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ABSTRACT Four miniaturized four-element multiple-input multiple-output (MIMO) antenna designs are proposed, 

designed, and fabricated with dimensions of 26 mm x 26 mm x 0.8 mm each. The first MIMO design operates at 3.5 

GHz, while the second operates at 5.2 GHz. The first and second designs are combined into a third design that can be 

reconfigured to operate at either 3.5 GHz or 5.2 GHz. A new concept of balance is introduced to address the issue of 

small ground faced by the previous designs. This concept is applied to the third antenna design, resulting in a fourth 

design of reconfigurable MIMO operating at 5.2 GHz or 3.5 GHz. The antenna demonstrates good impedance 

matching at both operating frequencies, with isolation levels of approximately 25 dB and 21 dB, envelope correlation 

coefficients (ECC) less than 0.0001, diversity gain (DG) of around 10 dB at both frequencies, and peak realized gains 

of 3.5 dBi at 3.5 GHz and 4 dBi at 5.2 GHz. The radiation efficiency of the fourth compact antenna design is 

approximately 88% at 3.5 GHz and 91% at 5.2 GHz. The measured results show excellent agreement with the 

simulated results for all four antenna designs. 

 

INDEX TERMS Frequency reconfigurable MIMO antenna; PIN diode; isolation; envelope correlation 

coefficient (ECC) 

 
I. INTRODUCTION 

With the continuous-increasing congestion of the EM 
spectrum and growing bandwidth demand, reconfigurable 
antennas have acquired a lot of attention because of their 
ability to change the band of their operating frequency based 
upon the availability of spectrum and hence, customize 
themselves to the needs of a dynamic environment, thereby 
increasing the frequency spectrum utilization efficiency. 
Furthermore, frequency reconfigurable antennas are suitable 
for a wide range of future wireless communication 
applications due to their small size, easy integration, low 
cost, wideband or narrow band operation, single-band or 
multi-band configurations, and frequency selectivity ability 
to decrease jamming and co-site interference [1-3]. Switches 
in radiating components or microstrip feedlines can be used 
to achieve frequency reconfigurability. 

In frequency reconfigurable antennas and MIMO 
antennas, the usage of the reconfigurable feedline is critical 
for achieving diversity and producing varied radiation 
characteristics. Furthermore, reconfigurable feedlines 
facilitate reconfigurability without the need to include active 

components on the antenna's radiating structure, which 
decreases losses, saves costs, and reduces undesired 
radiation interference on mounted antennas caused by 
biassing lines [4]. For contemporary communication 
systems, frequency reconfigurable antennas utilising 
tuneable feedlines are particularly desired. 
Patch antennas are appealing options for frequency 
reconfigurable antenna designs because of their planar 
structure and low profile, low cost, lightweight, ease of 
production, and ease of integration with various electrical 
components and devices. [5-14] have described a variety of 
frequency reconfigurable patch antennas that operate in the 
1.5–13 GHz frequency region. PIN diodes [5-8], Varactor 
diodes [9-13], or MEMS (microelectromechanical systems) 
switches [14] were included in the radiating structure to 
provide frequency reconfigurability in these antenna designs. 
Two frequency reconfigurable patch antennas were 
presented in [5] and [6], which can change resonant 
frequencies between 3.5GHz and 1.7GHz. Patch elements of 
18x 29mm2 were used in these designs. A frequency and 
pattern reconfigurable patch antenna capable of operating at 
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3.3GHz and 2.43GHz was demonstrated in [7], it utilized a 
single patch with a size of 30x36 mm2. A compact 
Reconfigurable DRA (Dielectric Resonator Antenna), is 
presented in [8], and the antenna dimensions are 
20×0.8×36mm3. Two PIN diodes are utilized to allow the 
antenna to operate at three different frequency bands: 
1.8GHz, 2.6GHz, and 3.6GHz, with bandwidth efficiencies 
of 11%, 9%, and 19% respectively, the proposed design 
supports GSM, LTE, and 5G applications. 
       Paper in [9] Showed a patch design based on u-slots. 
With a patch element size of 77x57 mm2, it provides an 
adjustable frequency range between 3.35GHz to 2.6GHz. A 
dual-band stacked patch antenna with two square patches 
was used to provide frequency reconfigurability between 
1.67GHz and 1.92GHz band and between 2.1GHz and 
2.5GHz was proposed in [10], each of the square patches was 
81x81mm2 in size. [11] Presented a dual-band slotted patch 
antenna structure with working frequency bands of (2.22-
2.26) GHz and (3.24-4.35) GHz. The square patch piece was 
39x39mm2 in size. [12] proposed a frequency reconfigurable 
UWB antenna with two tunable rejected band mechanisms, 
utilizing Varactor diode, to avoid anticipated interference 
with other systems working within the Ultra Wide Band 
frequency range; the first notched band may be adjusted from 
3.2GHz to 5.1GHz, while the second one is intended to be 
tuned between 7.25GHz and 9.9GHz. A compact antenna 
with the embedded slot was presented in [13], the antenna’s 
operating frequency could be reconfigured, using a varactor 
diode, across a broad frequency range between 2.4 GHz and 
1.4GHz to make it suitable for cognitive radio applications. 
A frequency reconfigurable E-shaped patched antenna with 
a tuneable frequency range of 2.1GHz to 3.19GHz was 
reported in [14]. The patch measured 44mm x 92mm in size. 
An extensive review of reconfigurable patch antennas is 
presented in [15], with a focus on radiation patterns 
reconfigurability for the impending 5G Radio frequency 
bands. 
       Most frequency reconfigurable patch antennas proposed 
in the above-mentioned studies employ a single patch 
antenna element, which is substantial in size and has limited 
bandwidth. Furthermore, these systems had a restricted 
frequency tuning range and were unable to accomplish 
frequency reconfigurability in dual-band employing a 
reconfigurable feedline. As a result, the goal of this research 
was to create a compact, frequency-reconfigurable patch 
antenna with MIMO capabilities. 
      Multiple-input multiple-output (MIMO) antennas could 
offer higher data rates by enhancing channel capacity while 
maintaining the same transmission power. As a result, 
MIMO antennas are ideal for cognitive radio systems and 
fourth-generation (4G) cellular communication systems. A 
thorough analysis of MIMO antenna design techniques for 
the fifth generation (5G) and beyond is provided in [16]. 
MIMO performance parameters are thoroughly analysed and 
provided. A circular array microstrip patch antenna design is 
proposed in [17]. Millimetre wave technology is used to 
increase the coverage area. The suggested antenna design 
performance improved by utilizing MIMO feeding 
mechanism. The suggested antenna's centre frequency is set 
at 35 GHz, and its substrate is made of RT-Duroid 5880 

material. In [18] a wearable low-profile four-element MIMO 
antenna was designed and fabricated to operate at the 2.4 
GHz ISM band. The suggested antenna has a small size with 
dimensions of 26mm × 26mm × 0.8mm which is considered 
one of the smallest available MIMO designs. The designed 
MIMO revealed strong isolation of about -26 dB at the 
desired bandwidth. It was also tested on human tissues, and 
it has been proven to be good for medical systems and 
WBAN applications.  
      Many frequencies reconfigurable MIMO antenna 
designs have been published in [19-21]to incorporate the 
benefits of MIMO with those of frequency reconfigurable 
antennas. A frequency reconfigurable MIMO antenna with 
two ports utilizing compact patch elements operating at the 
frequency band between 2.11GHz and 2.39GHz was 
proposed in [19]. [20] Presented a two-port reconfigurable 
MIMO antenna with a complete metal ringed design 
structure suitable for WWAN/LTE systems and applications. 
A four-port reconfigurable MIMO slotted structure for 
WLAN applications was proposed in [21].  
       Three radiator elements that have an overall size of 48 
mm × 29 mm × 1.6 mm and a narrow BW that is 
approximately 15% of the operating band 5-6 GHz proposed 
in [22]. However, this antenna has low gain values at lower 
bands and low efficiency. The antennas reported in [23], 
were large and thus cannot be used in modern portable 
communication devices. Conversely, previous antennas that 
are small in size also have low efficiency or gain, such as 
[24,25]. In [26], a four-element dual mode F-shape 
reconfigurable MIMO antenna is proposed. The 
reconfigurability is achieved by utilizing a combination of 
varactor and PIN diodes. The presented design's two modes 
cover the frequency bands 0.743-1.24 and 2.4 GHz, it 
utilized a defected ground plane structure to enhance 
isolation between various antenna elements. [27] presented a 
2-element frequency reconfigurable MIMO antenna. The 
two elements are positioned diagonally to each other to 
enhance pattern diversity and isolation, two PIN diodes are 
utilized, per each element, to operate in two switchable 
frequency bands, 2.4 GHz (LTE) or 3.5 GHz (5G). The 
proposed MIMO antenna design measured gain values in 
two modes are 3.7 dBi and 4.2 dBi, respectively with overall 
efficiency > 60%. A low envelope correlation coefficient 
(<0.0056) is achieved. A frequency reconfigurable 4-port 
MIMO antenna is designed and tested for four different 5G 
bands in [28]. The MIMO elements are made up of two 
patches. In [29], a reconfigurable 2-element MIMO antenna 
is presented. A T-shaped stub has been utilized on the ground 
of the antenna structure to achieve more than 18 dB isolation. 
In addition, two parasitic elements integrated with 2 PIN 
diodes, on the ground, are introduced to allow frequency 
reconfigurability and reduce interference. That allowed the 
suggested antenna to operate on two frequency bands 3.2- 
3.8 GHz and 4.95-7 GHz, suitable for 5G and Wi-Fi/WLAN 
applications. 
      The antenna designs proposed in this paper are based on 
the MIMO antenna design proposed in [18] which operates 
in the ISM band 2.4 GHz. A parametric study has been 
carried out to change the operating frequency of the proposed 
design in [18] to 3.5 GHz. After that the 3.5GHz MIMO 
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antenna has been altered to operate on 5.2GHz, resulting in 
two new antenna models. The new models were merged in a 
single reconfigurable MIMO, this first reconfigurable 
MIMO antenna could be reconfigured to work on both 
3.5GHz and 5.2GHz utilizing 4 PIN diodes. A novel 
balanced feeding concept has been proven and applied to the 
First reconfigurable antenna proposed in this paper resulting 
in a Second reconfigurable antenna. The balanced feeding 
concept has been introduced and applied to the second 
antenna design mainly to tackle the issue of the small ground. 
       

       To facilitate a more effective comparison between the 

proposed work and other published studies [22-29], Table I 

summarizes the performance metrics, including compact 

size, radiation efficiency, ground dependency, and power 

gain, along with the ECC outcomes. Notably, the proposed 

Antenna 2 surpasses the others in performance while also 

demonstrating desirable ground dependency characteristics, 

making it easy to integrate into future mobile systems. 
 
 

 
TABLE I: COMPARISON BETWEEN THE PROPOSED WORK AND OTHER PUBLISHED WORKs. 

Ant. No El. BW 

(GHz) 

Efficiency % Gain 

(dBi) 

Ground- 

Dependent 

ECC Sij (dB) Size (mm) 

 

[22] 3 5-6 55-60 -2 to 2   Yes 0.15 <-15 48x29x1.6 

[23] 4 5.1-5.35 - -    Yes 0.2 <-10 130x10x0.8 

[24] 16 5-6 70-80 -    Yes 0.1 <-10 30x30x13 

[25] 2 4-6.5 80 4-7    Yes 0.05 <-15 80x50x0.76 

[26] 4 1.15-1.22, 

0.743-1.24, 

2.34-2.46 

53, 34, 78 -0.77, 

1.798, 

3.521 

   Yes - <-6 65×120×1.56 

[27] 2 2.2–2.7,    

3.3-4.02 

70 3.7, 4.2     Yes 0.0056, 

0.0009 

<-10 120x60x1.52 

[28] 4 2.2-2.7,    

3.3-3.67,  

4.7-5.7  

90,77,80 1.75, 1.6, 

1.5 

   Yes <0.3 <-10 70×70 ×1.60 

[29] 4 3.2- 3.8, 

4.95-7.2 

- 4, 5.1    Yes < 0.02  40×34×0.8 

Proposed 1 

(3rd design) 

4 3.4-3.6 

 5-5.4   

88-80 2.5-3.5     No 0.02, 

0.01 

<-18 26×26×0.8 

Proposed 2 (4th 

design) 

4 3.36-3.7 

4.9-5.6   

88-91 3.5-4     No 0.0001 <-18 28×28×0.8 

 
 
 

 
Figure 1: Balanced feeding for radiating element fed at the edge 

 

 

II. Antenna Design Methodology 
      Figure 1 illustrates a planar antenna with its input port 

positioned near the edge of the dielectric substrate. 

Numerous studies suggest that enhancing isolation or 

decoupling the common ground can be achieved by 

segmenting it into distinct sections on a uniplanar dielectric 

substrate. However, based on the author's extensive 

expertise, no effective solutions have been proposed to 

resolve the issue of ground stability. 

      As evident from Figure 1, when another antenna is 

positioned opposite or sufficiently close to the first, one can 

reasonably expect reduced coupling. Consequently, several 

previous studies support this observation, as seen in 

references [30-35]. Most of these works either feature a small 

ground or one that is not significantly larger than the planar 

antenna itself, and they often neglect to address the concept 

of separated ground planes. It is essential to clarify that these 

ground planes do not involve a defective ground linked to a 

small piece of conducting material or shorted by passive 

elements; rather, they are completely separate.   
       In this antenna design, we have implemented the same 
above concept to improve the ground stability of the 
proposed antenna. Three different antenna designs are 
introduced; the first antenna design operates at 3.5 GHz. The 
first design is based on the MIMO design proposed in [18]. 
The ISM 2.4 GHz MIMO antenna presented in [18] is 
manufactured on an FR-4 substrate (thickness of 0.8 mm, 
loss tangent of 0.025, and permittivity of 4.3). With a total 
dimension of 26×26×0.8mm3, the suggested shape of the 
four-element MIMO antenna presented in [18], as shown in 
Figure 2, could be considered one of the most compacted 
wearable antenna designs.  
Then, the second antenna design is achieved by inserting 
slots on the radiating elements of the first design. The second 
antenna design operates at 5.2GHz, the prototype of both 
MIMO designs depicted in Figure 3. Both designs were 
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combined in a reconfigurable one using four PIN diodes 
which were utilized as switches, the PIN diode used is 
BAR640 2V in CS79 packaging with dimensions 
0.8x0.3x1.2 mm3. This third antenna design could be 
reconfigured to operate at both 3.5GHz and 5.2GHz by 
changing the switch states. The full configurations of the 
three designs of four-element multiple-input multiple-output 
(MIMO) microstrip multi-band patch antennas designs are 
presented in Figure 4. 

 
(a) 

 
 

(b) 
Figure 2: Reference MIMO antenna structure; (a) Top view; (b) ground 
view 

 
The layout of the proposed design is based on a printed patch 
radiator. The proposed (3.5, 5.2) GHz reconfigurable MIMO 
antennas are printed on FR-4 dielectric substrate 
(permittivity of 4.3, loss tangent of 0.025, and thickness of 
0.8 mm) with a size of 26x26x0.8 mm3. As shown in Figure 
4 (a, b), each one of the patch antennas consists of two metal 
planes, the bottom layer being the ground plane 7.5x1 mm2 
and the top layer is the four-element microstrip MIMO 
monopole antenna whilst a dielectric material exists between 
them. These antennas are considered one of the smallest 
designs in Cognitive radio (CR) antennas with a total size of 
26 × 26 × 0.8 mm3. 

 
(a) 

 
(b) 

Figure 3: Fabricated prototypes of the two MIMO antennas. Top and 
bottom view of (a) 3.5 GHz (without slot), (b) 5.2 GHz (with slot) 

 

A 50-Ohm microstrip line is used to feed the proposed 
antenna. The feed method is chosen due to ease of fabrication 
and matching. Different optimization methods are carried 
out to select the optimal location of the feedline. However, 
there is a significant effect on the antenna reflection 
coefficient, when the feedline is set at both edges or in the 
middle. 
Therefore, the proposed antenna is fed by four single 50-Ω 
microstrip lines designed and printed on FR-4 substrate. 
Initially, four-element antennas were investigated. The 
dimensions of the antennas were optimized at the desired 
frequencies at 3.5GHz for the first design, and 5.2GHz for 
the second design (with engraved slots). 
An I-shaped slot is embedded over the surface of each one of 
the four radiating patches as shown in Figure 4(c). The main 
objective of the etched slot is to change the resonant 
frequencies from 3.5GHz to 5.2GHz by using PIN diode to 
reduce the radiating element size Figure 4(d). The slot has a 
uniform width of 1mm.  
 
 

  
(a) (b) 
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(c) (d) 

Figure 4: Reconfigurable MIMO antenna proposed structure; (a) Top 
view; (b) ground view; (c) Top view without diode, (d) Top view with 
diodes 

A. Switching Mechanism  
 
The PIN diode (BAR640) functions as an electrical switch 
across any specified frequency range. However, the 
switching mechanism is distinctive since frequency and 
pattern reconfigurability are achieved by varying the 
resonance length, which serves as the control element. The 
equivalent circuits for using PIN diode in the ON and OFF 
states are depicted in Figure 5. For the OFF-state, 
straightforward RLC is created using a capacitor (C), a high-
value resistor (RH), and a parallel inductor L. In the ON 
state, the circuit is reduced to an RL series circuit using an 
inductor (L) and a very low resistor (RL). In the CST 
simulation software, the parametric values acquired from the 
PIN diode from the datasheet are modeled as follows: 
RL=1.5 Ω, L = 0.7 nH, and C = 0.15 pF. 
 

 
Figure 5: The Equivalent circuit of the PIN diode [37].  

B. First Reconfigurable MIMO Antenna Design  
 
Figure 6 depicts the suggested design, which is composed of 
4 identical radiating elements that are symmetrically placed 
with a separation distance of 3 mm. This is manufactured on 
an FR-4 substrate (thickness of 0.8 mm, loss tangent of 
0.025, and permittivity of 4.3). With a total dimension of 
26×26×0.8mm3, the suggested antenna, as shown in Figure 
6(a), is fed through a single 50Ω microstrip line developed 
and manufactured on FR-4 substrate. An I-shaped slot was 
embedded over the surface of every one of the four radiating 
elements as shown in Figure 6(a). PIN-diode is loaded in 
each of the four etched slots to reconfigure the antenna to 
work at two different frequencies (3.5 GHz, 5.2 GHz). If the 
PIN diode is switched ON the MIMO antenna will work at 
3.5 GHz, and if the diode is OFF the antenna will operate at 
a frequency of 5.2GHz. 

 

 
(a) 

 
 

(b) (c) 
Figure 6: Reconfigurable MIMO antenna structure; (a) Top view; (b) 

ground view; (c) 3D view 

 

A capacitor is loaded through every one of the four feed line 
slots to protect the antenna from the DC current. The slot has 
a uniform width of 1mm. The full dimensions of the top 
patch are stated in Figure 6(a). The four identical radiating 
pieces are symmetrically positioned and separated by 3 mm. 
The extremely tiny ground plane is printed on the lower side 
of the substrate, as described in [38-40]. The ground plane 
defected into four rectangle parts printed underneath each 
radiating element as shown in Figure 6(b).  
The schematic views of the considered radiating element 
(front side) and partial ground (back side) are shown in 
Figure 6(b, c), along with the optimized dimensions. The 
present design is simulated with the aid of CST [41]. The 
detailed geometrical parameters and their sizes are listed in 
Table II. 
A parametric analysis of the antenna geometrical parameters 
W8 and W7 is illustrated in Figure 7. When the PIN diode 
state is ON performing parametric analysis for W8, W8 is 
changed from 3.00 to 3.36 mm in 0.18 mm steps; all other 
parameters are kept with their nominal values. The stability 
of the resonance at 5.2 GHz was very strong, as shown in 
Figure 7(a). Whereas when the PIN diode state is OFF 
targeting the 3.5 GHz operating frequency, W7 changes from 
2.0 to 2.4 mm in 0.2 mm steps, and all parameters are kept 
with their nominal values. The stability of the resonance at 
3.5 was well reserved, as illustrated in Figure 7b. The 
optimum values of W8 and W7 are considered 3.18 mm, and 
2.2 mm, respectively. 
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(a) 

 
(b) 

Figure 7: Parametric study of the antenna parameters: (a) W8 and (b) W7 
 

 
TABLE II: THE DIMENSIONS OF THE FIRST PROPOSED RECONFIGURABLE 

MIMO ANTENNA 

Parameters Value 

(mm) 

Parameters Value 

(mm) 

W1 1 PL1 15 

W2 1.5 PL2 3.12 

W3 8.988 G1 7.5 

W4 7 G2 1 

W7 2.2 SW 26 

W8 3.18 SL 26 

W9 1   

 
Figure 8 depicts the prototype of the four-element 
reconfigurable MIMO antenna, which was fabricated. Figure 
9 shows the antenna inside the anechoic chamber for testing 
and measurements. 
 

 
(a) (b) 

Figure 8: Reconfigurable MIMO fabricated prototype views, (a) Top 
view and (b) bottom view 

 

 
Figure 9: Antenna inside the anechoic chamber for measurement testing 

Figure 10 illustrates the antenna's simulated and measured 
reflection coefficient in the two operating modes of the PIN 

diode (ON/OFF). It could be observed that the resonant 
frequencies of both the simulated and measured data are in 
good agreement. The achieved bandwidths are 420 MHz and 
120 MHz at the centre frequencies 5.2 GHz and 3.5 GHz 
respectively. 

 

 

 
Figure 10: ON and OFF antenna simulated and measured reflection 

coefficient (S11) In both modes of operation, ON (3.5GHz) and OFF 

(5.2GHz). 

 

C. Second (Modified) reconfigurable MIMO antenna Design 
Methodology  
 
The proposed design of the second reconfigurable MIMO 
antenna is shown in Figure 11, The new proposed design is 
based on the reconfigurable antenna design we mentioned 
before in Figure 6 with some enhancements, this antenna is 
also composed of four identical radiating elements 
symmetrically placed with a separation distance of 3 mm. It 
is fabricated utilizing FR-4 substrate (thickness of 0.8 mm, 
loss tangent of 0.025, and permittivity of 4.3).  
By using the balanced feeding network concept presented in 
section II, two parallel lines were introduced on each of the 
four ports. One of them (the parallel lines) is connected to 
the feeding line in each port (top side of the substrate), while 
the other parallel line is connected to the ground of each port 
(bottom side of the substrate), as shown in Figure 11(b, c). in 
order to maintain the operating frequencies of the antenna a 
parametric study was performed to get the optimum size of 
each of parallel lines 1.5x2 mm2, it is worth mentioning that 
the lines are made of the same radiating element material.  
As a result of introducing the above-mentioned lines, the size 
of the new antenna has changed to 28×28×0.8 mm3, which is 
still considered very small. Two slots were embedded over 
the surface of every one of the four radiating elements. The 
slots have a uniform width of 1 mm for the first slot and the 
second one is 0.5 mm. A 50 pF capacitor is loaded, for DC 
biasing purposes. The full dimensions of the top patch are 
stated in Figure 11(a). Table III shows all the detailed 
geometrical parameters of the proposed modified antenna. 
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(a) 

 

 
(b) (c) 

 
Figure 11: Modified (Enhanced) reconfigurable MIMO antenna 

structure; (a) Top view; (b) ground view; (c) 3D view antenna. 

 
TABLE III: THE DIMENSIONS OF THE MODIFIED RECONFIGURABLE 

MIMO ANTENNA 

Parameters Value 

(mm) 

Parameters Value 

(mm) 

W1 1 PL1 15 

W2 1.5 PL2 3.05 

W3 8.98 G1 7 

W4 7 G2 1 

W7 2.85 SW 26 

W8 2.25 SL 26 

W9 1 W10 2 

 
Figure 12 shows the prototype of the Modified 

reconfigurable four-element MIMO antenna, which was 
fabricated. Figure 13 depicts the antenna's simulated and 
measured reflection coefficient in both switching 
configurations (ON: 3.5GHz, OFF: 5.2GHz). It could be 
observed from Figure 13 that the resonant frequencies of 
both the simulated and measured data are in good agreement. 
Also, the fabricated prototype's measured bandwidth is less 
than the simulated one, but it is yet larger than the intended 
WiFi and WLAN bands. 
 
 

 
(a) (b) 

 

Figure 12: The Enhanced (Modified) reconfigurable MIMO antenna 

fabricated prototype views, (a) Top view and (b) bottom view 
 

 
 

Figure 13: The Modified antenna simulated and measured loss S11 
return for both switching configurations ON (3.5GHz) and OFF 

(5.2GHz). 

III. EFFECT OF REFLECTION COEFFICIENT OF 

THE PROPOSED ANTENNA 
 
The above-mentioned antennas (with and without slots) offer 
some advantages including size miniaturization and 
operating between two important resonant frequencies of 
LTE and WLAN. However, these two resonant frequencies 
are fixed and cannot be altered/tuned once the antenna is 
fabricated, and this may not be considered attractive for the 
cognitive radio system. Thus, in the first instance, a PIN 
diode is attached over the I-shaped slot of the first and second 
antenna as shown in Figure 6 and Figure 11, the I-shaped slot 
antenna along with a PIN diode and a suitable DC bias circuit 
is further explored as shown in Figure 6 and Figure 11. 
The loaded PIN diode operates as a switch to control the 
antenna operating modes; both frequency coefficient and 
bandwidth were improved compared with the first 
reconfigurable MIMO antenna design, either at 3.5 GHz if 
the switch is ON, or at 5.2 GHz if the switch is OFF. A 
100nH inductor is utilized to control the current flowing to 
the PIN diode. Two capacitors with a value of 50 pF are 
attached to the ends of each of the feeding lines for DC 
biasing. Figure 14 shows that by comparing the two antennas 
when the diode was inserted over an accurate location of the 
slot, the proposed design achieved the targeted frequencies 
3.5 GHz and 5.2 GHz, while in the second antenna, both the 
reflection coefficient and the bandwidth were improved 
compared with first reconfigurable MIMO antenna design. 
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Figure 14: Comparing the reflection coefficient S11 of both the First 

and Modified Reconfigurable MIMO antennas. 

 
 

IV. COMPARISON OF SIMULATION WITH 

MEASURED RESULT 
 
The First and the Modified four-element MIMO antenna 
models were fabricated to validate the simulated designs, as 
shown in Figure 8 and Figure 12 respectively. The MIMO 
antennas were constructed on a 0.8 mm thick FR-4 substrate. 
To create the antennas' partial ground planes, a rectangular 
copper component was printed beneath each of the four 
radiating elements. As seen in Figure 8 and Figure 12, SMA 
connectors were used to feed each of the four radiating 
elements. The measured and simulated s-parameters of the 
designed MIMO antenna are in line with each other as shown 
in both Figure 10 and Figure 13. Figure 15 shows the 
simulated and measured s-parameters of both MIMO 
antennas (First/Modified). The modified reconfigurable 
MIMO antenna has a -10 dB impedance bandwidth at the 
3.5GHz (5G) and 5.2GHz (WiFi) bands, where the operating 
frequency is from 3.3 to 3.6Ghz at a centre frequency 
3.5GHz and from 4.7 to 5.45GHz at a centre frequency 
5.2GHz. The reflection coefficients achieved were -24dB 

and -21dB at centre frequencies of 3.5GHz and 5.2GHz 

respectively.  
 

 
(a) 

 

 
(b) 

 
Figure 15: Comparing the s-parameters of the simulated models and 

fabricated prototypes of both First and Modified reconfigurable MIMO 

antennas (a) 3.5 GHz and (b) 5.2 GHz 
 

 

The isolation between the four radiating elements of both 
reconfigurable MIMO antenna designs was investigated and 
analysed to further study the antenna's diversity performance 
that is because the isolation has a direct relation with the 
minimal coupling between the four antenna radiating 
elements in both of the designed antennas. Figure 16 and 
Figure 17 depict the measured and simulated isolation results 
between radiating antenna elements in both designs 
(first/modified). In the targeted antenna's impedance 
bandwidth, the isolation values range for the first antenna 
was from -13 dB to -22dB at 3.5 GHz, and they are between 
-18dB and -25dB at 5.2 GHz.  While in the second antenna, 
the isolation values were between -20dB and -26dB at 3.5 
GHz, and from -18dB to -30Db at 5.2 GHz. The results 
suggest that the measured and the simulated results were 
close, and the coupling between the four elements was less. 
That means the isolation obtained results are adequate for 
MIMO systems operating at 5G and Wi-Fi wireless 
applications. 

 

 
(a) 
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(b) 

 

Figure 16: Simulated and measured isolation results of the designed 

antennas when the switch configuration is ON at 3.5 GHz, (a) First 

antenna, (b) Modified antenna. 
 
 
 

 
(a) 

 
(b) 

 
Figure 17: Simulated and measured isolation results of the designed 

antennas when the switch configuration is OFF at 5.2 GHz, (a) First 

antenna, (b) Modified antenna. 

 

V. DISTRIBUTION OF CURRENT ON BOTH THE 

FIRST ANTENNA  AND MODIFIED ANTENNA 

SURFACES AND THEIR RADIATION 

PATTERN  
 
The MIMO antenna surface current, as shown in Figure 18, 
may be used to confirm the results of the mutual coupling 
between the radiating elements of the designed MIMO 
antenna illustrated in Figure 15, Figure 16, and Figure 17. In 
general, one of the four ports should be stimulated to 
understand the impact of the coupling between the antenna 
parts, while the other remaining ports should be terminated 
by a 50 Ω load; this strategy was used as demonstrated in 
Figure 18. The distance between the four ports is regarded as 
an essential element in determining how well the isolation 
between the antennas is. Usually, when the antenna elements 
are far apart, there is a high level of isolation. 
 
Figure 18 shows that when one port is activated, the 
remaining ports are terminated with a load of 50Ω. As seen 
in Figure 18(a), the greater current value in the first antenna 
is concentrated on the top part of the radiating element 
whereas the modified antenna was distributor on both of the 
radiating element and the feeding strip since there is no 
current coupled to the neighboring ports. From Figure 18 (b) 
the greater current value in the first antenna is focused on the 
feeding strip of the radiating element, whereas in the 
modified antenna the current was distributor on the booth of 
the radiating element and the feeding strip since there is no 
current coupled to the neighboring ports.  As a result, its 
influence is seen in terms of the isolation parameter S12 or 
S34. In the case of port 2 being excited and the others being 
terminated, the current exists solely on this port and is 
insignificant on the other three as shown in Figure 18(a, b) 
in both antennas. A similar situation is seen when only ports 
3 and 4 are stimulated. 
Figure 18(a, b) shows that the surface current is mostly 
centered over the port that is been excited. Accordingly, the 
measured and simulated isolations for the designed MIMO 
antennas in Figure 15, Figure 16, and Figure 17 are greater 
than 10 dB for both antennas.  In addition, we can see from 
Figure 18(a, b) that the current surface level is higher, and its 
distribution on the radiating element is clearer in the 
modified antenna compared with the first antenna, especially 
at 3.5 GHz. 
At the centre frequencies of 3.5 and 5.2 GHz, two planes, H-
plane and E-plane, are used to investigate the radiation 
patterns of the proposed antennas, as shown in Figure 19, it 
was done by exciting one port and loading the remaining 
ones by 50Ω. As previously stated, the current MIMO 
antennas H and E plane simulated field patterns are displayed 
at the 3.5 GHz and 5.2 GHz (5G and Wi-Fi Bands) resonant 
frequencies. 
The radiation is observed and recorded within an anechoic 
chamber. A standard horn antenna is used as a transmitter. 
During the measurement procedure, one port is designated to 
function as a receiver, while the other ports are terminated 
using 50 Ω to avoid signal pick-up. This method is done for 
each port of the two designed antennas in sequence. Figure 
19 compares both the (CST) simulated and (prototype) 
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measured radiation patterns of the First and Modified 
reconfigurable MIMO antennas. The modified 
reconfigurable antenna would be suitable for use in 
communication systems due to its symmetric shape, which 
aids in achieving a steady radiation pattern. Certain 
discrepancies between the measured and simulated radiation 
patterns are discovered, which may be attributable to 
cable/port losses and flaws in the manufacturing process. 

 

 

 

 
(a) 

 

 

 

 
(b) 

 
Figure 18: The surface current distribution of the First and Modified 

reconfigurable MIMO antennas at (a) 3.5 GHz, and (b) 5.2 GHz. 
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(a) 

  
(b) 

  

(c) 

  

(d) 
 

Figure 19: Simulated and measured radiation patterns of the proposed 

Reconfigurable MIMO antennas designs for port one, (a, b) First 

antenna, (c, d) Modified antenna. 

VI. Investigating the antenna performance. 

 
One of the key parameters of an antenna is its gain. The gain 
of a MIMO antenna is considered a far-field parameter, and 
it is measured using a traditional horn antenna as a 
transmitter and the antenna to be tested as a receiver, in an 
anechoic chamber. From Figure 20 (a, b), the peak value of 
the measured and simulated gain for the first antenna varies 
between 2.25 dBi and 2.55 dBi at a frequency of 3.5 GHz, 

and between 2.9 dBi and 3.11 dBi at a frequency of 5.2 GHz. 
Whereas in the second antenna (modified one), the gain 
varies between 3.8 dBi and 4 dBi at a frequency of 3.5 GHz, 
and between 3.97 dBi and 4.15 dBi at a frequency of 5.2 
GHz. 

 

 
(a) 

 

 
(b) 

Figure 20: The gain (measured/simulated) results of the First and the 
Modified reconfigurable MIMO antennas at ON(3.5GHz)/OFF(5.2GHz 

switch configuration:  (a) First antenna, (b)Second antenna (modified 

antenna) 

 

The gain of both fabricated antenna prototypes the first and 
the modified reconfigurable MIMO antennas was measured, 
at the same frequency bands is around (2.5 dBi at 3.5 GHz, 
3 dBi at 5.2 GHz) for the first antenna. Whereas the modified 
one was around (3.5 dBi at 3.5 GHz, and 4 dBi at 5.2 GHz). 
The measured and simulated gain results are in agreement. 
By comparing both of these antenna results it could be 
clearly seen how the peak gain improved after the first 
antenna was modified. 
The computed Envelope Correlation Coefficient (ECC) 
between the four ports of the MIMO antenna structure in 
both frequencies (3.5 GHz, 5.2 GHz), on the first antenna 
and in the second one, is displayed in Figure 21(a, b). In 
terms of the radiation pattern, the ECC of the MIMO system 
depicts how independent the four elements are. Each of the 
four elements in a MIMO system should always be 
independent of the other three. Taking into consideration that 
all four antenna elements of the two proposed MIMO 
systems are identical, it is only fair to say that; S12 = S21 = 
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S14 = S41 = S23 = S32 = S34 = S43, and S13 = S31 = S24 
= S42, while S11 = S22 = S33 = S44, the ECC values of 
element one may be obtained in this situation by substituting 
the necessary terms into the following Equations 1, 2 and 3: 
 

𝜌𝑒12 =
|𝑠11

∗ 𝑠12 + 𝑠11
∗ 𝑠22 + 𝑠13

∗ 𝑠32 + 𝑠14
∗ 𝑠42|2

(1 − (|𝑠11|2 + (|𝑠12|2(|𝑠13|2 + (|𝑠14|2)2
    (1) 

 

𝜌𝑒13 =
|𝑠11

∗ 𝑠13 + 𝑠11
∗ 𝑠23 + 𝑠13

∗ 𝑠33 + 𝑠14
∗ 𝑠43|2

(1 − (|𝑠11|2 + (|𝑠12|2(|𝑠13|2 + (|𝑠14|2)2
   (2) 

 

𝜌𝑒14 =
|𝑠11

∗ 𝑠14 + 𝑠11
∗ 𝑠24 + 𝑠13

∗ 𝑠34 + 𝑠14
∗ 𝑠44|2

(1 − (|𝑠11|2 + (|𝑠12|2(|𝑠13|2 + (|𝑠14|2)2
   (3) 

 
Figure 21 shows that the ECC between the four ports of the 
MIMO system for the band (3.5GHz, 5.2GHz) in the first 
antenna is approximately less than (0.02, 0.01) whereas for 
the second antenna was about 0.0001 on both operating 
frequencies. As a result, this ECC value is tolerable and 
comparable to those found in [42], showing positive 
performance. 
 

 
(a) 

 
(b) 

Figure 21:  ECC (Envelope Correlation Coefficient), (a) first antenna, 

(b) modified antenna 
 

Any diversity technique that improves the signal-to-
interference ratio is known as diversity gain. It is regarded as 

a crucial diversity parameter [43]. The diversity gain might 
be calculated using Equations 16, 17, and 18 using the 
correlation coefficient. Because the antenna has a larger 
diversity gain value, it achieves better isolation and the other 
way around. Figure 22 shows the investigation of the 
diversity gain (DG) of the First reconfigurable MIMO 
antenna as well as in the modified one. The DG values for 
both scenarios are around 10 dB at the antenna operational 
bandwidth. 
 

𝐷𝐺12 = 10√1 − |𝜌𝑒12|2                     (4) 

 

𝐷𝐺13 = 10√1 − |𝜌𝑒13|2                      (5) 

 

𝐷𝐺14 = 10√1 − |𝜌𝑒14|2                     (6) 

 

 
(a) 

 
(b) 

Figure 22: Diversity Gain of the two proposed antennas, (a) First 

antenna, (b) Modified antenna. 

 

 
The efficiency of the proposed MIMO antenna also is a 
major characteristic of its diverse behavior. Figure23 shows 
that the radiation efficiencies over the targeted 3.5 GHz and 
5.2 GHz Wi-Fi bands in the First antenna design are about 
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80% at 3.5 GHz and 88% at 5.2 GHz, while in the Modified 
antenna is about 88% at 3.5 GHz and 91% at 5.2 GHz. 
 

 
(a) 

 
(b) 

Figure 23: Antenna radiation efficiencies Simulated and measured 

results, for the first and Modified reconfigurable MIMO antennas at 
frequencies (a) 3.5 GHz, (b)5.2 GHz. 

 
VII. CONCLUSIONS 

 

In conclusion, the four miniaturized MIMO antenna designs 

proposed in this study demonstrate excellent performance in 

terms of impedance matching, isolation, ECC, DG, peak 

realized gains, and radiation efficiency at both 3.5 GHz and 

5.2 GHz frequencies. The new concept of balance introduced 

in the third and fourth designs addresses the issue of small 

ground and further improves the overall performance of the 

antennas. The measured results validate the effectiveness of 

the designs, showing good agreement with simulation 

results. Overall, these compact and reconfigurable MIMO 

antennas offer promising potential for various wireless 

communication applications. 
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