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ABSTRACT The effective solution of system of nonlinear equations (SNEs) is crucial for the creation of 

engineering and scientific models. SNEs can be represented and analyzed as an optimization problem. The 

objective of this research is to introduce a new optimization technique, called Chaotic Noise-Based Particle 

Swarm Optimization Algorithm (CN-BPSOA), to effectively address the SNEs. CN-BPSOA is a particle 

swarm optimization algorithm (PSOA) that utilizes chaotic noise to enhance its performance. The 

configuration of CN-BPSOA will involve the utilization of a novel definition, namely chaotic noise, to 

address the limitations associated with optimization methods. These limitations include the insufficient 

variety of solutions, the imbalance between exploiting current solutions and exploring new ones, and the 

sluggish convergence towards the optimal solution. The objective of chaotic noise is to minimize the 

occurrence of duplicated solutions and iterations in order to accelerate the rate of convergence. The chaotic 

logistic map is employed due to its widespread adoption by researchers and its demonstrated efficacy in 

enhancing solution quality and optimizing performance. CN-BPSOA is evaluated utilizing numerous 

renowned SNEs. The performance of the proposed method is compared with five other algorithms that also 

solve the same benchmark issues and with the results of the original PSOA to emphasize the significance of 

the modifications made in CN-BPSOA.CN-BPSOA's effectiveness in addressing SNEs was demonstrated by 

the promising findings that obtained, where the best solution obtained by CN-BPSOA is less than that 

obtained by all algorithms by improvement percentage (percentage drop (PD%)) more than or equal to 

93.30% in all benchmark’s problems. Ultimately, while comparing the outcomes of CN-BPSOA with those 

of prior investigations, the application of statistical analysis through Friedman and Wilcoxon's tests 

conclusively revealed its better performance and efficacy in resolving this kind of problem.  

INDEX TERMS Particle Swarm Optimization, Chaotic Noise, System of Nonlinear Equations, 

Optimization.

I. INTRODUCTION 

The solution of system of nonlinear equations (SNEs) is 

crucial for the advancement of engineering and science, as 

many models in these domains rely on them. SNEs can be 

directly present in some applications, or they can be 

indirectly derived from practical models [1]. Discovering a 

resilient and efficient solution for the SNEs may pose a 

challenging endeavor in theory. 

Solving SNEs typically involves the use of Muller's 

method, the false-position method, the bisection technique, 

the Levenberg-Marquardt algorithm, steepest descent 

methods, the Broyden method, Halley's method, the branch 

and prune approach, Newton/damped Newton methods, 

and the Secant method[2]. The methods of choice for 

solving SNEs in general are secant and Newton methods. 

Alternatively, several methods convert the SNEs into an 

optimization problem [3], which is then resolved using the 

enhanced Lagrangian method [4]. These methods have 

some limitations such as time-consuming, may diverge, 

lack of efficiency in solving a collection of nonlinear 

equations, necessity for a laborious procedure to compute 
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partial derivatives for constructing the Jacobian matrix, and 

its sensitivity to the initial conditions [5]. 

Due to these limitations, the researchers employed 

evolutionary algorithms (EAs) to solve SNEs. Evolutionary 

algorithms (EAs) are commonly employed to tackle 

optimization issues that are deemed too challenging for 

conventional approaches. Evolutionary algorithms, such as 

the genetic algorithm (GA) [6-8], particle swarm 

optimization algorithm (PSOA) [9,10], artificial bee colony 

(ABC) [11], cuckoo search algorithm (CSA) [12], and 

firefly algorithm (FA) [13], have been employed for the 

resolution of SNEs. In [6], Chang introduced a real-coded 

genetic algorithm (GA) as a solution for the SNEs. In [7], 

Grosan and Abraham proposed a new method using GA to 

address the challenge of complicated SNEs, where they 

achieved this by reformulating the problem as a 

multiobjective optimization problem. The researchers in 

[8] employed a highly effective GA that utilized symmetric 

and harmonic individuals to successfully address SNEs. 

Mo and Liu [9] introduced a conjugate direction approach 

to PSOA in order to tackle SNEs, where they incorporated 

the conjugate direction method (CDM) into PSOA, 

resulting in an improved algorithm capable of efficiently 

optimizing high-dimensional problems. CDM assists 

PSOA in circumventing local minima by transforming the 

problem of optimizing high-dimensional functions into a 

lower-dimensional space. Jaberipour et al. proposed an 

innovative approach of updating the location and velocity 

of each particle in a new version of PSOA for solving SNEs 

[10]. Also, to address the limitations of the traditional 

PSOA, such as being stuck in local minimums and 

experiencing slow convergence, the researchers modified 

the manner in which each particle was updated. In addition, 

Jia and He introduced a hybrid ABC technique in [11], 

which integrated the ABC and PSO algorithms to solve 

SNEs. The hybrid algorithm resolves the issue of becoming 

stuck in a premature or local optimum by combining the 

advantages of both algorithms. Zhou and Li introduced an 

enhanced CSA in [12] to address the SNEs, where they 

utilized an innovative encoding method that guarantees the 

attainability of the proposed solution without necessitating 

any alteration to the evolution of the cuckoo. In [13], 

Ariyaratne et al. were present an improved version of the 

Firefly Algorithm (FA) that tackles SNEs as an 

optimization problem, where this approach offers various 

benefits such as that no need to the initial conditions, 

differentiation, and the requirement for function continuity. 

Additionally, it allows for the generation of several root 

estimates simultaneously. 

Based on swarm intelligence, the particle swarm 

optimization algorithm (PSOA) is a population-based, 

stochastic computer method. Based on social psychology 

concepts, swarm intelligence contributes to engineering 

applications as well as offering insights into social 

behavior. Russell C. Eberhart and James Kennedy first 

described the PSO approach in 1995 [14]. PSOA, like other 

evolutionary algorithms, starts with a population of 

individuals described as random guesses for problem-

solving. Individuals from this population are considered 

potential solutions. They are also referred to as particles, 

hence the term particle swarm. An iterative procedure for 

improving these candidate solutions is initiated. The 

particles iteratively assess the fitness of the candidate 

solutions and remember where they had the most success. 

The particle best, also known as the local best, is an 

individual's best solution. Each particle makes this 

information known to its neighbors. They can also notice 

where their neighbors have found success. These successes 

serve as a guide for population movements in the search 

space, and at the end of a trial, the population typically 

converges to the solution of the problem. PSOA was 

proposed and has been applied to various application fields. 

The PSOA is a commonly used technique and has been 

used for hybrid models [15,16].  

While PSOA can quickly identify good solutions, it may 

become stuck in local optimum and not reach the global 

optimum. As a result, PSOA has numerous disadvantages, 

including extreme slowness and difficulty in finding the 

global optimal solution because of the high number of 

iterations or lengthy search time. Motivated by this, this 

paper presents an algorithm that addresses a major 

limitation of PSOA and other evolutionary algorithms 

(EAs), namely the repetition of solutions during the 

optimization process, resulting in time wastage. The 

optimization algorithm being developed is called a Chaotic 

Noise-Based Particle Swarm Optimization Algorithm (CN-

BPSOA). Chaotic is a mathematical method that has 

demonstrated the ability to enhance the efficiency of many 

optimization algorithms. The subject has garnered 

significant interest and has been implemented in various 

fields, such as optimization [17-20]. The suggested CN-

BPSOA is a hybridization of PSOA with chaotic noise. 

Chaotic noise is employed in the optimization process of a 

PSOA to introduce random and unpredictable changes to 

the positions of the solutions when they are repeated. This 

combination seeks to improve the performance of PSOA by 

addressing its limitations, including the limited variety of 

solutions, the imbalance between using known solutions 

and exploring new ones, and the sluggish convergence 

towards the optimal solution. This paper's main 

contributions encompass: 

1. In order to solve SNEs, this work presents a novel 

method called the chaotic noise-based particle swarm 

optimization algorithm (CN-BPSOA), which combines 

both PSOA and chaotic noise. 

2. Providing a sufficient diversity of solutions and avoiding 

time wastage by eliminating repeating solutions during 

the optimization process. 
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3. Striving to achieve continuous progress with each 

iteration in the optimization, ultimately reaching optimal 

solutions. 

4. Evaluating the effectiveness of CN-BPSOA through 

multiple well-known SNEs.  

5. Applying statistical tests to assess the significance of the 

CN-BPSOA findings. 

6. Demonstrating the competitiveness and superiority of 

CN-BPSOA over alternative optimization techniques. 

The structure of the paper is as follows: The definition of 

systems of nonlinear equations is presented in Section 2. 

The proposed algorithm is fully presented in Section 3. 

Section 4 contains the numerical results and discussions. A 

summary of the results and conclusions concludes Section 

5. 
II. SYSTEMS OF NONLINEAR EQUATIONS 

The mathematical description of a system of nonlinear 

equations (SNEs) is as follows: 

SNEs = {

𝑓1(𝑦) = 0

𝑓2(𝑦) = 0
⋮

𝑓𝑄(𝑦) = 0

;                                                        (1) 

where 𝑦 = (𝑦1 , 𝑦2, … , 𝑦𝑛) is a vector of n components subset 

of ℝ𝑛, and 𝑓𝑞∀𝑞 = 1,2, … , 𝑄 are the nonlinear functions that 

translate the n-dimensional space ℝn's vector 𝑦 =
(𝑦1, 𝑦2, … , 𝑦𝑛)  to the real line. Certain functions may be 

linear, whereas others may not be. Finding a solution where 

each of the aforementioned Q functions equals zero is 

required to resolve SNEs [21]. 

Definition 1: If the 𝑄 functions satisfy the condition 𝑓𝑞(𝑦) =
0 ∀𝑞 = 1, . . . , 𝑄, then the solution 𝑦 = (𝑦1

∗, 𝑦2
∗, … , 𝑦𝑛

∗) that is 

called the optimal solution of the SNEs. 

Various approaches [22, 23] transform the SNEs into an 

optimization issue by incorporating the left-hand side of 

every equation and subsequently employing the absolute 

value function as: 

𝐹(𝑦) = abs (𝑓1(𝑦) + 𝑓2(𝑦) + ⋯+ 𝑓Q(𝑦))

Subject to:  {

𝑓1(𝑦) = 0

𝑓2(𝑦) = 0
⋮

𝑓𝑄(𝑦) = 0

;                      (2) 

where 𝐹(𝑦) represents the objective function. The objective 

function 𝐹(𝑦) in Equation (2) obtains a global optimal 

solution if all the nonlinear equations (𝑓𝑞 = 0 ∀𝑞 =
1, . . . , 𝑄) are equal to zero. 
III. THE PROPOSED ALGORITHM 

This section offers a concise introduction to the concepts of 

particle swarm optimization algorithm (PSOA) and chaos 

theory. Then, the proposed chaotic noise-based particle 

swarm optimization algorithm (CN-BPSOA) will be 

presented in a comprehensive manner. 

A. The particle swarm optimization algorithm (PSOA) 

Bird flow's collective activity serves as an inspiration for 

PSOA [14]. Each particle (solution) uses two essential kinds 

of information when making decisions. The first is based on 

their personal experience; in other words, they have made the 

choices and are aware of which location has so far proven to 

be superior and how it was good. The second is the 

experience of other particles; in other words, they are aware 

of the actions of other particles in their vicinity. Every 

particle in the PSO system bases his decision on his personal 

experiences as well as those of other particles. There is 

initially a population of random solutions in the system. 

Every possible resolution, referred to as a particle (solution), 

is assigned an arbitrary speed and flies through the search 

domain. Because of their memory, the particles remember 

their prior best position (called the 𝑝⬚
𝑏𝑒𝑠𝑡,𝑡

) and the associated 

fitness. The particles in the swarm have a many  𝑝⬚
𝑏𝑒𝑠𝑡,𝑡

, and 

the particle that has the highest fitness at iteration t is referred 

to as the global best (𝑔⬚
𝑏𝑒𝑠𝑡,𝑡

) particle of the swarm. In an n-

dimensional space, every particle is handled as a single point. 

The representation of the i-th particle is 𝑦𝑖 =
(𝑦𝑖

1, 𝑦𝑖
2, … , 𝑦𝑖

𝑛). 𝑝𝑖
𝑏𝑒𝑠𝑡,𝑡  =  (𝑝𝑖

1, 𝑝𝑖
2, . . . , 𝑝𝑖

𝑛).  represents the 

best previous position of the i-th particle that yields the best 

fitness value at iteration t. The best particle in the population 

at iteration t is denoted by 𝑔⬚
𝑏𝑒𝑠𝑡,𝑡  =  (𝑔⬚

1 , 𝑔⬚
2 , . . . , 𝑔⬚

𝑛 ). The 

velocity, or rate of position change for particle i at iteration 

t, is written as 𝑣𝑖
𝑡 = (𝑣𝑖

1, 𝑣𝑖
2 , … , 𝑣𝑖

𝑛). The particles are 

managed using the following equations (the superscripts 

indicate the iteration): 

𝑣𝑖
𝑡+1 = 𝑤 × 𝑣𝑖

𝑡 + 𝑐1 × 𝑟1 × (𝑝𝑖
𝑏𝑒𝑠𝑡,𝑡 − 𝑦𝑖

𝑡) + 𝑐2 × 𝑟2 ×

(𝑔⬚
𝑏𝑒𝑠𝑡,𝑡 − 𝑦𝑖

𝑡),                                               (3) 

𝑦𝑖
𝑡+1 = 𝑦𝑖

𝑡 + 𝑣𝑖
𝑡+1;                                                             (4)  

where 𝑤 is the inertia weight, 𝑖 = 1,2, … , 𝑁 is the population 

size, 𝑐1 and 𝑐2  are two positive constants that represent the 

social and cognitive parameters, respectively, and 𝑟1 and 𝑟2 

are random values that are uniformly distributed throughout 

the interval [0,1]. Equation (4) gives the new position of the 

i-th particle, 𝑦𝑖
𝑡+1, by adding its new velocity, 𝑣𝑖

𝑡+1, to its 

present position, 𝑦𝑖
𝑡. Equation (3) is used to find the i-th 

particle's new velocity, 𝑣𝑖
𝑡+1, at each iteration. Figure I 

displays the basic PSOA's pseudo code, while Figure II 

displays the general PSOA flowchart.  

 

  

FIGURE 1. The generic PSOA's pseudo-code 
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FIGURE 2. The generic PSOA's pseudo-code 

 

B. CHAOS THEORY 

The dynamics of systems that obey deterministic laws but 

appear random and unpredictable are the subject of chaos 

theory. Optimization sciences have benefited greatly from 

the applications of chaos theory mathematics in many 

different areas. Chaos optimization algorithms have gained 

significant interest as a good approach to global optimization 

due to their utilization of various chaotic maps. These 

techniques can improve optimization by making it easier to 

escape from local solutions and accelerating the convergence 

towards the global solution because of the intrinsic 

characteristics of chaotic maps. To enhance the quality of the 

solution, numerous academics have recommended the 

integration of chaos theory and optimization algorithms 

[24,25]. Mathematical functions that behave chaotically are 

called chaotic maps, and they are typically written as iterated 

functions. Numerous well-known chaotic maps, including 

the sinusoidal, Chebyshev, singer, tent, sine, circle, Gauss, 

and logistic maps, may be found in the literature [26]. 

C. Chaotic Noise-Based Particle Swarm Optimization 

This section will provide a description of the proposed 

Chaotic Noise-Based Particle Swarm Optimization 

Algorithm (CN-BPSOA), which combines Particle Swarm 

Optimization Algorithm (PSOA) with chaos theory. CN-

BPSOA is set to utilize chaotic noise to address certain 

constraints that may arise during optimization using PSOA. 

These shortcomings include a lack of alternative solutions, 

an unequal distribution of exploration and exploitation, and 

a slow convergence to the best solution. There are two main 

phases of CN-BPSOA. To solve the SNEs efficiently in the 

first step, the PSOA is applied as a global optimization 

technique. Chaotic noise is used as the second phase in the 

Start 

Update the velocity 𝒗𝒕+𝟏 and 

position 𝒚𝒕+𝟏 of each particle  

End 

Output 

results 

Initial population of particles for PSOA 

Has the 

termination 

criterion been 

met? 

Yes 

No 

Repairing infeasible 

particles

Update pbest for each particle and gbest 

 

Evaluation the objective function 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3448295

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



 

VOLUME XX, 2017 1 

PSOA optimization method if the best solution is repeated. 

By avoiding the repetition of the optimal solution and 

reducing the number of iterations, chaotic noise seeks to 

exhibit a broad variety of solutions without taking an 

excessive amount of time throughout the optimization 

process. An extensive description of the suggested algorithm 

may be found below: 

Step 1. Initialization 

- Initialization: At iteration t, initialize a population of 

particles on n-dimensions of the problem space with 

random positions and velocities. 

- Repair of infeasible particles: To make the population's 

particles feasible, repair its unfeasible particles. Using this 

method, the population of unfeasible particles co-evolves 

until they are feasible. We produce new feasible particles 

(NF) on a segment delineated by two points: feasible 

particle (F) and infeasible particle (INF) (see [27]). New 

feasible particle NF is expressed as: 𝑁𝐹 = 𝛾 ⋅ 𝐼𝑁𝐹 +
(1 − 𝛾) ⋅ 𝐹, 𝑁𝐹 = 𝛾 ⋅ 𝐹 + (1 − 𝛾) ⋅ 𝐼𝑁𝐹; where 𝛾 =
(1 + 2𝜇)𝛿 − 𝜇, 𝜇 is a user specified parameter used to 

extend the segment equally on both sides of F and INF, 

and  𝛿 ∈ [0,1] is a random generated number.  

-  Evaluation: The fitness function 𝐹(𝑦) of n variables is 

evaluated for every particle 

-  Setting 𝒑𝒃𝒆𝒔𝒕,𝒕and 𝒈𝒃𝒆𝒔𝒕,𝒕: Assign the current location and 

objective value of each particle as 𝑝𝑏𝑒𝑠𝑡,𝑡, and set the 

position and objective value of the best particle among the 

whole population as 𝑔𝑏𝑒𝑠𝑡,𝑡. 
Step 2. Updating the particles 

- Updating the velocity and position: Using Equations 3 

and 4, update each particle's position and velocity. 

- Repair of infeasible particles 

- Evaluation 

- Updating 𝒑𝒃𝒆𝒔𝒕,𝒕and 𝒈𝒃𝒆𝒔𝒕,𝒕: Compare each particle's 

current objective value to its 𝑝𝑏𝑒𝑠𝑡,𝑡−1 objective value. 

Update 𝑝𝑏𝑒𝑠𝑡,𝑡  and its objective value with the current 

location and value if the current value is better. Find the 

current swarm particle with the best objective value. 

Update 𝑔𝑏𝑒𝑠𝑡,𝑡  and its objective value with the position and 

objective value of the current best particle if the objective 

value is better than 𝑔𝑏𝑒𝑠𝑡,𝑡−1. If 𝑔𝑏𝑒𝑠𝑡,𝑡 repeated M times 

applied chaotic noise (step 3). Otherwise go to step 4. 

Step 3. Chaotic Noise phase 

- Chaotic noise: Chaotic noise is implemented on the PSOA 

optimization process when the best solution is repeatedly 

M times. It aims to demonstrate a sufficient diversity of 

solutions while minimizing the time required for 

optimization by avoiding the repeat of the best solution 

and decreasing the number of iterations. During this stage, 

the particles at iteration t is subjected to chaotic noise, 

resulting in alterations for particles' positions as: 

𝑦𝑖
𝑡)chaotic = 𝜉 ∙ 𝑦𝑖

𝑡∀𝑖 = 1,… , 𝑁;                   (5) 

where the chaotic random number, denoted as 𝜉, is 

generated using the logistic map using the following 

equation: 

𝜉𝑘 = 4𝜉𝑘−1(1 − 𝜉𝑘−1), 𝜉0 ∈ (0,1) ,  𝜉0 ∉
{0.0,0.25,0.50, 0.75,1.0};             (6) 

where k is iterations of chaotic noise phase. 

- Evaluation: For each particle 𝑦𝑖
𝑡)chaotic  ∀𝑖 = 1,… , 𝑁, 

𝐹(𝑦) is evaluated to find the best new position 

𝑔⬚
𝑏𝑒𝑠𝑡)

chaotic 
. 

- Updating 𝒈⬚
𝒃𝒆𝒔𝒕 

1. If the best new position 𝑔⬚
𝑏𝑒𝑠𝑡)

chaotic 
 is better than the 

best position 𝑔⬚
𝑏𝑒𝑠𝑡,𝑡

, updating the best position 𝑔⬚
𝑏𝑒𝑠𝑡,𝑡

 

as 𝑔⬚
𝑏𝑒𝑠𝑡,𝑡 = 𝑔⬚

𝑏𝑒𝑠𝑡)
chaotic 

 and go to step 2. Otherwise, 

repeat step 3 k times. 

2. If the best new position 𝑔⬚
𝑏𝑒𝑠𝑡)

chaotic 
 is not better than 

the best position 𝑔⬚
𝑏𝑒𝑠𝑡,𝑡

, chaotic noise is applied again 

with a new chaotic random number 𝜉 that generated by 

Eq. (6). 

3. If 𝑔⬚
𝑏𝑒𝑠𝑡,𝑡

 is not improved after all chaotic noise 𝑘 

iterations, chaotic noise phase should be stopped, 

𝑔⬚
𝑏𝑒𝑠𝑡,𝑡

 should be shown as the best solution and go to 

step 4. 

Step 4. Termination criteria 

CN-BPSOA terminates either when it reaches the maximum 

number of iterations 𝑡𝑚𝑎𝑥 or if 𝑔⬚
𝑏𝑒𝑠𝑡,𝑡

 is not improved after 

all chaotic noise 𝑘 iterations. Additionally, CN-BPSOA 

terminates if 𝛿 = |‖𝐹𝑜𝑝𝑡𝑖𝑚𝑢𝑚‖ − ‖𝐹𝑡‖| ≤ 𝜀 = 1𝑒 − 20; 

here, ‖𝐹𝑜𝑝𝑡𝑖𝑚𝑢𝑚‖ denotes the objective function's optimal 

value, which is 0 in all nonlinear systems benchmark 

problems. At each iteration t, the calculated objective 

function is denoted by ‖𝐹𝑡‖. In the end, determine that the 

best particle position, 𝑔⬚
𝑏𝑒𝑠𝑡,𝑡

, is the optimal solution. If not, 

proceed to step 2. Figure III shows the main flowchart for 

CN-BPSOA. 
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FIGURE 3. The generic PSOA's pseudo-code 

IV. NUMERICAL RESULTS 

Four systems of nonlinear equations are solved to assess the 

recommended approach. These four test systems, which have 

been extensively examined by other researchers, are known 

as benchmarks. On a PC with an Intel(R) Core (TM) i7-

6600U CPU operating at 2.60GHz, the proposed CN-

BPSOA is implemented in MATLAB R2012b. The 

computer is running Windows 10 and has 16 GB of RAM. 

The outcomes will be juxtaposed with the findings of the 

original PSOA to demonstrate the benefits of the suggested 

modifications and their impact on achieving the best possible 

outcome.  The results of the proposed algorithm will also be 

compared with other algorithms that solved the same 

benchmark problems. The parameters used to execute the 

CN-BPSOA are displayed in Table I. 
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TABLE I 

THE PARAMETERS USED IN THE EXECUTION OF CN-BPSOA 

Phase Parameter Notation value 

PSOA phase 

Number of iterations  𝑡𝑚𝑎𝑥 300-

1200 
Population size 𝑁 100 - 

700 

Acceleration coefficients 
𝑐1 2.8 

𝑐2 1.3 

The inertia weight w 0.5 

Chaotic noise 

phase 

Number of chaotic noise 
iteration 

𝑘𝑚𝑎𝑥 30 

Initial chaotic random 

number 
𝜉0 0.9 

The number of times 

𝑔⬚
𝑏𝑒𝑠𝑡,𝑡

is repeated 

M 5 

 

It is important to mention that both algorithms, the original 

PSOA and the proposed CN-BPSOA, have the same 

maximum number of iterations. Additionally, all data are 

recorded starting from the first run. Moreover, once one of 

them fulfills the termination condition, the calculations 

cease, and the count of iterations used is recorded. Also, the 

CN-BPSOA is statistically evaluated in comparison to other 

algorithms using the Friedman test and Wilcoxon rank-sum 

test. 

A. Benchmark problems for a SNEs 

The 4 Benchmark problems for a SNEs can be characterized 

as follows [7]: 

1) A. BENCHMARK 1: EXPERIMENT TEST 

{
 

 
𝑓1(𝑦1, 𝑦2) = 𝑐𝑜𝑠(2𝑦1) − 𝑐𝑜𝑠(2𝑦2) − 0.4 = 0,

𝑓2(𝑦1, 𝑦2) = 2(𝑦2 − 𝑦1) + 𝑠𝑖𝑛(2𝑦2) − 𝑠𝑖𝑛(2𝑦1) − 1.2 = 0,

𝑦1 ∈ [−10,10],

𝑦2 ∈ [−10,10].
(7) 

2) B. BENCHMARK 2: ARITHMETIC APPLICATION 

{
 
 
 
 
 

 
 
 
 
 
𝑓1(𝑦) = 𝑦1 − 0.254287220 − 0.18324757 × 𝑦4𝑦3𝑦9 = 0,

𝑓2(𝑦) = 𝑦2 − 0.378421970 − 0.16275449 × 𝑦1𝑦10𝑦6 = 0,

𝑓3(𝑦) = 𝑦3 − 0.271625770 − 0.16955071 × 𝑦1𝑦2𝑦10 = 0,

𝑓4(𝑦) = 𝑦4 − 0.198079140 − 0.15585316 × 𝑦7𝑦1𝑦6 = 0,

𝑓5(𝑦) = 𝑦5 − 0.441667280 − 0.19950920 × 𝑦7𝑦6𝑦3 = 0,

𝑓6(𝑦) = 𝑦 − 0.146541130 − 0.18922793 × 𝑦8𝑦5𝑦10 = 0,

𝑓7(𝑦) = 𝑦7 − 0.429371610 − 0.21180486 × 𝑦2𝑦5𝑦8 = 0,

𝑓8(𝑦) = 𝑦8 − 0.070564380 − 0.17081208 × 𝑦1𝑦7𝑦6 = 0,

𝑓9(𝑦) = 𝑦9 − 0.345049060 − 0.19612740 × 𝑦10𝑦6𝑦8 = 0,

𝑓10(𝑦) = 𝑦10 − 0.426511020 − 0.21466544 × 𝑦4𝑦8𝑦1 = 0,
−10 ≤ 𝑦1, 𝑦2, . . . , 𝑦10 ≤ 10.

     

                           (8) 

3) BENCHMARK 3: COMBUSTION APPLICATION 

{
 
 
 
 
 
 

 
 
 
 
 
 

𝑓1(𝑦) = 𝑦2 + 2𝑦6 + 𝑦9 + 2𝑦10 − 10
−5 = 0,

𝑓2(𝑦) = 𝑦3 + 𝑦8 − 3 × 10
−5 = 0,

𝑓3(𝑦) = 𝑦1 + 𝑦3 + 2𝑦5 + 2𝑦8 + 𝑦9 + 𝑦10 − 5 × 10
−5 = 0,

𝑓4(𝑦) = 𝑦4 + 2𝑦7 − 10
−5 = 0,

𝑓5(𝑦) = 0.5140437 × 10
7𝑦5 − 𝑦1

2 = 0,

𝑓6(𝑦) = 0.1006932 × 10−6𝑦6 − 2𝑦2
2 = 0,

𝑓7(𝑦) = 0.7816278 × 10−15𝑦7 − 𝑦4
2 = 0,

𝑓8(𝑦) = 0.1496236 × 10
−6𝑦8 − 𝑦1𝑦3 = 0,

𝑓9(𝑦) = 0.6194411 × 10
−7𝑦9 − 𝑦1𝑦2 = 0,

𝑓10(𝑦) = 0.2089296 × 10
−14𝑦10 − 𝑦1𝑦2

2 = 0,
−10 ≤ 𝑦1, 𝑦2, . . . , 𝑦10 ≤ 10.

     

                                 (9) 

4) BENCHMARK 4: APPLICATION OF 
NEUROPHYSIOLOGY 

{
 
 
 

 
 
 

𝑓1 = 𝑦1
2 + 𝑦3

2 − 1 = 0,

𝑓2 = 𝑦2
2 + 𝑦4

2 − 1 = 0,

𝑓3 = 𝑦5𝑦3
3 + 𝑦6𝑦4

3 = 0,

𝑓4 = 𝑦5𝑦1
3 + 𝑦6𝑦2

3 = 0,

𝑓5 = 𝑦5𝑦1𝑦3
2 + 𝑦6𝑦4

2𝑦2 = 0,

𝑓6 = 𝑦5𝑦1
2𝑦3 + 𝑦6𝑦2

2𝑦4 = 0,
−10 ≤ 𝑦1 , 𝑦2, . . . , 𝑦6 ≤ 10.

                                         (10) 

B. Results 

Several algorithms, such as the EAA [7], GAs [28], hybrid-

GOA-GA [29], original GA [30], and CEGA [30], have been 

used to tackle these benchmark problems. Tables II-V present 

a comparison of the optimal solutions achieved by such 

algorithms, original PSOA, and the suggested CN-BPSOA 

algorithm. While Table VI shows a direct comparison between 

all algorithms according to the best value of the objective 

function 𝐹(𝑦). 

 
TABLE II 

BENCHMARK 1 EXPERIMENT TEST RESULTS: EXPERIMENT TEST 

Method (𝑦1, 𝑦2) (𝑓1, 𝑓2) 𝐹(𝑦) 
EAA [7] (0.15722,49458) (0.001264,0.000969) 0.0011 
GAs [28] (0.156522,0.49338) (4.86060E-06,3.71604E-06) 4.2885E-06 

Hybrid-GOA-GA [29] (0.680235945188233,2.25999176017399) (2.28400E-06,1.29670E-06) 1.7904E-06 

Original GA [30] (-2.98506954610277, -2.64821484596259) (5.20590E-07,7.40840E-06) 3.9645E-06 
CEGA [30] (-9.26825582324219, -8.93140064444864) (2.98270E-07,5.14720E-06) 2.7227E-06 

Original PSOA (6.963421234737793, 8.543176047747862) (2.4797E-07,3.0992E-07) 2.7895E-07 
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CN-BPSOA (0.156520077170122, 0.493376410137101) (5.5310E-08, 8.2213E-08) 6.8762E-08 

 

TABLE III 

RESULTS FOR BENCHMARK 2, ARITHMETIC APPLICATION 

Method 𝑦1 → 𝑦10 𝑓1 → 𝑓10 𝐹(𝑦) 

EAA [7] 

𝑦1 0.2077500302 𝑓1 0.0464943 

0.2344 

𝑦2 0.0299198492 𝑓2 0.3489889 

𝑦3 -0.0339491324 𝑓3 0.3058418 

𝑦4 -0.2027950317 𝑓4 0.4012915 

𝑦5 0.2131771707 𝑓5 0.2284027 

𝑦6 0.0568458067 𝑓6 0.0886970 

𝑦7 0.2267650517 𝑓7 0.2024745 

𝑦8 -0.0977041236 𝑓8 0.1687259 

𝑦9 -0.0339921200 𝑓9 0.3787652 

𝑦10 0.2532921324 𝑓10 0.1741025 

GAs [28] 

𝑦1 2.5783339E-01 𝑓1 -7.3844E-10 

1.2674E-09 

𝑦2 3.8109715E-01 𝑓2 -1.1684E-12 

𝑦3 2.7874502E-01 𝑓3 1.7931E-09 

𝑦4 2.0066896E-01 𝑓4 -8.8837E-10 

𝑦5 4.4525142E-01 𝑓5 -4.5866E-10 

𝑦6 1.4918391E-01 𝑓6 -5.2700E-09 

𝑦7 4.3200969E-01 𝑓7 -6.3852E-09 

𝑦8 7.3402777E-02 𝑓8 -9.7362E-10 

𝑦9 3.4596683E-01 𝑓9 -6.0389E-11 

𝑦10 4.2732628E-01 𝑓10 3.0841E-10 

Hybrid-GOA-GA [29] 

𝑦1 0.2578333 𝑓1 1.2656E-12
 

1.7220E-12 

𝑦2 0.3810971 𝑓2 7.9096E-14 

𝑦3 0.2787450 𝑓3 1.7517E-12 

𝑦4 0.2006689 𝑓4 4.5315E-12 

𝑦5 0.4452514 𝑓5 1.1361E-12 

𝑦6 0.1491839 𝑓6 2.2230E-12 

𝑦7 0.4320096 𝑓7 1.4795E-12 

𝑦8 0.0734027 𝑓8 6.5123E-13 

𝑦9 0.3459668 𝑓9 3.5476E-12 

𝑦10 0.4273262 𝑓10 5.5468E-13 

Original GA [30] 

𝑦1 0.257833393700735 𝑓1 2.6685E-13 

1.7873E-12 

𝑦2 0.381097154600942 𝑓2 1.8415E-12 

𝑦3 0.278745017345425 𝑓3 1.0000E-12 

𝑦4 0.200668964224041 𝑓4 1.3058E-12 

𝑦5 0.445251424840196 𝑓5 8.3411E-13 

𝑦6 0.149183919967650 𝑓6  1.8859E-12 

𝑦7 0.432009698988807 𝑓7 4.9226E-12 

𝑦8 0.0734027777813010 𝑓8 5.0493E-12 

𝑦9 0.345966826875570 𝑓9 3.8700E-14 

𝑦10 0.427326275994071 𝑓10 7.2846E-13 

CEGA [30] 

𝑦1 0.257833393700561 𝑓1 5.7399E-14   

3.0855E-14 

𝑦2 0.381097154602820 𝑓2 1.2136E-14 

𝑦3 0.278745017346455 𝑓3 1.3031E-14 

𝑦4 0.200668964225329 𝑓4 1.5905E-14 

𝑦5 0.445251424841115 𝑓5 7.1657E-14 

𝑦6 0.149183919969369 𝑓6 1.4279E-14 

𝑦7 0.432009698983808 𝑓7 8.7737E-14 

𝑦8 0.0734027777762290 𝑓8 2.1295E-14   

𝑦9 0.345966826875559 𝑓9 4.9712E-15 

𝑦10 0.427326275993280 𝑓10 1.0141E-14 

Original PSOA 

𝑦1 0.257833394005702 𝑓1 3.02830984681007E-10 

9.623432122799620E-11 

𝑦2 0.381097154684046 𝑓2 7.93726512467174E-11 

𝑦3 0.278745017364673 𝑓3 9.97917980888330E-12 

𝑦4 0.200668964290925 𝑓4 6.31522234680049E-11 

𝑦5 0.445251424740452 𝑓5 9.99434224616125E-11 

𝑦6 0.149183919932287 𝑓6 4.17826914560215E-11 

𝑦7 0.432009698984909 𝑓7 4.70680612540964E-12 

𝑦8 0.0734027779412242 𝑓8 1.62313153369287E-10 

𝑦9 0.345966826970836 𝑓9 4.70680612540964E-12 

𝑦10 0.427326275891757 𝑓10 1.62313153369287E-10 

CN-BPSOA 

𝑦1 0.257833393700504 𝑓1 1.33573707650214E-16 

4.422710028068045E-15 

𝑦2 0.381097154602804 𝑓2 2.81415515890338E-15 

𝑦3 0.278745017346441 𝑓3 2.74953670942324E-16 

𝑦4 0.200668964225338 𝑓4 5.15820025581704E-15 

𝑦5 0.445251424841042 𝑓5 9.12030867494806E-16 
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𝑦6 0.149183919969338 𝑓6 1.61095095596586E-14 

𝑦7 0.432009698983726 𝑓7 5.95790777824234E-15 

𝑦8 0.0734027777762457 𝑓8 2.70660230339281E-15 

𝑦9 0.345966826875559 𝑓9 5.95790777824234E-15 

𝑦10 0.427326275993296 𝑓10 2.70660230339281E-15 

 
TABLE IV 

THE OUTCOMES OF BENCHMARK 3, COMBUSTION APPLICATION 

Method 𝑦1 → 𝑦10 𝑓1 → 𝑓10 𝐹(𝑦) 

EAA [7] 

𝑦1 2.8724570E-4 𝑓1 -9.0156756E-5 

-1.8038E-05 

𝑦2 4.6449359E-004 𝑓2 -3.3881318E-021 

𝑦3 -3.8722475E-006 𝑓3 -5.9848143E-008 

𝑦4 5.7046411E-005 𝑓4 -9.0000000E-005 

𝑦5 1.2033492E+000 𝑓5 -2.0652682E-008 

𝑦6 3.2144041E+000 𝑓6 -1.0783996E-007 

𝑦7 -2.3523205E-005 𝑓7 -3.2542930E-009 

𝑦8 3.3872248E-005 𝑓8 1.1173545E-009 

𝑦9 1.6152635E+000 𝑓9 -3.3367727E-008 

𝑦10 -4.0222631E+000 𝑓10 -6.1982897E-011 

GAs [28] 

𝑦1 7.7944699E-5 𝑓1 -9.0000000E-5 

-1.8034E-05 

𝑦2 2.3453123E-4 𝑓2 -4.7433845E-20 

𝑦3 5.6870072E-8 𝑓3 -5.5091023E-18 

𝑦4 -5.1124010E-4 𝑓4 -9.0000000E-5 

𝑦5 1.1665683E-1 𝑓5 -7.8705351E-11 

𝑦6 3.6717284E-1 𝑓6 -7.3037986E-8 

𝑦7 2.6062005E-4 𝑓7 -2.6136644E-7 

𝑦8 2.9943130E-5 𝑓8 4.7478263E-14 

𝑦9 2.6776713E-1 𝑓9 -1.6938693E-9 

𝑦10 -5.0116867E-1 𝑓10 -4.2883872E-12 

Hybrid-GOA-GA [29]  

𝑦1 1.5541664E-9 𝑓1 8.5611E-12
 

1.2499E-09 

𝑦2 4.6710388E-6 𝑓2 1.2440E-08
 

𝑦3 2.9852019E-5 𝑓3 1.9449E-14
 

𝑦4 1.7239638E-10 𝑓4 6.6138E-12
 

𝑦5 9.8332225E-6 𝑓5 5.0547E-13
 

𝑦6 2.5029647E-6 𝑓6 4.3385E-11
 

𝑦7 4.9999104E-6 𝑓7 2.5812E-20
 

𝑦8 1.3554000E-7 𝑓8 2.6115E-14
 

𝑦9 9.4779067E-8 𝑓9 1.3886E-15
 

𝑦10 1.1412198E-7 𝑓10 3.3671E-20
 

Original GA [30] 

𝑦1 0.000131595492467185 𝑓1 1.2576E-04 

7.4518E-05 

𝑦2 8.25174833157296E-05 𝑓2 1.0366E-04 

𝑦3 -2.16100194956660 𝑓3 1.5119E-04 

𝑦4 -0.00728929937743800 𝑓4 2.6026E-05 

𝑦5 -2.84721332483602 𝑓5 1.6368E-07 

𝑦6 -4.25864110800585 𝑓6 4.4243E-07 

𝑦7 0.00363663681060500 𝑓7 5.3134E-05 

𝑦8 2.16113561379106 𝑓8  2.8470E-04 

𝑦9 -1.45063000953809 𝑓9 1.0072E-07 

𝑦10 4.98385697563882 𝑓10 8.8564E-13 

CEGA [30] 

𝑦1 1.15278259019717E-06 𝑓1 5.7802E-11  

4.5300E-09 

𝑦2 9.06471796614326E-06 𝑓2 4.4498E-08 

𝑦3 1.56300393104332E-05 𝑓3  4.5304E-10 

𝑦4 7.01041293845308E-06 𝑓4 4.9701E-11 

𝑦5 2.11248562801178E-06 𝑓5 1.2203E-12 

𝑦6 1.28545186382671E-07 𝑓6 1.6433E-10 

𝑦7 1.49481838115443E-06 𝑓7 4.9146E-11 

𝑦8 1.43254622355700E-05 𝑓8 1.5875E-11 

𝑦9 5.33696042558367E-09 𝑓9 1.0449E-11 

𝑦10 3.36398449219863E-07 𝑓10 9.4722E-17 

Original PSOA 

𝑦1 2.09528181247014E-05 𝑓1 6.42744756643697E-09 

1.801553781102623E-07 

𝑦2 7.50671055521498E-06 𝑓2 1.77204282754923E-06 

𝑦3 2.81827842649960E-05 𝑓3 1.22173720541055E-08 

𝑦4 4.66106580537108E-06 𝑓4 9.54499569172472E-09 

𝑦5 1.29156616427075E-09 𝑓5 4.39020520974668E-10 

𝑦6 6.95042765377435E-07 𝑓6 1.12631420639369E-10 

𝑦7 2.66469459946860E-06 𝑓7 2.17255344399168E-11 

𝑦8 4.51729074547336E-08 𝑓8 5.90501994019121E-10 

𝑦9 4.70595603773702E-07 𝑓9 2.17255344399168E-11 

𝑦10 3.13090431345007E-07 𝑓10 5.90501994019121E-10 

CN-BPSOA 𝑦1 1.41597086344390E-10 𝑓1 3.00096831946602E-12 1.827814742919986E-11 
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𝑦2 1.06004139114271E-06 𝑓2 3.64876088260083E-11 

𝑦3 1.47221353337977E-05 𝑓3 2.75138599308889E-11 

𝑦4 8.36044279080308E-06 𝑓4 4.14308504800983E-11 

𝑦5 7.03806598923897E-07 𝑓5 3.61787147697908E-14 

𝑦6 1.15553959843184E-06 𝑓6 2.13102052197873E-12 

𝑦7 8.19757889173219E-07 𝑓7 6.98970036576505E-11 

𝑦8 1.52778281785934E-05 𝑓8 2.28383904079456E-12 

𝑦9 8.56448570846672E-11 𝑓9 6.98970036576505E-11 

𝑦10 3.31439538308410E-06 𝑓10 2.28383904079456E-12 

 

TABLE V 

RESULTS FOR BENCHMARK 4, NEUROPHYSIOLOGY APPLICATION 

 

 

 

 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

TABLE VI 
THE BEST SOLUTION OBTAINED BY ALL ALGORITHMS FOR ALL BENCHMARK PROBLEMS 

Algorithm 
The best solution 

Benchmark 1 Benchmark 2 Benchmark 3 Benchmark 4 

EAA [7] 0.0011 0.2344 -1.8038E-05 3.7764E-10 

GAs [28] 4.2885E-06 1.2674E-09 -1.8034E-05 5.2127E-11 
Hybrid-GOA-GA [29] 1.7904E-06 1.7220E-12

 
1.2499E-09

 
7.0908E-11

 

Original GA [30] 3.9645E-06 1.7873E-12 7.4518E-05 8.3319E-06 

CEGA [30] 2.7227E-06 3.0855E-14 4.5300E-09 1.0693E-11 
Original PSOA 2.7895E-07 9.623432122799620E-11 1.801553781102623E-07 4.378248918088607E-05 

CN-BPSOA 6.8762E-08 4.422710028068045E-15 1.827814742919986E-11 1.02187876216409E-12 

 

 

Method 𝑦1 → 𝑦6 𝑓1 → 𝑓6 𝐹(𝑦) 

EAA [7] 

𝑦1 7.0148122E-001 𝑓1 1.1532022E-009 

3.7764E-10 

𝑦2 7.5925767E-001 𝑓2 2.6058267E-011 

𝑦3 -7.1268794E-001 𝑓3 -6.5553074E-010 

𝑦4 6.5079013E-001 𝑓4 1.1783451E-009 

𝑦5 2.4122542E-009 𝑓5 1.1134504E-009 

𝑦6 7.8977724E-010 𝑓6 -5.4967453E-010 

GAs [28] 

𝑦1 3.2484137E-001 𝑓1 1.5105117E-010 

5.2127E-11 

𝑦2 3.2484137E-001 𝑓2 1.5114510E-010 

𝑦3 9.4576852E-001 𝑓3 -1.2749912E-011 

𝑦4 9.4576852E-001 𝑓4 4.6365863E-012 

𝑦5 -5.6887875E-001 𝑓5 1.0181522E-011 

𝑦6 5.6887875E-001 𝑓6 8.4981744E-012 

Hybrid-GOA-GA [29] 

𝑦1 0.0820223613267075 𝑓1 6.9593E-11 

7.0908E-11 

𝑦2 -0.138287000903135 𝑓2 3.1647E-11 

𝑦3 -0.996630489354999 𝑓3 3.3110E-12 

𝑦4 0.990392197774631 𝑓4 9.6123E-12 

𝑦5 4.48130330622387E-09 𝑓5 2.5478E-10 

𝑦6 4.56992671931472E-09 𝑓6 5.6505E-11 

Original GA [30] 

𝑦1 0.00459210535797400 𝑓1 3.8965E-11 

8.3319E-06 

𝑦2 -0.0140392033441710 𝑓2 8.6758E-11 

𝑦3 0.999989456248088 𝑓3 3.3069E-11 

𝑦4 -0.999901445571622 𝑓4 1.3870E-08 

𝑦5 -0.00519291646053100 𝑓5 4.9063E-05 

𝑦6 -0.00519428784572100 𝑓6 9.1419E-07 

CEGA [30] 

𝑦1 0.132104801350580 𝑓1 1.9783E-11 

1.0693E-11 

𝑦2 0.225320570231597 𝑓2 1.2026E-11 

𝑦3 -0.991235754742487 𝑓3 1.6804E-11 

𝑦4 -0.974284681506633 𝑓4 1.2213E-12 

𝑦5 -1.46708097455544E-10 𝑓5 1.0116E-11 

𝑦6 1.36330007947428E-10 𝑓6 4.2055E-12 

Original PSOA 

𝑦1 0.0967596488181381 𝑓1 9.40738564825239E-09 

4.378248918088607E-05 

𝑦2 0.0875974306993004 𝑓2 3.99762926095448E-08 

𝑦3 -0.995307771974682 𝑓3 1.89982331845473E-08 

𝑦4 -0.996155936667844 𝑓4 5.58105709792503E-06 

𝑦5 -0.0237029753692995 𝑓5 0.000216888207154594 

𝑦6 0.0236425013052175 𝑓6 4.01572889213551E-05 

CN-BPSOA 

𝑦1 -0.434335926065421 𝑓1 1.39444011892920E-13 

1.02187876216409E-12 

𝑦2 -0.434335926062093 𝑓2 1.48014933643026E-12 

𝑦3 0.900750966321299 𝑓3 3.41940364911864E-12 

𝑦4 0.900750966323803 𝑓4 2.71973416010596E-13 

𝑦5 0.255287112397369 𝑓5 7.09293734857397E-13 

𝑦6 -0.255287112399918 𝑓6 1.11008424674708E-13 
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TABLE VII 

PERCENTAGE DROP BETWEEN ALL ALGORITHMS AND THE PROPOSED ALGORITHM CN-BPSOA 

Algorithm 
The Percentage Drop (PD%) between all algorithms and CN-BPSOA 

Benchmark 1 Benchmark 2 Benchmark 3 Benchmark 4 Average 

EAA [7] 99.99 100.00 100.00 99.73 99.93 

GAs [28] 98.40 100.00 100.00 98.04 99.11 

Hybrid-GOA-GA [29] 96.16 99.74 98.54 98.56 98.25 

Original GA [30] 98.27 99.75 100.00 100.00 99.50 

CEGA [30] 97.47 85.67 99.60 90.44 93.30 

Original PSOA 75.35 100.00 99.99 100.00 93.83 

 

 

Tables II-VI display the outcomes of all algorithms for the four 

benchmark problems, indicating the best achieved solution 

𝐹(𝑦). From tables, it is evident that the proposed algorithm 

CN-BPSOA outperformed the other algorithms by achieving 

the lowest value of 𝐹(𝑦), in all benchmark problems. Also, it 

is evident that the proposed algorithm CN-BPSOA. We notice 

Also that the introduction of the chaotic noise on the original 

PSOA improves the results significantly by minimize the 

occurrence of duplicated solutions and iterations in order to 

accelerate the rate of convergence. So, we can say that CN-

BPSOA leads to sufficient variety of solutions, the balance 

between exploiting known solutions and exploring new ones, 

and the fast convergence towards the optimal solution. 

Additionally, the following percentage drop (PD%) in results 

is utilized to show how the new CN-BPSOA algorithm 

improves upon the other algorithms: 

PD% =
|Other Algorithm best solution−the proposed algorithm best solution|

Other Algorithm best solution
× 100.                 

(11) 

PD% is used to measure the percentage reduction between the 

best solution 𝐹(𝑦) obtained by CN-BPSOA and the best 

solution 𝐹(𝑦) obtained by other algorithms (i.e. if PD% 

between CN-BPSOA and other algorithm is 60% that mean 

the best solution obtained by CN-BPSOA is less than the best 

solution that obtained by the other algorithm by 60%). The 

PD% results are displayed in Table VII. We can see that the 

best solution obtained by CN-BPSOA is less than that 

obtained by all algorithms by PD% more than or equal to 

93.30 in all benchmarks. Hence, we may conclude that chaotic 

noise directs PSOA to remove the local minimum and improve 

search outcomes by cutting down on the number of iterations 

and, consequently, the processing time, by preventing the use 

of iterations without improvement or convergence to the 

optimal solution. 

On the other hand, the EAA, GAs, Hybrid-GOA-GA, Original 

GA, CEGA, Original PSOA and the suggested CN-BPSOA 

have successfully addressed the 4 benchmark problems. 

Hence, this study will conduct a statistical analysis of CN-

BPSOA in comparison to these algorithms. The assessment 

will be based on the optimal function value 𝐹(𝑦) (Table VI) 

and will utilize the Friedman test, and the Wilcoxon signed-

rank test [31,32]. The Friedman test evaluates the average 

ranks of the algorithms and generates Friedman statistics. A 

lower ranking indicates greater algorithm performance. The 

Wilcoxon signed-rank test is employed to demonstrate the 

statistically significant disparities between the CN-BPSOA 

algorithm and the other methods. 

The results of the Friedman test are displayed in Table VIII. 

Table VIII displays the Asymp. Sig. (P-value). The p-value is 

less than 0.05, showing significant variances in the outcomes 

produced by all algorithms. In addition, the suggested CN-

BPSOA method beats the other algorithms, as seen by its 

lower mean rank. Table IX presents the outcomes of the 

Wilcoxon signed-rank test. The sum of positive ranks is 

denoted as R+, while the sum of negative ranks is denoted as 

R-. Finally, Table IX illustrates that CN-BPSOA exhibits 

superior R+ values compared to R- values in all instances and, 

suggesting its superiority over other algorithms. Based on the 

findings in Table IX, it can be deduced that the suggested CN-

BPSOA algorithm is both statistically significant and superior 

to the other methods. 
TABLE VIII 

FRIEDMAN TEST 

Ranks Test Statistics 

Method Mean Rank 
N 4 

EAA [7] 6.13 

GAs [28] 5.13 
Chi-Square 17.085 

Hybrid-GOA-GA [29] 3.00 
Original GA [30] 5.50 

df 6 
CEGA [30] 2.75 

Original PSOA 4.50 
P-value 0.009 

CN-BPSOA 1.00 

 

TABLE IX 
TEST OF WILCOXON SIGNED RANKS 

The two algorithms Rank N ‘<’ Or ‘>’ Or ‘=’ 

EAA - CN-BPSOA 

R- 0a a. EAA < CN-BPSOA 
+R 4b b. EAA > CN-BPSOA 

= 0c c. EAA = CN-BPSOA 

GAs - CN-BPSOA 

R- 0d d. GAs < CN-BPSOA 

R+ 4e e. GAs > CN-BPSOA 

= 0f f. GAs = CN-BPSOA 

Hybrid-GOA-GA - 

CN-BPSOA 

R- 
0g 

g. Hybrid-GOA-GA < CN-
BPSOA 

R+ 
4h 

h. Hybrid-GOA-GA > CN-

BPSOA 

= 
0i 

i. Hybrid-GOA-GA = CN-

BPSOA 

Original GA - CN-
BPSOA 

R- 
0j 

j. Original GA < CN-
BPSOA 

R+ 
4k 

k. Original GA > CN-

BPSOA 

= 0l l. Original GA = CN-BPSOA 

CEGA - CN-
BPSOA 

R- 0m m. CEGA < CN-BPSOA 
R+ 4n n. CEGA > CN-BPSOA 

= 0o o. CEGA = CN-BPSOA 
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Original PSOA - 

CN-BPSOA 

R- 
0p 

p. Original PSOA < CN-

BPSOA 

R+ 
4q 

q. Original PSOA > CN-

BPSOA 

= 
0r 

r. Original PSOA = CN-

BPSOA 

 

V. CONCLUSION 

This work presents a novel approach called chaotic noise-

based particle swarm optimization (CN-BPSOA) for solving a 

system of nonlinear equations (SNEs). CN-BPSOA combines 

the principles of particle swarm optimization algorithm 

(PSOA) and chaotic behavior. The CN-BPSOA was 

developed to address the limitations of the original PSOA. 

These restrictions include the insufficient variety of solutions, 

an imbalance between exploiting current solutions and 

exploring new ones, No improvement for the solutions in the 

successive iterations, and slow convergence towards the 

optimal solution.  The SNEs are converted into an 

optimization problem, which is resolved using CN-BPSOA. 

An experimental test, an arithmetic application, a combustion 

application, and a neurophysiology application were the four 

benchmark challenges that were looked at. The results were 

compared with the original PSOA, and 5 other algorithms that 

solved the same benchmark problems. The findings from the 

comparison between CN-BPSOA and the original PSOA 

indicate that CN-BPSOA achieved solution improvements 

where it obtained a best solution less than that obtained the 

original PSOA. By measuring the percentage of improvement 

(percentage drop (PD%)), we found that CN-BPSOA obtained 

solutions lower than that obtained by all algorithms with a 

percentage greater than or equal to 93.30 in all benchmark 

problems. So, we can say that CN-BPSOA effectively 

resolved the issue of getting stuck in a local minimum by 

utilizing chaotic noise, hence shifting the optimization process 

to a more favorable search space. In addition, the statistical 

analysis conducted using Friedman and Wilcoxon's tests 

demonstrated the superiority of the CN-BPSOA results. 

Specifically, the CN-BPSOA findings exhibited the lowest 

mean rank and attained superior R+ values compared to R- 

values in all comparisons with other algorithms. 

Our future study will focus on three main directions: (i) 

making more improvements for CN-BPSOA and evaluating 

their impact on optimization outcomes. (ii) developing CN-

BPSOA to enable it to solve multi-objective optimization 

problem. (iii) Applying other evolutionary algorithms to this 

kind of problem. 
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