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ABSTRACT  

To address the problem of business process prediction in smart healthcare involving the fusion of multimodal 

data from interactions among multiple systems, this paper proposes an object-centered explainable prediction 

method (OCPPP). The approach comprises three modules: (1) Utilizing control flow and data flow constraints 

between activities for process modelling, Algorithm 1 constructs a Petri net centered on the object to be 

predicted; (2) Recognizing that business activities share resources during system interactions, individual 

activities are analysed using AI models, with distinct models applied to different modalities of data in activity 

logs (e.g., multi-object detection for image data, time-series forecasting for text data); (3) Employing coloured 

Petri nets and Algorithm 2 for predicting activity durations, integrating outputs from various intelligent 

models to formulate predictions, including those for low-frequency events. The experimental outcomes 

indicate that during both individual component analysis and sequential forecasting phases, a versatile 

selection of AI models enables effective operation. Integrating Petri Nets for system-level predictions 

enhances explainability through six distinct service compositions. Furthermore, the introduction of precursor 

transitions and a waiting threshold facilitates the anticipation of infrequent behaviours, thereby augmenting 

the system's predictive capabilities for a broader spectrum of occurrences. 

INDEX TERMS  Object-Centered, Petri, Process Prediction, Intelligent Healthcare

I. INTRODUCTION 

A. RESEARCH BACKGROUND 

Business processes are regarded as the cornerstone of 

organizational operations, mapping the daily operational 

patterns and serving as a conduit for collaboration within 

departments and across organizational boundaries [1, 2]. At 

the core of this related domain, Business Process Management 

(BPM) has established a mature framework of knowledge, 

playing a pivotal role in enhancing organizational efficiency, 

with its significance further underscored in literature [3, 4]. 

In recent years, data-driven BPM techniques have 

flourished, encompassing process mining [5], model 

rectification [6], optimization [7], log generation [8], and 

process forecasting [9], attracting extensive attention both 

academically and in practical applications. These 

advancements have significantly contributed to the 

enhancement of organizational performance, particularly 

within Predictive Business Process Monitoring (PBPM), 

where predicting upcoming process characteristics has 

emerged at the forefront of research. 

PBPM aims to anticipate the key features of future 

process instances, leading to the development of various 

solutions tailored for specific prediction tasks in recent 

times. These notably include forecasting the subsequent 

event sequences [9-11], remaining processing times [12, 

13], and variables linked to outcomes [14-16]. Among 

these approaches, methods based on deep learning, 

especially Long Short-Term Memory (LSTM) networks 
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[17], have garnered significant attention. While these 

methods boost predictive performance, the opacity inherent 

in deep models raises concerns about model credibility; 

conversely, traditional prediction methods offer better 

interpretability but are less efficient. 

Over the past few decades, rapid advancements in 

machine learning have equipped PBPM with a potent 

toolkit, with literature [18, 19] delving into this 

evolutionary trend. Machine learning technologies have 

permeated a wide array of fields, including natural 

language understanding [20, 21], anomaly detection [22, 

23], image recognition [24], database knowledge discovery 

[25], and time series forecasting [26]. Defining objective 

functions to optimize algorithm performance is crucial, 

enabling quantitative assessments of their efficacy, as 

extensively discussed in [27, 28]. The rapid progression of 

artificial intelligence technology has given rise to diverse 

model architectures, furnishing effective tools for various 

tasks. Nonetheless, the "black box" nature of deep learning 

models has propelled explainability to the forefront of 

current research concerns. 

Processes are seen as instantiated flows composed of 

individually executed events. However, inter-

organizational processes are typically more intricate (as 

depicted in Fig.1), with several process instances executing 

concurrently and potentially interacting. This scenario 

resembles orchestration, where an instance of process P1 

interacts and synchronizes with multiple instances of a 

second process P2, and vice versa. Furthermore, instances 

of P2 may in turn interact with other instances. For example, 

in a hospital, multiple patients may undergo individual 

checkups. To economize, the hospital associates multiple 

patients' tests to a single testing window. Moreover, a 

patient's checkup may necessitate visits to different 

departments and windows. Interactions between patients 

and Windows are managed through instances of different 

processes: an instance of a patient checkup process can be 

linked with multiple instances of Windows checkup 

processes, and the reverse is also true. These interactions 

may involve resource conflicts or sharing, which can 

impact the occurrence of interacting activities. 

In stark contrast to conventional global process 

prediction methodologies, Fig.1 highlights the article's 

focal point on a nuanced analysis of multiple attributes 

associated with individual activities (specifically, t6), along 

with the forecasting of individual time-series data (t6_i+n, 

where n=1,2,3,…). Furthermore, it delves into the intricate 

causal and shared relationships among distinct activities (t3, 

t8, tk), exploring both their sequential and interdependent 

nature. This comprehensive examination culminates in an 

integrated process prediction, providing a sophisticated and 

holistic understanding of the dynamic interplay within the 

system under study. 
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FIGURE 1. Illustration of Resource Conflicts and Supply Issues in Multi-system Interactions. 

B. SOLUTION AND CONTRIBUTIONS 

To tackle the inefficiencies of conventional process 

prediction and the explainability limitations in deep 

learning-based forecasting methods, we propose the 

Object-Centric Predictive Process Prediction (OCPPP) 

method. This approach integrates deep learning for 

individual activity prediction with traditional forecasting at 

the decision-making tier. The methodology's principles are 

elucidated with the assistance of Fig.1. The core idea 

revolves around dynamically assembling relevant activities 

for the current entity into a target business process for 

prediction. Depending on the actual data requirements, 

deep learning techniques such as YOLO[29] and LSTM[30] 

are selectively employed for data extraction and state 

forecasting from individual activity logs. The CPNtools[31] 

software is then used to simulate the predicted process, and 

low-frequency behaviours are forecasted based on triggers 

from preceding non-low-frequency activities. 
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The key contributions of this paper are summarised as 

follows: 

1. Enhancing Activity Log Utilization: By applying AI 

models to predict the status of individual activity logs, we 

improve the efficiency of exploiting log attributes from an 

activity perspective. 

2. Improved Explainability through Process View: 

Combining control flow modelling grounded in Petri Nets 

with the states of individual activities leads to explainable 

predictions, thereby increasing transparency compared to 

opaque deep learning models. 

3. Addressing Low-Frequency Events: Given the 

potential inadequacy of event data for training models 

targeting low-frequency behaviours, our method predicts 

the preceding non-low-frequency activities to support low-

frequency predictions. 

4. Data Dimensionality and Online Prediction: 

Leveraging low-dimensional data for state prediction of 

individual activities minimizes the need to learn implicit 

relations, enabling real-time model updates. Integrating 

this with Petri Net control flow modelling facilitates online 

prediction of business processes centered on objects. 

The subsequent sections are organized as follows: Section 

2 introduces pertinent definitions; Section 3 outlines the steps 

for building process models using CPNs, discusses the 

handling of multimodal data, and explains how AI model 

outputs are leveraged with CPNs for interpretable forecasts. 

Section 4 presents the experimental setup, data, evaluation 

criteria for AI models, and the use of CPNTools for simulating 

medical processes. Lastly, Section 5 summarizes the paper and 

contemplates future directions for research. 

II. PRELIMINARIES 

This section describes the definitions of algorithm-related 

content. This paper uses deep learning algorithms to process 

activity data, predicts the control flow model and activity state 

based on Petri net, and characterizes the real activities in Petri 

net. 

Definition 1[32] A simple (with k colours) colour Petri net 

is a quintuple ( ), ; , ,S T F W M =  

Among them ( ), ;S T F  is a net, 

 : 0,1,2,
k
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k
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Then transition t  has the trigger authority ( )M t   at the 
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FIGURE 2. A simple colour Petri net. 

Fig.2 illustrates a simple coloured Petri net, 
1 , depicted 

graphically, where places and annotations on directed arcs are 

all three-dimensional vectors, indicating that 
1  is a colour 

Petri net incorporating three colours. Let vector Xi[1] =Red, 

Xi[2]=Green, and Xi[3]=Blue. Under the initial marking M0 of 

the net system, place s1 contains 2 tokens of Red, 2 of Green, 

and 2 of Blue. Places s[i] (for i=2, 3, 4, 5, 6) hold no tokens (the 

absence of notation implies a vector [0,0,0]). As inferred from 

the weights on the input and output arcs of transition t1, when 

there are no fewer than 2 tokens of Red, Green, and Blue in 

place s1, transition t1 can be activated. Execution of t1 reduces 

each of the Red, Green, and Blue tokens in s1 by 2, while it 

increments s2 with 1 Red token, 1 Green token, and 2 Blue 

tokens, and s3 with 1 Red token and 1 Green token. 

Definition 2 For a set N of nets   and given 

 ,i j i jN T T      , if nets 
i  and 

j  share a set of 

transitions 
shared i jT T T=  , then these transitions are 

considered shared among the nets. For a shared transition 

i sharedt T , when transition 
it  participates in characterizing 

the Process (process representation) in both nets 
i  and 

j , 

the attribute sets ( )_ i iAttributes t  of 
it  in 

i  and 

( )_ j iAttributes t  of 
it  in j  might not be identical. In this 

case, the transition 
it  is referred to as a resource-sharing 

transition between 
i  and j . 

Definition 3 For a Petri net  , let 
it  and jt  denote the 

postset of transition 
it  and the preset of transition jt , 

respectively. If i j i jt t T t t    ， , the transition 
it  is 

considered a predecessor of transition jt . Let 

( ),Associate i j i jS t t t t=   be the set of places and 

( ),Front Associate i jT S t t=  the set of transitions. When transition 

FrontT  is fired, if it enables the conditions for transition jt  to 

fire, the set 
FrontT  is referred to as the precondition transition 

set of transition jt . 

The following definition is provided to facilitate the 

depiction of complex business processes: A process diagram 

comprises multiple intersecting business streams, where, for 

reasons of system security or privacy protection, these streams 

do not communicate with one another during execution and 

maintain logs separately per stream. As illustrated in Fig.1, the 

network structure features transitions (t8) acting as antecedents 

to transitions (tk), where all places within the marked subset 

must be allocated the required number of tokens for the 

transition ( tk) to fire. In this schema, the shaded portion of p1, 

combined with places s3, s5, and the resource-sharing 

transition t3, forms a subnet 
1  starting from place s1 and 

terminating at place s7. Similarly, the shaded part of p2, when 

joined with places s3, s5, and the same resource-sharing 
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transition t3, constitutes a subnet 
2  commencing at place s8 

and concluding at place s12. 

Definition 4 For a net  , during its operation, whenever a 

transition 
it T  fires, information about the firing of 

it  is 

recorded as an entry ( )iInf t  formatted as <ID, PID, UserID, 

timestamp, Other_Info>. The collection of these entries, 

denoted as ( )_ iL Inf t , constitutes the activity log for 

transition 
it . 

Definition 5 For net  , during its operation, every time a 

transition 
it T  triggers, the firing information of 

it ), 

denoted as ( )iInf t , is documented following the schema 

<CASE_ID, event, timestamp, Other_Info>. Given 

., 1,2,3,...,i sizet T i T = , the ensemble of these ( )iInf t  forms 

the system log of the net  , referred to as ( )_L Inf  .  

Definition 6 For net  , in a particular network execution 

instance, the firing sequence of transition 

., 1,2,3,...,i sizet T i T =  is documented as ( )Inf Trace  = <

startt  ,…, 1i
t −  , it  , 1it +

 ,…,
endt   , where each 

it  denotes a 

transition fired in sequence. The collection of these 

sequences, referred to as ( )_L Inf Trace , composes the 

trace log of the net  . 

Definition 7 For net  , during network execution, the 

firing information of a transition 
it T  is documented as 

<ID, PID, UserID, timestamp, Other_Inf>, where 

Other_Inf encompasses one or more forms of data beyond 

text, such as audio, images, or video. Such a transition 
it  is 

referred to as a multimodal transition. 

Prevalent forms of log data include activity logs and 

system logs, as illustrated in Fig.3, with their attributes and 

dimensions potentially varying due to differences in 

database tables. Within the realm of process mining, the 

commonly utilized type of log is the trace log, typically 

stored in file formats such as CSV or XES. Activity logs 

document the execution information of individual system 

activities, with each activity recorded in corresponding data 

tables. Conversely, system logs encapsulate summary 

information of multiple activity executions throughout the 

entire system's runtime, featuring relatively standardized 

attributes and dimensions. 
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FIGURE 3. The correlation of activity logs, system logs, trace logs, and model predictions.

The transformation from activity logs to system logs can be 

conceptualized as the summarization of activity logs, 

wherein system logs retain associated attributes reflecting 

system behaviours. Meanwhile, converting system logs 

into trace logs necessitates a transformation tailored to the 

structure of the system logs. This conversion poses a 

significant challenge when dealing with system logs that 

lack clear identification of data flow ownership. 

III. Multimodal interpretable prediction methods 

This section primarily introduces how a multimodal 

explainable prediction approach is employed to address 

challenges in a case study of medical business process 

prediction. Specifically, focusing on the object-centric 

principle, it outlines the customization of a process model 

for the medical examination project workflow based on the 

CPN (Colored Petri Net) model, tailored to the object's 
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needs. This approach brings to light issues such as waiting 

times due to shared transition resource constraints and 

variations in execution delays for identical transitions 

under different contexts. To tackle these problems, this 

section proposes a multimodal analysis method. It conducts 

data mining on the activity logs of the business process, 

encompassing both image information extraction and time-

series data prediction. Concurrently, leveraging the CPN 

model, it performs a composite prediction of disordered 

behaviours, aiming to achieve the objectives of forecasting 

the duration of the business process and analyzing the low-

frequency behaviours following multiple preceding 

transitions. This comprehensive strategy enhances the 

explainability and accuracy of predictions in the complex 

medical workflow environment. 

A. CPN MODELLING 

Existing business process prediction methodologies 

predominantly cater to static workflows, whereas 

adjustments to these methods, particularly the conventional 

probabilistic forecasting and deep learning-based 

approaches, become notably cumbersome when processes 

undergo modifications. In the context of healthcare 

processes, variability significantly differs from the 

perspectives of hospitals, physicians, and patients. 

Consequently, practical implementation of process 

prediction methodologies necessitates agile adaptation and 

updating by real-world scenarios, concurrently taking into 

account the implications of workflow dynamics. Moreover, 

distinctive features of individual processes may warrant the 

employment of different predictive techniques and models. 

This section harnesses CPNTools for model simulation, 

adopting an object-centric approach to construct the 

workflow model based on the specified needs of these 

objects. Beyond the diagrammatic representation of the 

process model, fundamental elements are also configured, 

such as in a health checkup scenario where the number of 

examination items is fixed and individuals navigate 

through them. The foundational declarations include: 

The personnel set `colset PEOPLE = with XianwenFang 

| XianjinFang | HuanFang | ChifengShao | LiliWang | 

DuoqinLi | Others timed;` wherein `Others` signifies the 

current queue of attendees, while the rest symbolize the 

subjects of prediction, and `timed` denotes the temporal 

dimension support for this ensemble. 

A queue list for individuals is established as `colset 

PEOPLEList = list PEOPLE;`, functioning as a token cache 

representing the queue. Corresponding instances, `var 

people: PEOPLE; var peopleList: PEOPLEList;`, facilitate 

object instantiation within flow arcs. To emulate the 

duration of process execution, a time set `colset E = unit 

with e timed;` is employed. 

IncomingPeople FormQpeople

PEOPLE

Term
peopleList^^[people]

peopleList
Server

Timer

Complete

People::peopleList

peopleList

1`[]

e e
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1`e@+0

@+10

1`XianwenFang++1`XianjinFang++1`HuanFang++1`ChifengShao++1`LiliWang++1`DuoqinLi

PEOPLEPEOPLEList
 

FIGURE 4. CPN model with queue and resource access restrictions. 

Fig.4 illustrates a queue model where the current state holds 

five tokens in `IncomingPeople`, with only transition 

`FormQ` capable of triggering progression to the next state. 

Place `Term` serves as a queue repository, with both 

`FormQ` and `Server` transitions being triggerable at this 

point; if `Server` is triggered, it consumes one Token from 

`Timer` (recovering after `t` time units) to advance to the 

subsequent state. While `Server` is delayed, additional 

triggering of `FormQ` increments the count of waiting 

tokens in `Term`. 

Regarding arc syntax, `[XianwenFang, 

XianjinFang]^^[HuanFang]` yields `[XianwenFang, 

XianjinFang, HuanFang]`, illustrating list concatenation. 

For the arc from transition `FormQ` to place `Term` 

annotated `peoplelist^^[people]`, it signifies that upon 

`FormQ`’s activation, the current occupants of `Term` are 

concatenated with the outgoing tokens from 

`IncomingPeople` into `Term`. 

The operation `ChifengShao::[DuoqinLi]` results in 

`[ChifengShao, DuoqinLi]`, prepending `ChifengShao` to 

the list. Annotation `people::peoplelist` on the arc from 

place `Term` to transition `Server` implies that `Term` 

merges `people` into `peoplelist`, subsequently feeding the 

first element of `peoplelist` into `Server`. 

Place `Timer` functions as a governor for parallel 

execution instances of `Server`, allowing further triggering 

only if `Timer` holds an available token. It restricts both the 

number of concurrent executions of the transition and the 

execution duration, with the limitation of adapting to the 

input of Tokens. Reflective of real-world scenarios, such as 

manual inspections where worker efficiency varies with 

prolonged working durations, and queue lengths exhibit 

patterned changes over time, these two factors impact the 

total duration of executing medical examination sequences 

differently. The following section elucidates the 

application of deep learning methodologies for data mining 

in activity logs to address this complexity. 
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B. Multimodal analysis 

In certain business processes, multimodal data types like 

text, images, and videos may be incorporated, yet 

conventional process mining techniques often fail to 

leverage this rich multimodal data effectively. Furthermore, 

most artificial intelligence-driven process prediction 

methodologies are primarily geared toward forecasting 

sequential activities alone. The integration of AI models, 

therefore, stands as a prominent research frontier within 

process mining. Grounded in practical necessities and real-

world constraints, this work adopts a fusion of two models 

– yolo_v7 and LSTM – to address these limitations. 

The ensuing subsections delve into the application of 

these models: the utilization of yolo_v7 for object detection 

within image data extracted from activity logs, and the 

deployment of LSTM for time-series prediction based on 

sequential data present in the same activity logs. This dual-

model approach aims to enhance the comprehensiveness 

and accuracy of process predictions by tapping into the 

diverse modalities inherent in modern business process 

data. 

1)  EXTRACTION OF QUEUE DATA 

With the evolution of artificial intelligence (AI) technology, 

it has become feasible to employ AI models to scrutinize 

image data within log records, thereby yielding more 

accurate insights into both activity states and overall 

process conditions. This heightened precision is 

particularly evident when delving deeper into multimodal 

transitions, where the presence of image data within 

activity logs ( )_ iL Inf t  allows for a more meticulous 

depiction of the current status. 

YOLO, short for You Only Look Once, represents a one-

stage object detection model that excels in real-time 

systems due to its suitability for rapid detection tasks. As 

depicted in Fig.5, an image undergoes convolutional 

operations to extract salient features, concurrently 

forecasting bounding boxes and the probabilities of object 

categories encapsulated within these boxes. This approach 

marries feature extraction with prediction in a streamlined 

manner, enhancing the efficiency and responsiveness of 

image-based analyses in dynamic environments. 

1. Resize the image

2. Run the convolutional neural network

3. Apply non-maximum suppression

 

FIGURE 5. Schematic Diagram of YOLO Object Detection. 

The YOLO framework operates as follows: Initially, through a sequence of convolutional operations, the input image is 

divided into a grid, with each cell in the grid responsible for detecting objects whose arithmetic centre falls within its 

boundaries. 

 

FIGURE 6. Principles Underlying YOLO Object Detection. 

For each grid cell, YOLO predicts B bounding boxes along 

with their respective confidence scores, and additionally, C 

class probabilities for classification purposes. Each 

bounding box is represented by (x, y, w, h), signifying the 

centre coordinates and the width and height of the box, 

respectively (where x and y denote offsets from the top-left 

corner of the grid cell, measured in units relative to the cell 

size). The width and height predictions, w and h, are ratios 

relative to the width and height of the entire image. 

Confidence scores encapsulate two dimensions: one 

reflects the probability of an object existing within the box, 

denoted as ( )Pr Object , which equals 1 if the box contains 

an object and 0 otherwise; the other gauges the accuracy of 

the box, quantified by the Intersection over Union (IOU) 

between the predicted and ground truth boxes, calculated as 

( ) ( )truth

pred pred truth pred truthIOU A B A B=    . Hence, the 

confidence score for a bounding box can be defined as 

( ) truth

predPr Object IOU . In total, each box requires 
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predictions for 5 elements (x, y, w, h, c), with the initial 

four defining the box's position and size, and the last 

denoting its confidence. 

Each grid cell also estimates probabilities for C classes, 

signifying the likelihood of the object(s) within the cell’s 

bounding box(es) belonging to each class. Classification is 

only attempted when ( ) 1Pr Object = , so these probabilities 

represent conditional probabilities for each class given 

there is an object, i.e., (class object)iPr ∣ . 

Consequently, the class confidence for each bounding box 

can be computed as: 
truth

pred

truth

pred

( ) (class object

   

)

 

* (object)

   

*

(class )*

i

i

P c Pr Pr IOU

Pr IOU

=

=

∣
 

In summary, each grid cell is tasked with predicting a 

total of (B*5+C) values, where B represents the number of 

bounding boxes per grid cell and C denotes the total 

number of classes. Given 20 classes, S=7, and B=2, the 

ultimate prediction output would constitute a tensor of 

dimensions 7×7×(2×5+20). 

By applying Yolo_v7 to the context of manufacturing 

processes, real-time monitoring of processing queues 

becomes feasible, transforming video image data into 

numerical information for the purposes of prediction, 

optimization, and management. 

2) QUEUE DATA PREDICTION 

With the advancement of artificial intelligence 

technologies, AI models can now analyze sequential data 

within logs to predict future activity and process states. 

This is particularly pertinent in the in-depth analysis of 

resource-sharing transitions 
it , where the activity logs 

( )_ iL Inf t  containing temporal information facilitate 

predictions about the impending states of individual 

transitions 
it  shared across multiple systems. 

Long Short-Term Memory (LSTM), an enhancement 

upon Recurrent Neural Networks (RNNs) [29], is a model 

designed to better apprehend sequential patterns. Illustrated 

in Fig.7(b), LSTM's architecture incorporates mechanisms 

such as state carryover and forget gates, enhancing its 

capacity to capture temporal dynamics and improve 

sequence modelling. In business process forecasting, 

LSTM proves instrumental in predicting sequential data 

related to queue statuses, and resource utilization, among 

others, where Section 1) EXTRACTION OF QUEUE 

DATA facilitates the transformation of image data into 

sequential data for such predictive tasks. 
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FIGURE 7. Network Architecture Diagram for Queue Prediction Model. 

At every time step t, a Recurrent Neural Network (RNN) 

considers both its current state from the previous time step 

and the input at the current time step 𝑡. It aggregates this 

information to produce an output at time t and, concurrently, 

updates its state for the next time step. Initially, the state is 

initialized as a vector of zeros. 
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The function f is responsible for transforming the input 

and the state into the output, typically involving two 

matrices, W and U, and a bias vector b, followed by an 

activation function. It can be formally expressed as follows: 

( ) ( )( ), ,f activation dot input dot state= + +W U b  

In comparison to traditional RNNs, LSTM introduces a 

mechanism that enables the propagation of information 

across multiple time steps. At any given time step, the 

output is influenced by three components: the current input, 

the current state, and the carried-over information from 

prior time steps. This can be depicted as follows: 
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These three values are then combined to update the state. 

_C t ： _ 1 _ * _ _ * _c t i t k t c t f t+ = +  

This paper employs the Min-Max normalization 

technique for preprocessing the input data fed into the 

LSTM model. Continuous attribute values are normalized 

directly, whereas discrete attribute values are first encoded 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3462774

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



 

VOLUME XX, 2017  

numerically to represent different categories before 

undergoing normalization. 

C. EXPLAINABLE PREDICTIONS 

Process prediction, often tailored to static workflows, is 

conventionally categorized into two primary approaches: 1) 

Traditional forecasting methods that estimate the 

probabilities of event occurrences and subsequent 

correlations, offering moderate accuracy levels but with 

higher interpretability. 2) Deep learning-based process 

predictions, which excel in forecasting remaining system 

durations and upcoming activities, yield better predictive 

performance. However, the black-box nature of deep 

learning undermines the interpretability and reliability of 

prediction algorithms. They also demonstrate limited 

adaptability to common modifications such as resource 

constraints or other conditional changes affecting 

individual activities. To enhance both the interpretability 

and effectiveness of prediction methodologies, this work 

introduces an object-centric Petri net modelling approach 

and a multimodal explainable prediction framework. The 

subsequent sections detail the construction of business 

processes and the development of state prediction 

methodologies. 

1) CONSTRUCTING BUSINESS PROCESSES 

During business execution, phenomena such as concept 

drift frequently arise, where the actual execution deviates 

from the predefined process, necessitating subsequent 

adjustments to the process model to align with real-world 

operations. This underscores the need for considering the 

adaptability of prediction models in business process 

forecasting. Real-world scenarios are replete with 

intertwined business processes, each encompassing a 

multitude of intersecting execution instances. Building 

upon this understanding, we proceed to outline an 

intelligent methodology for constructing predictive process 

models based on activity correlations, tailored to the known 

objectives of the entities involved. This approach aims to 

systematically anticipate and accommodate the intricate 

dynamics of interwoven processes underpinning practical 

business demands. 

In Algorithm 1, steps (2-9) traverse the given set of 

business requirements to identify if there exists a network 

where transitions 
it  and 

jt  represent data-constrained 

transitions, marking them accordingly. Steps (10-15) iterate 

through the same requirement set to locate data-constrained 

transitions within networks that include business-related 

transitions. Steps (16-34) meticulously navigate the 

requirement collection: if the current transition lacks 

predecessors, it is appended directly to the network's tail. If 

there is a single predecessor transition present in the 

network, it is appended following its predecessor; 

otherwise, the addition is postponed until a later traversal. 

If the current transition has multiple predecessors and all 

are present in the network, it is attached after the last one; 

if not all predecessors are found, the process is deferred. 

Ultimately, a sequence of networks with predecessor-

marked transitions is obtained, which, when sequentially 

connected, forms the predictive process network. 

Algorithm 1: Creation of Predictive Process Model 

Input： Workflow to be constructed, denoted as  , Set 

of business requirements, T, Existing network set, N,  

Output： Predictive Process Model, represented as  

 . 

01    List[Net] N, List[Transition] T, Process  ; 

02    for i in T: 

03        for j in T: 

04            for k in N 

05                if in N[k] ti.input_flow.data∩
tj.output_flow.data != Null: 

06                    label(ti.pre=tj); 

07            end for 

08        end for 

09    end for 

10    for i in T: 

11        for j in N[i]: 

12            if  ti.input_flow.data∩
N[i][j].output_flow.data != Null: 

13                label(ti.pre=N[i][j]); 

14        end for 

15    end for 

16    for i in T: 

17        if ti.pre== Null: 

18             .append(ti); 

19        else if ti.pre in net: 

20            if ti.pre==1: 

21                j=Net.indexof(ti.pre); 

22                 [j].append(ti); 

23            else if ti.pre>1: 

24                if ti.pre all in net: 

25                    var z=0; 

26                    for k in ti.pre: 

27                        if Net.indexof(ti.pre)>z: 

28                        z=Net.indexof(ti.pre) 

29                    end for 

30                     [z].append(ti); 

31                else put into end to execute; 

32        else if ti.pre not in Net: 

33            put into end to execute; 

34    end for 

35   return  ; 

Fig.8 presents a concrete example. Algorithm 1 

leverages the set of required activities and their 

corresponding process sets to uncover relationships among 

the required activities and data-constrained transitions 

governing activity execution across distinct workflows. By 

exploiting these relationships, an expanded set of 

interconnected activities meeting the business requirements 

is synthesised to yield the desired predictive process. 
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FIGURE 8. Creating a Predictive Process Model for Upcoming Tasks Based on Specified Business Requirements and Existing Network Sets. 

2) STATE PREDICTION APPROACH 

When predicting the state of business processes, time is 

commonly used as the metric, driving the evolution of the 

system through temporal changes. Within process nets, 

sequential, selection (branching), and concurrent structures 

are prevalent. For sequential blocks, the method involves 

updating the time upon completion of each activity and then 

forecasting the state of the subsequent activity. In selection 

blocks, the time is updated post-execution of a chosen path, 

followed by a renewed prediction for the next activity's 

state. Concurrent structures necessitate separate process 

predictions for each path, with the time being updated after 

the longest path concludes, leading to a fresh prediction for 

the upcoming activity. 

In the absence of sequential chaining behaviour, the 

duration of various combinations can be influenced by the 

evolving activity states over time. Algorithm 2 outlines the 

state prediction approach tailored to structures lacking 

sequential chaining behaviour, acknowledging the impact 

of varying time-dependent activity combinations on 

structural persistence. 

In Algorithm 2, steps (01-08) traverse all possible 

sequences of activity occurrences, calculating the total 

duration for each sequence. Step (02) initializes the 

reference time for the prediction algorithm. Steps (03-06) 

iterate through the current sequence of events, computing 

the cumulative duration for each activity; within this, step 

(04) updates the reference time for the prediction algorithm, 

while step (05) refreshes the total duration for the ongoing 

sequence. The variable TIME_total retains the aggregate 

durations corresponding to all possible sequences of 

activity execution. 

Algorithm 2 adopts a control flow perspective, 

systematically combining sequences of business activities 

and integrating deep learning prediction techniques to 

forecast the remaining time of business processes. By 

examining different sequences of activity execution from a 

control flow standpoint and leveraging advanced machine 

learning, it offers a comprehensive approach to estimating 

process timelines. 

Algorithm 2: Remaining Time Prediction for Combined 

Processes 

Input: Permutations and combinations of the set of 

transitions to be predicted, A_T, Initial timestamp, 

time_init, Transition state prediction function predict(), 

Accumulated duration set, TIME_total. 

Output: TIME_total; 

01    for i in A_T: 

02        time=time_init; 

03        for j in A_T[i]: 

04            time += predict(A_T[i][j]); 

05            TIME_total[i]= TIME_total[i]+ 

predict(A_T[i][j]); 

06        end for 

07    end for 

08    return TIME_total. 
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For infrequent transitions 
jt  with precondition transition 

sets 
FrontT , an analysis of the associated data is conducted: 

Infrequent transitions have sparse and less favourable log 

data for prediction. From a control flow perspective, 

however, predicting the triggering of transitions 
jt  within 

the precondition set 
FrontT  can offer substantial reference 

for anticipating the occurrence of infrequent transition. 

Algorithm 3 initiates from a control flow viewpoint, 

integrating the state prediction of precondition transition 

sets 
FrontT  to forecast the emergence of infrequent 

transitions 
jt . This approach capitalizes on understanding 

the dynamics of preceding transitions to inform predictions 

about those that occur less frequently, thereby enhancing 

the overall predictive power of the model. 

Algorithm 3: Method for Antecedent Behavior 

Prediction of Low-Frequency Events 

Input: Infrequent transition(s), denoted as 
jt , Set of 

preceding transitions, represented as
FrontT , Set of 

timepoints for triggering low-frequency events, Time_L, 

Set of non-infrequent behaviour thresholds, Threshold, 

Transition state prediction function, predict(), Set of 

timeslots where predictions for non-infrequent 

behaviours meet the threshold, Time_H_List, Prediction 

time range, Time_predict, Notably, Time_H_List.size=

FrontT .size. 

Output: Time_L 

01    for i in 
FrontT : 

02        Time_H_List=0; 

03        for j in Time_predict: 

04            if predict(j) > Threshold[i], 

Time_H_List[i].add(j); 

05        end for 

06    end for 

07    Time_L= Time_H_List[0]; 

08    for i in Time_H_List: 

09        if Time_H_List[i]=null, return Time_L=null; 

10        else Time_L=Time_L Time_H_List[i]; 

11    end for 

12    return Time_L. 

In Algorithm 3, steps (01-06) traverse the set of preceding 

transitions for infrequent transitions, calculating time 

intervals where the prediction of non-infrequent behaviours 

satisfies a predetermined threshold (Threshold). Step (02) 

initializes the time when the set of preceding transitions 

meets the threshold. Step (03) forecasts the upcoming 

occurrences of these preceding transitions for a defined 

period. Step (04) adds times meeting the threshold to the 

set of predicted satisfaction times for non-infrequent 

behaviours. Steps (07-11) then iterate through the set of 

times where predictions for non-infrequent behaviours 

satisfy the Threshold, identifying the intersection of all 

these time intervals. If non-empty, this intersection 

represents the potential timing for the infrequent behaviour 

to occur. Step (07) initializes the time for triggering the 

infrequent behaviour. Step (08) traverses the set of times 

where non-infrequent behaviours meet the threshold. If any 

prediction set within (09) is empty, the infrequent 

behaviour will not be triggered. Conversely, if all 

prediction sets in (10) contain values (are non-empty), their 

intersection is taken, indicating that all preceding 

transitions have met the threshold and thus triggering the 

infrequent behaviour. The set Time_L retains the potential 

timestamps for the infrequent transition's initiation. 

IV. EVALUATION 

This study conducts a series of experiments on real-world 

system logs to validate the feasibility of the proposed object-

centric Petri net modelling and multimodal explainable 

prediction methodologies. This section commences with an 

introduction to the activity logs utilized, experimental setup, 

and evaluation metrics employed for assessing the proposed 

methods. Experiments proceed along three dimensions: 

queue length detection, queue size prediction, explainability, 

and rare event forecasting. The influence of varying time 

periods and different activity execution sequences on 

prediction tasks is analyzed, with CPNtools employed to 

simulate prediction tasks, thereby validating the 

explainability of the proposed approach. 

The methods outlined herein were implemented using the 

PyTorch library in Python 3.8. All experiments were 

conducted on a Windows 11 system equipped with an Intel® 

Core™ i7-12700 CPU, GeForce RTX 3090 GPU, and 64 GB 

of RAM. The experimental dataset comprised three 

components: (1) the COCO2017 dataset for validating the 

YOLO model's performance; (2) selected surveillance 

images from the First Affiliated Hospital of the University of 

Science and Technology of China's West Campus, used for 

training and validating the YOLO model's performance in 

identifying queue sizes; and (3) registration data from three 

departments spanning 16 weeks, Monday through Friday, 

from 8:00 to 16:00, with data sampled every 5 minutes, to 

train and validate the time-series prediction models for 

forecasting registration trends in each department. 

Considering practical needs and real-world constraints, this 

work further trains the YOLO_v7 pre-trained model on 

hospital data for queue length detection and employs LSTM 

for time-series data handling. With advancements in deep 

learning and consideration of real-life scenarios, State-of-

the-Art (SOTA) models can be updated accordingly. The 

configuration of experimental parameters is detailed in Table  

I. 

D. QUEUE LENGTH DETECTION 

The performance of trained deep learning models was 

assessed using multi-class metrics, with specific evaluation 

criteria including: 
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TABLE I 

CONFIGURATION OF MODEL PARAMETERS 

YOLO： 

('--epochs', type=int, default=300) # Number of training epochs 

('--lr0', type=float, default=(1, 1e-5, 1e-1), # Initial learning rate (SGD=1E-2, Adam=1E-3) 

('--lrf', type=float, default=(1, 0.01, 1.0), # Final OneCycleLR learning rate (lr0 * lrf) 

LSTM: 

('--epochs', default=100, type=int) # Number of training iterations 

('--layers', default=2, type=int) # Number of LSTM layers 

('--input_size', default=2, type=int) # Dimensionality of input features 

('--hidden_size', default=32, type=int) # Dimensionality of the hidden layer 

('--lr', default=0.001, type=float) # Learning rate 

('--sequence_length', default=6, type=int) # Sequence length, typically uses the past half-hour's data to predict the queue 

size for the next half-hour 

 

 

FIGURE 9. Evaluation Metrics Curves for Queue Length Detection Model Based on YOLO_v7: PR, F1, RC, PC. 

In Fig.9. The experimental results demonstrate the robust 

performance of the YOLO model in object detection tasks. 

Specifically, the model achieved an impressive mean 

Average Precision (mAP) of 0.87 when evaluated with an 
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Intersection over Union (IoU) threshold of 0.5 across all 

categories, indicating a high level of detection accuracy. 

Furthermore, the F1-score versus confidence relationship 

revealed an optimal balance between precision and recall, 

with the F1-score peaking at 0.73 at a confidence threshold 

of 0.357, demonstrating the model's capability to detect 

target objects accurately while minimizing false positives 

and negatives. The recall-confidence curve showed a gradual 

decrease in recall as the confidence threshold increased, with 

maximum recall of 0.94 at zero confidence, highlighting the 

model's tendency to retain more predictions at lower 

thresholds, albeit with an increased risk of false positives. 

Conversely, the precision-confidence curve indicated a 

steady rise in precision with increasing confidence, reaching 

a perfect score of 1 at a threshold of 0.955, where all 

predicted targets were correctly identified without any false 

positives. However, such a high confidence threshold in 

practice may lead to a significant drop in recall, potentially 

missing many actual targets. In summary, the YOLO model 

displays exceptional detection capabilities, with fine-tuning 

of confidence thresholds offering opportunities to balance 

precision and recall for specific applications. 

The object detection model, trained on both the 

COCO2017 dataset and the hospital image dataset, 

effectively identifies and categorizes humans, thereby 

counting the number of individuals and determining queue 

lengths. The recognition efficacy is visually demonstrated in 

Fig.10. 

 

 
FIGURE 10. Hospital Queue Length Acquisition. 

A. Queue Size Prediction 

Experiments were conducted utilizing 16 weeks of 

registration data from three departments, encompassing two 

dimensions: the number of patients waiting for registration 

and the current time (Monday through Friday, 8:00 to 16:00, 

with data sampled every 5 minutes). The dataset was 

partitioned into training and testing subsets according to the 

following ratio: 

trainx, trainy = X[:int(0.8 * total_len)], Y[:int(0.8 * 

total_len)] 

testx, testy = X[int(0.8 * total_len):], Y[int(0.8 * total_len):] 

This division ensures that approximately 80% of the data 

is allocated for training, with the remainder used for testing 

the model's predictive capabilities. 

As presented in Table Ⅱ, the evaluation metrics of LSTM 

models trained on data from three distinct departments reveal 

that Model 3 exhibits exceptional performance across 

multiple crucial indicators. Specifically, Model 3 boasts a 

minimal Mean Squared Error (MSE) of 0.0023641 and a low 

Root Mean Squared Error (RMSE) of 0.0486221, indicating 

negligible deviations between its predictions and actual 
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values, thereby demonstrating a high level of predictive 

accuracy. Furthermore, the substantial reduction in the Mean 

Absolute Error (MAE) of Model 3, which stands at 

0.0360433, underscores the high stability and reliability of 

its predictive outcomes. Notably, the R² score of Model 3 

reaches an impressive 0.9536967, nearly approaching the 

ideal value of 1, which robustly validates its formidable 

capacity in explaining data variability and accurately 

capturing as well as predicting key patterns and trends within 

the data. 

In contrast, while Models 1 and 2 do not match the 

performance of Model 3, they nonetheless demonstrate 

certain predictive capabilities. Model 1 outperforms Model 

2 in terms of MSE, RMSE, and MAE, indicating relatively 

superior predictive precision and stability. Conversely, 

Model 2 exhibits weaker performance across all evaluation 

metrics, particularly in the R² score, which is significantly 

lower than the other two models. This observation 

underscores the importance of potentially focusing on 

enhancing the predictive power and data fitting capabilities 

of Model 2 in future model optimization efforts. 

Three queue size prediction models were separately 

trained using three datasets, each corresponding to a different 

queue. The results of these predictions, juxtaposed against 

the actual data, are depicted in Fig.11. These predictive 

models effectively mirror the fluctuations in queue sizes, 

thereby reflecting the waiting situations for diagnostic 

activities in each department (in this context, all departments 

are assumed to use machinery for inspections, with a default 

completion time of 3 minutes per inspection). 

 

TABLE Ⅱ 

 EVALUATION METRICS FOR LSTM MODELS 

Department Mean Squared Error Root Mean Squared Error Mean Absolute Error R-squared Score  

 1 0.0086111 0.0927961  0.0743720 0.8279177 

 2 0.0097239 0.0986100 0.0789896 0.7736935 

 3 0.0023641 0.0486221 0.0360433 0.9536967 

 

 

 

FIGURE 11. Queue Length Prediction Based on LSTM. 

B. Explainable Predictions and Rare Event Forecasting 

1) EXPLAINABLE PREDICTION 

Explainability [33] refers to the extent to which humans can 

comprehend the reasons behind decisions made. Most 

existing business process predictions based on deep learning 

primarily showcase outcomes without elucidating the 

decision-making process. To address this, CPNTools is 

employed here to simulate health checkup activities, with the 

process diagram illustrated in Fig.12. This process comprises 

three inspection stages—server, server2, and server3—

arranged in an unordered chain structure. A Timer is utilized 

to limit the number of server instance executions, with “@+3” 

in the top-right corner of the server transition indicating a 3-

minute duration for its execution. By harnessing process 

predictions to determine the number of individuals in queues 

during various time periods and simulating these with Others 
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elements, a higher level of explainability is achieved 

compared to black-box prediction approaches. 
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FIGURE 12. Simulation of Health Checkup Process Based on CPNtool. 

For the three non-interfering inspections, there exist six 

distinct sequences. Regarding subjects arriving at the 

hospital at different times and undergoing inspections in 

varying orders, Fig.13 illustrates the total duration for each 

combination of tests. 

The optimal inspection sequence is not consistent for 

subjects arriving at differing times. For instance, if one 

arrives at 8:30, the fastest sequence is server3, server2, 

server1. Conversely, at 9:00, both sequences—server2, 

server3, server1 and server3, server2, server1—yield 

equivalent durations. Arriving at 9:30, the most efficient 

sequence becomes server2, server3, server1. 

2) RARE EVENT FORECASTING 

During the health checkup process, when a participant 

abandons a current examination due to an excessively long 

queue, this behaviour is classified as a low-frequency event. 

For the three examinations in question, the precondition 

transitions for such low-frequency events can be established 

as follows: the waiting counts at server, server2, and server3 

exceed 90% of their respective daily maximums. In other 

words, upon arrival, if the subject finds the queues for all 

three checks surpassing expectations, it triggers the low-

frequency behaviour, leading to the abandonment of the 

health check. 

 

FIGURE 13. Duration Performance of Six Service Sequence Combinations. 

As illustrated in Fig.14, the maximum waiting times for 

server, server2, and server3 on that day were 118.0224 

minutes, 71.7515 minutes, and 114.4294 minutes, 

respectively. Consequently, the 90% thresholds were set at 

106.2202 minutes, 64.5764 minutes, and 102.9865 minutes, 

respectively. Based on LSTM prediction outcomes, the 

timestamps when preceding transitions meet the 90% 

threshold are visualized in Fig.11. 

According to Algorithm 3, it is revealed that at 9:00, 9:20, 

9:30, 9:40, and within the interval of 9:50 to 10:00, all 

precondition transitions satisfied the criterion of exceeding 

90% of the day's maximum waiting duration, thereby 

triggering the low-frequency behaviour of abandoning the 

health check. 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3462774

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



 

VOLUME XX, 2017  

 

FIGURE 14. Timestamps When All Precondition Transitions Are 

Triggered. 

V. CONCLUSION 

The proposed object-centric business process forecasting 

methodology is a groundbreaking innovation, rooted in its 

ability to harness the power of deep learning for extracting 

critical insights from a blend of graphical and sequential data 

in activity logs. The AI model, designed with versatility in 

mind, can seamlessly adapt to a myriad of business contexts, 

ensuring its applicability across diverse domains. 

Moving beyond conventional methods, the approach 

innovatively employs Petri net control flow modeling to 

dynamically construct predictive process flows based on the 

specific requirements of objects. This dynamic assembly not 

only streamlines business operations but also enables real-

time responsiveness to changing conditions, thereby 

enhancing overall process efficiency. 

The crux of the method lies in its sophisticated treatment 

of transition triggers. By leveraging the operational status of 

the Petri net and deep learning models, it forecasts activity 

states and the net's status, fostering a comprehensive 

understanding of multi-instance, multi-system dynamics. 

The shared transition prediction mechanism enhances the 

consideration of triggers across various instances, while the 

prediction of precondition transition sets bolsters the 

prediction of infrequent transitions. This addresses the 

challenge of forecasting low-frequency behaviors, even 

when data is scarce, thus improving the accuracy of process 

predictions. 

Future research directions hold immense potential. One 

such avenue involves the exploration of temporal dynamics, 

delving into how the efficiency of transition execution 

evolves over time. This could provide deeper insights into 

process performance trends and enable more proactive 

management strategies. Another intriguing prospect is the 

utilization of alternative deep learning architectures in log 

data mining, which could potentially unlock new levels of 

predictive power and uncover hidden patterns. 

In essence, this framework ushers in a new era of business 

process forecasting, characterized by enhanced nuance and 

adaptability. It paves the way for more effective decision-

making in intricate business landscapes, where real-time 

understanding and anticipation of process dynamics can 

significantly impact operational success. The implications of 

this research extend beyond the realm of process forecasting, 

offering potential transformative impacts on business 

strategy, operations, and decision support systems. As such, 

it holds great promise for shaping the future of process 

management in the digital age. 

REFERENCES 
[1] GRISOLD T, GROSS S, STELZL K, et al. The five diamond method 

for explorative business process management[J]. Business & 

Information Systems Engineering, 2022, 64(2): 149-166. 

[2] MALINOVA M, GROSS S, MENDLING J. A study into the 
contingencies of process improvement methods[J]. Information 

Systems, 2022, 104: 101880. 

[3] VAN DER AALST W M P. Business process management: a 

comprehensive survey. ISRN Softw Eng 2013: 1–37[Z]. 2013. 

[4] BEVERUNGEN D, BUIJS J C, BECKER J, et al. Seven paradoxes of 

business process management in a hyper-connected world[J]. 
Business & Information Systems Engineering, 2021, 63: 145-156. 

[5] KERMANI MA, SEDDIGHI HR, MAGHSOUDI M. Revolutionizing 
Process Mining: A Novel Architecture for ChatGPT Integration and 

Enhanced User Experience through Optimized Prompt Engineering. 

arXiv preprint arXiv:2405.10689. 2024 May 17. 
[6] ZHANG L, FANG X, SHAO C, et al. Alternative Model Repair Based 

on the Predictable Fitness[J]. Journal of Computer Research and 

Development, 2022, 59(11): 2618-2634. (in Chinese) 
[7] FANG X, ZHAO F, FANG H, et al. The Fusion Analysis Method 

about the Change Region of the Business Process Model Based on 

Behavior Inclusion in Petri Net[J]. Chinese Journal of Computers, 
2018, 41(3): 695-708. (in Chinese) 

[8] SHAO C, FANG X, WANG W. Generation of controlled logs based 

on extended Petri Net[J]. Computer Engineering and Design, 2022, 
43(3): 876-885. (in Chinese) 

[9] TAX N, VERENICH I, LA ROSA M, et al. Predictive Business 

Process Monitoring with LSTM Neural Networks[M]DUBOIS E, 
POHL K. Advanced Information Systems Engineering: Vol. 10253. 

Cham: Springer International Publishing, 2017: 477-492. 

[10] MEHDIYEV N, EVERMANN J, FETTKE P. A Novel Business 
Process Prediction Model Using a Deep Learning Method[J]. Business 

& Information Systems Engineering, 2020, 62(2): 143-157. 

[11] PASQUADIBISCEGLIE V, APPICE A, CASTELLANO G, et al. 
Using Convolutional Neural Networks for Predictive Process 

Analytics[C]2019 International Conference on Process Mining 

(ICPM). Aachen, Germany: IEEE, 2019: 129-136. 
[12] WEYTJENS H, DE WEERDT J. Learning Uncertainty with Artificial 

Neural Networks for Improved Remaining Time Prediction of 

Business Processes[M]. arXiv, 2021. 
[13] CAMARGO M, DUMAS M, GONZÁLEZ-ROJAS O. Learning 

Accurate LSTM Models of Business Processes[C]//HILDEBRANDT 

T, VAN DONGEN B F, RÖGLINGER M, MENDLING J. Business 
Process Management. Cham: Springer International Publishing, 2019: 

286-302. 

[14] PASQUADIBISCEGLIE V, APPICE A, CASTELLANO G, et al. 

ORANGE: Outcome-Oriented Predictive Process Monitoring Based 

on Image Encoding and CNNs[J]. IEEE Access, 2020, 8: 184073-

184086. 
[15] TEINEMAA I, DUMAS M, ROSA M L, et al. Outcome-Oriented 

Predictive Process Monitoring: Review and Benchmark[J]. ACM 

Transactions on Knowledge Discovery from Data, 2019, 13(2): 1-57. 
[16] FOLINO F, FOLINO G, GUARASCIO M, et al. Learning Effective 

Neural Nets for Outcome Prediction from Partially Labelled Log 

Data[C]//2019 IEEE 31st International Conference on Tools with 
Artificial Intelligence (ICTAI). Portland, OR, USA: IEEE, 2019: 

1396-1400. 

[17] VAN HOUDT G, MOSQUERA C, NÁPOLES G. A review on the 
long short-term memory model[J]. Artificial Intelligence Review, 

2020, 53(8): 5929-5955. 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3462774

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



 

VOLUME XX, 2017  

[18] JORDAN M I, MITCHELL T M. Machine learning: Trends, 

perspectives, and prospects[J]. Science, 2015, 349(6245): 255-260. 

[19] MITCHELL T, BUCHANAN B, DEJONG G, et al. Machine 
Learning[J]. Annual Review of Computer Science, 1990, 4(1): 417-

433. 

[20] CHOWDHARY K, CHOWDHARY K R. Natural language 
processing[J]. Fundamentals of artificial intelligence, 2020: 603-649. 

[21] OTTER D W, MEDINA J R, KALITA J K. A survey of the usages of 

deep learning for natural language processing[J]. IEEE transactions on 
neural networks and learning systems, 2020, 32(2): 604-624. 

[22] SHAUKAT K, LUO S, VARADHARAJAN V, et al. A survey on 

machine learning techniques for cyber security in the last decade[J]. 
IEEE Access, 2020, 8: 222310-222354. 

[23] CHANDOLA V, BANERJEE A, KUMAR V. Anomaly detection: A 

survey[J]. ACM computing surveys (CSUR), 2009, 41(3): 1-58. 
[24] LU D, WENG Q. A survey of image classification methods and 

techniques for improving classification performance[J]. International 

journal of Remote sensing, 2007, 28(5): 823-870. 
[25] FRAWLEY W J, PIATETSKY-SHAPIRO G, MATHEUS C J. 

Knowledge discovery in databases: An overview[J]. AI magazine, 

1992, 13(3): 57-57. 
[26] BIGGIO B, ROLI F. Wild Patterns: Ten Years After the Rise of 

Adversarial Machine Learning[J]. Pattern Recognition, 2018, 84: 317-

331. 

[27] MITCHELL T M. Does Machine Learning Really Work? [J]. AI 

Magazine, 1997, 18(3): 11-11. 

[28] NEUMANN J von, MORGENSTERN O. Theory of Games and 
Economic Behavior: 60th Anniversary Commemorative 

Edition[M]Theory of Games and Economic Behavior. Princeton 

University Press, 2007. 
[29] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: Trainable 

bag-of-freebies sets new state-of-the-art for real-time object 

detectors[C]. Proceedings of the IEEE/CVF Conference on Computer 
Vision and Pattern Recognition. 2023: 7464-7475. 

[30] YU Y, SI X, HU C, et al. A Review of Recurrent Neural Networks: 

LSTM Cells and Network Architectures[J]. Neural Computation, 2019, 
31(7): 1235-1270. 

[31] JENSEN K, KRISTENSEN L M, WELLS L. Coloured Petri Nets and 

CPN Tools for modelling and validation of concurrent systems[J]. 
International Journal on Software Tools for Technology Transfer, 

2007, 9(3): 213-254. 

[32] WU Z. Introduction to Petri Nets[M]. Beijing: Mechanical Industry 
Press, 2006. (in Chinese) 

[33] MILLER T. Explanation in artificial intelligence: Insights from the 

social sciences[J]. Artificial Intelligence, 2019, 267: 1-38. 
 

 
SHAO CHIFENG received the B.S. and M.S. 

degrees from the Anhui University of Science and 
Technology, China, in 2016 and 2021, respectively. 

He is currently pursuing a PhD degree in 

information security engineering at the Anhui 
University of Science and Technology. 

He is a Teaching Assistant at the Computer 

Department, College of Information and Network 
Engineering, Anhui Science and Technology 

University, China. His research interests include 

Petri nets, process mining and AI Security. 
 

WANG QIANQIAN received an M.A. degree 

from the Anhui University of Science and 

Technology, China, in 2020. 
She is currently a Lecturer at the Department of 

Mathematics, Anhui Science and Technology 

University, China. Her research interest is Petri net 
theory and applications. 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3462774

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/


