

VOLUME XX, 2017

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2024.Doi Number

Object-Centered Petri Net Process Prediction:
A Case Study of Multi-System Intelligent
Healthcare

SHAO Chifeng1,2, WANG Qianqian2
1School of Mathematics and Big Data, Anhui University of Science and Technology, Huainan 232001, China
2College of Information & Network Engineering, Anhui Science and Technology University, Fengyang 233100, China

Corresponding author: SHAO Chifeng (e-mail: 2022100081@aust.edu.cn).

This work was supported by the National Natural Science Foundation, China (No. 61572035, 61402011), the Key Project of Natural Science Research of

Anhui Provincial Department of Education (2022AH051638), the Scientific Research Project of Anhui Science and Technology University (2021zryb31), the

Talent Introduction Project of Anhui Science and Technology University (XWYJ202107).

ABSTRACT

To address the problem of business process prediction in smart healthcare involving the fusion of multimodal

data from interactions among multiple systems, this paper proposes an object-centered explainable prediction

method (OCPPP). The approach comprises three modules: (1) Utilizing control flow and data flow constraints

between activities for process modelling, Algorithm 1 constructs a Petri net centered on the object to be

predicted; (2) Recognizing that business activities share resources during system interactions, individual

activities are analysed using AI models, with distinct models applied to different modalities of data in activity

logs (e.g., multi-object detection for image data, time-series forecasting for text data); (3) Employing coloured

Petri nets and Algorithm 2 for predicting activity durations, integrating outputs from various intelligent

models to formulate predictions, including those for low-frequency events. The experimental outcomes

indicate that during both individual component analysis and sequential forecasting phases, a versatile

selection of AI models enables effective operation. Integrating Petri Nets for system-level predictions

enhances explainability through six distinct service compositions. Furthermore, the introduction of precursor

transitions and a waiting threshold facilitates the anticipation of infrequent behaviours, thereby augmenting

the system's predictive capabilities for a broader spectrum of occurrences.

INDEX TERMS Object-Centered, Petri, Process Prediction, Intelligent Healthcare

I. INTRODUCTION

A. RESEARCH BACKGROUND

Business processes are regarded as the cornerstone of

organizational operations, mapping the daily operational

patterns and serving as a conduit for collaboration within

departments and across organizational boundaries [1, 2]. At

the core of this related domain, Business Process Management

(BPM) has established a mature framework of knowledge,

playing a pivotal role in enhancing organizational efficiency,

with its significance further underscored in literature [3, 4].

In recent years, data-driven BPM techniques have

flourished, encompassing process mining [5], model

rectification [6], optimization [7], log generation [8], and

process forecasting [9], attracting extensive attention both

academically and in practical applications. These

advancements have significantly contributed to the

enhancement of organizational performance, particularly

within Predictive Business Process Monitoring (PBPM),

where predicting upcoming process characteristics has

emerged at the forefront of research.

PBPM aims to anticipate the key features of future

process instances, leading to the development of various

solutions tailored for specific prediction tasks in recent

times. These notably include forecasting the subsequent

event sequences [9-11], remaining processing times [12,

13], and variables linked to outcomes [14-16]. Among

these approaches, methods based on deep learning,

especially Long Short-Term Memory (LSTM) networks

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3462774

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017

[17], have garnered significant attention. While these

methods boost predictive performance, the opacity inherent

in deep models raises concerns about model credibility;

conversely, traditional prediction methods offer better

interpretability but are less efficient.

Over the past few decades, rapid advancements in

machine learning have equipped PBPM with a potent

toolkit, with literature [18, 19] delving into this

evolutionary trend. Machine learning technologies have

permeated a wide array of fields, including natural

language understanding [20, 21], anomaly detection [22,

23], image recognition [24], database knowledge discovery

[25], and time series forecasting [26]. Defining objective

functions to optimize algorithm performance is crucial,

enabling quantitative assessments of their efficacy, as

extensively discussed in [27, 28]. The rapid progression of

artificial intelligence technology has given rise to diverse

model architectures, furnishing effective tools for various

tasks. Nonetheless, the "black box" nature of deep learning

models has propelled explainability to the forefront of

current research concerns.

Processes are seen as instantiated flows composed of

individually executed events. However, inter-

organizational processes are typically more intricate (as

depicted in Fig.1), with several process instances executing

concurrently and potentially interacting. This scenario

resembles orchestration, where an instance of process P1

interacts and synchronizes with multiple instances of a

second process P2, and vice versa. Furthermore, instances

of P2 may in turn interact with other instances. For example,

in a hospital, multiple patients may undergo individual

checkups. To economize, the hospital associates multiple

patients' tests to a single testing window. Moreover, a

patient's checkup may necessitate visits to different

departments and windows. Interactions between patients

and Windows are managed through instances of different

processes: an instance of a patient checkup process can be

linked with multiple instances of Windows checkup

processes, and the reverse is also true. These interactions

may involve resource conflicts or sharing, which can

impact the occurrence of interacting activities.

In stark contrast to conventional global process

prediction methodologies, Fig.1 highlights the article's

focal point on a nuanced analysis of multiple attributes

associated with individual activities (specifically, t6), along

with the forecasting of individual time-series data (t6_i+n,

where n=1,2,3,…). Furthermore, it delves into the intricate

causal and shared relationships among distinct activities (t3,

t8, tk), exploring both their sequential and interdependent

nature. This comprehensive examination culminates in an

integrated process prediction, providing a sophisticated and

holistic understanding of the dynamic interplay within the

system under study.

si

s1 t1 s2 t2

s3 t3

s4 t4 s6

s5

t5 s7

s8 t6 s9 t7

s10 t8 s11

t9 s12

tk sj

t6_i+1

t6_i+2

t6_n-2

t6_n-1

t6_n

...

t3_i+1

t3_i+2

t3_n-2

t3_n-1

t3_n

...

p2

p1

Other

ttime_Process

1).Monomer

 treatment

Multimodal explainable prediction

3).Logical

decision-making

Shared

Transition

Prepositiona

Transition

low-frequency

Transition

FIGURE 1. Illustration of Resource Conflicts and Supply Issues in Multi-system Interactions.

B. SOLUTION AND CONTRIBUTIONS

To tackle the inefficiencies of conventional process

prediction and the explainability limitations in deep

learning-based forecasting methods, we propose the

Object-Centric Predictive Process Prediction (OCPPP)

method. This approach integrates deep learning for

individual activity prediction with traditional forecasting at

the decision-making tier. The methodology's principles are

elucidated with the assistance of Fig.1. The core idea

revolves around dynamically assembling relevant activities

for the current entity into a target business process for

prediction. Depending on the actual data requirements,

deep learning techniques such as YOLO[29] and LSTM[30]

are selectively employed for data extraction and state

forecasting from individual activity logs. The CPNtools[31]

software is then used to simulate the predicted process, and

low-frequency behaviours are forecasted based on triggers

from preceding non-low-frequency activities.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3462774

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017

The key contributions of this paper are summarised as

follows:

1. Enhancing Activity Log Utilization: By applying AI

models to predict the status of individual activity logs, we

improve the efficiency of exploiting log attributes from an

activity perspective.

2. Improved Explainability through Process View:

Combining control flow modelling grounded in Petri Nets

with the states of individual activities leads to explainable

predictions, thereby increasing transparency compared to

opaque deep learning models.

3. Addressing Low-Frequency Events: Given the

potential inadequacy of event data for training models

targeting low-frequency behaviours, our method predicts

the preceding non-low-frequency activities to support low-

frequency predictions.

4. Data Dimensionality and Online Prediction:

Leveraging low-dimensional data for state prediction of

individual activities minimizes the need to learn implicit

relations, enabling real-time model updates. Integrating

this with Petri Net control flow modelling facilitates online

prediction of business processes centered on objects.

The subsequent sections are organized as follows: Section

2 introduces pertinent definitions; Section 3 outlines the steps

for building process models using CPNs, discusses the

handling of multimodal data, and explains how AI model

outputs are leveraged with CPNs for interpretable forecasts.

Section 4 presents the experimental setup, data, evaluation

criteria for AI models, and the use of CPNTools for simulating

medical processes. Lastly, Section 5 summarizes the paper and

contemplates future directions for research.

II. PRELIMINARIES

This section describes the definitions of algorithm-related

content. This paper uses deep learning algorithms to process

activity data, predicts the control flow model and activity state

based on Petri net, and characterizes the real activities in Petri

net.

Definition 1[32] A simple (with k colours) colour Petri net

is a quintuple (), ; , ,S T F W M =

Among them (), ;S T F is a net,

 : 0,1,2,
k

W F → 

 : 0,1,2,
k

M S → 

Yes t T , if

() (,)s t M s W s t → 

Then transition t has the trigger authority ()M t  at the

marker M ; under the marker M , transition t is triggered,

resulting in a new marker ()M M t M  .

() (,),

() (,),
()

() (,) (,),

(),

M s W s t if s t t

M s W t s if s t t
M s

M s W s t W t s if s t t

M s other

 −  −


+  −
 = 

− +  −



s1 t1[2,2,2]

s2

t2

t3

[1,1,2]

[1,1,1]

[0,0,1]

s3 t4

s4

s5

t5

[1,1,0] [1,1,1]

[1,1,1]

[1,1,1]

[2,2,2]

[1,1,1]
s6[1,1,1]

[2,2,2]

[1,1,0][2,2,2]

FIGURE 2. A simple colour Petri net.

Fig.2 illustrates a simple coloured Petri net,
1 , depicted

graphically, where places and annotations on directed arcs are

all three-dimensional vectors, indicating that
1 is a colour

Petri net incorporating three colours. Let vector Xi[1] =Red,

Xi[2]=Green, and Xi[3]=Blue. Under the initial marking M0 of

the net system, place s1 contains 2 tokens of Red, 2 of Green,

and 2 of Blue. Places s[i] (for i=2, 3, 4, 5, 6) hold no tokens (the

absence of notation implies a vector [0,0,0]). As inferred from

the weights on the input and output arcs of transition t1, when

there are no fewer than 2 tokens of Red, Green, and Blue in

place s1, transition t1 can be activated. Execution of t1 reduces

each of the Red, Green, and Blue tokens in s1 by 2, while it

increments s2 with 1 Red token, 1 Green token, and 2 Blue

tokens, and s3 with 1 Red token and 1 Green token.

Definition 2 For a set N of nets  and given

 ,i j i jN T T      , if nets
i and

j share a set of

transitions
shared i jT T T=  , then these transitions are

considered shared among the nets. For a shared transition

i sharedt T , when transition
it participates in characterizing

the Process (process representation) in both nets
i and

j ,

the attribute sets ()_ i iAttributes t of
it in

i and

()_ j iAttributes t of
it in j might not be identical. In this

case, the transition
it is referred to as a resource-sharing

transition between
i and j .

Definition 3 For a Petri net  , let
it and jt denote the

postset of transition
it and the preset of transition jt ,

respectively. If i j i jt t T t t    ， , the transition
it is

considered a predecessor of transition jt . Let

(),Associate i j i jS t t t t=  be the set of places and

(),Front Associate i jT S t t= the set of transitions. When transition

FrontT is fired, if it enables the conditions for transition jt to

fire, the set
FrontT is referred to as the precondition transition

set of transition jt .

The following definition is provided to facilitate the

depiction of complex business processes: A process diagram

comprises multiple intersecting business streams, where, for

reasons of system security or privacy protection, these streams

do not communicate with one another during execution and

maintain logs separately per stream. As illustrated in Fig.1, the

network structure features transitions (t8) acting as antecedents

to transitions (tk), where all places within the marked subset

must be allocated the required number of tokens for the

transition (tk) to fire. In this schema, the shaded portion of p1,

combined with places s3, s5, and the resource-sharing

transition t3, forms a subnet
1 starting from place s1 and

terminating at place s7. Similarly, the shaded part of p2, when

joined with places s3, s5, and the same resource-sharing

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3462774

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017

transition t3, constitutes a subnet
2 commencing at place s8

and concluding at place s12.

Definition 4 For a net  , during its operation, whenever a

transition
it T fires, information about the firing of

it is

recorded as an entry ()iInf t formatted as <ID, PID, UserID,

timestamp, Other_Info>. The collection of these entries,

denoted as ()_ iL Inf t , constitutes the activity log for

transition
it .

Definition 5 For net  , during its operation, every time a

transition
it T triggers, the firing information of

it),

denoted as ()iInf t , is documented following the schema

<CASE_ID, event, timestamp, Other_Info>. Given

., 1,2,3,...,i sizet T i T = , the ensemble of these ()iInf t forms

the system log of the net  , referred to as ()_L Inf  .

Definition 6 For net  , in a particular network execution

instance, the firing sequence of transition

., 1,2,3,...,i sizet T i T = is documented as ()Inf Trace = <

startt ,…, 1i
t − , it , 1it +

 ,…,
endt , where each

it denotes a

transition fired in sequence. The collection of these

sequences, referred to as ()_L Inf Trace , composes the

trace log of the net  .

Definition 7 For net  , during network execution, the

firing information of a transition
it T is documented as

<ID, PID, UserID, timestamp, Other_Inf>, where

Other_Inf encompasses one or more forms of data beyond

text, such as audio, images, or video. Such a transition
it is

referred to as a multimodal transition.

Prevalent forms of log data include activity logs and

system logs, as illustrated in Fig.3, with their attributes and

dimensions potentially varying due to differences in

database tables. Within the realm of process mining, the

commonly utilized type of log is the trace log, typically

stored in file formats such as CSV or XES. Activity logs

document the execution information of individual system

activities, with each activity recorded in corresponding data

tables. Conversely, system logs encapsulate summary

information of multiple activity executions throughout the

entire system's runtime, featuring relatively standardized

attributes and dimensions.

Activity log

System logs Trace logs

Recording individual activities (irrespective of process ownership)

F
ilter

fie
ld

s
in

a

c
e
rta

in

o
rd

e
r

an
d

c
o

m
b

in
e

th
e
m

in
to

 sy
ste

m
 lo

g
s

Record every

activity executed

during system

runtime

Record every activity

executed during

system runtime

(grouped and stored by

process instance)

Split by instance ID (or other

correlation method) to obtain trace logs.

s1 t1

s2

t2

t3

s3 t4

s4

s5

t5 s6

FIGURE 3. The correlation of activity logs, system logs, trace logs, and model predictions.

The transformation from activity logs to system logs can be

conceptualized as the summarization of activity logs,

wherein system logs retain associated attributes reflecting

system behaviours. Meanwhile, converting system logs

into trace logs necessitates a transformation tailored to the

structure of the system logs. This conversion poses a

significant challenge when dealing with system logs that

lack clear identification of data flow ownership.

III. Multimodal interpretable prediction methods

This section primarily introduces how a multimodal

explainable prediction approach is employed to address

challenges in a case study of medical business process

prediction. Specifically, focusing on the object-centric

principle, it outlines the customization of a process model

for the medical examination project workflow based on the

CPN (Colored Petri Net) model, tailored to the object's

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3462774

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017

needs. This approach brings to light issues such as waiting

times due to shared transition resource constraints and

variations in execution delays for identical transitions

under different contexts. To tackle these problems, this

section proposes a multimodal analysis method. It conducts

data mining on the activity logs of the business process,

encompassing both image information extraction and time-

series data prediction. Concurrently, leveraging the CPN

model, it performs a composite prediction of disordered

behaviours, aiming to achieve the objectives of forecasting

the duration of the business process and analyzing the low-

frequency behaviours following multiple preceding

transitions. This comprehensive strategy enhances the

explainability and accuracy of predictions in the complex

medical workflow environment.

A. CPN MODELLING

Existing business process prediction methodologies

predominantly cater to static workflows, whereas

adjustments to these methods, particularly the conventional

probabilistic forecasting and deep learning-based

approaches, become notably cumbersome when processes

undergo modifications. In the context of healthcare

processes, variability significantly differs from the

perspectives of hospitals, physicians, and patients.

Consequently, practical implementation of process

prediction methodologies necessitates agile adaptation and

updating by real-world scenarios, concurrently taking into

account the implications of workflow dynamics. Moreover,

distinctive features of individual processes may warrant the

employment of different predictive techniques and models.

This section harnesses CPNTools for model simulation,

adopting an object-centric approach to construct the

workflow model based on the specified needs of these

objects. Beyond the diagrammatic representation of the

process model, fundamental elements are also configured,

such as in a health checkup scenario where the number of

examination items is fixed and individuals navigate

through them. The foundational declarations include:

The personnel set `colset PEOPLE = with XianwenFang

| XianjinFang | HuanFang | ChifengShao | LiliWang |

DuoqinLi | Others timed;` wherein `Others` signifies the

current queue of attendees, while the rest symbolize the

subjects of prediction, and `timed` denotes the temporal

dimension support for this ensemble.

A queue list for individuals is established as `colset

PEOPLEList = list PEOPLE;`, functioning as a token cache

representing the queue. Corresponding instances, `var

people: PEOPLE; var peopleList: PEOPLEList;`, facilitate

object instantiation within flow arcs. To emulate the

duration of process execution, a time set `colset E = unit

with e timed;` is employed.

IncomingPeople FormQpeople

PEOPLE

Term
peopleList^^[people]

peopleList
Server

Timer

Complete

People::peopleList

peopleList

1`[]

e e

people

E

1`e@+0

@+10

1`XianwenFang++1`XianjinFang++1`HuanFang++1`ChifengShao++1`LiliWang++1`DuoqinLi

PEOPLEPEOPLEList

FIGURE 4. CPN model with queue and resource access restrictions.

Fig.4 illustrates a queue model where the current state holds

five tokens in `IncomingPeople`, with only transition

`FormQ` capable of triggering progression to the next state.

Place `Term` serves as a queue repository, with both

`FormQ` and `Server` transitions being triggerable at this

point; if `Server` is triggered, it consumes one Token from

`Timer` (recovering after `t` time units) to advance to the

subsequent state. While `Server` is delayed, additional

triggering of `FormQ` increments the count of waiting

tokens in `Term`.

Regarding arc syntax, `[XianwenFang,

XianjinFang]^^[HuanFang]` yields `[XianwenFang,

XianjinFang, HuanFang]`, illustrating list concatenation.

For the arc from transition `FormQ` to place `Term`

annotated `peoplelist^^[people]`, it signifies that upon

`FormQ`’s activation, the current occupants of `Term` are

concatenated with the outgoing tokens from

`IncomingPeople` into `Term`.

The operation `ChifengShao::[DuoqinLi]` results in

`[ChifengShao, DuoqinLi]`, prepending `ChifengShao` to

the list. Annotation `people::peoplelist` on the arc from

place `Term` to transition `Server` implies that `Term`

merges `people` into `peoplelist`, subsequently feeding the

first element of `peoplelist` into `Server`.

Place `Timer` functions as a governor for parallel

execution instances of `Server`, allowing further triggering

only if `Timer` holds an available token. It restricts both the

number of concurrent executions of the transition and the

execution duration, with the limitation of adapting to the

input of Tokens. Reflective of real-world scenarios, such as

manual inspections where worker efficiency varies with

prolonged working durations, and queue lengths exhibit

patterned changes over time, these two factors impact the

total duration of executing medical examination sequences

differently. The following section elucidates the

application of deep learning methodologies for data mining

in activity logs to address this complexity.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3462774

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017

B. Multimodal analysis

In certain business processes, multimodal data types like

text, images, and videos may be incorporated, yet

conventional process mining techniques often fail to

leverage this rich multimodal data effectively. Furthermore,

most artificial intelligence-driven process prediction

methodologies are primarily geared toward forecasting

sequential activities alone. The integration of AI models,

therefore, stands as a prominent research frontier within

process mining. Grounded in practical necessities and real-

world constraints, this work adopts a fusion of two models

– yolo_v7 and LSTM – to address these limitations.

The ensuing subsections delve into the application of

these models: the utilization of yolo_v7 for object detection

within image data extracted from activity logs, and the

deployment of LSTM for time-series prediction based on

sequential data present in the same activity logs. This dual-

model approach aims to enhance the comprehensiveness

and accuracy of process predictions by tapping into the

diverse modalities inherent in modern business process

data.

1) EXTRACTION OF QUEUE DATA

With the evolution of artificial intelligence (AI) technology,

it has become feasible to employ AI models to scrutinize

image data within log records, thereby yielding more

accurate insights into both activity states and overall

process conditions. This heightened precision is

particularly evident when delving deeper into multimodal

transitions, where the presence of image data within

activity logs ()_ iL Inf t allows for a more meticulous

depiction of the current status.

YOLO, short for You Only Look Once, represents a one-

stage object detection model that excels in real-time

systems due to its suitability for rapid detection tasks. As

depicted in Fig.5, an image undergoes convolutional

operations to extract salient features, concurrently

forecasting bounding boxes and the probabilities of object

categories encapsulated within these boxes. This approach

marries feature extraction with prediction in a streamlined

manner, enhancing the efficiency and responsiveness of

image-based analyses in dynamic environments.

1. Resize the image

2. Run the convolutional neural network

3. Apply non-maximum suppression

FIGURE 5. Schematic Diagram of YOLO Object Detection.

The YOLO framework operates as follows: Initially, through a sequence of convolutional operations, the input image is

divided into a grid, with each cell in the grid responsible for detecting objects whose arithmetic centre falls within its

boundaries.

FIGURE 6. Principles Underlying YOLO Object Detection.

For each grid cell, YOLO predicts B bounding boxes along

with their respective confidence scores, and additionally, C

class probabilities for classification purposes. Each

bounding box is represented by (x, y, w, h), signifying the

centre coordinates and the width and height of the box,

respectively (where x and y denote offsets from the top-left

corner of the grid cell, measured in units relative to the cell

size). The width and height predictions, w and h, are ratios

relative to the width and height of the entire image.

Confidence scores encapsulate two dimensions: one

reflects the probability of an object existing within the box,

denoted as ()Pr Object , which equals 1 if the box contains

an object and 0 otherwise; the other gauges the accuracy of

the box, quantified by the Intersection over Union (IOU)

between the predicted and ground truth boxes, calculated as

() ()truth

pred pred truth pred truthIOU A B A B=   . Hence, the

confidence score for a bounding box can be defined as

() truth

predPr Object IOU . In total, each box requires

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3462774

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017

predictions for 5 elements (x, y, w, h, c), with the initial

four defining the box's position and size, and the last

denoting its confidence.

Each grid cell also estimates probabilities for C classes,

signifying the likelihood of the object(s) within the cell’s

bounding box(es) belonging to each class. Classification is

only attempted when () 1Pr Object = , so these probabilities

represent conditional probabilities for each class given

there is an object, i.e., (class object)iPr ∣ .

Consequently, the class confidence for each bounding box

can be computed as:
truth

pred

truth

pred

() (class object

)

* (object)

*

(class)*

i

i

P c Pr Pr IOU

Pr IOU

=

=

∣

In summary, each grid cell is tasked with predicting a

total of (B*5+C) values, where B represents the number of

bounding boxes per grid cell and C denotes the total

number of classes. Given 20 classes, S=7, and B=2, the

ultimate prediction output would constitute a tensor of

dimensions 7×7×(2×5+20).

By applying Yolo_v7 to the context of manufacturing

processes, real-time monitoring of processing queues

becomes feasible, transforming video image data into

numerical information for the purposes of prediction,

optimization, and management.

2) QUEUE DATA PREDICTION

With the advancement of artificial intelligence

technologies, AI models can now analyze sequential data

within logs to predict future activity and process states.

This is particularly pertinent in the in-depth analysis of

resource-sharing transitions
it , where the activity logs

()_ iL Inf t containing temporal information facilitate

predictions about the impending states of individual

transitions
it shared across multiple systems.

Long Short-Term Memory (LSTM), an enhancement

upon Recurrent Neural Networks (RNNs) [29], is a model

designed to better apprehend sequential patterns. Illustrated

in Fig.7(b), LSTM's architecture incorporates mechanisms

such as state carryover and forget gates, enhancing its

capacity to capture temporal dynamics and improve

sequence modelling. In business process forecasting,

LSTM proves instrumental in predicting sequential data

related to queue statuses, and resource utilization, among

others, where Section 1) EXTRACTION OF QUEUE

DATA facilitates the transformation of image data into

sequential data for such predictive tasks.

A

xt

ht

A

x0

h0

A

x1

h1

A

x2

h2

A

xt

ht

=

xt

σ

×

σ tanh

×

＋

σ

×

tanh

ht

ct

ht

ct-1

ht-1

forget gate input gate

output gate

AA

(a)RNN (b)LSTM

FIGURE 7. Network Architecture Diagram for Queue Prediction Model.

At every time step t, a Recurrent Neural Network (RNN)

considers both its current state from the previous time step

and the input at the current time step 𝑡. It aggregates this

information to produce an output at time t and, concurrently,

updates its state for the next time step. Initially, the state is

initialized as a vector of zeros.

()

_ 0

 _ _ :

 _ _ , _

 _ _

state t

for input t in input sequence

output t f input sequence state t

state t output t

=

=

=

The function f is responsible for transforming the input

and the state into the output, typically involving two

matrices, W and U, and a bias vector b, followed by an

activation function. It can be formally expressed as follows:

() ()(), ,f activation dot input dot state= + +W U b

In comparison to traditional RNNs, LSTM introduces a

mechanism that enables the propagation of information

across multiple time steps. At any given time step, the

output is influenced by three components: the current input,

the current state, and the carried-over information from

prior time steps. This can be depicted as follows:

()

()

()

_ ,

_ _ ,

_ ,

o

o

o o

dot state t

output t activation dot input t

dot C t V

 
 
 
 


= +

+ + 

U

W

b

() ()()

() ()()
() ()()

_ _ , _ ,

_ _ , _ ,

_ _ , _ ,

i i i

f f f

k k k

i t activation dot state t dot input t

f t activation dot state t dot input t

k t activation dot state t dot input t

= + +

= + +

= + +

U W b

U W b

U W b

These three values are then combined to update the state.

_C t ： _ 1 _ * _ _ * _c t i t k t c t f t+ = +

This paper employs the Min-Max normalization

technique for preprocessing the input data fed into the

LSTM model. Continuous attribute values are normalized

directly, whereas discrete attribute values are first encoded

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3462774

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017

numerically to represent different categories before

undergoing normalization.

C. EXPLAINABLE PREDICTIONS

Process prediction, often tailored to static workflows, is

conventionally categorized into two primary approaches: 1)

Traditional forecasting methods that estimate the

probabilities of event occurrences and subsequent

correlations, offering moderate accuracy levels but with

higher interpretability. 2) Deep learning-based process

predictions, which excel in forecasting remaining system

durations and upcoming activities, yield better predictive

performance. However, the black-box nature of deep

learning undermines the interpretability and reliability of

prediction algorithms. They also demonstrate limited

adaptability to common modifications such as resource

constraints or other conditional changes affecting

individual activities. To enhance both the interpretability

and effectiveness of prediction methodologies, this work

introduces an object-centric Petri net modelling approach

and a multimodal explainable prediction framework. The

subsequent sections detail the construction of business

processes and the development of state prediction

methodologies.

1) CONSTRUCTING BUSINESS PROCESSES

During business execution, phenomena such as concept

drift frequently arise, where the actual execution deviates

from the predefined process, necessitating subsequent

adjustments to the process model to align with real-world

operations. This underscores the need for considering the

adaptability of prediction models in business process

forecasting. Real-world scenarios are replete with

intertwined business processes, each encompassing a

multitude of intersecting execution instances. Building

upon this understanding, we proceed to outline an

intelligent methodology for constructing predictive process

models based on activity correlations, tailored to the known

objectives of the entities involved. This approach aims to

systematically anticipate and accommodate the intricate

dynamics of interwoven processes underpinning practical

business demands.

In Algorithm 1, steps (2-9) traverse the given set of

business requirements to identify if there exists a network

where transitions
it and

jt represent data-constrained

transitions, marking them accordingly. Steps (10-15) iterate

through the same requirement set to locate data-constrained

transitions within networks that include business-related

transitions. Steps (16-34) meticulously navigate the

requirement collection: if the current transition lacks

predecessors, it is appended directly to the network's tail. If

there is a single predecessor transition present in the

network, it is appended following its predecessor;

otherwise, the addition is postponed until a later traversal.

If the current transition has multiple predecessors and all

are present in the network, it is attached after the last one;

if not all predecessors are found, the process is deferred.

Ultimately, a sequence of networks with predecessor-

marked transitions is obtained, which, when sequentially

connected, forms the predictive process network.

Algorithm 1: Creation of Predictive Process Model

Input： Workflow to be constructed, denoted as  , Set

of business requirements, T, Existing network set, N,

Output： Predictive Process Model, represented as

 .

01 List[Net] N, List[Transition] T, Process  ;

02 for i in T:

03 for j in T:

04 for k in N

05 if in N[k] ti.input_flow.data∩
tj.output_flow.data != Null:

06 label(ti.pre=tj);

07 end for

08 end for

09 end for

10 for i in T:

11 for j in N[i]:

12 if ti.input_flow.data∩
N[i][j].output_flow.data != Null:

13 label(ti.pre=N[i][j]);

14 end for

15 end for

16 for i in T:

17 if ti.pre== Null:

18  .append(ti);

19 else if ti.pre in net:

20 if ti.pre==1:

21 j=Net.indexof(ti.pre);

22  [j].append(ti);

23 else if ti.pre>1:

24 if ti.pre all in net:

25 var z=0;

26 for k in ti.pre:

27 if Net.indexof(ti.pre)>z:

28 z=Net.indexof(ti.pre)

29 end for

30  [z].append(ti);

31 else put into end to execute;

32 else if ti.pre not in Net:

33 put into end to execute;

34 end for

35 return  ;

Fig.8 presents a concrete example. Algorithm 1

leverages the set of required activities and their

corresponding process sets to uncover relationships among

the required activities and data-constrained transitions

governing activity execution across distinct workflows. By

exploiting these relationships, an expanded set of

interconnected activities meeting the business requirements

is synthesised to yield the desired predictive process.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3462774

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017

s1 t1 s2 t2

s3 t3

s4 t4 s6

s5

t5 s7

s8 t6 s9 t7

s10 t8 s11

t9 s12

ts

si

sj

p2

p1

Other

t1 t2 t3 ts

Existing control

flow structure (red

arrow indicates

data correlation):

ti.attibute(

Input:[parm1,parm2, ,parm.[j]],

Output:[parm1,parm2, ,parm.[j]]

)

t8 t9

(1)For code(01-09)，

i=1, j=2, k=1, t2.pre=t1;

(2)For code(01-09)，

i=2, j=3, k=1, t3.pre=t2.

(3)For code(01-09)，

i=8, j=9, k=2, t9.pre=t8.

(4)For code (10-15),

i=s, j=2, ts.pre=t8

t1 t2 t3 ts

Activities to be

combined:
t8 t9

Associated

activities：

(5)For code(16-34)， t1 t2 t3

t8 t9

ts

Combination of

related activities：

Processes to be predicted:

t1 t2 t3

t8 t9

ts

FIGURE 8. Creating a Predictive Process Model for Upcoming Tasks Based on Specified Business Requirements and Existing Network Sets.

2) STATE PREDICTION APPROACH

When predicting the state of business processes, time is

commonly used as the metric, driving the evolution of the

system through temporal changes. Within process nets,

sequential, selection (branching), and concurrent structures

are prevalent. For sequential blocks, the method involves

updating the time upon completion of each activity and then

forecasting the state of the subsequent activity. In selection

blocks, the time is updated post-execution of a chosen path,

followed by a renewed prediction for the next activity's

state. Concurrent structures necessitate separate process

predictions for each path, with the time being updated after

the longest path concludes, leading to a fresh prediction for

the upcoming activity.

In the absence of sequential chaining behaviour, the

duration of various combinations can be influenced by the

evolving activity states over time. Algorithm 2 outlines the

state prediction approach tailored to structures lacking

sequential chaining behaviour, acknowledging the impact

of varying time-dependent activity combinations on

structural persistence.

In Algorithm 2, steps (01-08) traverse all possible

sequences of activity occurrences, calculating the total

duration for each sequence. Step (02) initializes the

reference time for the prediction algorithm. Steps (03-06)

iterate through the current sequence of events, computing

the cumulative duration for each activity; within this, step

(04) updates the reference time for the prediction algorithm,

while step (05) refreshes the total duration for the ongoing

sequence. The variable TIME_total retains the aggregate

durations corresponding to all possible sequences of

activity execution.

Algorithm 2 adopts a control flow perspective,

systematically combining sequences of business activities

and integrating deep learning prediction techniques to

forecast the remaining time of business processes. By

examining different sequences of activity execution from a

control flow standpoint and leveraging advanced machine

learning, it offers a comprehensive approach to estimating

process timelines.

Algorithm 2: Remaining Time Prediction for Combined

Processes

Input: Permutations and combinations of the set of

transitions to be predicted, A_T, Initial timestamp,

time_init, Transition state prediction function predict(),

Accumulated duration set, TIME_total.

Output: TIME_total;

01 for i in A_T:

02 time=time_init;

03 for j in A_T[i]:

04 time += predict(A_T[i][j]);

05 TIME_total[i]= TIME_total[i]+

predict(A_T[i][j]);

06 end for

07 end for

08 return TIME_total.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3462774

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017

For infrequent transitions
jt with precondition transition

sets
FrontT , an analysis of the associated data is conducted:

Infrequent transitions have sparse and less favourable log

data for prediction. From a control flow perspective,

however, predicting the triggering of transitions
jt within

the precondition set
FrontT can offer substantial reference

for anticipating the occurrence of infrequent transition.

Algorithm 3 initiates from a control flow viewpoint,

integrating the state prediction of precondition transition

sets
FrontT to forecast the emergence of infrequent

transitions
jt . This approach capitalizes on understanding

the dynamics of preceding transitions to inform predictions

about those that occur less frequently, thereby enhancing

the overall predictive power of the model.

Algorithm 3: Method for Antecedent Behavior

Prediction of Low-Frequency Events

Input: Infrequent transition(s), denoted as
jt , Set of

preceding transitions, represented as
FrontT , Set of

timepoints for triggering low-frequency events, Time_L,

Set of non-infrequent behaviour thresholds, Threshold,

Transition state prediction function, predict(), Set of

timeslots where predictions for non-infrequent

behaviours meet the threshold, Time_H_List, Prediction

time range, Time_predict, Notably, Time_H_List.size=

FrontT .size.

Output: Time_L

01 for i in
FrontT :

02 Time_H_List=0;

03 for j in Time_predict:

04 if predict(j) > Threshold[i],

Time_H_List[i].add(j);

05 end for

06 end for

07 Time_L= Time_H_List[0];

08 for i in Time_H_List:

09 if Time_H_List[i]=null, return Time_L=null;

10 else Time_L=Time_L Time_H_List[i];

11 end for

12 return Time_L.

In Algorithm 3, steps (01-06) traverse the set of preceding

transitions for infrequent transitions, calculating time

intervals where the prediction of non-infrequent behaviours

satisfies a predetermined threshold (Threshold). Step (02)

initializes the time when the set of preceding transitions

meets the threshold. Step (03) forecasts the upcoming

occurrences of these preceding transitions for a defined

period. Step (04) adds times meeting the threshold to the

set of predicted satisfaction times for non-infrequent

behaviours. Steps (07-11) then iterate through the set of

times where predictions for non-infrequent behaviours

satisfy the Threshold, identifying the intersection of all

these time intervals. If non-empty, this intersection

represents the potential timing for the infrequent behaviour

to occur. Step (07) initializes the time for triggering the

infrequent behaviour. Step (08) traverses the set of times

where non-infrequent behaviours meet the threshold. If any

prediction set within (09) is empty, the infrequent

behaviour will not be triggered. Conversely, if all

prediction sets in (10) contain values (are non-empty), their

intersection is taken, indicating that all preceding

transitions have met the threshold and thus triggering the

infrequent behaviour. The set Time_L retains the potential

timestamps for the infrequent transition's initiation.

IV. EVALUATION

This study conducts a series of experiments on real-world

system logs to validate the feasibility of the proposed object-

centric Petri net modelling and multimodal explainable

prediction methodologies. This section commences with an

introduction to the activity logs utilized, experimental setup,

and evaluation metrics employed for assessing the proposed

methods. Experiments proceed along three dimensions:

queue length detection, queue size prediction, explainability,

and rare event forecasting. The influence of varying time

periods and different activity execution sequences on

prediction tasks is analyzed, with CPNtools employed to

simulate prediction tasks, thereby validating the

explainability of the proposed approach.

The methods outlined herein were implemented using the

PyTorch library in Python 3.8. All experiments were

conducted on a Windows 11 system equipped with an Intel®

Core™ i7-12700 CPU, GeForce RTX 3090 GPU, and 64 GB

of RAM. The experimental dataset comprised three

components: (1) the COCO2017 dataset for validating the

YOLO model's performance; (2) selected surveillance

images from the First Affiliated Hospital of the University of

Science and Technology of China's West Campus, used for

training and validating the YOLO model's performance in

identifying queue sizes; and (3) registration data from three

departments spanning 16 weeks, Monday through Friday,

from 8:00 to 16:00, with data sampled every 5 minutes, to

train and validate the time-series prediction models for

forecasting registration trends in each department.

Considering practical needs and real-world constraints, this

work further trains the YOLO_v7 pre-trained model on

hospital data for queue length detection and employs LSTM

for time-series data handling. With advancements in deep

learning and consideration of real-life scenarios, State-of-

the-Art (SOTA) models can be updated accordingly. The

configuration of experimental parameters is detailed in Table

I.

D. QUEUE LENGTH DETECTION

The performance of trained deep learning models was

assessed using multi-class metrics, with specific evaluation

criteria including:

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3462774

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017

1

1 m
i

i i i

tp
Precision

m tp fp=

=
+



1

1 m
i

i i i

tp
Recall

m tp fn=

=
+



1

1

1
2

m
i i

i i i

P R
F score

m P R=


− = 

+


TABLE I

CONFIGURATION OF MODEL PARAMETERS

YOLO：

('--epochs', type=int, default=300) # Number of training epochs

('--lr0', type=float, default=(1, 1e-5, 1e-1), # Initial learning rate (SGD=1E-2, Adam=1E-3)

('--lrf', type=float, default=(1, 0.01, 1.0), # Final OneCycleLR learning rate (lr0 * lrf)

LSTM:

('--epochs', default=100, type=int) # Number of training iterations

('--layers', default=2, type=int) # Number of LSTM layers

('--input_size', default=2, type=int) # Dimensionality of input features

('--hidden_size', default=32, type=int) # Dimensionality of the hidden layer

('--lr', default=0.001, type=float) # Learning rate

('--sequence_length', default=6, type=int) # Sequence length, typically uses the past half-hour's data to predict the queue

size for the next half-hour

FIGURE 9. Evaluation Metrics Curves for Queue Length Detection Model Based on YOLO_v7: PR, F1, RC, PC.

In Fig.9. The experimental results demonstrate the robust

performance of the YOLO model in object detection tasks.

Specifically, the model achieved an impressive mean

Average Precision (mAP) of 0.87 when evaluated with an

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3462774

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017

Intersection over Union (IoU) threshold of 0.5 across all

categories, indicating a high level of detection accuracy.

Furthermore, the F1-score versus confidence relationship

revealed an optimal balance between precision and recall,

with the F1-score peaking at 0.73 at a confidence threshold

of 0.357, demonstrating the model's capability to detect

target objects accurately while minimizing false positives

and negatives. The recall-confidence curve showed a gradual

decrease in recall as the confidence threshold increased, with

maximum recall of 0.94 at zero confidence, highlighting the

model's tendency to retain more predictions at lower

thresholds, albeit with an increased risk of false positives.

Conversely, the precision-confidence curve indicated a

steady rise in precision with increasing confidence, reaching

a perfect score of 1 at a threshold of 0.955, where all

predicted targets were correctly identified without any false

positives. However, such a high confidence threshold in

practice may lead to a significant drop in recall, potentially

missing many actual targets. In summary, the YOLO model

displays exceptional detection capabilities, with fine-tuning

of confidence thresholds offering opportunities to balance

precision and recall for specific applications.

The object detection model, trained on both the

COCO2017 dataset and the hospital image dataset,

effectively identifies and categorizes humans, thereby

counting the number of individuals and determining queue

lengths. The recognition efficacy is visually demonstrated in

Fig.10.

FIGURE 10. Hospital Queue Length Acquisition.

A. Queue Size Prediction

Experiments were conducted utilizing 16 weeks of

registration data from three departments, encompassing two

dimensions: the number of patients waiting for registration

and the current time (Monday through Friday, 8:00 to 16:00,

with data sampled every 5 minutes). The dataset was

partitioned into training and testing subsets according to the

following ratio:

trainx, trainy = X[:int(0.8 * total_len)], Y[:int(0.8 *

total_len)]

testx, testy = X[int(0.8 * total_len):], Y[int(0.8 * total_len):]

This division ensures that approximately 80% of the data

is allocated for training, with the remainder used for testing

the model's predictive capabilities.

As presented in Table Ⅱ, the evaluation metrics of LSTM

models trained on data from three distinct departments reveal

that Model 3 exhibits exceptional performance across

multiple crucial indicators. Specifically, Model 3 boasts a

minimal Mean Squared Error (MSE) of 0.0023641 and a low

Root Mean Squared Error (RMSE) of 0.0486221, indicating

negligible deviations between its predictions and actual

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3462774

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017

values, thereby demonstrating a high level of predictive

accuracy. Furthermore, the substantial reduction in the Mean

Absolute Error (MAE) of Model 3, which stands at

0.0360433, underscores the high stability and reliability of

its predictive outcomes. Notably, the R² score of Model 3

reaches an impressive 0.9536967, nearly approaching the

ideal value of 1, which robustly validates its formidable

capacity in explaining data variability and accurately

capturing as well as predicting key patterns and trends within

the data.

In contrast, while Models 1 and 2 do not match the

performance of Model 3, they nonetheless demonstrate

certain predictive capabilities. Model 1 outperforms Model

2 in terms of MSE, RMSE, and MAE, indicating relatively

superior predictive precision and stability. Conversely,

Model 2 exhibits weaker performance across all evaluation

metrics, particularly in the R² score, which is significantly

lower than the other two models. This observation

underscores the importance of potentially focusing on

enhancing the predictive power and data fitting capabilities

of Model 2 in future model optimization efforts.

Three queue size prediction models were separately

trained using three datasets, each corresponding to a different

queue. The results of these predictions, juxtaposed against

the actual data, are depicted in Fig.11. These predictive

models effectively mirror the fluctuations in queue sizes,

thereby reflecting the waiting situations for diagnostic

activities in each department (in this context, all departments

are assumed to use machinery for inspections, with a default

completion time of 3 minutes per inspection).

TABLE Ⅱ

 EVALUATION METRICS FOR LSTM MODELS

Department Mean Squared Error Root Mean Squared Error Mean Absolute Error R-squared Score

 1 0.0086111 0.0927961 0.0743720 0.8279177

 2 0.0097239 0.0986100 0.0789896 0.7736935

 3 0.0023641 0.0486221 0.0360433 0.9536967

FIGURE 11. Queue Length Prediction Based on LSTM.

B. Explainable Predictions and Rare Event Forecasting

1) EXPLAINABLE PREDICTION

Explainability [33] refers to the extent to which humans can

comprehend the reasons behind decisions made. Most

existing business process predictions based on deep learning

primarily showcase outcomes without elucidating the

decision-making process. To address this, CPNTools is

employed here to simulate health checkup activities, with the

process diagram illustrated in Fig.12. This process comprises

three inspection stages—server, server2, and server3—

arranged in an unordered chain structure. A Timer is utilized

to limit the number of server instance executions, with “@+3”

in the top-right corner of the server transition indicating a 3-

minute duration for its execution. By harnessing process

predictions to determine the number of individuals in queues

during various time periods and simulating these with Others

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3462774

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017

elements, a higher level of explainability is achieved

compared to black-box prediction approaches.

IncomingPeople

FormQ

people

PEOPLE

Term
peopleList^^[people]

peopleList
Server

Timer

Complete

People::peopleList

peopleList

1`[XianwenFang,Others,Others]

e e

people

E

1`e@+0

@+3

PEOPLEPEOPLEList

OtherPart1 Thinkingpeople

people
PEOPLE

FormQ2 Term2
peopleList^^[people]

peopleList
Complete2

People::peopleList

peopleList
people

@+3

PEOPLEPEOPLEList

OtherPart2 Endpeople

PEOPLE

people

people

people

1`ChifengShao

1`[XianjinFang,Others,Others]

1`[HuanFang,Others,Others]

Server2

Timer

e e

E

1`e

FormQ3 Term3
peopleList^^[people]

peopleList
Complete3

People::peopleList

peopleList
people

@+3

PEOPLEPEOPLEList

Server3

Timer

e e

E

1`e

FIGURE 12. Simulation of Health Checkup Process Based on CPNtool.

For the three non-interfering inspections, there exist six

distinct sequences. Regarding subjects arriving at the

hospital at different times and undergoing inspections in

varying orders, Fig.13 illustrates the total duration for each

combination of tests.

The optimal inspection sequence is not consistent for

subjects arriving at differing times. For instance, if one

arrives at 8:30, the fastest sequence is server3, server2,

server1. Conversely, at 9:00, both sequences—server2,

server3, server1 and server3, server2, server1—yield

equivalent durations. Arriving at 9:30, the most efficient

sequence becomes server2, server3, server1.

2) RARE EVENT FORECASTING

During the health checkup process, when a participant

abandons a current examination due to an excessively long

queue, this behaviour is classified as a low-frequency event.

For the three examinations in question, the precondition

transitions for such low-frequency events can be established

as follows: the waiting counts at server, server2, and server3

exceed 90% of their respective daily maximums. In other

words, upon arrival, if the subject finds the queues for all

three checks surpassing expectations, it triggers the low-

frequency behaviour, leading to the abandonment of the

health check.

FIGURE 13. Duration Performance of Six Service Sequence Combinations.

As illustrated in Fig.14, the maximum waiting times for

server, server2, and server3 on that day were 118.0224

minutes, 71.7515 minutes, and 114.4294 minutes,

respectively. Consequently, the 90% thresholds were set at

106.2202 minutes, 64.5764 minutes, and 102.9865 minutes,

respectively. Based on LSTM prediction outcomes, the

timestamps when preceding transitions meet the 90%

threshold are visualized in Fig.11.

According to Algorithm 3, it is revealed that at 9:00, 9:20,

9:30, 9:40, and within the interval of 9:50 to 10:00, all

precondition transitions satisfied the criterion of exceeding

90% of the day's maximum waiting duration, thereby

triggering the low-frequency behaviour of abandoning the

health check.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3462774

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017

FIGURE 14. Timestamps When All Precondition Transitions Are

Triggered.

V. CONCLUSION

The proposed object-centric business process forecasting

methodology is a groundbreaking innovation, rooted in its

ability to harness the power of deep learning for extracting

critical insights from a blend of graphical and sequential data

in activity logs. The AI model, designed with versatility in

mind, can seamlessly adapt to a myriad of business contexts,

ensuring its applicability across diverse domains.

Moving beyond conventional methods, the approach

innovatively employs Petri net control flow modeling to

dynamically construct predictive process flows based on the

specific requirements of objects. This dynamic assembly not

only streamlines business operations but also enables real-

time responsiveness to changing conditions, thereby

enhancing overall process efficiency.

The crux of the method lies in its sophisticated treatment

of transition triggers. By leveraging the operational status of

the Petri net and deep learning models, it forecasts activity

states and the net's status, fostering a comprehensive

understanding of multi-instance, multi-system dynamics.

The shared transition prediction mechanism enhances the

consideration of triggers across various instances, while the

prediction of precondition transition sets bolsters the

prediction of infrequent transitions. This addresses the

challenge of forecasting low-frequency behaviors, even

when data is scarce, thus improving the accuracy of process

predictions.

Future research directions hold immense potential. One

such avenue involves the exploration of temporal dynamics,

delving into how the efficiency of transition execution

evolves over time. This could provide deeper insights into

process performance trends and enable more proactive

management strategies. Another intriguing prospect is the

utilization of alternative deep learning architectures in log

data mining, which could potentially unlock new levels of

predictive power and uncover hidden patterns.

In essence, this framework ushers in a new era of business

process forecasting, characterized by enhanced nuance and

adaptability. It paves the way for more effective decision-

making in intricate business landscapes, where real-time

understanding and anticipation of process dynamics can

significantly impact operational success. The implications of

this research extend beyond the realm of process forecasting,

offering potential transformative impacts on business

strategy, operations, and decision support systems. As such,

it holds great promise for shaping the future of process

management in the digital age.

REFERENCES
[1] GRISOLD T, GROSS S, STELZL K, et al. The five diamond method

for explorative business process management[J]. Business &

Information Systems Engineering, 2022, 64(2): 149-166.

[2] MALINOVA M, GROSS S, MENDLING J. A study into the
contingencies of process improvement methods[J]. Information

Systems, 2022, 104: 101880.

[3] VAN DER AALST W M P. Business process management: a

comprehensive survey. ISRN Softw Eng 2013: 1–37[Z]. 2013.

[4] BEVERUNGEN D, BUIJS J C, BECKER J, et al. Seven paradoxes of

business process management in a hyper-connected world[J].
Business & Information Systems Engineering, 2021, 63: 145-156.

[5] KERMANI MA, SEDDIGHI HR, MAGHSOUDI M. Revolutionizing
Process Mining: A Novel Architecture for ChatGPT Integration and

Enhanced User Experience through Optimized Prompt Engineering.

arXiv preprint arXiv:2405.10689. 2024 May 17.
[6] ZHANG L, FANG X, SHAO C, et al. Alternative Model Repair Based

on the Predictable Fitness[J]. Journal of Computer Research and

Development, 2022, 59(11): 2618-2634. (in Chinese)
[7] FANG X, ZHAO F, FANG H, et al. The Fusion Analysis Method

about the Change Region of the Business Process Model Based on

Behavior Inclusion in Petri Net[J]. Chinese Journal of Computers,
2018, 41(3): 695-708. (in Chinese)

[8] SHAO C, FANG X, WANG W. Generation of controlled logs based

on extended Petri Net[J]. Computer Engineering and Design, 2022,
43(3): 876-885. (in Chinese)

[9] TAX N, VERENICH I, LA ROSA M, et al. Predictive Business

Process Monitoring with LSTM Neural Networks[M]DUBOIS E,
POHL K. Advanced Information Systems Engineering: Vol. 10253.

Cham: Springer International Publishing, 2017: 477-492.

[10] MEHDIYEV N, EVERMANN J, FETTKE P. A Novel Business
Process Prediction Model Using a Deep Learning Method[J]. Business

& Information Systems Engineering, 2020, 62(2): 143-157.

[11] PASQUADIBISCEGLIE V, APPICE A, CASTELLANO G, et al.
Using Convolutional Neural Networks for Predictive Process

Analytics[C]2019 International Conference on Process Mining

(ICPM). Aachen, Germany: IEEE, 2019: 129-136.
[12] WEYTJENS H, DE WEERDT J. Learning Uncertainty with Artificial

Neural Networks for Improved Remaining Time Prediction of

Business Processes[M]. arXiv, 2021.
[13] CAMARGO M, DUMAS M, GONZÁLEZ-ROJAS O. Learning

Accurate LSTM Models of Business Processes[C]//HILDEBRANDT

T, VAN DONGEN B F, RÖGLINGER M, MENDLING J. Business
Process Management. Cham: Springer International Publishing, 2019:

286-302.

[14] PASQUADIBISCEGLIE V, APPICE A, CASTELLANO G, et al.

ORANGE: Outcome-Oriented Predictive Process Monitoring Based

on Image Encoding and CNNs[J]. IEEE Access, 2020, 8: 184073-

184086.
[15] TEINEMAA I, DUMAS M, ROSA M L, et al. Outcome-Oriented

Predictive Process Monitoring: Review and Benchmark[J]. ACM

Transactions on Knowledge Discovery from Data, 2019, 13(2): 1-57.
[16] FOLINO F, FOLINO G, GUARASCIO M, et al. Learning Effective

Neural Nets for Outcome Prediction from Partially Labelled Log

Data[C]//2019 IEEE 31st International Conference on Tools with
Artificial Intelligence (ICTAI). Portland, OR, USA: IEEE, 2019:

1396-1400.

[17] VAN HOUDT G, MOSQUERA C, NÁPOLES G. A review on the
long short-term memory model[J]. Artificial Intelligence Review,

2020, 53(8): 5929-5955.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3462774

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017

[18] JORDAN M I, MITCHELL T M. Machine learning: Trends,

perspectives, and prospects[J]. Science, 2015, 349(6245): 255-260.

[19] MITCHELL T, BUCHANAN B, DEJONG G, et al. Machine
Learning[J]. Annual Review of Computer Science, 1990, 4(1): 417-

433.

[20] CHOWDHARY K, CHOWDHARY K R. Natural language
processing[J]. Fundamentals of artificial intelligence, 2020: 603-649.

[21] OTTER D W, MEDINA J R, KALITA J K. A survey of the usages of

deep learning for natural language processing[J]. IEEE transactions on
neural networks and learning systems, 2020, 32(2): 604-624.

[22] SHAUKAT K, LUO S, VARADHARAJAN V, et al. A survey on

machine learning techniques for cyber security in the last decade[J].
IEEE Access, 2020, 8: 222310-222354.

[23] CHANDOLA V, BANERJEE A, KUMAR V. Anomaly detection: A

survey[J]. ACM computing surveys (CSUR), 2009, 41(3): 1-58.
[24] LU D, WENG Q. A survey of image classification methods and

techniques for improving classification performance[J]. International

journal of Remote sensing, 2007, 28(5): 823-870.
[25] FRAWLEY W J, PIATETSKY-SHAPIRO G, MATHEUS C J.

Knowledge discovery in databases: An overview[J]. AI magazine,

1992, 13(3): 57-57.
[26] BIGGIO B, ROLI F. Wild Patterns: Ten Years After the Rise of

Adversarial Machine Learning[J]. Pattern Recognition, 2018, 84: 317-

331.

[27] MITCHELL T M. Does Machine Learning Really Work? [J]. AI

Magazine, 1997, 18(3): 11-11.

[28] NEUMANN J von, MORGENSTERN O. Theory of Games and
Economic Behavior: 60th Anniversary Commemorative

Edition[M]Theory of Games and Economic Behavior. Princeton

University Press, 2007.
[29] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: Trainable

bag-of-freebies sets new state-of-the-art for real-time object

detectors[C]. Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 2023: 7464-7475.

[30] YU Y, SI X, HU C, et al. A Review of Recurrent Neural Networks:

LSTM Cells and Network Architectures[J]. Neural Computation, 2019,
31(7): 1235-1270.

[31] JENSEN K, KRISTENSEN L M, WELLS L. Coloured Petri Nets and

CPN Tools for modelling and validation of concurrent systems[J].
International Journal on Software Tools for Technology Transfer,

2007, 9(3): 213-254.

[32] WU Z. Introduction to Petri Nets[M]. Beijing: Mechanical Industry
Press, 2006. (in Chinese)

[33] MILLER T. Explanation in artificial intelligence: Insights from the

social sciences[J]. Artificial Intelligence, 2019, 267: 1-38.

SHAO CHIFENG received the B.S. and M.S.

degrees from the Anhui University of Science and
Technology, China, in 2016 and 2021, respectively.

He is currently pursuing a PhD degree in

information security engineering at the Anhui
University of Science and Technology.

He is a Teaching Assistant at the Computer

Department, College of Information and Network
Engineering, Anhui Science and Technology

University, China. His research interests include

Petri nets, process mining and AI Security.

WANG QIANQIAN received an M.A. degree

from the Anhui University of Science and

Technology, China, in 2020.
She is currently a Lecturer at the Department of

Mathematics, Anhui Science and Technology

University, China. Her research interest is Petri net
theory and applications.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3462774

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

