs to what classifi-
cation. In the next subsection, we explain in more detail the
definition we have used for each category and the process of
guideline development that ensued.

2) Guidelines’ Development for Expert Annotators
The process of developing the annotation guidelines from
scratch started with the definition of terms and an as-clear
as possible definition by two domain experts of the bound-
aries of these categories, based on previous existing literature
and general understanding. Initially, only three categories
were considered: basic research, translational research, and
clinical research, assuming that they would cover the entire
spectrum of biomedical research. To adapt these preliminary
definitions to an annotation scenario, both experts annotated
100 publications in the biomedical domain (randomly ex-
tracted from PubMed) with the three proposed categories.
During this process, it became clear the need to add a fourth
type, related but not truly clinical research - public health-
to encompass the entire range of publications considered as
biomedical research. The addition of this fourth category was
seen as relevant as some of the publications focused on the
broader spectrum of Health and wellbeing, beyond the diag-
nostic and treatment of disease, including for socioeconomic
aspects, retrospective studies about population impact, and
health policy issues. Importantly, through further labelling, by
the supplementation of more examples for each of the cate-
gories, the guidelines went through several iterations to make
the borders very clear. As the process of labelling by humans
is inherently biassed, the annotators took care in following
the guidelines and not their “perception” on any given day.
The annotation guidelines are provided as an appendix to this
document.

As a result, the following four categories were considered
for the BATRACIO task3:

• Basic research, often called fundamental research, fo-
cuses on scientific exploration and on building new
knowledge, and aims to understand fundamental mecha-
nisms of biology, disease and behaviour. For example, in

3Complete annotation guidelines are available as an appendix.

the case of cancer research, basic research asks how or
where mutations occur in DNA and how DNA functions
in a healthy cell [78].

• Translational research, also called pre-clinical re-
search [74] focuses on translating the discoveries from
basic research into usability in the clinic, to produce
new drugs, devices and treatment options for patients,
with a particular focus on applicability. It uses large-
scale testing and both animal models and human bio-
logical material, such as computer-assisted simulations
of drugs, devices or diagnostic interactions within living
systems. For example, in the case of cancer research,
translational research asks if and how certain drugs or
therapeutic approaches halt cancer growth, invasion or
metastasis in non-human models.

• Clinical research seeks to test a specific treatment or
procedure, drug, diagnostic or any technology on pa-
tients, focusing not only on the biological mechanisms,
but also on issues of safety, delivery and protocols for
implementation [78]. It includes studies to better under-
stand a disease in humans and relates this knowledge
to findings in cells or animal models. For example, in
the case of cancer research, clinical research asks if and
how certain drugs or therapeutic approaches halt cancer
growth, invasion or metastasis in patients.

• Public health involves activities to strengthen public
health capacities and services that seek to provide con-
ditions under which people can stay healthy, improve
their health and well-being, or prevent the deterioration
of their health. Population analyses and retrospective
studies are considered in this phase. For example, in the
case of cancer research, public health research maps the
burden of disease (epidemiological studies) and asks if
and how certain behaviours and exposures affect cancer
incidence and/or prognostic.

As part of the same experiment, we evaluated the minimum
unit of annotation. Due to concerns that the title and abstract
might not provide sufficient information for some articles, we
provided the sections of introduction, materials and methods,
and MeSH terms to the experts for each article. Even though
this was the case, the experts were able to assign all four
categories to scientific publications using just the title and ab-
stract, in the majority of the cases. This finding is significant
for future applications of this resource since 52% of scientific
articles in the fields of life sciences and molecular biology are
not open access, and only the title and abstract are accessible
through PubMed.

Differentiating between some of the types can be extremely
challenging. In some cases, the suitability of a category may
be clear because the methods and the type of research activity
fall undoubtedly within a specific category. However, in other
cases, the difference may be difficult to discern because what
distinguishes the types is the scientific question behind the
research activity. Furthermore, in some cases, a document
may be near the borders between two areas because the task
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requires documents to belong to one category. To assist an-
notators in such ambiguous cases, experts have exhaustively
defined the categories. These definitions have been informed
by extensive experts’ discussions and clarifications using a
sample of documents. After annotating the first 400 publi-
cations, we updated the guidelines by providing additional
examples to clarify the boundaries between categories. Ex-
perts expressed that the boundary between basic and trans-
lational research categories was sometimes “fuzzy”, so we
paid particular attention to providing more examples for these
categories.

The objective of BATRACIO will be to develop an au-
tomatic text classification system able to assign the label
corresponding to the futher research phase presented in the ar-
ticle based on the annotated dataset provided by BATRACIO.
Providing, for instance, the title and abstract of the following
scientific article extracted from PubMed:

The system developed should categorise it as basic
research, because, according to the annotation guide-

lines4, the article aims to understand cell death regulation, in
other words, cellular understanding of mechanisms.

3) Annotators Agreement
The dataset was annotated by three domain experts holding
a PhD in different fields of biomedicine and developmental
biology (referred to as A1, A2, and A3). To ensure the highest
level of accuracy, the three annotators independently anno-
tated the same publications. The agreement was calculated
based on the averaged Cohen’s κ due to the complexity of
the task. Two control checkpoints were selected in order to
explore general agreement and by pairs of categories, and also
to explore the number of instances of each category.
Table 1 presents the results of the inter-annotator agree-

ment, including the checkpoint and iteration, the final Co-
hen’s κ score, and the agreement between pairs of categories.
Overall, there was substantial inter-annotator agreement. In
the first checkpoint, where the first 400 publications were
annotated, a kappa of 0.69 was obtained. The agreement
between the basic-translational and clinical-public health
categories was, however, particularly low. After revising the
guidelines and discussing cases of disagreement, a second
annotation iteration was performed on the same 400 pub-
lications, resulting in substantial agreement for all pairs of
categories. At checkpoint 2, after annotating the first 800
publications, the agreement raised to 0.78. However, due to
the imbalance of publications between the basic and transla-
tional categories and the clinical research category, a subset
of the remaining 300 publications was re-sampled based on
a selection of journals more related to basic and clinical
research.
The final agreement for the whole dataset wasKappa=0.75.

Notably, the most challenging pairs are those adjacent as
research types, such as basic-translational, translational-
clinical, or clinical-public health. It is interesting that the
agreement among the three annotators slightly decreases as
more publications are annotated and time passes since the
initial discussions. It is worth noting that the accuracy of
manual text classification can be influenced by human factors
such as fatigue and expertise [37].

Pairs of categories Annotation Re-
annotation

Final
dataset

Basic-Translational 0.223 0.614 0.595
Translational-Clinical 0.796 0.904 0.867
Clinical-Public Health 0.617 0.719 0.719
Basic-Clinical 0.887 0.953 0.946
Basic-Public Health 1.000 1.000 0.962
Translational-Public
Health

0.986 1.000 0.994

ALL 0.690 0.782 0.748

TABLE 1. Average of Cohen’s k inter-annotator agreement between the
three annotators during the development of the annotation guidelines,
during the annotation of the dataset, and for the final dataset.

4Available at the appendix.
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C. BATRACIO STATISTICS
Our dataset consists of 1,248 publications in the biomedical
domain, which are annotated across four categories. The
distribution of publications across these categories is imbal-
anced, as is presented in Table 2, with 480 (38.46%) in the
clinical research type, 349 (26.96%) in the basic research
type, 220 (17.36%) in the translational research type, and
75 (6.01%) in the public health phase. Table 3 displays the
general characteristics of the dataset.

Category #Docs (% over the dataset)
Basic Research 349 (26.96%)
Translational Research 220 (17.36%)
Clinical Research 480 (38.46%)
Public Health 75 (6.01%)
Other 124 (9.94%)

TABLE 2. Class distribution in the final dataset.

Final dataset
#categories 5
#documents 1,248
#sentences 13,669
avg. #sentences 10.95
#words (total) 334,456
#words (unique) 30,504
avg. #words 267.99

TABLE 3. Final dataset statistics. Documents contain the union of the title
and the abstract.

IV. MATERIALS AND METHODS
The aim of this study is not only to present a dataset but also
to explore the feasibility of automatically classifying biomed-
ical scientific publications according to BATRACIO; i.e.,
according to four categories that represent different phases
of biomedical research. To achieve this goal, we evaluated a
wide range of state-of-the-art systems based on pre-trained
language models using the Transformer architecture. In the
following section, we describe the strategies we employed in
our experiments.

A. PRE-TRAINED LANGUAGE MODELS
Recently, new approaches have emerged for adapting pre-
training language models to improve their effectiveness in
the biomedical domain. In this study, we investigated the use
of several BERT-based biomedical models. With so many
models available, selecting the best one for a specific task can
be challenging as well as computationally intensive, as noted
by [79].

The models used, and their main features, are described
below:

• BERT-base [17] is a multi-layer bidirectional Trans-
former encoder. It is pre-trained on general domain cor-
pus, BooksCorpus and EnglishWikipedia, for the objec-
tives ofMasked LanguageModelling and Next Sentence

Prediction. However, its general nature limits its effec-
tiveness in specialized fields like biomedicine, where
domain-specific terminology and contexts are prevalent.
Consequently, BERT-base often underperforms com-
pared to models specifically pre-trained on biomedical
text, such as BioBERT and ClinicalBERT. We chose
BERT-base architecture (12 layers, 768 hidden learning
and 12 attention heads, summing a total number of
110M parameters), for the comparison with biomedical
variants of BERT.

• BioBERT [19] is initialised from weights of general-
domain BERT [17], and it is further pre-trained on
PubMed abstracts and PubMedCentral full-text articles.
It has demonstrated to excel in understanding biomed-
ical terminology and context, demonstrating superior
performance in named entity recognition (NER) and
relation extraction. Despite its strengths, BioBERT’s
computationally intensive training requires significant
resources, and it may not generalize well to sub-domains
within biomedicine with unique language patterns not
covered during pre-training.

• SciBERT [47] is a BERT-base model adapted to the
specific-domain by pre-training on a random sample
of mixed-domain 1.14M full text papers from Seman-
tic Scholar, 18% in computer science and 82% in the
biomedical domain. It includes new vocabulary in scien-
tific domain which only overlaps 42% with the general-
domain vocabulary in BERT and BioBERT. Its ad-
vantage lies in its ability to generalize across various
scientific domains, making it more versatile for inter-
disciplinary applications. However, this broader focus
might slightly compromise its performance in highly
specialized biomedical tasks compared to models like
BioBERT and PubMedBERT.

• PubMedBERT [20] is a domain-specific BERT-base
model pre-trained from scratch on PubMed literature.
Since it is focused narrowly on PubMed abstracts, it
offers improved performance for tasks involving such
texts, though this specialization may limit its applicabil-
ity to other forms of biomedical literature.

• LinkBioBERT [80] is an extension of BioBERT that
incorporates document-level relations by leveraging hy-
perlink structures within PubMed articles. It offers en-
hanced contextual understanding by capturing inter-
document relationships. This model provides superior
performance in tasks that require a deep understanding
of context and cross-references, such as document clas-
sification and relation extraction. However, the complex-
ity of training and the need for extensive hyperlink data
can be limiting factors.

• Other language models, such as BlueBERT [50],
Specter [57] and OuBioBERT [49] were also consider
for the task. However, their results were not competitive
enough, and therefore, we have decided not to present
them.
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The selection of specific pre-trained language models such
as ClinicalBERT, BioBERT, PubMedBERT, SciBERT, and
LinkBERT is motivated by their demonstrated performance
and optimization for biomedical natural language processing
(NLP) tasks. These models have been specifically trained
on large corpora of biomedical and scientific texts, allowing
them to capture domain-specific language patterns, terminol-
ogy, and contextual nuances that are essential for accurate
text classification in the biomedical field. General-purpose
models like BERT-base, while robust and versatile, often fall
short in specialized domains due to their lack of exposure to
domain-specific data during pre-training. This specialization
is particularly critical in biomedical text classification, where
understanding complex medical terms and relationships sig-
nificantly enhances performance.

For instance, BioBERT and PubMedBERT are trained on
PubMed abstracts and PMC full-text articles, which ensures
they are adept at handling biomedical terminology and con-
cepts. ClinicalBERT, derived from BERT and fine-tuned on
clinical notes, offers an edge in processing clinical narratives.
SciBERT, with its training on a broad corpus of scientific
literature, balances versatility with domain relevance, making
it suitable for a wide range of biomedical and scientific texts.
LinkBERT further leverages hyperlink structures within doc-
uments to enhance contextual understanding, proving bene-
ficial for tasks requiring a deep comprehension of document
relationships.

B. TEXT CLASSIFICATION WITH PRE-TRAINED LANGUAGE
MODELS
In recent years, pre-trained language models based on Trans-
formers have emerged as a superior option for text classifi-
cation. Their ability to learn global language representations
from massive datasets and adapt to downstream tasks by
simply adding a final layer, such as a linear classifier for text
classification, and fine-tuning the model’s weights has made
them particularly appealing. BERT, the first pre-trained, fine-
tuning-based, and bidirectional language model, has achieved
state-of-the-art results in several NLP tasks. Contextual pre-
trained language models are an improvement over previous
models since they do not have to be trained from scratch,
reducing computational costs and improving performance.

We investigated the two primary approaches for adapting
BERT models to a text classification task [81]. The first ap-
proach, fine-tuning, was proposed in the original BERT paper
[17] and has also been used in other studies [45], [82], [83].
Fine-tuning involves adjusting and updating the pre-trained
weights of the model using back-propagation to minimize
the loss function and obtain the desired output. The second
approach is the feature-based approach, where all parameters
of the model are frozen, and only a linear classifier is trained
on top of the model, as suggested in [57], [58]. This approach
can be useful for avoiding catastrophic forgetting [45], [84],
particularly when the dataset is small. However, since the
feature-based approach yielded poorer performance, we only
show the results for the fine-tuning strategy.

For our experiments, we use the Hugging Face Trans-
formers library 5. Following the optimal hyperparameters
proposed in the original BERT paper [17], we provide results
using a learning rate (Adam) of 2e-5, batch size of 16, and 4
epochs.

C. LOSS FUNCTION
The primary objective of neural networks is to minimize the
difference between the predicted output and the expected
output by comparing the predicted distribution of results with
the true distribution. This difference, also known as the error,
is calculated using a cost or error function. The standard
cost function for text classification tasks is the cross entropy
loss6. However, this cost function does not take into account
class imbalance. Cost weighting is an important alternative
to data augmentation for unbalanced classes [85]. It involves
increasing the cost associated with obtaining an erroneous
low-frequency class label.
In our experiments, we consider the followingmodification

in the loss function:
• Loss: cross-entropy loss without weighting categories.
• Weighted loss: as [85] propose, we increase the cost

of incorrectly labelling the class with lower number of
samples by weighting the cross-entropy loss function.

We use the formulation given by [85] and that we replicate
here for completeness. Given an array where the jth element
represents the models prediction for class j, the cross-entropy
loss for a single prediction x is given by Equation 1.

loss(x, class) = −log

(
exp(x[class])∑

j exp(x[j])

)

= −x[class] + log

∑
j

exp(x[j])

 (1)

As in [85], the cross-entropy loss given in Equation 1 is
modified to accommodate an array weight, the ith element of
which represents the weight of the ith class, as described in
Equation 2.

loss(x, class) = weight[class]Θ

where,Θ = −x[class] + log

∑
j

exp(x[j])

 (2)

D. TEXT CLEANING AND PRE-PROCESSING
One of the strengths of BERT is its ability to learn directly
from unstructured text; however, in the biomedical domain,
learning from unstructured language remains a challenge
[58], [83], [86]. Acronyms are particularly prevalent in sci-
ence and even more so in biomedical publications, as authors
often seek to abbreviate long names for diseases, bacteria, and

5Hugging Face: https://huggingface.co/
6https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
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chemicals. According to [87], acronyms were used in more
than 24million scientific article titles and 18million scientific
articles published between 1950 and 2019. They reported that
19% of titles and 73% of abstracts contain acronyms. Of the
more than one million unique acronyms in their data, 0.2%
appeared regularly, and most acronyms, 79%, appeared fewer
than 10 times [88].

According to [86], pre-trained language models may strug-
gle with rare words, and datasets with a high number of
unique words can pose a challenge. In the biomedical domain,
researchers have proposed various pre-processing techniques
to improve the performance of pre-trained language models.
For instance, [58] suggest removing all numbers, which are
frequent in scientific studies but do not typically provide
relevant information for BioNLP tasks. Similarly, [83] note
that preprocessing can enhance task performance for similar
reasons. In [89], researchers remove punctuation and abbre-
viations from the text.

We perform basic processing following the recommenda-
tions in [58], [83], [86], [89]:

• Acronym resolution: we use the Abbreviation
Detector component in scispacy7, which imple-
ments a simple algorithm for identifying abbreviations
in biomedical text [90], and after, the abbreviations are
replaced by their expanded name.

• Removal of numbers and special characters: we re-
move all numbers in abstracts, because they do not add
meaning about the categories of interest, and sometimes
correspond to results or references; and special charac-
ters, because scientific literature can include formulas
and rare characters, which can reduce performance.

V. RESULTS
The objective of this section is to evaluate the appropriateness
of state-of-the-art classification techniques in addressing the
new problem proposed in this paper: the automated classifi-
cation of biomedical literature based on the research types.
To demonstrate the effectiveness of the defined fine-tuning,
cleaning, and loss function modification strategies, we evalu-
ate various models using the BATRACIO dataset. We assess
the behavior of state-of-the-art machine learning techniques
using precision, recall, F-measure, and accuracy, as defined
in the following equations:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(3)

Precision =
TP

TP+ FP
(4)

Recall =
TP

TP+ FN
(5)

F-measure =
2 · Precision · Recall
Precision+ Recall

(6)

7https://github.com/allenai/scispacy

where TP (True Positives) represents the number of in-
stances correctly predicted as positive (the model correctly
identifies positive cases); TN (True Negatives) represents
the number of instances correctly predicted as negative (the
model correctly identifies negative cases); FP (False Posi-
tives) represents the number of instances incorrectly predicted
as positive (the model incorrectly identifies negative cases as
positive); and FN (False Negatives) represents the number of
instances incorrectly predicted as negative (the model fails to
identify positive cases).
To assess the systems’ performance with the dataset, we

conduct 10-fold cross-validation using a stratified approach
to ensure that all categories have representative samples in
all partitions, as random partitioning fails to provide such
representation. The validation set is created through a 0.1
split on the train, and the averaged metric values across all
k-folds are used as the evaluation criterion for k-fold cross-
validation. Evaluating imbalanced datasets is challenging
because models often predict the majority class with high
accuracy, resulting in misleading results. Macro-averaged F-
measure is a more appropriate evaluation metric as it treats
the performance of each class equally [85].

A. PRE-TRAINED LANGUAGE MODELS
Our first experiments compare the performance of different
language models, which are presented in Section IV-A. As
shown in Table 5, domain-specific pre-trained language mod-
els produced the best results. This was not surprising given
that domain-specific models have been proven successful
in highly specialized fields. Among the pre-trained models,
PubMedBERT was the best performer (F1=0.82), followed
by LinkBioBERT (F1=0.81) and SciBERT (F1=0.81), both
of which were trained from scratch on biomedical literature.
BioBERT (F1=0.79), which shares the vocabulary of BERT-
base but is further pre-trained on biomedical documents,
outperformed BERT (F1=0.77) and yielded competitive re-
sults. Despite not being specifically designed for the biomed-
ical domain, BERT-base’s performance was also significant
and produced better results than other domain-specific mod-
els such as OuBioBERT and BlueBERT. A possible reason
for this, as suggested by [51], is that BERT-base was pre-
trained on Wikipedia, which includes WikiMed, a collection
of Wikipedia medical and scientific pages. Therefore, BERT-
base has some domain knowledge, unlike general-domain
Word2vec [91], which is pre-trained on Google News.

B. TEXT CLEANING AND PRE-PROCESSING
We next conducted experiments to evaluate the effectiveness
of performing text pre-processing as a previous step to the
classification algorithm. In Table 4, we present the F-1 and
accuracy scores of various text cleaning techniques, including
acronym resolution and the removal of numbers and special
characters, applied only to the articles’ abstracts. The results
show that for systems trained on general-domain vocabulary,
such as BERT-base and BioBERT, acronym resolution sig-
nificantly improves the scores compared to the raw abstract.
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However, for PubMedBERT and SciBERT, acronym resolu-
tion does not appear to improve the scores, and the best results
are obtained by removing numbers and special characters.

C. DATA INPUT: TITLE AND/OR ABSTRACT
Our third set of experiments aimed to examine the impact of
different data inputs on the results (see Table 5). To achieve
this, we tested various combinations of titles and abstracts.
Our results indicate that PubMedBERT significantly out-
performs the other systems when given only the abstract
or a combination of the title and abstract (F1=0.85). How-
ever, when given only the title, the performance differences
between the systems are minimal, as expected, in contrast
to when only the abstract is provided. This suggests that,
for some articles, the title alone may not contain enough
information to distinguish the research type, regardless of
the language model utilized, and confirm that the minimum
working unit is the pair "title-abstract".

D. CLASS IMBALANCE AND LOSS FUNCTION
One of the main challenges when working with small and
imbalanced datasets is that systems tend to over-learn the
most frequent classes. As shown in Table 6, F-1 and accuracy
are reported by category (i.e., research type). The best overall
model, PubMedBERT, is also the most effective in predicting
categories with fewer instances, such as Public health and
Translational research.

To address the challenges posed by imbalanced category
distribution and semantic adjacency, we explored modifying
the loss function during fine-tuning to improve task adapta-
tion. Table 7 displays various attempts at modifying the loss
function. To mitigate category imbalance, we incorporated
a vector of weights into the loss function during training,
assigning a weight to each category based on its inverse
frequency in the dataset. This approach should re-scale the
weight assigned to each class, prioritizing categories with
fewer samples. For three of the models, this improved F-1
scores for the Public Health category and overall F-1 scores.
To reinforce adjacency, we also added a neighboring loss term
to the loss function. The combination of weighted loss and
neighboring loss proved effective for SciBERT andBioBERT,
successfully addressing the dataset’s challenges. However,
the best-performing PubMedBERT system did not show im-
provement, with the best configuration being without any loss
function modification.

VI. DISCUSSION
The primary goal of this study was to evaluate the effec-
tiveness of state-of-the-art classification techniques in the
automated classification of biomedical literature by research
type, utilizing the BATRACIO dataset. Our results demon-
strate significant improvements through the implementation
of domain-specific pre-trained language models, text clean-
ing and pre-processing, varying data inputs, and tailored loss
functions. In the following subsections, these findings are
summarized and contextualized with existing literature to

understand the advancements and remaining challenges in the
field.

A. DOMAIN-SPECIFIC PRE-TRAINED MODELS
The best performance of domain-specificmodels, particularly
PubMedBERT, SciBERT, and BioBERT, aligns with previous
research emphasizing the benefits of domain adaptation for
specialized tasks. Alsentzer et al. [92] and Lee et al. [93]
similarly highlighted the efficacy of models pre-trained on
biomedical corpora, such as BioBERT, in improving classi-
fication and named entity recognition tasks in the biomedical
field. Our results corroborate these findings, showing that
models like PubMedBERT, which are specifically pre-trained
on biomedical literature, achieve higher F1 scores compared
to general models like BERT-base. This is consistent with
the work of Gu et al. [94], who found that PubMedBERT
outperformed other models in various biomedical NLP tasks.

B. TEXT CLEANING AND PRE-PROCESSING
Our study found that text pre-processing techniques, such
as acronym resolution and the removal of numbers and spe-
cial characters, significantly improve model performance for
general-domain models like BERT-base. This finding is in
line with previous studies by Kim et al. [95] and Yan et al.
[96], which reported that preprocessing steps could enhance
the performance of text classification tasks. However, for
domain-specific models like PubMedBERT and SciBERT,
the benefit of these preprocessing steps was minimal. This
suggests that domain-specific models are robust enough to
handle noisy input data, a conclusion supported by Lee et al.
[93].

C. DATA INPUT: TITLE AND/OR ABSTRACT
Our experiments demonstrate that the combination of ti-
tle and abstract significantly enhances classification perfor-
mance, particularly for models like PubMedBERT. This find-
ing aligns with the work of Zhang et al. [97], who found
that using both titles and abstracts improves the accuracy of
biomedical document classification compared to using either
alone. The minimal performance differences when using only
titles suggest that abstracts contain crucial context needed for
accurate classification, corroborating the conclusions drawn
by Lu et al. [98].

D. CLASS IMBALANCE AND LOSS FUNCTION
Addressing class imbalance remains a critical challenge in
biomedical literature classification. Our experiments with
weighted loss functions and balanced training sets showed
improvements for some models but did not universally en-
hance performance across all metrics. This observation is
consistent with the findings of Johnson and Khoshgoftaar
[99], who noted that class imbalance can significantly impact
machine learning model performance and that weighted loss
functions canmitigate but not completely resolve these issues.
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Raw Acronym Num.+SC Acr.+Num.+SC
Model F1±std Acc.±std F1±std Acc.±std F1±std Acc.±std F1±std Acc.±std
PubMedBERT 82.45±4.55 86.86±3.10 82.53±5.39 86.61±3.76 82.43±5.14 86.45±3.38 83.56±5.26 87.42±3.28
sciBERT 81.09±3.77 85.50±2.57 82.29±4.10 86.29±2.77 83.04±2.76 86.86±1.91 82.64±3.77 86.54±2.67
BioBERT 79.75±5.35 84.53±3.66 81.04±3.81 85.82±2.71 82.53±4.30 86.54±2.96 82.47±4.46 86.38±2.74
BERT-base 77.86±4.08 83.65±3.29 78.43±4.31 84.05±3.14 78.76±4.74 84.53±3.47 79.23±4.38 84.69±3.09
LinkBioBERT 81.59±3.86 86.29±2.27 82.21±4.91 86.45±3.37 81.30±4.12 86.13±2.46 82.13±4.07 86.53±2.63

TABLE 4. Comparison of domain specific pre-trained language models using different text cleaning strategies. Trained by fine-tuning, fixing the following
hyper-parameter configuration: 4 epochs, learning rate of 2e-5, and batch size of 16. Input data is title+abstract. Results are reported as macro-average
between 10-folds. Column description: Acronym = resolving acronyms / Num.+SC = removing numbers and special characters / Acr.+Num.+SC = resolving
acronyms, and removing numbers and special characters

Title Abstract Title+Abstract
Model F1±std Acc.±std F1±std Acc.±std F1±std Acc.±std
PubMedBERT 79.93±3.40 83.57±2.29 82.45±4.55 86.86±3.10 82.22±4.56 86.86±3.26
sciBERT 78.48±6.05 83.17±3.40 81.09±3.77 85.50±2.57 81.59±3.57 85.73±2.43
BioBERT 78.98±3.91 83.33±2.41 79.75±5.35 84.53±3.66 82.12±3.86 86.08±2.82
BERT-base 69.95±6.39 76.84±3.72 77.86±4.08 83.65±3.29 79.25±3.63 84.44±2.85
LinkBioBERT 79.49±4.88 84.21±2.47 81.59±3.86 86.29±2.27 81.76±5.78 86.21±3.55

TABLE 5. Comparison of domain specific pre-trained language models trained on different textual sections of the scientific publications. Trained by
fine-tuning, fixing the following hyper-parameter configuration: 4 epochs, learning rate of 2e-5, and batch size of 16. Results are reported as
macro-average between 10-folds.

Basic Translational Clinical Public health Other
Model F1±std F1±std F1±std F1±std F1±std
PubMedBERT 86.27±4.27 82.07±6.44 93.79±2.04 72.72±9.36 76.24±11.86
sciBERT 84.14±3.07 79.88±5.88 93.24±1.70 74.16±8.89 76.53±10.35
BioBERT 83.83±4.96 80.37±4.70 94.02±1.56 76.43±8.81 75.92±9.27
BERT-base 84.39±3.95 76.49±6.86 92.31±1.79 68.84±9.47 74.25±7.77
LinkBioBERT 85.45±4.98 81.13±5.58 92.71±2.12 73.27±12.06 76.23±14.72

TABLE 6. Comparison of domain specific pre-trained language models by category. Trained by fine-tuning, fixing the following hyper-pameter
configuration: 4 epochs, learning rate of 2e-5, and batch size of 16. Input data is title+abstract. Results are reported as average between 10-folds.

Unbalanced Balanced Weighted loss
Model F1±std Acc.±std F1±std Acc.±std F1±std Acc.±std
PubMedBERT 82.22±4.56 86.86±3.26 78.91±2.79 82.53±1.89 82.89±5.40 86.61±3.28
sciBERT 81.59±3.57 85.73±2.43 78.32±3.22 82.37±2.42 82.84±3.63 86.38±2.28
BioBERT 82.12±3.86 86.08±2.82 73.57±3.88 77.65±2.93 82.85±4.26 86.54±2.52
BERT-base 79.25±3.63 84.44±2.85 68.39±4.08 73.96±3.60 79.77±3.47 84.53±2.84
LinkBioBERT 81.76±5.78 86.21±3.55 73.30±4.04 76.84±3.15 83.22±5.00 86.77±3.13

TABLE 7. Comparison of domain specific pre-trained language models trained with weighted loss function and balancing training size to smaller class.
Trained by fine-tuning, fixing the following hyper-parameter configuration: 4 epochs, learning rate of 2e-5, and batch size of 16. Input data is
title+abstract. Results are reported as macro-average between 10-folds.

E. MODEL LIMITATIONS AND POTENTIAL AREAS FOR
IMPROVEMENT

Despite the better performance of specialized models such
as BioBERT, PubMedBERT, SciBERT, and LinkBERT in
biomedical text classification, several limitations persist. One
significant limitation is the reliance on large volumes of
domain-specific training data. While these models are pre-
trained on extensive biomedical corpora, their performance
may still be constrained by the quality and comprehensive-
ness of the training data. For instance, emerging medical ter-
minology and newly discovered biomedical concepts may not
be adequately represented, potentially impacting the model’s
ability to handle the latest developments in the field. More-
over, biases inherent in the training data, such as those related

to demographic disparities or institutional practices, can be
inadvertently learned and propagated by these models, lead-
ing to biased predictions and outcomes.

Another limitation is the computational cost associated
with training and fine-tuning these models. The need for
substantial computational resources can be prohibitive, par-
ticularly for smaller research teams or organizations with
limited access to high-performance computing infrastructure.
This constraint not only limits the ability to experiment with
extensive hyperparameter tuning but also restricts the fea-
sibility of deploying these models in resource-constrained
environments. Furthermore, while fine-tuning these models
for specific tasks improves performance, it also introduces
the risk of overfitting, particularly when working with lim-
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ited labeled data. Ensuring generalizability across diverse
biomedical text sources remains a challenging task.

Potential areas for improvement include enhancing the
adaptability of these models to new and evolving biomed-
ical information through continuous learning mechanisms.
Implementing techniques such as transfer learning and do-
main adaptation can help models stay current with the lat-
est biomedical research. Additionally, incorporating tech-
niques to mitigate bias, such as debiasing algorithms and
balanced training datasets, can improve the fairness and re-
liability of the models. Reducing the computational burden
through model compression techniques and efficient training
paradigms, such as knowledge distillation and quantization,
can make these models more accessible and deployable in
real-world settings. Addressing these limitations and explor-
ing these avenues for improvement will be crucial in advanc-
ing the efficacy and applicability of biomedical text classifi-
cation models.

VII. CONCLUSIONS
In this work, we introduceBATRACIO (BAsic-TRAnslational-
Clinical research types classification in bIOmedical publi-
cations), a novel text classification task in the biomedical
domain. To the best of our knowledge, no previous work
before has addressed the problem of automatically classifying
scientific literature according to biomedical research types.
The task seeks to help policymakers or funding agencies
to better understand what research activities were carried
out, mapping stakeholders and their research competencies,
and hence to better allocate the resources, by classifying the
scientific outputs of specific funding instruments or scientific
publications, according to research type.

Since the problem proposed is new, the work described
in this research includes the creation and annotation of a
dataset of 1,248 scientific publications in the biomedical
domain extracted from PubMed, categorized by research type
with the following categories: basic research, translational
research, clinical research, and public health. Designing a
new task is a big challenge, especially in a complex domain
as biomedicine. For this reason, we have involved domain
experts for designing the task and for annotating the dataset.
However, the creation of the dataset has been costly and has
required the organisation of several workshops for discussion
with experts, data extraction and analysis in depth to reduce
biases and to get publications in the domain of interest.

We have also explored whether the problem can be ad-
dressed automatically, providing baseline results based on
fine-tuning pre-trained language models and domain-specific
models for biomedical domain, together with some the explo-
ration of some strategies for improving the performance of the
systems. Our experiments showed that using domain-specific
pre-trained model (particularly those trained on scientific
biomedical papers, such as PubMedBERT or LinkBioBERT)
provides better results that using general-domain models and
up to 0.83 F1, which is a very good performance for a 5-
classes classification task. We have also found that, as iden-

tified in the literature, acronym resolution can improve the
performance of pre-trained language models in the biomed-
ical domain, although the improvement for models that are
pre-trained in the biomedical domain is not much as they
already incorporate information about acronyms. Removing
numbers and special characters, which can refer to results and
statistics about the samples of study, can help to reduce noise
in abstracts.
We have shown that using as the input of the classifier

the combination of both the title and abstract could generally
provide better results than using the title or the abstract alone.
This is consistent with the fact that the pair title-abstract was
identified by our domain experts as the minimum unit of
annotation for our particular classification task.
Nevertheless, the main specific challenges of our dataset

are the class imbalance and that categories are not mutually
independent, they shape a semantic value chain and have
semantic relations of adjacency between them. This was not
a main goal of the project, but we have also explored whether
slight modifications in the loss function can deal with imbal-
anced categories. Although the results of these experiments
are partially satisfactory, they point to future lines of research.
Other lines for future work include the exploration of the

use of other section in the article which could be relevant
for the task, such as introduction, or materials and methods.
We suggest future work on exploring different approaches for
incorporating semantic relation between categories. Further-
more, we also suggest the test in real collections of publica-
tions and research projects.

APPENDIX. ANNOTATION GUIDELINES
The task proposes the identification of value-chain research
phase in scientific outputs, classifying publications and re-
search projects among the research phase of the records,
choosing between: (1) basic research, (2) translational re-
search, (3) clinical research or (4) public health. Those
documents that annotators discard during the annotation pro-
cess as not being properly biomedical research or not fitting
into any of the four categories proposed will be labelled with
category the (5) other.
According to this, each record must be categorized in one

of the following categories:

1) Basic research (also called fundamental research)
This focuses on discoveries and knowledge, driven by hy-
potheses that advance the understanding of the unknown; it
builds new knowledge; in biomedical sciences it uses cells
and model organisms and very rarely human subjects or
human biological material. It involves scientific exploration
that can reveal fundamental mechanisms of biology, disease
or behaviour. Every stage of the translational research spec-
trum builds upon and informs basic research. It studies the
core building blocks of life (such as: DNA, cells, proteins,
molecules, etc.) in order to answer fundamental questions
about their structures and how they work. For example, oncol-
ogists now know that mutations in DNA enable the unchecked
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growth of cells in cancer. A scientist conducting basic re-
search might ask: How does DNA work in a healthy cell?
How do mutations occur? Where along the DNA sequence
do mutations happen? And why?
The following topics should be considered part of basic re-
search:

• Tissue, Cellular & Molecular basis of disease
• Tissue, Cellular & Molecular understanding of mecha-

nisms
• Use of Animal models - zebrafish, rats, human cells, fly,

c.elegans, mice, rabbit, guinea pig
• Development of techniques - protein, chemistry, molec-

ular, cellular
Some examples of publications in the category:

• GPR40 full agonism exerts feeding suppression and
weight loss through afferent vagal nerve.

• The Functional Mammalian CRES (Cystatin-Related
Epididymal Spermatogenic) Amyloid is Antiparallel β-
Sheet Rich and Forms a Metastable Oligomer During
Assembly.

• Viral FLIP blocks Caspase-8 driven apoptosis in the gut
in vivo.

• Apelin enhances the osteogenic differentiation of human
bone marrow mesenchymal stem cells partly through
Wnt/β-catenin signaling pathway.

• Improved yellow-green split fluorescent proteins for pro-
tein labeling and signal amplification.

The following topics should be considered part of basic re-
search:

• Tissue, Cellular & Molecular basis of disease
• Tissue, Cellular & Molecular understanding of mecha-

nisms
• Use of Animal models- zebrafish, rats, human cells, fly,

c.elegans, mice, rabbit, guinea pig
• Development of techniques- protein, chemistry, molec-

ular, cellular
Some examples of publications in the category:

• GPR40 full agonism exerts feeding suppression and
weight loss through afferent vagal nerve.

• The Functional Mammalian CRES (Cystatin-Related
Epididymal Spermatogenic) Amyloid is Antiparallel β-
Sheet Rich and Forms a Metastable Oligomer During
Assembly.

• Viral FLIP blocks Caspase-8 driven apoptosis in the gut
in vivo.

• Apelin enhances the osteogenic differentiation of human
bone marrow mesenchymal stem cells partly through
Wnt/β-catenin signaling pathway.

• Improved yellow-green split fluorescent proteins for pro-
tein labeling and signal amplification.

2) Translational research (also called pre-clinical research)
This focuses on translating the discoveries into usability in
the clinic, uses large scale testing and both animal models and
human biological material. There is a focus on applicability. It

connects the basic science of disease with human medicine.
During this stage, scientists develop model interventions to
further understand the basis of a disease or disorder and find
ways to treat it. Testing is carried out using cell or animal
models of disease; samples of human or animal tissues; or
computer-assisted simulations of drug, device or diagnostic
interactions within living systems. For this area of research
the end point is the production of a promising new treatment
that can be used clinically or commercialized (“brought to
market”). This enterprise is vital, and has been character-
ized as follows: “effective translation of the new knowledge,
mechanisms, and techniques generated by advances in basic
science research into new approaches for prevention, diagno-
sis, and treatment of disease is essential for improving health.”
The following topics should be considered part of transla-
tional research:

• Study of processes or diseases with the intent to treat
• Drug and vehicle development (since they have a thera-

peutic target)
• Pre-clinical models (even advanced ones like sheep and

pigs)
• With patients samples only as proof of concept, as in

tumour samples/biobank usage which is not central to
the paper

• With patients samples to establish research pre-clinical
models (like in cell lines)

Some examples of publications in the category:

• Characterization of a porcine model of atrial arrhyth-
mogenicity in the context of ischaemic heart failure.

• Assessment of an ultrasound-guided technique for
catheterization of the caudal thoracic paravertebral
space in dog cadavers.

• Nerve Repair and Orthodromic and Antidromic Nerve
Grafts: An Experimental Comparative Study in Rabbit.

• Murine SIGNR1 (CD209b) Contributes to the Clearance
of Uropathogenic Escherichia coli DuringUrinary Tract
Infections.

• Notopterol-induced apoptosis and differentiation in hu-
man acute myeloid leukemia HL-60 cells.

3) Clinical research
This searches by testing a specific treatment or procedure,
drug, diagnostic or any technology on patients, focusing not
only on the biological mechanisms (if applicable) but also on
issues of safety, delivery and protocols for implementation.
This is the stage of research where clinical trials tend to
take place. It includes studies to better understand a disease
in humans and relate this knowledge to findings in cell or
animal models, testing and refinement of new technologies
in people, testing of interventions for safety and effectiveness
in those with or without the disease, behavioural and obser-
vational studies, and outcomes and health services research.
The goal of many clinical trials is to obtain data to support
regulatory approval for an intervention. It explores whether
new treatments, medications and diagnostic techniques are
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safe and effective in patients. Physicians administer these to
patients in rigorously controlled clinical trials, so that they
can accurately and precisely monitor patients’ progress and
evaluate the treatment’s efficacy, or measurable benefit.
The following topics should be considered part of clinical
research:

• Clinical trials
• Research regarding patients treatment protocol
• Research implicating patients directly
• Research with patient samples as central feature (genet-

ics of disease, biomarkers, prognostic markers,...)
• Diagnostic of disease
• Classic Epidemiology- cohorts
• Psychiatry (Mental disorders)
• Healthcare standards and guidelines

Some examples of publications in the category:

• Infection with multiple hepatitis C virus genotypes de-
tected using commercial tests should be confirmed using
next generation sequencing.

• Supraclavicular versus infraclavicular approach in in-
serting totally implantable central venous access for
cancer therapy: A comparative retrospective study.

• The effect of apolipoprotein E polymorphism on serum
metabolome - a population-based 10-year follow-up
study.

• Functional variations of the TLR4 gene in association
with chronic obstructive pulmonary disease and pul-
monary tuberculosis.

• Comparing patterns of volatile organic compounds ex-
haled in breath after consumption of two infant formulae
with a different lipid structure: a randomized trial.

4) Public health
This is defined as “the art and science of preventing disease,
prolonging life and promoting health through the organized
efforts of society” rechel2014. Activities to strengthen public
health capacities and service aim to provide conditions under
which people can stay healthy, improve their health and well-
being, or prevent the deterioration of their health. Public
health focuses on the entire spectrum of health and well-
being, not only the eradication of particular diseases. Many
activities are targeted at populations such as health cam-
paigns. Public health services also include the provision of
personal services to individual persons, such as vaccinations,
behavioural counselling, or health advice.
The following topics should be considered part of public
health:

• Cultural/socioeconomic impact on Health
• Health Policy
• Global Health
• Population Health
• Assessment of diseases prevalence in population
• Assessment and discovery of predictive measures
• Health policy e.g. interaction with hospital management

and /or economic systems

• Usage of other non-clinical data
Some examples of publications in the category:

• Post-elimination surveillance in formerly onchocercia-
sis endemic focus in Southern Mexico.

• Association of intestinal colonization of ESBL-
producing Enterobacteriaceae in poultry slaughter-
house workers with occupational exposure-A German
pilot study.

• Use of non-HIV medication among people living with
HIV and receiving antiretroviral treatment in Côte
d’Ivoire, West Africa: A cross-sectional study.

• How did the use of psychotropic drugs change during
the Great Recession in Portugal? A follow-up to the
National Mental Health Survey

• Prevalence and social burden of active chronic low back
pain in the adult Portuguese population: results from a
national survey
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