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ABSTRACT Speech enhancement (SE) aims to improve the quality and intelligibility of speech signals,
particularly in the presence of noise or other distortions, to ensure reliable communication and robust speech
recognition. Deep neural networks (DNNs) have shown remarkable success in SE due to their ability to
learn complex patterns and representations from large amounts of data. However, they face limitations
in handling long-term temporal sequences. Spiking neural networks and transformers inherently manage
temporal data and capture fine-grained temporal patterns in speech signals. This paper proposes a model
that integrates self-attention with spiking neural networks for speech enhancement. The proposed model
employs a convolutional encoder-decoder architecture with a spiking transformer acting as a bottleneck
network. The spiking self-attention mechanism in this framework represents features using spike-based
queries, keys, and values. This approach enhances features by effectively capturing temporal dependencies
and contextual relationships in speech signals. The spiking transformer is divided into two branches to
capture comprehensive global dependencies across the temporal and spectral dimensions. The encoder-
decoder incorporates a multi-scale feature extractor, which extracts features at various scales, enabling
the model to build a comprehensive hierarchical representation. This representation significantly enhances
the model’s ability to learn and process noisy speech, leading to excellent SE performance. Experiments
are conducted using two publicly available benchmark datasets: WSJO-SI84 and VCTK+DEMAND.
The proposed model demonstrated improved SE performance, showing significant progress with notable
improvements of 33.69% in ESTOI, 1.05 in PESQ, and 11.36 dB in SDR over the noisy mixtures.

INDEX TERMS Speech Enhancement, Deep Learning, Spiking Transformer, Temporal Dynamics, Spiking
Self-Attention (SSA), Speech Recognition, Convolutional Encoder-Decoder

I. INTRODUCTION

SPEECH enhancement is aimed at improving the overall
quality and intelligibility of speech signals, particularly

in the presence of background noise, reverberation, or other
distortions. This process is fundamental in various applica-
tions, such as telecommunications, where it ensures more ex-
plicit voice communication over phones; hearing aids, which
require enhanced speech signals for the hearing impaired;
voice-controlled and ASR systems [1], [2], where accurate
speech recognition is required for reliable operation. It also
enhances the user experience in multimedia applications,
such as video conferencing and streaming services, by pro-

viding clear and intelligible audio.

Classical speech enhancement methods, such as spectral
subtraction [3], Wiener filtering [4], and statistical model-
based techniques [5], have long been used to improve the
intelligibility and quality of speech signals. Spectral subtrac-
tion estimates the noise spectrum during silent periods and
subtracts it from the noisy speech, but it often introduces
artifacts like musical noise. Wiener filtering optimizes the
signal-to-noise ratio by applying a filter based on estimated
speech and noise spectra, though it requires accurate noise es-
timation and can be less effective with non-stationary noise.
Statistical model-based methods, such as Hidden Markov
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Models (HMMs) or Gaussian Mixture Models (GMMs),
leverage probabilistic models to separate speech from noise
but typically require extensive training data and computa-
tional resources. Despite their widespread use, these classical
methods face limitations in handling dynamic and complex
noise environments, often resulting in residual noise and
speech distortion, prompting the need for more advanced
approaches [6]–[10].

Recent advances in deep neural networks (DNNs) have
significantly transformed speech enhancement, offering su-
perior performance compared to classical methods [11], [12].
Techniques such as Convolutional Neural Networks (CNNs)
[13], [14], Recurrent Neural Networks (RNNs) [15], and
Long Short-Term Memory (LSTM) [16] networks have been
widely adopted to address the complex, non-linear relation-
ships between noisy and clean speech signals. These net-
works are capable of learning intricate features and temporal
dependencies from large datasets, leading to more effec-
tive noise suppression and improved speech intelligibility.
Moreover, approaches like Generative Adversarial Networks
(GANs) [17] and transformers [18] have further enhanced
speech quality by refining the generation of clean speech
from noisy inputs. Despite their computational demands,
these deep learning models have demonstrated remarkable
robustness in diverse and challenging noise environments.

Spiking Neural Networks (SNNs) [19]–[21] represent a
promising paradigm for speech processing, leveraging prin-
ciples inspired by biological neural networks to address
key challenges in speech enhancement [7], [22], recognition
[23], [24], and synthesis. Unlike conventional ANNs that
use continuous-valued activations, SNNs operate based on
the timing of discrete spikes, emulating the asynchronous
and event-driven nature of the neurons. This allows SNNs
to efficiently encode and process temporal information, mak-
ing them particularly well-suited for tasks involving time-
dependent data, such as speech signals. In speech processing,
SNNs offer several advantages over traditional ANNs [25].
Firstly, their event-driven processing enables energy-efficient
computation, making them suitable for deployment in low-
power devices like smartphones and IoT devices. Addition-
ally, the temporal coding of information in spike timings
allows SNNs to capture fine-grained temporal patterns in
speech signals and can improve speech processing in noisy
environments.

There have been a few studies on speech enhancement in
literature utilizing spiking neural networks such as [7], [22],
[26]–[28]. The study in [28] introduces a three-layer SNN
architecture with lateral inhibition and generates a training
dataset by adding three levels of Gaussian white noise and
computing the Short Time Fourier Transform (STFT) of the
signal. The study encodes the log-scaled STFT magnitude
into discrete spike timing using the Bens Spiker algorithm
[29]. The SNN model processes the encoded input spikes
using masking to eliminate uncorrelated spikes. This involves
element-wise multiplication of the complex noisy STFT with
the SNN’s output spike train to obtain an enhanced STFT. Ex-

perimental results show favourable performance. However,
the SNN lacks learning capabilities, and the architecture is
relatively shallow. Additionally, further testing with diverse
noise types is necessary to validate generalizability. The
study in [26] proposes a similar approach, utilizing a three-
layer SNN architecture with lateral inhibition. The study
uses the log-scaled STFT magnitude as input to the SNN
model, which produces a binary mask. The enhanced STFT is
obtained through element-wise multiplication with the binary
mask. Their experimental setup incorporates five distinct
real-world noise types, demonstrating good performance in
terms of various SNR. However, the speech enhancement
process depends on eliminating uncorrelated noise compo-
nents, and the SNN architecture lacks integration of any
learning strategies. In a recent study [27], Intel introduced
a basic SNN-based solution as a baseline for the Intel
Neuromorphic Deep Noise Suppression Challenge (Intel N-
DNS Challenge). This model uses a three-layer feedforward
sigma-delta neural network to mask the STFT Magnitude.
The delta-encoded STFT magnitude serves as the input to the
SNN, which generates a multiplicative mask for enhancing
the STFT. The baseline SNN undergoes training using the
surrogate gradient method. Another study in [22] introduces
a single-channel speech enhancement method employing a
U-Net SNN architecture. The study reveals the capability
of SNNs to handle large-scale regression tasks like speech
enhancement. The objective evaluations show that the pro-
posed approach outperforms multiple state-of-the-art ANN-
based models and outperforms the baseline solution of the
Intel N-DNS Challenge. Additionally, the model attains com-
petitive results compared to an equivalent ANN architecture,
highlighting the potential of SNN for speech enhancement.
A very recent study [7] presents Spiking-S4, a lightweight
SNN model specifically formulated for speech enhancement.
The study draws on the pioneering model of integrating a
structured state space model with spiking neural networks for
speech enhancement. Through the evaluation of two bench-
mark datasets, the model validates that the Spiking-S4 model
achieves competitive results with traditional ANN models
while demonstrating excellent computational efficiency.

In traditional neural networks, information is typically
processed continuously. In spiking neural networks, infor-
mation is encoded in discrete, asynchronous spikes, similar
to neurons communicating in the brain. ANNs have shown
outstanding results in speech enhancement, especially when
equipped with substantial computational power. However,
they often show limitations in processing long-term temporal
sequences effectively. On the other hand, spiking neural
networks have a natural ability to manage temporal data and
are excellent at capturing complex temporal patterns encoun-
tered in speech signals. This paper introduces a novel model
integrating self-attention with a spiking neural network to
enhance speech quality and intelligibility. The model archi-
tecture consists of a convolutional encoder-decoder frame-
work, with a spiking transformer serving as a bottleneck.
In this framework, the spiking self-attention mechanism is
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employed to encode sparse features using spike-based repre-
sentations of query (Q), key (K), and value (V). This strategy
effectively captures temporal dependencies and contextual
relationships in the speech signal, thereby enhancing the
feature representation. Moreover, the encoder-decoder archi-
tecture incorporates a multi-scale feature extractor, which
extracts features across different scales. This enables the
model to build a comprehensive hierarchical representation
of the input signal. By leveraging this representation, the
model significantly improves its ability to learn and process
noisy speech, resulting in superior speech enhancement per-
formance. The following are the contributions to this study:

• We present a novel approach to speech enhancement
using a temporal dynamic spiking transformer as a bot-
tleneck network connecting a convolutional codec. The
temporal dynamic spiking transformer model integrates
the temporal dynamics of speech signals with the pow-
erful processing capabilities of spiking neural networks
and transformers, implying considerable improvements
in speech quality and intelligibility. Unlike traditional
DNNs that may overlook the temporal characteristics of
speech, our model prioritizes capturing and processing
temporal dependencies, leading to more contextually
relevant enhancements.

• The bottleneck is divided into two spiking transformer
branches to capture comprehensive global dependencies
across the temporal and spectral dimensions. This dual-
branch approach ensures the model comprehensively
understands and processes the complex patterns in tem-
poral and spectral features.

• We provide a detailed examination of the computa-
tional load of the proposed speech enhancement model,
presenting a detailed comparison of model complex-
ity, inference time, and memory footprint. Through a
detailed evaluation, we provide an understanding of
the trade-offs between performance improvement and
resource requirements. By quantifying the architectural
complexities, benchmarking its real-world performance,
and analyzing its memory utilization patterns, we show
the balance between speech enhancement performance
and managing resource limitations.

• we present a comprehensive evaluation of the pro-
posed speech enhancement model using two widely
recognized benchmark datasets: WSJO-SI84 and
VCTK+DEMAND. Our evaluation contains a com-
prehensive analysis of model performance across two
datasets, leveraging their high-quality and phonetically
balanced attributes. By conducting experiments on these
benchmark datasets, we aim to provide a robust review
of the model under diverse conditions and contexts.

The subsequent sections of this paper are organized as fol-
lows: Section 2 presents the problem formulation. Section 3
explains the proposed speech enhancement model, providing
detailed descriptions of its various modules. In Section 4, we
outline the experimental settings. The findings and analyses

are presented in Section 5. Finally, Section 6 concludes the
study.

II. PROBLEM FORMULATION
The single-channel speech enhancement problem aims to
improve the quality and intelligibility of speech recorded in
noisy or degraded acoustic environments using one micro-
phone. Given a noisy speech signal y(n), where n denotes
the discrete time index, the objective is to estimate the
clean speech signal s(n) by minimizing noise signals d(n);
y(n) = s(n) + d(n). The SE problem can be expressed as
finding an optimal complex mapping ŝ(n) that minimizes
the difference between the estimated clean speech and the
observed noisy speech while considering the characteristics
of both the speech signal and the background noise. Mathe-
matically, this can be formulated as:

ŝ(n) = argmin
ŝ(n)

E
{
∥s(n)− ŝ(n)∥2

}
(1)

Where E denotes the expectation operator. This is subject
to the constraint that the estimated speech signal ŝ(n) ac-
curately represents the underlying clean speech while miti-
gating the impact of the additive noise d(n). This problem
is challenging due to the presence of various types of noise
sources, non-stationary acoustic environments, and the need
to maintain the temporal and spectral characteristics of the
speech during enhancement.

III. PROPOSED SPEECH ENHANCEMENT
The network architecture of the proposed speech enhance-
ment model is illustrated in Fig. 1(A). The encoder processes
the combined real and imaginary parts of the mixture spectro-
gram Y ∈ R(2×T×F ) as input and outputs an estimated com-
plex spectrum Ŝ ∈ R(2×T×F ), where T denotes time frames
and F represents frequency bins. The encoder consists of
four convolutional layers composed of multi-scale feature
extraction blocks, followed by a downsampling operation
that reduces the frequency dimension of the feature maps by
half (1/2) [30]. Afterwards, the feature maps are processed
by a dual-branch spiking transformer network (STN), which
sequentially captures contextual information along the time
and frequency dimensions. These reshaped feature maps are
then passed to the decoder. Skip connections are incorporated
between the encoder and decoder to improve the flow of
gradients and information throughout the network. The de-
coder comprises a sub-pixel convolutional layer [31] and four
layers of multi-scale feature extraction blocks. Ultimately,
the decoder outputs the real and imaginary components (Ŝr,
Ŝi) of the estimated spectrum, which are used to reconstruct
the target speech waveform via inverse STFT.

A. MULTI-SCALE FEATURE EXTRACTION
The encoder has four convolutional layers, each with a multi-
scale feature block (MSFB), as shown in Fig.1(B) [30], [32].
Each MSFB includes two individual convolutional layers and
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FIGURE 1. (A): Network structure of the Proposed Speech Enhancement Model. ↓ in the circle indicates downsampling containing a 2D convolutional layer
followed by switchable normalization (SN) and PReLU, whereas ↑ in the circle indicates upsampling. (B) The framework of the multi-scale feature extraction block.

a feature fusion block (FFB). This is followed by a paramet-
ric ReLU (PReLU) activation and switchable normalization
(SN) operations. Unlike traditional normalization, switchable
normalization computes means and variances from different
proportions. It dynamically switches between them by learn-
ing the importance of weights for each proportion. The con-
volutional unit employs a multi-branch structure that includes
2D depthwise separable convolutions (DSConv), pointwise
convolutions, and residual connections. DSConv breaks the
convolution into two separate processes and reduces the
computational complexity. Pointwise convolution is a (1×1)
convolution that adjusts the number of channels. These con-
volutions are followed by SN and PReLU activation. The
depthwise separable convolutions use kernels of sizes (3×3)
and (5×5) respectively. By using branches in the multi-scale
feature blocks with varying levels of complexity (different
kernel sizes), it captures features at multiple scales and with
different receptive fields. This multi-branch approach im-
proves the feature space, implying it can detect and represent
a wider variety of features. It enhances the expressive power
of the convolutions, allowing the model to better understand
and process complex patterns.

To efficiently integrate features of distinct scales from the
two convolutional units, this study uses the feature fusion
block (FFB) [33]. The features fb(C×T×F )

1 and fb
(C×T×F )
2

of two convolutional units are fed to the feature fusion block
which selectively processes the feature maps. The feature
fusion block (FFB) is depicted in Fig. 2. Feature maps FB1
and FB2 are concatenated along the channel dimension, and
then processed through a linear layer followed by a sigmoid
activation. This produces a gating parameter w for fb1 and
(1-w) for fb2, respectively; given as:

w = σ(Linear(Concat[fb1, fb2])) (2)

f = PReLU((w⊗ fb1+(1−w)⊗ fb2)+ fb1+ fb2) (3)

Here f (C×T×F ) denotes the output of the FFB.

FIGURE 2. Diagram of the feature fusion block (FFB) which selectively
processes features from two convolutional units. Where w indicates a
weighted factor.

B. SPIKING TRANSFORMER NETWORK (STN)
Traditional deep learning models represent information
through continuous decimal values, whereas Spiking Neural
Networks (SNNs) operate using discrete spike sequences for
processing and transmitting data. These spiking neurons re-
ceive continuous inputs and convert them into spike patterns.
This study uses the spiking transformer, which integrates
the self-attention and transformer architecture into spiking
neural networks to enhance temporal learning capabilities.
The traditional multi-head self-attention (MHSA) is replaced
by spiking self-attention (SSA). This mechanism substituted
the conventional activation function with spiking neurons
and eliminated the softmax function usually used before
attention calculation [34]. The STN framework is depicted
in Fig. 4. The central component of the spiking transformer
architecture is its encoder, which integrates the spiking self-
attention with an MLP block. Since the softmax function
and the floating-point matrix multiplication of query (Q)
and key (K) disregard SNN computational rules, the MHSA
(Q and V) computations are not viable in SNNs. Further,
the efficient computation required by SNNs is undermined
by the quadratic space and time complexity related to the
sequence length of MHSA. On the other hand, the spiking
self-attention uses spike-based Q and K values. Firstly, the
Q, K, and V are computed using learnable matrices. These
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FIGURE 3. Diagram of the dual-STN with Temporal Attention Branch (TAB) and Frequency Attention Branch (FAB), controlled by α and β.

are subsequently transformed into spiking sequences through
distinct layers of spike neurons; given as:

Q = SNQ(BN(XWQ)) (4)

K = SNK(BN(XWK)) (5)

V = SNV (BN(XWV )) (6)

Where SN is the spike neuron layer and BN shows
the batch normalization. The computations of the attention
matrix purely contain spike-formed Q and V containing only
1 and 0. The spike-based self-attention can be defined as:

SSA′(Q,K, V ) = SN(QKTV ) (7)

SSA(Q,K, V ) = SN(BN(Linear(SSA′(Q,K, V )))
(8)

Based on Equations (4-6), the spike neuron layers (SN)
produce spike sequences Q and K, inherently yielding non-
negative values (0 or 1), thereby leading to a non-negative
attention map. Spiking self-attention selectively aggregates
relevant features while disregarding irrelevant details.

Similar to the study in [35], the bottleneck is divided into
two spiking transformer branches to capture comprehensive
global dependencies across the temporal and spectral dimen-
sions. This dual-branch approach ensures the model compre-
hensively understands and processes the complex patterns in
temporal and spectral features. As shown in Fig. 3, the bot-
tleneck consists of two separate sub-branches that function
simultaneously along the time and frequency dimensions; a
Temporal Attention Branch (TAB) and the Frequency Atten-
tion Branch (FAB). These branches are effective in capturing
extensive global dependencies across temporal and spectral
dimensions by incorporating two adaptive weights, labelled

FIGURE 4. Diagram of the Spiking Transformer Network (STN) with Spiking
Self-Attention (SSA). Here SQ, SK, and SV denote spiked query, key, and
value.

as α and β. In Fig. 3, B, T , F , C, denote the batch size,
the frame number, the frequency dimension, and the channel
number, respectively. The final output is followed by PReLU
activation and convolutional 2D layer; given as:

foutput = fin + αOutFAB + βOutTAB (9)

Where α and β are initialized as 1, which are adjusted
adaptively to suitable values.

IV. EXPERIMENTS
A. DATASETS
We evaluate the performance of the proposed speech en-
hancement model called TD-STNet on the WSJ0-SI84
dataset, which includes 7,138 clean sentences from 83 speak-
ers (42 male and 41 female). For this study, we randomly
selected 3,000 training sentences and 1,000 validation sen-
tences from these 80 speakers. Additionally, we create two
test sets, each containing 200 sentences from 3 male and 3
female untrained speakers. To generate clean-noisy pairs, we
use various noise types sourced from the Perception and Neu-
rodynamics Laboratory and the Laboratory for Recognition
and Organization of Speech and Audio. During the mixing
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process, a random section of noise is extracted and mixed
with a randomly selected sentence at SNRs ranging from -
5dB to 5dB in 1dB increments. This results in clean-noisy
pairs for both training and validation, with the total duration
of the training set amounting to approximately 150 hours.
To show the generalization abilities of the model, we use
two challenging untrained noise types (babble and factory1
from NOISEX-92). For network evaluation, we employ four
testing SNRs: -3dB, 0dB, 3dB, and 6dB, yielding 300 clean-
noisy pairs for each SNR.

We evaluate the performance of the proposed TD-STNet
framework using the publicly available VCTK+DEMAND
dataset. The training set includes sentences from 28 speakers,
while the testing set features sentences from 2 speakers, each
contributing approximately 400 sentences. During training,
the sentences are mixed with 10 different noise types at four
SNR levels (0 dB, 5 dB, 10 dB, and 15 dB), creating a total
of 11,572 clean-noisy mixtures. For testing, the sentences are
mixed with 5 noise types at SNRs of 2.5 dB, 7.5 dB, 12.5 dB,
and 17.5 dB, resulting in a testing set with 824 clean-noisy
mixtures. Importantly, both the speakers and noise types in
the testing set are untrained (unseen) in the training set.

B. NETWORK SETTINGS AND TRAINING

The convergence of a deep neural network significantly
relies on optimal weight initialization. In this study, we
utilise the Glorot-Uniform (Xavier) initializer to initialize the
network. The encoder consists of four convolutional layers
with MSFM. The decoder mirrors the encoder’s structure,
containing four sub-pixel deconvolutional layers. We use a
batch size of 16 for training. The network is optimized using
the Adam optimizer with carefully tuned default parameters:
α = 0.001, β1 = 0.9, β2 = 0.999, and ε = 10−8, where α,
β1, and β2 are the step size and the exponential decay rates
for the first and second-moment estimates, respectively. The
initial learning rate γ is set at 0.001 and dynamically decays
based on the average training loss. When the average loss
decreases by a factor of ten, the learning rate is successively
reduced to 0.0005, 0.0002, and 0.0001. The model is trained
for 100 epochs with a dropout rate of 20%. The noisy
mixtures are sampled at 16 kHz with a window length of 512
samples. With a 50% overlap between frames, the frame-shift
is set to 16 ms.

Estimating the complex mapping function Fϕ requires
optimizing a weighted combination of time and frequency
loss, as described by [36], which is given by:

L = υ ∗ Ltime + (1− υ) ∗ Lfrequency (10)

Where υ indicates an adaptable parameter, which is fixed
empirically as 0.4. The loss functions are provided as:

Ltime =
1

N

N−1∑
m=0

(s[n])− ŝ[n])2 (11)

Lfreq =
1

TF

T−1∑
t=0

F−1∑
f=0

[(|Sr|+ |Si|)− (|Ŝr|+ |Ŝi|)] (12)

Where s(n) and ŝ(n) indicate the clean speech and en-
hanced version of noisy speech, with N denoting the sample
number. Whereas (we omit (t, f) due to space limitations)
S(t,f) and ˆS(t,f) symbolise clean and enhanced spectrograms
with real (r) and imaginary (i) parts.

C. METRICS AND BENCHMARKS
This section outlines the metrics and benchmarks used to
quantitatively assess SE performance. The metrics include
PESQ (Perceptual Evaluation of Speech Quality) [37], ES-
TOI (Extended Short-Time Objective Intelligibility) [38],
and SI-SDR (Scale-Invariant Signal-to-Distortion Ratio).
PESQ, with scores ranging from -0.5 to 4.5, measures
speech quality, where higher scores indicate better quality.
In this study, narrow-band PESQ is applied to the WSJ0-
SI84+DNS dataset, while wide-band PESQ is used for the
VCTK+DEMAND dataset. ESTOI scores range from 0 to 1,
with 1 indicating perfect intelligibility. Higher SDR values
denote better performance. Segmental SNR (SNRSeg) and
frequency-weighted SNRSeg (FW-SNRSeg) are also used to
evaluate the quality and intelligibility [39]. For the WSJ0-
SI84 dataset, this study compares the proposed SE against
several benchmarks: CRN [40], DPRNN [41], GCRN [42],
DCCRN [43], AECNN [44], CTS-Net [45], GaGNet [46],
and CPB-Net [35]. For the VCTK+DEMAND dataset, the
baselines include PHASEN [47], RDL-Net [48], DEMUCS
[49], GaGNet [46], TSTNN [50], MSSA-TCN [51], FAF-
Net [52], PFRNet [53], CTS-Net [45], U-shaped transformer
(UT-FAT) [54], dual-branch state space (DB-S4D)-based SE
[55], DB-CRN [56], and SADN-UNet [57].

V. RESULTS AND ANALYSIS
A. EVALUATION ON WSJ0-SI84 DATASET
This section assesses the performance of the proposed speech
enhancement model against recent benchmarks.

Table 1 compares the speech enhancement performance of
TD-STNet and benchmarks in settings with seen speakers
and noise backgrounds. On average, AECNN shows the
lowest SE performance (PESQ and ESTOI) among bench-
marks, with a ∆ESTOI of 31.81% and ∆PESQ of 0.85, but
a better ∆SI-SDR of 9.99 dB than CRN (7.69dB). GCRN,
with its improved convolutional encoder-decoder (CED) in
the complex domain, achieves better results: ∆SI-SDR of
10.11dB, ∆ESTOI of 36.22%, and ∆PESQ of 1.05. DPRNN,
using dual-path processing, outperforms CRN and AECNN,
showing a ∆SI-SDR of 10.30dB, ∆ESTOI of 33.21%, and
∆PESQ of 0.98. DCCRN, with a complex CED, also im-
proves over CRN and AECNN, achieving a ∆SI-SDR of
10.16dB, ∆ESTOI of 32.73%, and ∆PESQ of 0.98. CTS-
Net and CPB-Net, with advanced architectures and feature
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TABLE 1. Speech enhancement performance of the TD-STNet and benchmarks in seen speakers and seen noisy background settings. Seen conditions include
stationary and non-stationary noises: babble, street, F16, and airport noise.

Measure Input Feature Year ESTOI (%) SI-SDR (dB) PESQ
SNR (dB) – – -3dB 0dB 3dB Avg -3dB 0dB 3dB Avg -3dB 0dB 3dB Avg
Mixture – – 31.80 40.47 49.36 40.54 -2.87 0.13 3.12 0.13 1.66 1.87 2.08 1.87

CRN [40] Magnitude 2018 66.13 73.50 79.20 72.94 5.38 7.74 9.96 7.69 2.49 2.75 2.96 2.73
AECNN [44] Waveform 2019 64.54 73.20 79.33 72.36 7.71 10.13 12.14 9.99 2.43 2.76 2.99 2.72
GCRN [42] Real-Imag 2019 69.74 77.59 82.95 76.76 7.77 10.28 12.29 10.11 2.64 2.94 3.18 2.92

DPRNN [41] Waveform 2020 65.93 74.21 81.11 73.75 7.94 10.39 12.56 10.30 2.55 2.89 3.14 2.86
DCCRN [43] Real-Imag 2020 65.40 73.79 80.62 73.27 7.75 10.33 12.41 10.16 2.54 2.88 3.12 2.85
CTS-Net [45] Real-Imag+Mag 2021 74.48 80.76 84.84 80.03 9.44 11.67 13.48 11.53 2.84 3.12 3.32 3.09
GaGNet [46] Real-Imag 2022 68.65 76.61 82.22 75.83 8.97 11.23 13.32 11.17 2.58 2.90 3.17 2.88
CPB-Net [35] Real-Imag 2022 72.38 76.39 84.04 77.60 9.27 11.59 13.03 11.30 2.77 3.07 3.28 3.04

TD-STNet Real-Imag 2024 74.44 81.13 85.09 80.22 9.28 11.80 13.49 11.52 2.80 3.16 3.30 3.09

TABLE 2. SE performance of the TD-STNet and benchmarks in unseen speakers and unseen noisy background settings. Unseen conditions include stationery
and non-stationary noises: babble1, Car, and factory1 noise.

Measure Input Feature Year ESTOI (%) SI-SDR (dB) PESQ
SNR (dB) – – -3dB 0dB 3dB Avg -3dB 0dB 3dB Avg -3dB 0dB 3dB Avg
Mixture – – 30.58 39.16 48.18 39.31 -3.07 -0.08 2.95 -0.07 1.42 1.65 1.89 1.65

CRN [40] Magnitude 2018 61.96 70.63 76.80 69.80 5.16 7.71 9.99 7.62 2.17 2.49 2.73 2.46
AECNN [44] Waveform 2019 62.21 71.54 78.10 70.62 7.13 9.89 11.95 9.66 2.17 2.51 2.82 2.50
GCRN [42] Real-Imag 2019 66.53 76.28 81.95 74.92 7.54 10.06 12.05 9.88 2.38 2.76 2.97 2.70

DPRNN [41] Waveform 2020 65.25 73.90 80.89 73.35 7.66 10.13 12.29 10.03 2.30 2.68 2.96 2.65
DCCRN [43] Real-Imag 2020 63.88 72.78 79.29 71.98 7.51 10.06 12.16 9.91 2.30 2.62 2.91 2.61
CTS-Net [45] Real-Imag+Mag 2021 72.79 79.13 84.14 78.69 9.10 11.45 13.21 11.25 2.61 2.93 3.11 2.87
GaGNet [46] Real-Imag 2022 67.89 76.05 81.89 75.28 8.73 11.00 13.09 10.94 2.34 2.69 2.95 2.66
CPB-Net [35] Real-Imag 2022 71.68 76.72 83.90 77.43 9.07 11.38 12.83 11.09 2.54 2.88 3.09 2.84

TD-STNet Real-Imag 2024 73.63 79.08 84.89 79.20 9.03 11.53 13.23 11.26 2.56 2.95 3.12 2.89

types, demonstrate excellent SE performance, with CTS-
Net achieving a ∆SI-SDR of 11.53dB, ∆ESTOI of 39.48%,
and ∆PESQ of 1.21, and CPB-Net showing a ∆SI-SDR of
11.30dB, ∆ESTOI of 37.06%, and ∆PESQ of 1.17.

TD-STNet surpasses most benchmarks, except for CTS-
Net, where it falls behind in some metrics and SNRs.
TD-STNet achieves average values of ∆SI-SDR=11.52dB,
∆ESTOI=39.67%, and ∆PESQ =1.22, outperforming CRN
by 3.83dB in ∆SI-SDR, 7.28% in ∆ESTOI, and 0.35 in
∆PESQ. It also outperforms GCRN by 1.41dB in ∆SDR,
3.46% in ∆ESTOI, and 0.17 in ∆PESQ, whereas exceeds
GaGNet by 0.35dB in ∆SI-SDR, 4.39% in ∆ESTOI, and
0.2 in ∆PESQ. TD-STNet exceeds two time-domain SE
benchmarks, with improvements of 1.53dB in ∆SI-SDR,
7.86% in ∆ESTOI, and 0.36 in ∆PESQ over AECNN,
whereas 1.23dB in ∆SI-SDR, 6.47% in ∆ESTOI, and 0.23 in
∆PESQ over DPRNN. At low SNR conditions of -3dB, TD-
STNet achieves better speech quality than GaGNet, CPB-
Net, DCCRN, and GCRN, with ∆SI-SDR improvements
of 0.31, 0.01, 1.53, and 1.51, ∆ESTOI improvements of
5.79%, 2.06%, 9.04%, and 4.7%, and ∆PESQ improvements
of 0.22, 0.03, 0.26, and 0.16. TD-STNet and CTS-Net show
competitive performance; TD-STNet shows overall speech
enhancement performance through multi-scale feature learn-
ing and effective global information capturing.

Table 2 presents the average SE performance of TD-
STNet and benchmarks in scenarios with unseen speakers
and noisy backgrounds (car, factory1, and babble1). The
results demonstrate that TD-STNet wildly outperforms time-

domain benchmarks (AECNN and DPRNN) and single-
branch convolutional encoder-decoder benchmarks (CRN,
GCRN, and DCCN) across all metrics in unseen noisy
and speaker scenarios. An average improvement of ap-
proximately ∆PESQ=1.22, ∆ESTOI = 38.39%, and ∆SI-
SDR=11.20dB is observed over noisy mixtures with un-
known speakers. At -3dB low SNR, TD-STNet shows an av-
erage improvement of ∆PESQ=0.18, ∆ESTOI=7.10%, and
∆SDR=1.49dB over GCRN. Additionally, at a favourable
3dB SNR, TD-STNet surpasses GaGNet by ∆PESQ=0.17,
∆ESTOI = 3%, and ∆SI-SDR=0.14dB. CTS-Net performs
marginally better in a few specific conditions, such as
achieving PESQ=2.61 at -3dB which is better than the
proposed model by factor ∆PESQ=0.05, ESTOI=74.48%
(∆ESTOI=0.04% greater than CTS-Net), and SI-SDR =
9.44dB (∆SDR=0.07dB). Overall, Table 2 highlights the
superior performance of TD-STNet and benchmarks in real-
world applications where SE must handle various unseen
noise types and speaker characteristics.

Additionally, segmental SNR (SNRSeg) and frequency-
weighted SNRSeg (FW-SNRSeg) are employed to evaluate
the quality and intelligibility of noisy speech. SNRSeg pro-
vides a detailed analysis by assessing segments of the speech
signal rather than the entire signal at once. FW-SNRSeg
expands SNRSeg by incorporating frequency weighting to
better reflect human auditory perception. The additional met-
rics are as follows:
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TABLE 3. Performance on the VCTK+DEMAND database. “–” means no results were supplied in the original study. The symbol "∆" means improvements.

Models Para# STOI PESQ Covl Csig Cbak SNRSeg ∆STOI ∆PESQ ∆Covl ∆SNRSeg
Mixture – 91.6 1.97 2.63 3.34 2.44 1.69 – – – –

PHASEN [47] 8.76M – 2.99 3.62 4.21 3.55 7.66 – 1.02 0.99 5.97
RDL-Net [48] 3.91M 93.8 3.02 3.72 4.38 3.43 – 2.2 1.05 1.09 –
DEMUCS [49] 128M 95.1 3.07 3.63 4.31 3.40 8.53 3.5 1.1 1 6.84
GaGNet [46] 5.94M 94.7 2.94 3.59 4.36 3.45 9.24 3.1 0.97 0.96 7.55
TSTNN [50] 0.92M 95.1 2.96 3.49 4.17 3.53 9.72 3.5 0.99 0.86 8.03

MSSA-TCN [51] 9.91M 94.0 3.02 3.67 4.29 3.50 – 2.4 1.05 1.04 –
FAF-Net [52] 6.90M 95.0 3.19 3.66 4.13 3.38 – 3.4 1.22 1.03 –
PFRNet [53] 4.61M 95.0 3.24 3.90 4.48 3.70 – 3.4 1.27 1.27 –
CTS-Net [45] 4.35M – 2.92 3.59 4.25 3.46 – – 0.95 0.96 –
UT-FAT [54] 4.31M – 3.08 3.68 4.23 3.63 11.69 – 1.11 1.05 10
DB-S4D [55] 10.80M 93.4 2.55 3.23 3.94 3.00 – 1.8 0.58 0.6 –
DB-CRN [56] 8.31M 94.0 3.16 3.62 4.07 3.68 10.98 2.4 1.19 0.99 9.29

SADN-UNet [57] 2.63M 95.0 2.82 3.51 4.18 3.47 – 3.4 0.85 0.88 –
TD-STNet 3.14M 95.0 3.13 3.82 4.29 3.66 11.12 3.4 1.16 1.19 9.43

SNRSeg =
10

W

W−1∑
w=0

log10
s2(n)

(s(n)− ŝ(n))2
(13)

FWS =
10

W

W−1∑
w=0

∑L
i=1 M(i, n)log10

S(i,n)2

(S(i,n)−Ŝ(i,n))2∑K
i=1 M(i, n)

(14)
Here FWS denotes FW-SRNSeg. The weight M(i, n)

indicates the emphasis on the ith frequency bin, where L
is the total number of bands, and W is the total number
of frames in the signal. S(i, n) represents the excitation
spectrum of the clean signal in ith frequency bin at nth frame.

Figure 5 illustrates the average speech enhancement per-
formance of TD-STNet in seen and unseen conditions for
speakers and SNRs, evaluated using SNRSeg and FW-
SNRSeg. In seen noisy mixtures for known speakers at
low SNR of -3dB, an average improvement of ∆SNRSeg
= 3.74dB and ∆FW-SNRSeg=5.71dB is observed. In un-
seen noisy mixtures for unknown speakers at -3dB SNR,
the average improvement is ∆SNRSeg=5.01dB and ∆FW-
SNRSeg=7.27dB.

B. EVALUATION ON VCTK+DEMAND DATASET
This section compares the performance of the proposed
method with recent time and time-frequency domain
benchmarks using PESQ, STOI, Csig, Cbak, Covl, and
SNRSeg. Csig, Cbak, and Covl suggest the mean opin-
ion score (MOS) for speech distortion, background noise
intrusiveness, and overall speech quality, respectively. For
the VCTK+DEMAND dataset, the benchmarks include
PHASEN [47], RDL-Net [48], DEMUCS [49], GaGNet [46],
TSTNN [50], MSSA-TCN [51], FAF-Net [52], PFRNet [53],
CTS-Net [45], U-shaped transformer (UT-FAT) [54], dual-
branch state space (DB-S4D)-based SE [55], DB-CRN [56],
and SADN-UNet [57]. Table 3 outlines the results for the
VCTK+DEMAND dataset. “–” denotes missing results in
the original paper, and "∆" indicates improvement in PESQ,
STOI, Covl, and SNRSeg.

FIGURE 5. SNRSeg and FW-SNRSeg for Seen and Unseen conditions.

Based on the results in Table 3, TD-STNet demon-
strates competitive performance compared to benchmarks
across multiple metrics (PESQ, STOI, Csig, Cbak, Covl,
and SNRSeg). TD-STNet yields average ∆PESQ=0.15
(over PHASEN) and ∆PESQ=0.12 (over DEMUCS),
whereas ∆Covl=0.19 and ∆Covl=0.2 over PHASEN and
DEMUCS, respectively. Compared to RDL-Net, TD-
STNet shows ∆PESQ=0.11, ∆STOI=1.2%, ∆Cbak=0.23,
and ∆Covl=0.10. From GaGNet, TD-STNet results in
∆PESQ=0.19, ∆STOI=0.3%, ∆Covl=0.23, and ∆SNRSeg=
1.88dB. Additionally, TD-STNet improves upon MSSA-
TCN and CTS-Net with ∆PESQ=0.11 and 0.21, whereas
∆Covl=0.15 and 0.23, respectively. These findings high-
light the ability of TD-STNet to enhance quality, intelli-
gibility, and noise reduction. Compared to state-of-the-art
time-domain baselines, TD-STNet consistently outperforms
across all objective metrics. Compared to TSTNN, TD-
STNet achieves ∆PESQ=0.17, ∆Csig=0.12, ∆Covl=0.33,
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TABLE 4. Computational efficiency for real-time processing vs performance evaluating metrics on the VCTK+DEMAND database. since no future frames are
involved during processing, this amounts to a causal SE model. “–” denotes no results provided in the original paper. The symbol "∆" indicates improvement in
PESQ and STOI.

Model Year Feat MACs RTFs Para # PESQ STOI ∆PESQ ∆STOI
Mixture – – – – – 1.97 91.6 – –

DCCRN [43] 2020 Real-Imaginary 14.36[G/s] 2.19 3.67M 2.54 93.8 0.57 2.2
NSNet [58] 2021 Magnitude 0.43[G/s] 0.02 6.16M 2.47 92.3 0.5 0.7

GaGNet [46] 2021 RI+Magnitude 1.65[G/s] 0.05 5.95M 2.94 – 0.97 –
DPT-FSNet [59] 2022 Magnitude — — 0.88M 3.20 95.0 1.23 3.4
DPTGAN [60] 2022 Magnitude — — 24.74M 2.86 94.0 0.89 2.4
FRCRN [61] 2022 Real-Imaginary 12.30[G/s] – 10.27M 3.21 – 1.24 –

FullSubNet+ [62] 2022 RI+Magnitude 30.06[G/s] 0.55 8.67M 2.88 94.0 0.91 2.4
DF-Net [63] 2022 Magnitude 0.35[G/s] 0.11 2.31M 2.81 94.2 0.84 2.6

DPT-ECA [64] 2023 Magnitude 17.85[G/s] — 2.17M 3.17 95.0 1.2 3.4
TD-STNet 2024 Real-Imaginary 9.64[G/s] 0.18 3.14M 3.13 95.0 1.16 3.4

TABLE 5. Comparisons of parameter size (Million), MACs (G/s), CPU-PT (sec), MFP, and TBT (sec).

Models Model Size MACs CPU-PT FMFP BMFP TBT
CRN [40] 17.58M 2.57 (G/s) 0.27 sec 0.18 0.33 0.07 sec

GCRN [42] 9.77M 2.42 (G/s) 0.17 sec 0.19 0.22 0.15 sec
DCCRN [43] 3.67M 14.36 (G/s) 0.40 sec 0.66 0.67 0.27 sec

TD-STNet 3.14M 9.64 (G/s) 0.20 sec 0.28 0.29 0.25 sec

TABLE 6. Generalization ability of the proposed speech enhancement towards unknown speakers and background noises.

Noise 32-Talker Babble Noise Exhibition Hall Noise Crowd Laughter Noise Rain Thunder Noise
Measure PESQ ESTOI PESQ ESTOI PESQ ESTOI PESQ ESTOI

SNR -3dB 3dB -3dB 3dB -3dB 3dB -3dB 3dB -3dB 3dB -3dB 3dB -3dB 3dB -3dB 3dB
Mixture 1.61 1.95 33.01 50.91 1.54 1.92 32.52 50.39 1.65 1.95 33.59 51.02 1.64 1.94 33.57 51.00

CRN [40] 2.26 2.74 65.67 78.87 2.18 2.69 65.24 78.39 2.31 2.76 66.19 78.94 2.30 2.75 66.17 78.92
GCRN [42] 2.45 2.97 69.72 82.97 2.39 2.93 69.26 82.51 2.48 2.98 70.27 83.02 2.47 2.97 70.25 83.00

DCCRN [43] 2.33 2.89 64.87 79.54 2.26 2.86 64.36 79.08 2.37 2.89 65.47 79.59 2.36 2.88 65.45 79.57
TD-STNet 2.51 3.07 71.89 83.98 2.47 3.05 71.47 83.58 2.52 3.06 72.40 83.97 2.51 3.05 72.38 83.95

and ∆SNRSeg=1.4dB. PFRNet and FAF-Net show improve-
ments in PESQ (0.11 and 0.06) over TD-STNet, but they
show higher computational complexity with an additional
1.47M and 3.76M parameters. UT-FAT reaches superior
SNRSeg (∆SNRSeg=10dB)m which is 0.57dB higher than
TD-STNet but with 1.18M additional parameters. From DB-
CRN, TD-STNet results in average improvements of 0.14dB
in SNRSeg, 0.1% in STOI, and 0.2 in Covl, respectively.

C. COMPUTATIONAL COMPLEXITY ANALYSIS
We evaluate the computational efficiency of the proposed
speech enhancement model for real-time processing, em-
phasizing its causal nature (processing only current frames).
The evaluation includes analysis of trainable parameters,
multiply-accumulate operations (MACs), and real-time fac-
tor (RTF), measured on a Core i5-1135G7@ 2.4GHz CPU.
The computational efficiency of TD-STNet for real-time pro-
cessing is compared against several benchmarks: DPT-FSNet
[59], DPTGAN [60], DPT-ECA [64], NSNet [58], FullSub-
Net+ [62], DCCRN [43], GaGNet [46], FRCRN [61], and
DF-Net [63]. Table 4 displays the parameter count, MACs,
and RTF for TD-STNet and benchmarks. TD-STNet features
approximately 3.14 million parameters, 9.64(G/s) MACs,
and 0.18 RTF, outperforming DCCRN (0.53M parameters,
4.72G/s MACs, 2.01 RTF) and FullSubNet (5.53M param-

eters, 20.42G/s MACs, 0.37 RTF). NSNet achieves superior
MACs (0.43G/s) and RTF (0.02) with 3.02M additional pa-
rameters, a small PESQ (2.47), and STOI (0.923) compared
to TD-STNet. DF-Net shows lower MACs (0.35G/s), RTF
(0.11), and parameters (2.31M); however, TD-STNet exceeds
in ∆PESQ=0.32 and ∆STOI=0.80%. TD-STNet requires
approximately 10.12MB of memory with 3.14M parameters.
The inference speed was evaluated using an Intel® Core™
i5-1135G7 CPU@2.40 GHz for processing 16000 audio
samples. Training batch time (TBT) and memory usage were
assessed on an NVIDIA GeForce GTX 1650Ti with 4 sam-
ples in a batch. The further information is shown in Table 5.
It shows the parameter size in millions, the MACs in gigabits
per second, the CPU processing time (CPU-PT) in seconds,
the forward and backward memory footprint (MFP), and
the training batch time (TBT) for three benchmark speech
enhancement models.

We further analyze the time-spectral representation of
speech generated using TD-STNet and benchmarks. Figure 6
presents the time-spectral analysis of speech spoken by a fe-
male speaker from the WSJO-SI84 dataset. The spectrogram
of the produced speech by TD-STNet effectively preserves
harmonic structures, demonstrating robustness during speech
activity regions. During the speech pauses, TD-STNet atten-
uates residual noise while retaining faint harmonics at higher
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FIGURE 6. Spectrogram visualization at -3dB babble noise. Noisy speech (PESQ=1.54, ESTOI=31.3%), CRN (PESQ=2.43, ESTOI=68.9%), GCRN (PESQ=2.51,
ESTOI=69.1%), DCCRN (PESQ=2.42, ESTOI=65%), DPRNN (PESQ=2.52, ESTOI=65.8%), AECNN (PESQ=2.29, ESTOI=64.2%), CTS-Net (PESQ=2.59,
ESTOI=68.5%), CPB-Net (PESQ=2.74, ESTOI=72.21%), and TD-STNet (PESQ=2.78, ESTOI=74.32%).

frequencies. This increases speech quality and reduces back-
ground distortions, thereby improving speech intelligibility.
The spectrograms of the GCRN, DCCRN, and AECNN
also exhibit enhanced spectral representations, highlighting
the advancements in recent DNN-based speech enhancement
models. The spectrograms include the PESQ and ESTOI
scores at -3dB babble noise.

D. SPEAKERS AND NOISES: ROBUST
GENERALIZATION
The generalization of a speech enhancement model is the
ability to improve speech signals in real-world scenes, de-
spite differences in speakers and background noises from
the training data. A speech enhancement must manage var-
ious speakers and noises, requiring robust generalization for
effective performance in diverse environments. We exper-
iment with the generalization of the proposed TD-STNet
with unknown speakers and noises, including crowd laughter,
exhibition halls, 32-talker babble, and rain thunders (the PSD
of background noises are depicted in Fig. 7). Training uses
clean data (clean-trainset-56spk from the VCTK database)

and background noises are mixed at SNRs: -5dB, 0dB, and
+5dB. Testing involves four unknown noises and speakers at
-3dB and +3dB SNRs. Table 6 shows that PESQ and STOI
metrics evaluate the performance of TD-STNet and three
benchmark models (CRN, GCRN, and DCCRN). Real-world
noise characteristics vary over time, requiring adaptive track-
ing of noise power spectral density (PSD). Table 6 demon-
strates the performance of TD-STNet over benchmarks in
unknown conditions, achieving ∆ESTOI improvements of
5.73%, 1.66%, and 5.89% whereas ∆PESQ improvements of
0.28, 0.07, and 0.17 over CRN, GCRN, and DCCRN, respec-
tively. The benchmark GCRN performs better with a ∆PESQ
of 0.93 and a ∆ESTOI of 34.7% over noisy mixtures,
outperforming CRN (∆PESQ=0.72, ∆ESTOI=30.63%), and
DCCRN (∆PESQ = 0.83, ∆ESTOI=30.47%). At low SNRs
(-3dB), the proposed model generalizes well and obtains
better PESQ and ESTOI.

E. ABLATION STUDIES
Ablation studies are performed to understand the contribu-
tions of individual modules in the proposed model by sys-
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FIGURE 7. PSD and Waveforms of four background noises to examine the generalization ability.

TABLE 7. Ablation studies on the VCTK+DEMAND database to understand the contributions of individual modules. w/ and w/o denote with and Without,
respectively.

Performance Speech Enhancement Performance Computational Complexity
Models STOI PESQ SNRSeg Covl Csig Cbak Para# RTF MACs
Mixture 91.6 1.97 1.69 2.63 3.34 2.44 – – –

TD-STNet w/ TN 94.7 2.98 10.88 3.76 4.18 3.45 3.16M 0.25 9.77 (G/s)
TD-STNet w/o STN 93.1 2.78 9.32 3.38 3.87 3.11 1.11M 0.07 4.01 (G/s)

TD-STNet w/ STN+FAB 94.7 3.02 10.94 3.78 4.23 3.52 2.88M 0.18 8.21 (G/s)
TD-STNet w/ STN+TAB 94.1 3.06 11.01 3.81 4.27 3.58 2.88M 0.18 8.21 (G/s)

DCCRN [43] 93.8 2.54 8.62 3.27 3.88 3.18 3.70M 2.19 14.36 (G/s)
GaGNet [46] 94.7 2.94 9.24 3.59 4.26 3.45 5.95M 0.05 1.65 (G/s)

TD-STNet (Proposed) 95.0 3.13 11.12 3.82 4.29 3.66 3.14M 0.18 9.64 (G/s)

tematically altering them and observing the impact on overall
speech enhancement performance. This process helped vali-
date design options and confirm the importance of specific
modules. For ablation studies, we have evaluated the config-
urations: (i) TD-STNet representing the complete proposed
model, (ii) TD-STNet w/ TN representing the SE model re-
placing the STN with traditional transformer, (iii) TD-STNet
w/o representing the model without STN bottleneck, (iv)
TD-STNet w/ STN+FAB representing the proposed model
with STN bottleneck using the frequency attention branch
(FAB), and (v) TD-STNet w/ STN+TAB representing the
proposed model with STN bottleneck using the frequency at-
tention branch (FAB). Additionally, we provide three bench-
mark models for comparison. Table 7 shows the results of
ablation studies to examine the contributions of individual
modules. Using the STN bottleneck enhances speech per-
formance more effectively than the traditional transformer
model, demonstrating the success of the spiking transformer.
However, removing the bottleneck reduces computational
complexity but significantly degrades speech enhancement
performance. Incorporating both time and frequency atten-
tion modules improves speech enhancement while maintain-

ing acceptable computational complexity (3.14M para#, 0.18
RTF, and 9.64G/s MACs).

VI. CONCLUSION
This paper presents a model for speech enhancement by
integrating self-attention with spiking neural networks. It
uses a convolutional encoder-decoder architecture with a
spiking transformer bottleneck network (STN). In the pro-
posed SE model, the spiking self-attention in STN uses
spike-based queries, keys, and values to capture temporal
dependencies and contextual relationships. The spiking bot-
tleneck network has two branches to capture global de-
pendencies across temporal and spectral dimensions. The
encoder-decoder includes a multi-scale feature extractor for
hierarchical representation, improving the model’s ability
to process noisy speech. In conclusion, our approach to
speech enhancement employs a temporal dynamic spiking
transformer as a bottleneck network in a convolutional codec.
By integrating the temporal dynamics of speech with the
advanced processing capabilities of spiking neural networks
and transformers, our model significantly improves speech
quality and intelligibility (achieves average values of ∆SI-
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SDR=11.52dB, ∆ESTOI=39.67%, and ∆PESQ =1.22, out-
performing benchmark by 3.83dB in ∆SI-SDR, 7.28% in
∆ESTOI, and 0.35 in ∆PESQ). It effectively captures and
processes temporal dependencies, resulting in more contex-
tually relevant enhancements. Our dual-branch spiking trans-
former bottleneck effectively captures global dependencies
across temporal and spectral dimensions (represented by
Table 7 where results support this conclusion). This compre-
hensive approach enhances the model’s ability to understand
and process complex patterns in speech, leading to superior
speech enhancement performance. we thoroughly examine
the computational load of the proposed speech enhancement
model in unknown background noises and speakers (as given
in Table 6 where model generalization to unknown conditions
is effective). Comparing model complexity, inference time,
and memory footprint, our evaluation highlights the per-
formance improvements and resource requirements, demon-
strating a balance between enhanced speech performance
and resource management. The proposed model shows better
real-time performance in terms of many metrics (featuring
approximately 3.14 million parameters, 9.64(G/s) MACs,
and 0.18 RTF, outperforming many benchmark models, con-
firmed by Table 4). Integrating time and frequency attention
modules improves SE while maintaining adequate computa-
tional complexity.

Effective extracting and processing of temporal features
are essential for time series data such as highly non-stationary
speech and noise signals. The spiking transformer in the
proposed model creates an attention matrix at each time
step. However, this attention process only relates to the
current input, resulting in the underutilized information from
different time steps. The future study can include a robust
module within the query structure, which aims to better
utilize historical information, thereby improving the temporal
features.
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