
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2023.0322000

Hardware-Efficient CPG Model based on
a Ring of Unidirectionally Coupled Oscillators
with Perturbation of State Transition Timing
TAKUMI YOSHIOKA,
KENTARO TAKEDA, (Member, IEEE)
Graduate School of Science for Creative Emergence, Kagawa University, Takamatsu 761-0396 Japan

Corresponding author: Kentaro Takeda (e-mail: takeda@mail.nsci.jp).

This work was partially supported by JSPS KAKENHI Grant Number 24K20860.

ABSTRACT A ring of unidirectionally coupled phase oscillators is simple and easy to implement but not
suitable for application to central pattern generators (CPGs) owing to the presence of coexisting stable
equilibria corresponding to a gait and useless pattern. In this study, we propose a novel approach to applying
a ring of unidirectionally coupled phase oscillators to CPGs by incorporating additional circuitry that alters
state transition timing. This circuitry comprises a linear-feedback shift register and comparator. Our proposed
model successfully generated typical hexapod gait patterns, such as wave and tripod gait patterns, as well
as transition patterns between them. The projected Poincarè map was numerically derived to reveal that the
proposed model possesses a unique stable equilibrium corresponding to these desired patterns. Furthermore,
we implemented the proposed model on a field-programmable gate array (FPGA) to experimentally validate
its effectiveness in generating gaits for a hexapod robot. Finally, the proposed model is demonstrated to
require fewer FPGA resources compared with conventional and state-of-the-art CPG models.

INDEX TERMS Central pattern generator (CPG), coupled oscillators, nonlinear dynamics, synchronization,
field-programmable gate array (FPGA), hexapod robot

I. INTRODUCTION

ALL living organisms constantly produce spatial and
temporal biological rhythms for molecular, physiolog-

ical, or behavioral events [1]. These periodic rhythms can
be effectively modeled using nonlinear coupled oscillators
owing to their synchronization properties. Examples of such
rhythms include circadian rhythm [2]–[4], heart rhythm [5]–
[7], and gait rhythm [8]–[27]. The gait rhythm, for example, is
believed to be generated by central pattern generators (CPGs),
which are neural circuits located in the spinal cord [28], [29].
CPGs have been successfully modeled using nonlinear cou-
pled oscillators, e.g., Van der Pol oscillators [8]–[10], Hopf
oscillators [11]–[14], phase (so-called Kuramoto) oscilla-
tors [15]–[18], and spiking oscillators [19]–[21]. These mod-
els have been successfully applied to generate gait rhythms
for various types of neuromorphic robots and clinical pros-
thetic devices [9]–[27], [30], [31]. A key characteristic of
CPGs modeled by nonlinear coupled oscillators is the ex-
istence of a unique stable equilibrium corresponding to a
specific gait pattern in terms of phase differences. The labeled
legs of hexapods and their phase relationships are shown in

Fig. 1(a). A wave gait is characterized by a phase difference
of π/3 between adjacent legs, as shown in the lower left of
Fig. 1(a), whereas a tripod gait has a phase difference of π,
as shown in the lower right of Fig. 1(a) [32]. These gaits are
supposed to be switched by changing a system parameter.
For a model to function as a CPG, its states must converge
to a desired phase pattern under steady states, regardless of
the initial values. This requirement ensures that the system
possesses a unique stable equilibrium. However, nonlinear
coupled oscillators lacking this essential characteristic can be
easily conceived. Various coupling topologies can be found
in a network of oscillators. Here, we focus on recurrent net-
works where each oscillator is assumed to have one or more
pathways to return its outputs to itself. A summary of various
types of coupling topologies that are sinusoidally coupled,
with over 4-body homogenous phase oscillators and phase
difference parameters is shown in Fig. 1(b). The network with
themost complex connectivity is of Type (i), whereas themin-
imum configuration is of Type (iv), which consists of a ring of
unidirectionally coupled phase oscillators. Owing to its spar-
sity of connections, the latter coupled oscillators are expected
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FIGURE 1. (a) Key characteristics of the CPG model. The black circles represent the phases of the legs of hexapods. In CPG models, a phase pattern
corresponding to a specific gait type, such as wave or tripod gait, must emerge in a stable state regardless of the initial values. Failure to achieve this may
result in an undesirable pattern that cannot facilitate gait realization when parameters are adjusted for gait transition. (b) Various coupling topologies
involving sinusoidal coupling of over 4-body homogenous phase oscillators with phase difference parameters.

to be efficiently implemented in hardware. However, these
coupled oscillators possess coexisting stable equilibria [33],
[34] that do not align with the characteristics required for
CPG applications.

To address this limitation, a novel CPG model is proposed
in this study, which enhances the ring of unidirectionally cou-
pled phase oscillators. In this model, a phase state is randomly
perturbed using additional circuitry comprising a linear feed-
back shift register (LFSR) and comparator. This modification
ensures the emergence of a phase pattern necessary for wave
and tripod gaits. Furthermore, owing to the sparsity of con-
nections, the proposed model can be implemented with fewer
circuit elements in digital hardware compared with those
required by a conventional CPG model comprising coupled
nonlinear oscillators with a different topology. Other simi-
lar solutions include CPG controllers utilizing time delayed
couplings of nonlinear oscillators [35]–[40]. For example,
based on sophisticated nonlinear analyses, unidirectional ring
networks composed of VDP oscillators were successfully
designed to produce multiple gait patterns for controlling
quadruped and hexapod robots [35], [36]. This methodology
was also demonstrated to be applicable to complex networks
composed of half-center oscillators in the CPGs of a snake
and lobster, with analyses of bifurcations and chaos [37]–
[40]. In this study, we compared the proposed model with
such a state-of-the-art model in terms of the hardware re-
sources required for implementation.

The remainder of this paper is organized as follows: Sec-
tion II introduces a ring of unidirectionally coupled phase
oscillators. A synchronization metric is introduced to quan-
titatively evaluate the phase patterns of wave, tetrapod and
tripod gaits. The analysis using this metric demonstrates that
coupled phase oscillators are not suitable for CPG-based
applications. In Section III, a novel CPG model is proposed
based on enhancements to the coupled phase oscillators. By
using the synchronization metric, the phase patterns of wave,
tetrapod, and tripod gaits are validated to be appropriately
generated in the proposed CPG model. Additionally, the

projected Poincarè map [41]–[43] is numerically derived to
reveal that the model has a unique stable equilibrium cor-
responding to these gaits, unlike the original model. Sec-
tion IV examines the implementation of the proposed CPG
model on a field-programmable gate array (FPGA). Through
an experiment, we validated that a hexapod robot equipped
with the FPGA can realize a tripod gait. Furthermore, the
proposed CPG model requires fewer FPGA resources com-
pared with the conventional and state-of-the-art CPGmodels.
The findings of this study can contribute to the realization
of neuromorphic robots and clinical prosthetic devices with
limited circuit scale and power capacity.
Preliminary results can be found in our conference paper

in which the fundamental concept explored in this study,
coupled phase oscillators with perturbation of state transition
timing, was proposed. The significant extensions of this study
from the previous work are as follows:
i) The previous model was extended to apply to a CPG of

hexapods, which produce primary gait patterns of their
kind: wave, tetrapod, and tripod gait patterns.

ii) The extended model was analyzed to demonstrate its
stabilities for producing the gait patterns.

iii) It was demonstrated that the extended model was imple-
mented on an FPGA with fewer hardware resources.

iv) It was demonstrated that a hexapod robot driven by the
extended model realized the gait patterns properly.

II. RING OF UNIDIRECTIONALLY COUPLED PHASE
OSCILLATORS
We consider the following ring of unidirectionally coupled
phase oscillators [33], [34] with a phase difference parameter
φ ∈ S1 ≡ {ejx | 0 ≤ x < 2π}.

dθi
dt

= ω + K sin(θi+1 − θi + φ), θi ∈ S1, (1)

where i ∈ {1, 2, · · · ,N} represents an index of the oscillators
with periodic boundary conditions, that is, θi+N ≡ θi. This
study focuses on CPGs of hexapods; thus, N is consistently
set to 6 throughout this study. Moreover, these indexes are
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FIGURE 2. (a)–(c) Gait diagrams of wave, tetrapod, and tripod gait [32]. (d)–(f) target time waveforms (ϑ1(t), ϑ2(t), · · · , ϑ6(t)) and gait diagrams produced
by applying function σ to them. (g)–(i) target steady-state phase relationships obtained by time waveforms (ϑ1(t), ϑ2(t), · · · , ϑ6(t)). (d) λ = π/3. (e)
λ = 2π/3. (f) λ = π.

associated with the legs of hexapods, as shown in Fig. 1(a).
ω ∈ R+ ≡ {x ∈ R | x > 0} represents the natural angular
frequency of each oscillator, whereas K ∈ R+ represents the
coupling strength. For numerical computation, the coupled
oscillators in Eq. (1) are discretized by utilizing the forward
Euler method, a straightforward numerical integration tech-
nique as follows:

θi(t+h) = θi(t) + h
(
ω + K sin(θi+1(t)− θi(t) + φ)

)
, (2)

where h ∈ R+ denotes a discretized time step.
Here, we define target steady-state phase relationships to

be produced based on observations of hexapod gait diagrams.
The diagrams of the primary gait patterns, so-called wave,
tetrapod, and tripod gait, are shown in Figs. 2 (a), (b), and
(c), respectively [32]. In these diagrams, the leg numbers are
associated with the legs of hexapods illustrated in Fig. 1(a).
The black rectangle represents the swing phase, when the leg
is off the ground and moves forward, and the white region
represents the stance phase, when the leg is touching and
crawling on the ground. As indicated by the two-way arrow in
Fig. 2(a), a pair of the black rectangle and white region forms
a period of gait movement represented by τ ∈ R+. Consider
reconstructing these gait diagrams from the following target
time waveforms with the period τ :

ϑi(t) ≡ 2πt/τ + ϑ0i , ϑi ∈ S1, (3)

where ϑ0i ∈ S1 is an initial phase. Figs. 2(d), (e), and (f)
show examples of the target time waveforms for the three
kinds of gait, where the order of ϑi is consistent with that of
the leg numbers in Figs. 2(a), (b), and (c). Then, consider the

following function for mapping these time waveforms to gait
diagrams:

σ(ϑ) ≡

{
‘‘orange rectangle’’ for ϑ < λ,

‘‘white region’’ for ϑ ≥ λ,
σ : S1 → {‘‘orange rectangle’’, ‘‘white region’’},

where λ ∈ S1 represents a threshold parameter to determine
the boundary between the ‘‘orange rectangle’’ and the ‘‘white
region,’’ as indicated by the one-way arrow in Fig. 2(d). The
orange rectangles in Figs. 2(d), (e), and (f) show the results
by applying the map σ to the time waveforms (ϑ1(t), ϑ2(t),
· · · , ϑ6(t)). For example, in order for the orange rectangles
to match the black rectangles in Figs. 2(a) and (d), the initial
phases (ϑ01, ϑ

0
2, · · · , ϑ06) must be set to

ϕi = π/3 for all i, λ = π/3,

where
ϕi ≡ ϑ0i − ϑ0i+1 (mod 2π), ϕi ∈ S1.

The resulting phase relationship of (ϑ1(t), ϑ2(t), · · · , ϑ6(t))
is shown in Fig. 2(g). Therefore, to produce the wave gait, we
must generate time waveforms (θ1(t), θ2(t), · · · , θ6(t)) that
satisfy this phase relationship in a steady state. Similarly, to
produce the tetrapod gait and tripod gait, ϕi must be set to

ϕi = 2π/3 for all i, λ = 2π/3,

ϕi = π for all i, λ = π

and the resulting phase relationships are shown in Figs. 2(h)
and (i), respectively. Note that in Fig. 2(e), the order of ϑi is
changed, i.e., the assignments between the leg numbers and
oscillator indices are different for the tetrapod gait.
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FIGURE 3. (a) Successfully wave gait generation in Eq. (2). Top: Time waveforms of phases θi and synchronization metric rwave. Bottom: Initial and
steady-state phases at t = 0 and at t = 5 and 1.25. The parameter values are expressed as (ω, K , φ, h) = (2π, 50, π/3, 10−2). The initial phases are
expressed as (θ1(0), θ2(0), · · · , θ6(0)) = (4.07, 4.66, 6.18, 0.54, 3.51, 2.35). (b) Unsuccessful wave gait generation in Eq. (2). The parameter values are the
same as those provided in (a). The initial phases are expressed as (θ1(0), θ2(0), · · · , θ6(0)) = (1.65, 1.21, 6.19, 5.94, 5.77, 0.38). (c) Successfully tetrapod
gait generation in Eq. (2). The parameter values are expressed as (ω, K , φ, h) = (2π, 50, 2π/3,10−2). The initial phases expressed as (θ1(0), θ2(0), · · · ,
θ6(0)) = (2.35, 1.04, 6.23, 5.14, 5.92, 4.2). (d) Unsuccessful tetrapod gait generation in Eq. (2). The parameter values are the same as those provided in (c).
The initial phases are expressed as (θ1(0), θ2(0), · · · , θ6(0)) = (3.66, 4.92, 0.57, 5.84, 5.24, 3.56). (e) Successfully tripod gait generation in Eq. (2). The
parameter values are expressed as (ω, K , φ, h) = (2π, 50, π, 10−2). The initial phases expressed as (θ1(0), θ2(0), · · · , θ6(0)) = (4.81, 0.35, 3.81, 4.97, 3.58,
3.31). (f) Unsuccessful tripod gait generation in Eq. (2). The parameter values are the same as those provided in (e). The initial phases are expressed as
(θ1(0), θ2(0), · · · , θ6(0)) = (2.27, 0.35, 5.76, 4.89, 3.31, 3.49).
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FIGURE 4. Unsuccessful transitions between (a) wave and tetrapod gaits, and (b) tetrapod and tripod gaits. In (a), the gait is changed as φ = π/3 for 0 ≤ t
< 5 and 10 ≤ t < 15, and φ = 2π/3 for 5 ≤ t < 10 and 15 ≤ t ≤ 20. In (b), the gait is changed as φ = 2π/3 for 0 ≤ t < 5 and 10 ≤ t < 15, and φ = π for 5
≤ t < 10 and 15 ≤ t ≤ 20. The remaining parameter values are expressed as (ω, K , h) = (2π, 50, 10−2). Overlaid time waveforms of the synchronization
metric (a) rwave, (b) rtetra, and (c) rtripod for a ring of unidirectionally coupled phase oscillators in Eq. (2), whose initial phases θi (0) are 1,000 uniformly
random values. A trajectory converging to 1 indicates the successful generation of a gait pattern. The parameters are consistent with those in Fig. 3.

The timewaveforms of the phases in Eq. (2) and their phase
relationships at t = 0 and at t = 5 and 1.25 are shown in
Fig. 3(a), where the phase difference parameter φ is set as
follows:

φ = π/3 (wave gait).

As shown in this figure, the coupled oscillators successfully
generate the phase pattern of a wave gait in a steady state
(refer to Fig. 1(a)). The phase pattern observed in Fig. 3(a)
is referred to as a wave gait pattern hereinafter. The time
waveforms of the phases in Eq. (2) for differnt initial phases
(θ1(0), θ2(0), · · · , θ6(0)) from those provided in Fig. 3(a),
as along with their phase relationships at t = 0 and t = 5
are shown in Fig. 3(b). The coupled oscillators in Fig. 3(b)
generate a phase pattern different from the wave gait pattern
observed in Fig. 3(a) in a steady state. This indicates that
coupled oscillators fail to generate a wave gait pattern. To
quantitatively evaluate the generated pattern, a synchroniza-

tion metric rwave ∈ [0, 1], which measures the similarity of
the phase relationship to those of a wave gait pattern shown
in Fig. 2(g) is introduced as follows:

rwave(t)≡
1

6

∣∣∣∣∣
6∑
i=1

(
ej
(
θi(t)−iπ3

))∣∣∣∣∣ . (4)

The related study has employed the difference in normal-
ized time at which membrane potentials reach the pre-given
threshold value as phase-lag between neuronal units to ana-
lyze spatiotemporal patterns and their transition. This metric
allows phase states of membrane potentials to be effectively
estimated without complex calculations. On the other hand,
in this study, since our model deals directly with phase states,
we employed metrics such as Eq. (4) measuring the similarity
with the phase relationship in Fig. 2(g), which is the modified
version of the order parameter of the Kuramoto model [45].
This metric indicates that the coupled oscillators generate
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a wave gait pattern when the synchronization metric rwave

approaches 1. As shown in the bottom of the time waveforms
in Figs. 3(a) and (b), rwave approaches 1 for the former, but
not for the latter. Similarly, Figs. 3(c) and (d) demonstrate
successful and unsuccessful generations of the phase pattern
of a tetrapod gait by the coupled oscillators in a steady state,
respectively, where the phase difference parameter φ is set as

φ = 2π/3 (tetra gait)

and the remaining parameters are the same as those provided
in Figs. 3(a) and (b). The phase pattern observed in Fig. 3(c)
is referred to as a tetrapod gait pattern hereinafter. To quan-
titatively evaluate the generated pattern, a synchronization
metric rtetra ∈ [0, 1], which measures the similarity of the
phase relationship to those of a tetrapod gait pattern shown in
Fig. 2(h) is introduced as follows:

rtetra(t)≡ 1

6

∣∣∣∣∣∣
∑

i∈{2,5}

ej
(
θi(t)+2π/3

)
+
∑

i∈{1,4}

ejθi(t)+
∑

i∈{3,6}

ej
(
θi(t)−2π/3

)∣∣∣∣∣∣ .
(5)

This metric indicates that the coupled oscillators generate a
tetrapod gait pattern when the synchronization metric rtetra
approaches 1. As shown in the bottom of the time waveforms
in Figs. 3(c) and (d), rtetra approaches 1 for the former, but
not for the latter. An example of gait transitions between
the wave and tetrapod gaits is shown in Fig. 4(a). Here, the
phase difference parameter alternates between φ = π/3
and φ = 2π/3 every 5 s. However, after the initial 5 s of
generating the wave gait, the coupled oscillators in Eq. (2) are
unable to generate the tetrapod gait pattern. Lastly, Figs. 3(e)
and (f) demonstrate successful and unsuccessful generations
of the phase pattern of a tripod gait by the coupled oscillators
in a steady state, respectively, where the phase difference
parameter φ is set as

φ = π (tripod gait)

and the remaining parameters are the same as those provided
in Figs. 3(a) and (b). The phase pattern observed in Fig. 3(e)
is referred to as a tripod gait pattern hereinafter. To quantita-
tively evaluate the generated pattern, a synchronizationmetric
rtripod ∈ [0, 1], which measures the similarity of the phase
relationship to those of a tripod gait pattern shown in Fig. 2(i)
is introduced as follows:

rtripod(t)≡ 1

6

∣∣∣∣∣
3∑
i=1

(
ejθ2i(t)+ej

(
θ2i+1(t)−π

))∣∣∣∣∣ . (6)

This metric indicates that the coupled oscillators generate a
tripod gait pattern when the synchronization metric rtripod
approaches 1. As shown in the bottom of the time waveforms
in Figs. 3(e) and (f), rtripod approaches 1 for the former,
but not for the latter. An example of gait transitions between
the tetrapod and tripod gaits is shown in Fig. 4(b). Here, the
phase difference parameter alternates between φ = 2π/3 and
φ = π every 5 s. However, after the initial 5 s of generating
the tetrapod gait, the coupled oscillators in Eq. (2) are unable
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FIGURE 5. (a) Proposed CPG model, whose dynamics is defined using
Eq. (7). The model comprises a ring of unidirectionally coupled phase
oscillators with an LFSR and a comparator to randomly update a phase
state. (b) LFSR and comparator defined using Eqs. (8)–(10).

to generate the tripod gait pattern. Overlaid time waveforms
of the synchronization metrics rwave, rtetra, and rtripod for
1,000 uniformly random initial phases (θ1(0), θ2(0), · · · ,
θ6(0)) are shown in Figs. 4(c), (d), and (e), respectively. From
these figures, initial phases that do not evolve into the wave,
tetrapod, and tripod gait patterns were observed.

Remark 1. As demonstrated in this section, the ring of
unidirectionally coupled phase oscillators exhibits a simple
structure but is unsuitable for application to CPGs. Note
that the coexistence of stable phase locking solutions in the
ring of coupled phase oscillators for N > 4 is theoretically
guaranteed [33], [34]. To address this limitation, a novel CPG
model that enhances the coupled oscillators is proposed in the
next section.

III. RING OF UNIDIRECTIONALLY COUPLED PHASE
OSCILLATORS WITH PERTURBATION OF STATE
TRANSITION TIMING
This section outlines the proposed model, showcasing its
ability to accurately generate wave and tripod gait patterns,
as well as transition patterns between them. Furthermore, the
projected Poincarè map [41]–[43] was numerically derived
to reveal that the proposed model possesses a unique stable
equilibrium, unlike the original model.

A. MODEL DESCRIPTION
The proposed CPG model based on a ring of unidirectionally
coupled phase oscillators with additional circuitry comprising
an LFSR and a comparator is shown in Fig. 5(a). The dynam-
ics of the proposed model, extended to Eq. (2), is as follows:{
θi(t+h)=θi(t)+h

(
ω+K sin

(
θi+1(t)−θi(t)+φ

))
for i 6=6,

θ6(t+h)=θ6(t)+h
(
ω+K sin

(
θ1(t)−θ6(t)+φ

))
µ(y(t))

(7)

where the state transition timing of the 6-th oscillator is ran-
domly perturbed by an LFSR and a comparator. The function
µ: ZM ≡ {0, 1, · · · , 2M − 1} → B ≡ {0, 1} represents the
following comparator with threshold parameter β ∈ [0, 1]
(refer to Fig. 5(b)):

µ(y) ≡

{
1 for y < β,

0 for y ≥ β,
(8)
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FIGURE 6. (a) Successful wave gait generation in Eq. (7). Top: Time waveforms of phases θi , state y , and synchronization metric rwave. Bottom: Initial and
steady-state phases at t = 0 and t = 5. The parameter values are M = 8, β = 0.2(28 − 1), and ai = 1 if i ∈ {3, 4, 5, 7}; otherwise, ai = 0. The remaining
parameters and phases are the same as those in Fig. 3(a). (b) Successful wave gait generation in Eq. (7). The parameter values are the same as those
provided in (a), whereas the initial phases are the same as those provided in Fig. 3(b). (c) Successful tetrapod gait generation in Eq. (7). The parameter
values are M = 8, β = 0.2(28 − 1), and ai = 1 if i ∈ {3, 4, 5, 7}; otherwise, ai = 0. The remaining parameters and initial phases are the same as those in
Fig. 3(c). (d) Successful tetrapod gait generation in Eq. (7). The parameter values are the same as those provided in (c). The initial phases are the same as
those provided in Fig. 3(d). (e) Successful tripod gait generation in Eq. (7). The parameter values are M = 8, β = 0.2(28 − 1), and ai = 1 if i ∈ {3, 4, 5, 7};
otherwise, ai = 0. The remaining parameters and initial phases are the same as those in Fig. 3(e). (f) Successful tripod gait generation in Eq. (7). The
parameter values are the same as those provided in (e). The initial phases are the same as those provided in Fig. 3(d).
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FIGURE 7. (a) Successful gait transitions between wave and tetrapod gaits. (b) Successful gait transitions between tetrapod and tripod gaits. Overlaid
time waveforms of the synchronization metric (a) rwave, (b) rtetra, and (c) rtripod defined using Eqs. (4), (5), and (6) for the proposed model in Eqs. (7)–(10),
whose initial phases θi (0) are 1,000 uniformly random values. A trajectory converging to 1 indicates the successful generation of a gait pattern. The
parameter values are the same as those provided in Fig. 6.

where M ∈ N and N denote a set of positive integers. In
addition, y ∈ ZM represents an M -bit non-negative integer
defined as follows:

y(t) ≡ 20x0(t) + 21x1(t) + · · ·+ 2M−1xM−1(t) (9)

where xj ∈ {0, 1} denotes the binary states of the LFSR (refer
to Fig. 5(b)). The dynamics of the binary states xj ∈ B is
described as follows:{
x0(t+h)=

(
a0x0(t)+a1x1(t)+· · ·+aM−1xM−1(t)

)
mod 2,

xj(t + h)= xj−1(t) for j 6= 0,
(10)

where j ∈ {0, 1, · · · ,M−1} denotes an index of the registers,
M represents the number of the registers, and aj ∈ B denotes
a feedback parameter of the j-th register. The parameter aj
is chosen such that the LFSR generates an M-sequence [46].
In addition, the initial values of the LFSR are assumed to be
non-zero. The wave gait patterns successfully generated by

utilizing the proposed model in Eq. (7) are shown in Figs. 6(a)
and (b). Note that the initial phases in Figs. 6(a) and (b) are
the same as those in Fig. 3(a) and (b), respectively. As shown
in Fig. 6(b), the proposed model generates, for 0 ≤ t . 0.75,
a distinct phase pattern as shown in Fig. 3(b). However,
for t & 0.75, the generated pattern in the proposed model
was entrained to the wave gait pattern without alterations in
parameters or additional input signals. The phase relationship
at t = 5 in this figure is identical to that of Fig. 3(a) (refer
to Fig. 1). This entrainment can be also seen in rwave at the
bottom of the time waveforms in Fig. 6(b). Similarly, the
successful generations of the tetrapod and tripod gait patterns
using the proposed model in Eq. (7) are shown in Figs. 6(c),
(d), (e), and (f). Furthermore, examples of gait transitions of
the proposed model in Eq. (7) are shown in Figs. 7(a) and (b),
according to which the phase difference parameter alternates
between φ = π/3 and 2π/3 and φ = 2π/3 and π every 5
s. Unlike Figs. 4(a) and (b), the proposed model can generate
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the desired gait patterns for all t . Thus, we can infer from
these figures that the proposedmodel achieved gait transitions
betweenwave, tetrapod, and tripod gaits. Overlaid timewave-
forms of the synchronization metrics rwave, rtetra, and rtripod
for 1,000 uniformly random initial phases (θ1(0), θ2(0), · · · ,
θ6(0)) in the proposed model are shown in Figs. 7(c), (d),
and (e). All initial phases evolved into a wave and tripod gait
pattern, respectively.

B. MODEL ANALYSIS
To compare the stability characteristics with the proposed
model, we first derived the projected Poincarè map [41]–[43]
of a ring of unidirectionally coupled phase oscillators in Eq.
(2). The oscillators have the following whole state space:

T6 ≡ S1 × · · · × S1︸ ︷︷ ︸
6

.
(11)

Suppose Σ be the following subset of T6, representing the
Poincaré section:

Σ ≡ {(θ1, θ2, · · · , θ6) ∈ T6 | θ1 = 0}. (12)

The black vertical dashed lines in Fig. 3(c) indicate examples
of the Poincaré section Σ. Therefore, the following state
variables sampled on the Poincaré section Σ are defined as
follows:

∆i1(n) ≡ θi|θ1=0 for i ∈ {2, 3, · · · 6}, n ∈ N, (13)

where ∆i1(n) denotes a phase difference between θi and θ1
sampled on the Poincaré section Σ at n-th time. The red
circles in Fig. 3(a) indicate examples of∆i1(n). The dynamics
of ∆i1 are described using the Poincaré map P : T5→T5 as
follows:

∆1(n+ 1) = P
(
∆1(n)

)
, (14)

where ∆1(n) ≡ (∆21(n),∆31(n), · · · ,∆61(n)). The re-
peated composition of this map with itself is defined as the
iterated map Pm : T5→ T5 as follows:

∆1(n+ m) = Pm
(
∆1(n)

)
≡ (P ◦ · · · ◦ P︸ ︷︷ ︸

m

)
(
∆1(n)

)
, (15)

where m ∈ N. Owing to the high dimensionality of the
map, understanding its characteristics can be challenging.
Therefore, using Pm, the following projected Poincaré map
can be defined as follows:

Pmi (∆i1(n)) ≡
{

∆i1(n+ m) ∈ S1 |
(∆21(n+ m), · · · ,∆i1(n+ m), · · · ,∆61(n+ m))

= Pm
(
(∆21(n), · · · ,∆i1(n), · · · ,∆61(n))

)
,

∆j1(n) ∈ S1 for j 6= i
}
.

(16)
Note that, owing to the complexity of deriving an exact ex-
pression ofPmi (∆i1), these values have been numerically cal-
culated using Eq. (2). The projected Poincaré map Pm2 (∆21)
for a tripod gait pattern of a ring of unidirectionally coupled
phase oscillators, where m = 1 and m = 5 are shown in
Fig. 8(a) and (b), respectively. The variable ∆21 represents
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(d)
FIGURE 8. (a), (b) Projected Poincaré map Pm

2 for a tripod gait pattern of
a ring of unidirectionally coupled phase oscillators in Eq. (2). (a) m = 1.
(b) m = 5. The parameter values are the same as those provided in
Fig. 3(c) and (d). (c), (d) Projected Poincaré map ~Pm

2 for a tripod gait
pattern of the model presented in Eqs. (7)–(10). (c) m = 1. (d) m = 5. The
parameter values are the same as those provided in Fig. 6(c) and (d).

the phase difference between θ2 and θ1, indicating the phase
difference between the first and second legs immediately after
the first leg swings m times. Therefore, the correct phase
difference is π for a tripod gait pattern (refer to Fig. 1(a)).
In Fig. 8(a), the wide range of values of P1

2 (∆21) for any
∆21, renders the evaluation of the exact trajectories and fixed
points impossible. Conversely, three distinct horizontal lines
can be observed in Fig. 8(b). The exact trajectories cannot
be evaluated still; however, the coexisting fixed points can be
guessed. That is

2π/3 ∈ P10
2 (2π/3), π ∈ P10

2 (π), 4π/3 ∈ P10
2 (4π/3).

As indicated using arrows in Fig. 8(b), the fixed points π and
4π/3 correspond to the patterns in Figs. 3(c) and (d), and
were assumed to be stable. These observations can be justified
using the theoretical stability analysis method [33], [34];
however, its application to the proposed model is infeasible.
Therefore, the projected Poincarè map of the proposed model
must be derived to observe its stability characteristics.
Next, we derive the projected Poincarèmap of the proposed

model in Eqs. (7)–(10). To distinguish this map from the pre-
vious one, all mathematical symbols representing variables,
functions, and sets are accented with a tilde. The proposed
model has the following whole state space:

T̃6 ≡ {(θ1, θ2, · · · , θ6, y) ∈ T6 × ZM}. (17)

Note that the state variable y of the LFSR is included this time.
Let Σ̃ represents the following subset of T̃6, which represents
the Poincaré section:

Σ̃ ≡ {(θ1, θ2, · · · , θ6, y) ∈ T̃6 | θ1 = 0}. (18)
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In Fig. 6(c), the black vertical dashed lines indicate examples
of the Poincaré section Σ̃. Therefore, the state variables sam-
pled on the Poincaré section Σ̃ are defined as follows:{

∆̃i1(n) ≡ θi|θ1=0 for i ∈ {2, 3, · · · 6},
Y (n) ≡ y|θ1=0,

n ∈ N, (19)

where ∆̃i1(n) represents the phase difference between θi and
θ1 sampled on the Poincaré section Σ̃ at the n-th time. The
red circles in Fig. 6(c) demonstrate examples of ∆̃i1(n) and
Y (n). The dynamics of ∆̃i1 and Y (n) are described using the
Poincaré map P̃ : T5 × ZM → T5 × ZM as follows:

∆̃1(n+ 1) = P̃
(
∆̃1(n)

)
, (20)

where ∆̃1(n) ≡ (∆̃21(n), ∆̃31(n), · · · , ∆̃61(n),Y (n)). The
repeated composition of this map with itself is defined as the
iterated map P̃m : T5 × ZM → T5 × ZM as follows:

∆̃1(n+ m) = P̃m
(
∆̃1(n)

)
≡ (P̃ ◦ · · · ◦ P̃︸ ︷︷ ︸

m

)
(
∆̃1(n)

)
, (21)

where m ∈ N. Therefore, using P̃m, the projected Poincaré
map of the proposed model is defined as follows:

P̃mi (∆̃i1(n)) ≡
{

∆̃i1(n+ m) ∈ S1 |
(∆̃21(n+m), · · · , ∆̃i1(n+m), · · · , ∆̃61(n+m),Y (n+m))

= P̃m
(
(∆̃21(n), · · · , ∆̃i1(n), · · · , ∆̃61(n),Y (n))

)
,

∆̃j1(n) ∈ S1 for j 6= i,Y (n) ∈ ZM\{0}
}
,

(22)
where the zero state is excluded from ZM as it is not consid-
ered an initial value of Y and its trajectory cannot enter this
state. Owing to the complexity of deriving an exact expression
of P̃mi (∆̃i1), these values are numerically calculated using
Eq. (7)–(10). The projected Poincaré map P̃m2 (∆̃21) for a
tripod gait pattern of the proposed model, where m = 1
and m = 5 are shown in Fig. 8(c) and (d), respectively. In
Fig. 8(c), similar to Fig. 8(a), the wide range of values of
P̃1
2 (∆̃21) for any ∆̃21 renders the evaluation of the exact

trajectories and fixed points impossible. Conversely, a distinct
horizontal thick line was observed in Fig. 8(d). Therefore, for
all initial states, the phase difference between the first and
second legs becomes π immediately after the first leg swings
5 times. Subsequently, the trajectory was confined within the
dotted box (refer to the magnified inset in Fig. 8(d)). The
size of the dotted box represents the slight deviation of the
phase difference from π, likely resulting from perturbations
in state transition timing. These findings are consistent across
other variables (that is, ∆̃i1 for i 6= 1) and parameter sets
for the wave gait pattern. As a result, the proposed model
effectively generates both wave and tripod gait patterns, as
well as transition patterns between them.

Remark 2. As demonstrated in this section, the combination
of the LFSR and comparator with the ring of unidirectionally
coupled phase oscillators enables themodel to robustly gener-
ate wave and tripod gait patterns. This robustness is attributed
to perturbations in state transition timing, which guides phase

states away from the attraction domain of undesirable patterns
toward that of dominant patterns, such as wave and tripod gait
patterns. Note that the additional circuitry is straightforward
to implement in digital circuits. As demonstrated in the fol-
lowing section, the proposed CPGmodel can be implemented
using fewer circuit elements compared with those required by
a conventional CPG model with a typical topology.

IV. IMPLEMENTATION AND COMPARISON
This section outlines the implementation of the proposed
CPG model in a digital circuit using an FPGA. A labo-
ratory experiment was conducted to validate that a hexa-
pod robot controlled using the proposed FPGA-implemented
CPG model could move forward using a tripod gait. Further-
more, a conventional and state-of-the-art CPGmodel was im-
plemented in the same FPGA to compare hardware resource
requirements with the proposed CPG model.

A. FPGA IMPLEMENTATION
The dynamics of the proposed CPG model, as expressed in
Eqs. (7)–(10) are encoded at the register transfer level (RTL).
The phase variables θ1 · · · θ6 as well as parameters h, ω, and
φ are represented by 32-bit signed vectors encoded as two’s
complement fixed-point numbers. The sinusoidal function in
the coupling term is approximated using a Xilinx IP core that
solves a coordinate rotational digital computer (CORDIC)
algorithm [47]. The variable y in the LFSR is represented
by an n-bit unsigned vector and encoded by a non-negative
integer that comprises the binary signals x0 · · · xn as defined in
Eq. (9). The parameters a0 · · · an are represented by constant
binary signals. State transitions of these variables in Eqs. (7)
and (10) are triggered by an internal clock operating at a fre-
quency of 1/h. The RTL code was synthesized using Xilinx
Vivado Design Suite v2022.2, and the generated bitstream
file was downloaded into Xilinx FPGA Artix-7 XC7A100T-
1CSG324C. A hexapod robot, KMR-M6 Ver.3, composed of
an aluminum alloy frame and resin leg components designed
by Kondo Kagaku Co., Ltd. is shown in Fig. 9. The FPGA
device was mounted on the frame. Each leg of the hexapod
robot was equipped with two servomotors, KRS-2552R2HV
ICS, providing two degrees of freedom. The i-th servomotor
around the yaw axis is driven by a pulse-width modulated
(PWM) signal of Acos(p(θi(t))), where

p(θ) ≡

{
πλ−1θ for θ < λ,

π
(
θ−λ
2π−λ + 1

)
for θ ≥ λ,

q : S1 → S1. (23)

andA ∈ R+. The i-th servomotor around the roll axis is driven
by a PWM signal of q(θi(t)), where

q(θ) ≡

{
A for θ < λ,

−A for θ ≥ λ,
q : S1 → {A,−A}. (24)

Moreover, these control operations for driving the servomo-
tors were expressed in RTL code and implemented in the
FPGA. Snapshots of a tripod gait in the hexapod robot con-
trolled by utilizing the proposed FPGA-implemented CPG
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FIGURE 9. Snapshots of a tripod gait in the hexapod robot controlled by
utilizing the proposed FPGA-implemented CPG model.

model are shown in Fig. 9. As observed, the hexapod robot
properly moved forward with a tripod gait.

B. COMPARISON WITH THE CONVENTIONAL CPG MODEL
Two comparisons of the proposed model were conducted in
terms of hardware resources and power consumption against
two other models. For the first comparison, a CPG model
based on a bidirectional double chain coupling, e.g., [13], [15]
was implemented in the same aforementioned FPGA:

dθi
dt

= ω + K
N∑
j=1

ki,jsin(θj − θi + φ), (25)

TABLE 1. Comparison results

Bidirectional Time-delayedProposed double chain unidirectional ring

# Slices 4,447 7,114 14,646

# LUTs 14,993 24,340 24,418

# FFs 12,462 20,277 58,331

Power [W] 0.509 0.633 1.38

Note: Artix-7 XC7A100T-1CSG324C featured 15,850 slices, with each slice
containing four 6-input lookup tables (LUTs) and eight flip-flops (FFs). DSP
slices and block RAMs were not required. Power consumption figures pre-
sented were estimates generated using Xilinx Vivado Design Suite v2022.2.
The parameter values of the bidirectional double chain coupling-based CPG
were fixed as (ω, K , φ, h) = (2π, 2, π, 10−2). The parameter values of the
time-delayed unidirectional ring coupling-based CPG were fixed as (α, β, ε,
k , τ , h) = (1, 1, 0.03, 0.8, 3, 10−2).

where i ∈ {1, 2, · · · , 6} represents an index of the oscillators
with periodic boundary conditions, that is, θi+6 ≡ θi. The
parametersω ∈ R+ and φ ∈ S1 determine the natural angular
frequency and phase difference of each oscillator, whereas
K ∈ R and ki,j ∈ R represent the coupling strength with
the coupling structure in Type (ii) of Fig.1(b):

k1,1 · · · k1,6
...

. . .
...

k6,1 · · · k6,6

 =


0 1 0 0 0 1
1 0 1 0 1 0
0 1 0 1 0 0
0 0 1 0 1 0
0 1 0 1 0 1
1 0 0 0 1 0

 . (26)

For numerical calculation and digital implementation, the
aforementioned bidirectional double chain coupling-based
CPG model was discretized using the forward Euler method
with a time step h ∈ R+. The dynamics of numerical integra-
tion formulas for the model in Eq. (25) were also represented
through RTL code, following the same methodology as pre-
viously outlined. Further, this RTL code was synthesized by
utilizing the same design environment software, Xilinx Vi-
vado Design Suite v2022.2. A comparison of the results of the
proposed CPG model with those of the bidirectional double
chain coupling-based CPG model in terms of required hard-
ware resources and estimated power consumption is shown
in Table 1. Based on the results, the proposed CPG model
can be implemented with fewer hardware resources and lower
power consumption compared with the bidirectional double-
chain structure-based CPG model.
For the second comparison, a state-of-the-art CPG model

based on a time-delayed unidirectional ring coupling [36] was
also implemented in the same aforementioned FPGA:

dxi(t)
dt

= yi(t),

dyi(t)
dt

=−εyi(t)
(
x2i (t)−α

)
−βxi(t)+k

(
yi+5(t−τ)−yi(t)

)
,

(27)
where i ∈ {1, 2, · · · , 6} represents an index of the oscillators
with periodic boundary conditions, that is, θi+6 ≡ θi. The
parameters α ∈ R+, β ∈ R+, and ε ∈ R+ determine the am-
plitude, frequency, periodic shape of each oscillator, whereas
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k ∈ R+ and τ ∈ R+ represent the strength and time delay
of coupling, respectively. The time-delayed unidirectional
ring coupling-based CPG model has been shown to produce
various gaits, such as wave gait, tetrapod gait, and tripod gait,
by adjusting the time delay τ [36]. For numerical calculation
and digital implementation, the model was discretized using
the forward Euler method with a time step h ∈ R+. The
dynamics of numerical integration formulas for the model in
Eq. (27) were also represented through RTL code, follow-
ing the same methodology as previously outlined. Further,
this RTL code was synthesized by utilizing the same design
environment software, Xilinx Vivado Design Suite v2022.2.
A comparison of the results of the proposed CPG model
with those of the time-delayed unidirectional ring coupling-
based CPG model in terms of required hardware resources
and estimated power consumption is shown in Table 1. Based
on the results, the proposed CPG model can be implemented
with fewer hardware resources and lower power consumption
compared with the time-delayed unidirectional ring coupling-
based CPG model.

Remark 3. The reason why the bidirectional double chain
coupling-based CPG model and the time-delayed unidirec-
tional ring coupling-based CPGmodel requiremore hardware
resources than the proposed model is due to the following
bottlenecks, respectively: (i) the former has a large number
of couplings, resulting it needs to implement many sinusoidal
functions, and (ii) while the latter does not use nonlinear
coupling functions, it requires numerous registers to store the
time delay terms. Note that for fair comparisons, all the model
variables were implemented as 32-bit signed vectors.

V. CONCLUSIONS
This study proposed a novel CPG model based on a ring
of unidirectionally coupled phase oscillators with simple ad-
ditional circuitry that perturbed state transition timing. This
additional circuitry included an LFSR and a comparator. Our
proposed model could robustly generate wave and tripod
gait patterns, as well as a gait transition between them. To
validate our findings, we implemented the proposedmodel on
an FPGA and conducted experiments with a hexapod robot.
The results demonstrated that the robot, controlled using
the FPGA-implemented model, successfully moved forward
with a tripod gait. Furthermore, a comparison between our
proposed model, the conventional CPG model, and the state-
of-the-art CPG model revealed that our model consumed
fewer hardware resources for implementation and required
less power for operation. These findings suggest that our pro-
posed model is well-suited for neuromorphic robots and clin-
ical prosthetic devices with limited circuit scale and power
capacity. Future studies will focus on conducting intensive
analyses of synchronization phenomena for parameters of the
additional circuitry in the proposed model.
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