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ABSTRACT Early identification of Neurodevelopmental Disorders (NDD) allows for faster intervention, 

which in turn improves clinical outcomes and reduces the individual and societal costs associated with the 

diagnosis. The aims of the study were to 1) investigate the use of the DeepLabCut (DLC) toolbox to 

automatically analyze the motor patterns of infants at Low Risk (LR) and High Risk (HR) for Autism 

Spectrum Disorder (ASD); and 2) define the critical time window in which atypical motor patterns 

discriminate between typically developing infants and those diagnosed with ASD or NDD. The DLC toolbox 

was used to train a model capable of tracking the movements of both LR and HR infants longitudinally at the 

ages of 10 days, 6 weeks, 12 weeks, 18 weeks, and 24 weeks. 226 videos of 87 infants (45 females), collected 

within the Italian Network for Early Detection of Autism Spectrum Disorder (NIDA), were analyzed. Using 

the Percentage of Correct Key-points (PCKh) accuracy metric, the DLC’s tracking performance was verified 

by comparing the obtained 2D hands and feet coordinates with those extracted by the Movidea software. 

Furthermore, motor features were computed and fed to three classifiers: Fine Tree, RUSBoosted Trees, and 

Narrow Neural Network to investigate their usefulness in terms of early NDD prediction. Satisfactory PCKh 

results were obtained for both hands and feet (left foot: 96.6%, right foot: 96.2 %, left hand: 80.9%, right 

hand: 82.8%). The best classification results were obtained with the RUSBoosted classifier at the ages of 10 

days and 6 weeks. The 5-fold cross-validation accuracy was 81.4%, with a true negative rate of 80.0% and 

true positive rate 87.5%. Our data confirm the usefulness of DLC as a low-cost approach to track infant 

movements during the writhing period. Early motor behavior at the ages of 10 days and 6 weeks carries 

valuable information that has the potential to be suitable in predicting the diagnosis of NDD. 

INDEX TERMS Autism, DeepLabCut, High Risk infants, early behavior, movement tracking, 

Neurodevelopmental Disorders  
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I. INTRODUCTION 

Neurodevelopmental Disorders (NDD), including Autism 

Spectrum Disorder (ASD), are early onset conditions, 

characterized by various deficits in one’s personal, 

academic, social, or occupational functioning [1].  

Early identification of NDD is critical but challenging 

due to a long prodromal period through mid- to late infancy 

[2, 3]. Thanks to the high degree of neuroplasticity in the 

first years of human life [4], early intervention has the 

potential not only to maximize individual outcomes and 

improve prognosis [5], but also to reduce the societal and 

family costs associated with the diagnosis [6]. Recently, 

there has been an increased interest in the early detection 

of NDD, including ASD, which is currently diagnosed, in 

the best-case scenario, when a child is around 2-3 years of 

age [7, 8, 9, 10]. According to various studies, differences 

between children later diagnosed with ASD and those 

typically developing (TD) ones are already present in the 

first year of life [11, 12]. Movement atypicality is one of 

the first signs that might precede social or language 

abnormalities in ASD [13]. Therefore, even though atypical 

motor development is not a core symptom of ASD, it is 

often examined in the context of risk assessment [14]. 

Indeed, early motor development has been extensively 

explored in high-risk infants of developing ASD, i.e., 

siblings of children with a diagnosis of ASD, in whom the 

prevalence of ASD is higher than that observed in the 

general population [15].  

Although motor problems are among the most important 

co-occurring conditions in ASD [16], an autism-specific 

atypical motor profile has not yet been defined. Both 

qualitative and quantitative motor atypicalities may occur 

in autistic individuals. Early motor markers of ASD include 

postural asymmetries [17] and poor postural control [18]. 

Teitelbaum and colleagues [19] retrospectively analyzed 

videos of infants aged 4-6 months who were later diagnosed 

with ASD and found difficulties with lying, righting, 

sitting, crawling, and walking. Furthermore, some studies 

have shown that from the age of 12 months, autistic 

individuals received lower gross and fine motor scores 

compared to their undiagnosed peers [20-23]. Additionally, 

Phagava and co-authors [23] revealed differences between 

infants with and without ASD in general movements 

(GMs). GMs are present from early fetal life and are usually 

assessed until 20 weeks post-term, which is when 

intentional and antigravity movements appear and begin to 

dominate [24]. GMs are a part of the spontaneous 

movement repertoire and are easy to observe due to their 

frequent occurrence and long duration that allowing for 

their proper assessment [25]. At term age and during the 

first two months of life, the GMs are called writhing [26]. 

They are characterized by an ellipsoid form, and low to 

moderate speed and amplitude. Normal GMs are perceived 

as fluid, elegant, and complex, including rotations along the 

axis of the limbs. They involve the whole body with a 

variable sequence of trunk, neck, arm, and leg movements. 

By 6-9 weeks after birth, fidgety movements (FMs) begin 

to emerge and slowly replace writhing. An awake and alert 

infant expresses them continuously. They are characterized 

by small, circular movements of the limbs, neck, and trunk. 

FMs are small in amplitude and moderate in speed. Even 

though, according to Einspieler [27], the fidgety GMs 

might still occur in infants until around 6 months of age, 

due to the emergence of voluntary, goal-directed 

movements between 15 and 20 weeks of age, the evaluation 

of FMs after 15 weeks post-term might be difficult and not 

fully reliable [24]. According to the study by Phagava and 

colleagues [23], autistic individuals more often presented a 

poor repertoire during the writhing period and abnormal or 

absent FMs. Some authors emphasize that infants later 

diagnosed with ASD may achieve motor milestones at the 

same time as their TD peers but might perform them in a 

qualitatively abnormal manner [28, 29]. Therefore, both 

qualitative and quantitative assessment of individual 

behaviors are needed, rather than global measures of motor 

milestone achievement.  

Motor behaviors are often studied by marking people 

with physical, reflective markers, which are not only 

intrusive, but whose number and location have to be 

determined a priori [30], potentially influencing the natural 

behavior of the subject being studied. Therefore, 

markerless pose estimation, using computer vision, is 

becoming increasingly popular in the field of motion 

analysis. Noticeable improvements have been triggered by 

advances in convolutional networks [31]. In 2021, 

Desmarais and colleagues [31] showed that, among the 

leading human pose estimation methods, the most accurate 

techniques used various architectures, such as 3D human 

body models, learnable triangulation, or temporal 

convolutional networks, and a consensus on the best 

approach has not yet been reached. According to the 

authors [31], a well-recognized interdisciplinary pose 

estimation framework is DeepLabCut (DLC) [30, 32] – 

which aims to achieve human-like tracking accuracy using 

Deep Neural Networks. DLC is an open-source toolbox 

contained within a Python package. It is based on transfer 

learning with deep neural networks. Thanks to the ability 

to take a network trained on one task with a large, 

supervised dataset (in this case ImageNet), and use it for 

another task with a small, supervised dataset, DLC can use 

limited training data and accurately track user-defined 

features [32]. The major advantages of this approach are its 

powerful generalization ability and flexibility – the labels 

are personalized, and the user can decide which key points 

to track. 

Recently, a software package called Movidea [33, 34] 

has been developed for the automatic analysis of movement 

of infants at risk for NDD. It allows the operator to track 

the infant’s end-effectors in free moving conditions and 

automatically extract various motor features from a given 
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video. Movidea collects measurable and quantifiable 

information not based on visual scoring of an infant’s motor 

performance, completed by clinicians or trained operators 

during the well-child visits. 

In this study, we aim to 1) investigate the use of DLC to 

automatically analyze the motor patterns of infants at low 

and high risk for ASD; and 2) define the critical time 

window in which atypical motor patterns discriminate 

between typically developing infants and those diagnosed 

with ASD or NDD. 

 
II. MATERIALS AND METHODS 

A. PARTICIPANTS 

The Italian Network for Early Detection of Autism 

Spectrum Disorder (NIDA Network) is the largest 

development surveillance program for infants at risk of 

NDD in Italy, coordinated by the National Institute of 

Health (Istituto Superiore di Sanità, ISS). Infants were 

recruited between 2012 and 2020 in pediatric hospitals and 

clinical research centers throughout the entire Italian 

territory. The study protocol was approved by the Ethics 

Committee of the ISS (Approval Number: Pre 469/2016). 

Written informed consent were obtained from 

parents/guardians before video recording. The inclusion 

criteria for infants were 1) birth weight ≥ 2500 g; 2) absence 

of known medical, genetic, or neurological conditions 

associated with ASD; 3) gestational age ≥ 36 weeks; 4) 

absence of major complications in pregnancy and/or 

delivery likely to affect brain development, and 5) Apgar 

index > 7 at the 5th minute.  

A total of 226 videos of 87 infants (45 females), recorded 

longitudinally at the age of 10 days, 6 weeks, 12 weeks, 18 

weeks, and 24 weeks, were analyzed. Participants were 

divided into groups with a high (HR, n=50) or low (LR, 

n=37) risk of ASD. Individuals from the HR group had an 

older autistic sibling, whereas those from the LR had no 

family history of autism. At the age of 24 or 36 months, 

participants’ clinical outcomes were assessed by blinded 

expert clinicians from the NIDA Network using standardized 

tools/tests and structured interviews with parents for 

checking the presence/absence of an ASD or NDD diagnosis. 

The NIDA Network's comprehensive clinical protocol 

allows the characterization of a child's developmental profile 

in all domains, including motor, communication/language 

and social domains [35]. 19 participants received an NDD 

diagnosis, out of which 18 belonged to the HR group. In our 

sample, NDD diagnosis included ASD, Communication 

Disorders, Attention Deficit Hyperactivity Disorder, and 

Motor Disorder.  

A total of 126 videos of the HR group, and 100 of the LR 

group were collected. 180 videos came from infants who 

did not receive a diagnosis during the assessment stage of 

the study, whereas 46 came from individuals diagnosed 

with NDD. 
 

B. VIDEO RECORDING AND PREPARATION 

The recordings took place at participants’ homes to avoid 

any infants’ and/or parents’ discomfort. The child was 

lying on a green blanket. The camera was placed above the 

infant, at chest height. The recording lasted at least 5 

minutes and aimed to acquire images of spontaneous 

movement of the child’s full body [33]. The researchers 

(either a psychologist, neurobiologist, or therapist) placed 

the camera 50 cm away from the child, recorded the infant 

in a well-lit room, and did not interact with the infant during 

the process of data collection. Parents were invited to leave 

the room to avoid attracting the infant’s attention which 

could disturb the expression of movement and to ensure a 

video recording of an infant spontaneously moving, based on 

Prechtl’s General Movement Assessment [18]. 

The preliminary evaluation of the recordings showed that 

high-quality video without any interferences did not last 

longer than 3 minutes [33]. Therefore, 3-minute video 

segments where the infant was in supine position, in a 

condition of well-being, without crying episodes or 

accidental movements of the camera were selected. If the 

video lasted for longer than 3 minutes, then the first 3 

minutes of the high-quality frames were chosen. If the 3-

minute video segments did not reach high quality, they 

were not included in the analysis. 

 
C. DLC MODEL TRAINING 

To train the DLC model, the workflow used in Nath and 

colleagues [32] was followed. To track the infant’s 

movements, we labeled the central points on the back of the 

hands and feet (Fig.1).  

 

FIGURE 1. The labeling Graphical User Interface (GUI) in DLC and the 
tracked body parts. 

 

To provide good generalization, the final model was 

trained using 3,597 labeled frames across 129 different 

videos. Recordings of infants from each age group were 

used. The algorithm was trained for 850,000 iterations 

using a laptop with the NVIDIA GPU (RTX 3060). The 

network’s performance was measured as the mean average 

Euclidean error between the labels predicted by DLC and 

the manual ones. To help exclude occluded data, DLC 

returns not only the x and y coordinates of the body part of 

interest but also their probability. The user can then 

determine the likelihood threshold of data points. To 

choose the best value, the percentage of available data, as 

well as the train and test errors, were checked for various 

likelihood thresholds (from 0% to 90%, by every 10 

percentage points). Exceeding the likelihood threshold of 
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10% did not provide a major drop in errors obtained. 

Therefore, to preserve as much data as possible, the 

likelihood threshold of 10% was chosen. The obtained train 

error was then 3.16 pixels, and the test error was equal to 

3.47 pixels, less than 1% related to video resolution (640 x 

480). 

We performed a stratified 5-fold cross-validation to ensure 

that each fold is representative of the entire dataset in terms 

of class distribution. This process was carried out as follows: 

the dataset was randomly divided into five equal parts, 

maintaining the proportion of HR and LR videos in each 

fold. For each fold, four parts were used for training (80%), 

and one part was used for testing (20%). This procedure was 

repeated five times, ensuring that each part was used as a test 

set exactly once. To prevent overfitting, we ensured that the 

training and testing sets were completely independent for 

each fold. This means that no video used for training in a 

given fold was included in the testing set for that fold. 

 

D. TRAJECTORIES’ PROCESSING  

The trained DLC model was then utilized to perform 

tracking of the children's hands and feet in all videos within 

the dataset. To get rid of outliers that could result from any 

tracking errors, the data were filtered in two ways. First, by 

using a 1-dimensional median filter with a window size 

equal to 7 [36]. Second, by calculating a z-score of each 

data point compared to the entire trajectory of the point in 

the respective video and eliminating those data points that 

were further away than 3 SDs from the mean. If the z-score 

of one of the two coordinates exceeded this threshold, the 

whole point was eliminated. After these steps, the 

percentages of missing data were calculated for each 

tracked body part and for each age group (Fig. 2). Infants 

tended to point the back of their hands down to the floor 

during the recording resulting in a high percentage of 

missing hand data (Fig. 2). Therefore, the computation of 

motor features was conducted using only the feet 

trajectories. 

 

FIGURE 2. Mean percentage of missing data points for left/right 
hands/feet by age group. 

 
E. TRACKING DLC PERFORMANCE VS MOVIDEA 

To further verify the performance of our model, we 

compared the hands and feet coordinates obtained with 

DLC with those extracted by Movidea software [33]. 

Movidea is a semi-automatic software designed for 

tracking the end-effectors of children in a video. It requires 

an operator to preselect a set of parameters, including the 

headline, the central line of the infant's body, and the 

central point of the end effector. The Percentage of Correct 

Key-points (PCKh) accuracy metric was calculated using 

50% of the head length as a distance threshold. This metric 

showed how often the predicted key point and the true joint 

were within the chosen distance limit. The Movidea-

extracted trajectories were treated as the ground truth. 

Unlike the computation of motor features that were based 

on trajectories and would have been influenced by a high 

percentage of missing data, here the tracking comparison, 

not only for feet but also for hands, was done using only 

those data points that were available after the initial signal 

filtering and before any data imputation was conducted. 

When the DLC detected the back of the hand in a video, it 

was possible to check if the provided coordinates were 

compatible with those obtained by Movidea.  

 
F. MOTOR FEATURES’ COMPUTATION 

The motor features of interest were computed in MATLAB 

R2022b. The missing feet data were first imputed using the 

default method of the inpaint_nans MATLAB function 

(Copyright (c) 2009, John D'Errico). Since the home setting 

did not always allow for the camera to be placed exactly 50 

cm away from the baby, using pixels as a measure unit 

would not allow for comparison of some of the motor 

features between videos. For instance, mean velocities in 

pixels/second have different interpretations for various 

recordings. To overcome this problem, we used head length 

(measured in pixels, from chin to hairline) to normalize the 

data and allow comparison between subjects and time.  

The list of computed features over a 3-minute period 

included: mean velocities and mean accelerations of the left 

and right foot, cross-correlation between feet velocities, 

cross-correlation between feet accelerations, skewness of 

speed distribution of each foot, periodicity in feet’s 

trajectories, periodicity in feet’s velocities, as well as the 

area differing from the moving average, and the area out of 

the SD of the moving average. These features are 

meaningful for the analysis of atypical motion patterns 

[37]. 

The magnitude of velocity, also referred to as speed was 

computed as the Euclidean distance of the central point on 

top of the foot between two subsequent frames, multiplied 

by the number of frames per second (fps) recorded in a 

specific video. In the dataset employed for this study, some 

of the videos have a frame rate of 25 fps, while others have 

30 fps. By multiplying the Euclidean distance between two 

consecutive frames by the frame rate, we accounted for the 

variability in frame rates across the input videos. 

Acceleration was then calculated as the difference 

between two subsequent speed values. Then, the mean 

speed and mean acceleration were computed. 

The cross-correlation (CC) is a measure of synchronicity 

of the limbs’ movement [33]. The CC with zero lag was 
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calculated for velocity magnitude (and analogously for 

acceleration) between the left and right foot (Eq. (1)).  

 
where 𝝈𝒗𝟏𝒗𝟐 is the covariance of 𝒗𝟏and 𝒗𝟐, 𝝈𝒗𝟏

𝟐  is the 

variance of 𝒗𝟏, and 𝝈𝒗𝟐
𝟐  is a variance of 𝒗𝟐. 

The skewness () was calculated to evaluate the speed 

distribution (Eq. (2)): 

 
where n is the number of recorded frames, 

 
To determine the periodicity parameter (Eq. (3)), the 

trajectory (or velocity magnitude) signal of each video was 

divided into three equal parts [37]. An arithmetic mean was 

calculated for each of these parts. Then, the signal values 

that intersected with the mean were calculated. Further, the 

mean distance between the intersections and their SD were 

calculated. Since the videos in the dataset were recorded 

with various numbers of frames per second, the distance 

between the intersections was calculated in seconds, rather 

than in number of frames. 

Periodicity: 

 

 
where 𝑃𝑙,𝑛 is the periodicity, n=[x,y], and l=[left_foot, 

right_foot], 𝜎𝑙,𝑛 is the SD and 𝑑𝑙,𝑛 is the mean distance 

between all consecutive intersections and 𝑃𝑓𝑒𝑒𝑡 is the merged 

periodicity parameter for the left and right foot. 

The area differing from the moving average was 

calculated using the windowing width k, that corresponded 

to averaging over 2 s [37]. Therefore, a script was written, 

which first checked how many frames per second were 

recorded in each video, then doubles this value and rounds it 

up. Next, depending on whether the resulting number was 

even (Eq. (4) and Eq. (5)) or odd (Eq. (6) and Eq. (7)), the 

appropriate equations were used. 

 

 

 

 
where 𝑥𝑖 is the moving average of the i-th frame, k is the 

window width, 𝑥𝑗  is the detected position in the x direction 

in the j-th frame, 𝐴𝑑𝑖𝑓𝑓  is the area differing from the moving 

average, and l is the number of frames of the video. The same 

equations were used for the movement in y direction.  

Since the value of the area differing from moving average 

depends on the length of a specific video, the parameter was 

normalized (Eq. (8)).  

 
where 𝐴𝑛𝑜𝑟𝑚 is the normalized value of the area differing 

from the moving average.  

A merged parameter for both feet (𝐴𝑓𝑒𝑒𝑡), which adds up 

the calculated areas of both spatial axes to one parameter was 

also calculated (Eq. (9)).  

 
where n=[x,y]. 

As there is always some deviation of the trajectory from 

the moving average, this parameter tends to be always 

greater than 0 [37]. The calculation of the area out of SD of 

the moving average provided information about higher 

deviations from a smooth movement.  

G. NDD RISK CLASSIFICATION AND MOTOR 
ASSESSMENT BEST AGE 

Except for the above-described motor features, gender and 

the NDD risk status (HR/LR) of each infant were added to 

the dataset. Then, three models were trained using the 

MATLAB Classification Learner App: Fine Tree, 

RUSBoosted Trees, and Narrow Neural Network.  

To determine the best age for the assessment of motor 

behavior, the classifiers were trained separately for each age 

group but also, given a different movement characteristic in 

different stage of development, for infant groups divided 

based on the GM period: writhing (10 days and 6 weeks) and 

fidgety (12 weeks, 18 weeks, and 24 weeks).  

 
III. RESULTS 

A. TRACKING DLC VS MOVIDEA PERFORMANCE 

The comparison of the DLC-derived coordinates with the 

ones extracted by Movidea (Fig. 3) showed that the average 

feet tracking accuracy (left foot: 96.6%, right foot: 96.2 %) 

was higher than the average hand tracking accuracy (left 

hand: 80.9%, right hand: 82.8%), which might be the result 

of more feet data available for the model training. The 

achieved PCKh results are satisfactory and indicate a good 

performance of the method investigated. 
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FIGURE 3. The PCKh value for each body part when comparing 
Movidea and DLC coordinates. 

 
B. CLASSIFICATION RESULTS 

The classification results are presented in Table I for each 

age group (10 days, 6 weeks, 12 weeks, 18 weeks, and 24 

weeks), and Table II for each GM period (writhing: 10 days 

and 6 weeks, FMs: 12 weeks, 18 weeks, and 24 weeks). As 

described in the methods section, the collected data were 

asymmetric in terms of the diagnostic status of the 

participants (there were more TD infants than those with 

NDD). As shown in Tables I and II, the RUSBoosted Trees 

classifier handled this better than the Fine Tree and the 

Narrow Neural Network, achieving more balanced results in 

terms of percentages of correctly identified cases and 

correctly detected controls. For all three classifiers, the 

accuracy achieved was higher for 10-day or 6-week-old 

infant videos than for the older infants. The best results were 

obtained when data from those two youngest groups were 

analyzed together. The 5-fold cross-validation accuracy was 

then 81.4%, with the true negative rate reaching 80.0% and 

the true positive rate equal to 87.5 % (Table II). 

 
TABLE I 

NDD VS TD CLASSIFICATION  

Model Age Accuracy TNR TPR 

  % % (c/a) % (c/a) 

Fine Tree 

10d 78.1 89.3 (25/28) 0 (0/4) 

6w 64.8 64.3 (27/42) 66.7 (8/12) 

12w 69.5 78.7 (37/47) 33.3 (4/12) 

18w 73.3 86.6 (33/38) 0 (0/7) 

24w 58.3 72.0 (18/25) 27.3 (3/11) 

RUSBoosted 
Trees 

10d 65.6 64.3 (18/28) 75.0 (3/4) 

6w 66.7 66.7 (28/42) 66.7 (8/12) 

12w 59.3 61.7 (29/47) 50.0 (6/12) 

18w 57.8 60.5 (23/38) 42.9 (3/7) 

24w 58.3 64.0 (16/25) 45.5 (5/11) 

Narrow 

Neural 

Network 

10d 78.1 89.3 (25/28) 0 (0/4) 

6w 70.4 81.0 (34/42) 33.3 (4/12) 

12w 74.6 85.1 (40/47) 33.3 (4/12) 

18w 68.9 78.9 (30/38) 14.3 (1/7) 

24w 66.7 72 (18/25) 54.5 (6/11) 

TNR: True Negative Rate. TPR: True Positive Rate. d: days, w: weeks. 

(c/a): number of correctly identified individuals/number of all subjects. Bold 

font indicates the best results for each classifier. 

 

TABLE II 

NDD VS TD CLASSIFICATION DURING THE WRITHING AND FIDGETY PERIOD 

Model GMs Accuracy TNR TPR 

  % % (c/a) % (c/a) 

Fine Tree 
W 75.6 82.9 (58/70) 43.8 (7/16) 

FM 63.6 77.3 (85/110) 13.3 (4/30) 

W 81.4 80.0 (56/70) 87.5 (14/16) 

RUSBoosted 

Trees 
FM 59.3 60.0 (66/110) 56.7 (17/30) 

Narrow 
Neural 

Network 

W 75.6 84.3 (59/70) 37.5 (6/16) 

FM 75.7 84.5 (93/110) 43.3 (13/30) 

W: writhing period at 10 days and 6 weeks. FM: fidgety period at 12 weeks, 

18 weeks, and 24 weeks. TNR: True Negative Rate. TPR: True Positive 

Rate. (c/a): number of correctly identified individuals/number of all 

subjects. Bold font indicates the results obtained by the best model.  

DISCUSSION 

The aim of this study was to investigate the usefulness of 

DLC for the analysis of infant motor patterns in high-risk 

infants for NDD, taking a step towards the development of 

an early screening tool for the NDD detection. To evaluate 

the DLC tracking performance, the mean average Euclidean 

error between the labels predicted by DLC and the manual 

ones was verified, and the data obtained by DLC were 

compared with the coordinates extracted from the same 

videos using the semi-automatic Movidea software [33]. The 

investigated approach provided reliable tracking of the 

infants’ hands and feet in the analyzed videos.  

Our data are in line with previous studies using similar 

approaches with the aim of developing automated 

standardized methods for the quantitative analysis of 

spontaneous movements in infants at high-risk (i.e., siblings 

and preterm infants) for NDD. The results showed that 

complexity indices of infants' hand and foot movements may 

be potential candidates for detecting developmental 

outcomes in high-risk infants [38, 39, 40]. A variety of 

bodily movement features at 4 months of age may be used as 

predictors in classifying infants with low and high autistic-

like behaviors [41]. 

In the current study, the trajectory-based motor features 

were computed and fed to Fine Tree, RUSBoosted Trees, and 

Narrow Neural Network classifiers. Even though only the 

feet data were complete enough to be used for the analysis, 

promising results were obtained. The highest 5-fold cross-

validation accuracy of 81.4% was obtained when analyzing 

and combining the data of writhing period (10 days and 6 

weeks of age) using the RUSBoosted Trees. The true positive 

and true negative rates were 87.5% and 80.0%, respectively. 

The RUSBoost algorithm was specifically designed to 

improve the performance of models trained on skewed data. 
It applies the RUS technique, which randomly removes 

examples from the overrepresented class [42] and, despite its 

simplicity, has been proven to be very effective [43]. This 

classifier provided the most balanced results in terms of correct 

identification of cases and controls. The current work suggests 

that the RUSBoosted Trees classifier trained on the two early 

groups of infants (10 days and 6 weeks after birth) could be 

included in a system for the early detection of NDD. 

This study analyzed a large number of videos collected 

early during the infants’ development within the NIDA 

Network across the entire Italian territory. Moreover, the 

dataset included five age groups. Thanks to the NIDA video 

collections, we were able not only to train a classifier that is 

capable of distinguishing between TD individuals and those 

diagnosed with NDD at the age of 24/36 months, but also to 
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determine the valuable time point in development to perform 

an early motor analysis. Our analysis shows that the motor 

features computed at the age of 10 days and 6 weeks are 

useful in terms of early identification of NDD and might 

provide a better distinction between TD and NDD infants 

than the same motor features analyzed at later stages of 

development (12, 18, and 24 weeks). The intentional 

movements observed later in the development may interfere 

with the assessment of quantitative analysis of motor 

behaviors. Even though the older age might be non-optimal 

for early screening using the presented approach, analysis of 

FMs may provide valuable information on infant motor 

development. Nevertheless, it seems that data recorded early 

in life are more suitable to be used for an automated 

screening tool, as they do not include intentional movements 

that occur later in life. 

A notable limitation of this study is the focus on extracting 

parameters related to the magnitude of movement only, 

without considering its direction. Addressing this aspect 

represents a significant avenue for future research. In the 

future, other key points and body parts could be considered 

for tracking with DLC to find out whether additional 

information could further improve the classification results. 

Moreover, in this study the selection of 3-minute segments, 

described in the methods, was done manually, which is a 

time-consuming task. For a fully automated tool that could 

be used in real-world settings, software that would 

automatically choose only the appropriate video parts should 

be developed.  

This study provides an example of the application of DLC, 

which holds significant promise for the early assessment of 

neurodevelopmental delays in research and clinical settings, 

in combination with gold standard tools. Infant motor 

development can be objectively quantified and can predict 

neurodevelopmental outcomes. Future research should aim 

to promote the development of automated tools that allow to 

detect potential neurodevelopmental deficits early enough to 

provide timely intervention and improve clinical outcomes. 

Automated tools may be extremely useful in clinical settings 

where human and economic resources are often scarce. 

CONCLUSION 

Although more data should be collected and software for 

automatic video pre-processing should be developed to apply 

the presented approach in real-world settings, the results are 

very promising. The present study confirms the usefulness of 

DLC as low-cost approach to track infant movements in the 

writhing period. It has shown that the analysis of early motor 

patterns can predict the diagnosis of NDD, including ASD, 

with high accuracy. Furthermore, the very early stage of life 

(10 days and 6 weeks after birth) seems to be the most 

suitable time for using the DLC approach. 
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