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ABSTRACT Dual-polarization radars with parabolic dish antennas, which transmit horizontal and vertical waves, 

are widely used to measure precipitation. However, such radars cannot properly observe the convective storms 

developing at high altitudes in a short time because of the low spatiotemporal resolution of the data due to 

mechanical scanning at azimuth and elevation angles. In 2018, an X-band dual-polarized phased array weather 

radar (DP-PAWR) was developed in Japan. DP-PAWR provides polarimetric precipitation measurements via three 

dimentional (3D) volume scanning in 30 s using electronic scanning at elevation angles. This study investigated 

the relationship between the amount of full volume scan data (the radar reflectivity factor(𝑍ℎ ), differential 

reflectivity(𝑍𝑑𝑟), and specific differential phase( 𝐾𝑑𝑝)) above the freezing level and that of near-surface rainfall 

for three characteristically different summer convective storms in Japan. We also discussed the quantitative 

predictability of near-surface rainfall volume using the full volume scan data above the freezing level obtained 

from DP-PAWR. The results showed that the 30-s full volume scan data above the freezing level can quantitatively 

predict near-surface rainfall volume for various storms, including heavy convective storms multi-precipitation 

cores, as well as small-scale convective storms with 5 to 11.5 minutes of lead-time. 

INDEX TERMS Weather radar, precipitaion obsevation, full volume scan data. 

I. INTRODUCTION 

In recent years, a range of weather radars has found 

application in various fields, with ongoing hardware 

development efforts. Notable recent examples encompass 

radars designed to observe cloud scatters, including aircraft-

mounted radar [1], radar systems mounted on unmanned aerial 

vehicles [2], and dual-polarization radar systems on satellites 

[3]. 

Particularly, weather radar serves as an effective method for 

observing rainfall and providing effective information for 

disaster mitigation. Dual-polarization radars, which transmit 

both horizontal and vertical polarized waves, are widely 

utilized for measuring precipitation, serving both academic and 

practical purposes [4–8]. These radars capture returning waves, 

providing horizontal and vertical measurements of scatterers 

within clouds, such as raindrops, ice, and graupel. 

Consequently, dual-polarization variables offer more accurate 

estimates of rainfall rates and efficiently classify the particles 

in storms.  

The radar variables using dual-polarization radars include 

the radar reflectivity factor (𝑍ℎ), differential reflectivity (𝑍𝑑𝑟), 

differential phase (𝜑𝑑𝑝 ), specific differential phase ( 𝐾𝑑𝑝 ), 

correlation coefficient (𝜌ℎ𝑣 ), and Doppler velocity, among 

others. 𝑍ℎ  ,which is also observable by single polarization 

radar is proportional to the size (or diameter) and the density of 

hydrometeors in the resolution volume and is used to estimate 

rainfall rates. 𝑍𝑑𝑟  and 𝐾𝑑𝑝  columns, which are vertically 
extended regions of positive 𝑍𝑑𝑟 and 𝐾𝑑𝑝 above the freezing 
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level, are often associated with the updrafts of convective 
storms [9–13] or supercells [14–17]. These signatures result 

from supercooled liquid drops or water-coated hailstones lifted 

several kilometers above the freezing level. In these previous 

studies, dual-polarization radars with parabolic dish antennas 

have been employed.  

 In Japan, 40 X or C-band dual polarized radars that also use 

a parabolic dish antenna are operated around urban areas. The 

radar can accurately estimate the rain rate using polarimetric 

and network observations. The temporal resolution of the radar 

is 1 min for low elevation angles (< 1°) and 5 min for elevations 

of 1°–15° [18–19]. In general, a weather radar uses a parabolic 

dish antenna that requires more than 5 min for the 3D 

observation due to mechanical rotation in both the azimuth and 

elevation angles. The number of observable elevation angles is 

approximately over a dozen. Consequently, these radars with a 

parabolic dish antenna are only able to conduct sparse 

observations at higher altitudes. Convective summer storms 

often develop over a dozen kilometers in a few minutes, 

bringing torrential rainfall within minutes of their onset. For 

rapidly developing convective clouds, the temporal resolution 

and observation density of parabolic weather radars, 

particularly at high altitudes, are frequently insufficient.  

To improve the low spatiotemporal resolution, recent studies 

have focused on using a phased array antenna for conducting 

precipitation observations [e.g., 20–27]. In Japan, a dual 

polarized phased array weather radar (DP-PAWR) was 

developed in 2018 [28–29]. It is an X-band radar with an 

operating frequency of 9.425 GHz, and its scanning scheme 

involves mechanical and electronic scanning at azimuth and 

elevation angles, respectively. The DP-PAWR is capable of 

conducting precipitation measurements using dual-

polarimetric observations for 3D volume scanning within a 60 

km observation range in just 30 s. 

 Furthermore, the DP-PAWR captures 113 observations in 

the elevation direction and is capable of observing precipitation 

at high altitudes. It provides 30-s updates from which the 

volume (in 𝑘𝑚3) of 𝑍ℎ, 𝑍𝑑𝑟, and 𝐾𝑑𝑝, can be calculated owing 

to its rapid and high-density observations. There have been no 

prior studies exploring the relationship between such high-

density radar data at high altitudes and near-surface rainfall. 
The purpose of this study is to investigate the relationship 

between the full volume scan data (𝑍ℎ, 𝑍𝑑𝑟, and 𝐾𝑑𝑝) above the 

freezing level and near-surface rainfall during summer 

convective storms, utilizing DP-PAWR. We aim to assess the 

quantitative predictability of near-surface rainfall volume using 

the full volume scan data obtained from DP-PAWR.  

II. METHODOLGY 

A. DUAL-POLARIZED PHASED ARRAY WEATHER RADAR 

(DP-PAWR) 

The DP-PAWR provides rapid scanning and high-density 

observations. It uses a transmitted wave frequency center of 

9.425 GHz, which is within the X-band. The transmitted waves 

of the DP-PAWR have wide beam widths with elevation angles 

of 6°–27° and a beam width at an azimuth angle of 1.2°. The 

wide transmitted beam is referred to as fan beam in this study. 

To cover the observation range in the elevation angles from 0° 

to 90°, 7 fan beams are simultaneously transmitted at each 

elevation angle [28]. The phased-array antenna comprises 

tandemly arranged 112 antenna elements for electronic 

scanning of the elevation angles with half-wavelengths (i.e., 16 

mm). The width of the received beam after conducting the 

digital beamforming at the elevation angle is slightly less than 

1.0 °. Consequently, the full volume scan data are obtained 

every 30 sec. Table 1 presents the specification of the DP-

PAWR. In this study, the radar variables of 𝑍ℎ,  𝑍𝑑𝑟, and 𝐾𝑑𝑝 

are used to obain the volume data of a storm. 

 

FIGURE 1. Example of the radar reflectivity factor in PPI image on 
August 22 in 2020(a) and  July 30, 2021(b). Square dot indicate the 
observation site of the radio sonde. 

TABLE 1 

SPECIFICATIONS OF THE DP-PAWR. 

Frequency (GHz) 9.425 

Azimuth resolution (°) 1.2 

Elevation resolution (°) < 1.0 

Observational range (km) 60 

Observational elevation (°) 0–90 

Temporal resolution for volume 

scan (s) 
30 

Range resolution (m) 75 

No. of transmitted fan beams  

(Elevation angles; °) 

7 (0–6;6–13;13–23;23–33;33–

46;46–63;63–90) 

No. of elevation angles 113 
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B. ANALYTICAL METHODS AND A REVIEW OF CASE 

STUDIES 

 To explore the relationship between 𝑍ℎ, 𝑍𝑑𝑟, and 𝐾𝑑𝑝  above 

the freezing level and near-surface rainfall, we computed the 

volume (in 𝑘𝑚3 ) of these radar variables within each 30 s 

interval. The  data above the freezing level is used to calculate 

the volume of radar variables using full scan data every 30 sec 

with DP-PAWR. We then compared this volume with the 

volume of 𝑍ℎ below 2 km altitude to represent the amount of 

near-surface rainfall. The DP-PAWR's observation range 

includes urban areas, such as Tokyo city, which are prone to 

ground clutter due to tall buildings. Consequently, data at low 

altitudes (e.g., 1 km or less) are often missing. For this reason, 

we utilized data at altitudes of 2 km or less when calculating 

near-surface rainfall. The volumes (in 𝑘𝑚3 ) of 𝑍ℎ , 𝑍𝑑𝑟 , and 

𝐾𝑑𝑝  at > 45 dBZ, 3 dB, and 3 °/km, respectively, were 

calculated. In this paper, the threshold value of 𝐾𝑑𝑝 was set to 

3 deg/km. This is based on the results of precipitation cores 

observed in a previous study [28]. In addition, some previous 

studies using other S-band radars have used values, such as 1 

or 2 deg/km to obtain the signatures of 𝐾𝑑𝑝 but this paper uses 

3 deg/km in consideration of the difference in observation 

frequency [31–33].  
In this paper, we studied three characteristically different 

summer convective storms that were observed by the DP-

PAWR in 2020 and 2021.  
Fig.1 shows the plan position indicator (PPI) image of the 

𝑍ℎ for the analyzed cases obtained at an elevation angle of 2.4° 

using the DP-PAWR.  The storms of case 1 and 2 occured 

almost spatiotemporally simultaneously on August 22, 2020, 

and were located only several tens of kilometers from each 

other. The storm of case 3 occured on July 30, 2021. In case 1, 

the horizontal scale of the storm was about 10–15 km. The 

highest echo top of the radar reflectivity of 45 dBZ was 9 km. 

The storm duration is 80 min. In case 2, the maximum echo top 

of 45 dBZ was 6 km, and its horizontal scale was 2 km. The 

storm duration is 30 min. In case 3, the horizontal scale of the 

storm was about 10 km. Similar to case 1, this case was a well-

developed stom. The highest echo top of 45 dBZ and storm 

duration are 7 km and 90 min, respectively. 

 To define the altitude of the freezing level, the temperature 

data from radio-sonde observations of the upper atmosphere 

conducted by the Japan Meteorological Agency were used. Fig. 

 
FIGURE 2. Temperature data from radio-sonde observations at 
15:00 (JST) on August 22, 2020(a) and July 30, 2021(b). 

 

FIGURE 3. 3D distribution of the radar variables of 𝒁𝒉, 𝒁𝒅𝒓, and 𝑲𝒅𝒑. Panels (a), (b), and (c) show the maximum values of 𝒁𝒉, 𝒁𝒅𝒓, and 𝑲𝒅𝒑 along a 

direction, respectively. The numbers 1, 2, and 3 indicate the maximum values across the vertical and horizontal direction. The dashed line indicates 

the freezing level considering the discussion using Fig. 4. 
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2 illustrates the temperature data from the Tateno observation 

site, situated at 36.0583° north latitude and 140.125° east 

longitude, as depicted in the square dot in Fig. 1. A radio-sonde 

was launched at 15:00 (Japan Standard Time; JST) on August 

22, 2020, and July 30, 2021 and the results indicated that the 

freezing level, marked by a temperature of 0°C, was at 

approximately 5 km in both cases. The distance between the 

radio-sonde observation locations and the storms of case 1, 2, 

and 3 was approximately 51 km, 42 km, and 40 km, 

respectively. 

 

III. RESULTS AND DISCUSSION 

A. CASE 1  

To understand the characteriscis of the storm in case 1, the 

three-dimentional distribution of the radar variables of  𝑍ℎ, 𝑍𝑑𝑟, 

and 𝐾𝑑𝑝 obtained by DP-PAWR at 18:24:54 (JST) are shown 

in Fig. 3. Labels (a), (b), and (c) show the maximum values 

of the 𝑍ℎ, 𝑍𝑑𝑟, and 𝐾𝑑𝑝 along each direction, respectively. The 

numbers 1, 2, and 3 signify the maximum values across the 

vertical direction (Z) of the altitude (from 0 to 13 km) for all 

XY locations, y (west-east)-the horizontal direction from -25 

to 5 km for all XZ locations, and x(south-north)-the horizontal 

direction from 28 to 58 km for all YZ locations, respectively. 

The storm was observed from 18:00:24 to 19:15:24  on August 

22, 2020. The horizontal scale of the storm was 10–15 km, as 

shown in panel (a-1). Two precipitation cores were observed in 

the analysis range. During the observation period, the 

precipitation core repeatedly developed at 38 and -18 km in x 

and y coordinates, respectively, and was advected 

northwestwards by the environmental winds. Such 

precipitation cores that occur more than once at the same 

location are more likely to cause precipitation disasters because 

of a large amount of near-surface rainfall. 

In panels (a-2,3), the echo top at 45 dBZ was found to reach 

an altitude of 9 km. The vertical structure of 𝑍ℎ , 𝑍𝑑𝑟 , and 

𝐾𝑑𝑝 ,clearly highlighted the precipitation core's presence in 

panels (a-2,3), (b-2,3), and (c-2,3), particularly in areas with 

high convective activity. In this case, the signature of the 

melting layer was not distinctly discernible using the 

polarimetric variables. To accurately estimate the freezing level 

in this case,  𝜌ℎ𝑣  data are used. Although 𝜌ℎ𝑣  for most 

meteorological echoes tends to be greater than 0.9, it can dip to 

be approximately 0.7 when melting hail and snowflakes are 

present near the melting layer. Therefore 𝜌ℎ𝑣 is useful to detect 

the freezing level. 

Fig. 4 shows the vertical structure of 𝜌ℎ𝑣 at the same time as 

Fig. 3. Panels (a) and (b) are slices of the XZ and YZ planes at 

Y of -18 km and X of 38 km, respectively. From these figures, 

the 𝜌ℎ𝑣 is partially low at the altitude of 4.5 km with a black 

oval in panel (a). Therefore, in this study, the freezing level is 

set at 4.5 km, which is slightly lower than the radio-sonde data 

from Fig. 2.  

Fig. 5 depicts the temporal evolution of the volume of Zh 

below 2 km altitude, as well as 𝑍ℎ , 𝑍𝑑𝑟 , and 𝐾𝑑𝑝  above the 

freezing level in panels (a), (b), (c), and (d), respectively. In 

panel (a), the volume of near-surface rainfall increased 

between 18:20:54 and 19:10:54. This increase and decrease in 

rainfall volume were associated with the repeated development 

of precipitation cores, and after 18:43:24, the 𝑍ℎ  volume 

decreased as the updraft within the storms gradually weakened. 

Panels (b), (c), and (d) show that the peak values for 𝑍ℎ, 𝑍𝑑𝑟, 

and 𝐾𝑑𝑝  volumes above the freezing level occurred around 

18:25:54. These results suggest that all these variables exhibit 

variations a few min ahead of near-surface rainfall. 

 

FIGURE 5. Temporal variation of the volume of 𝒁𝒉 below 2 km altitude, 

and 𝒁𝒉 , 𝒁𝒅𝒓 , and 𝑲𝒅𝒑  at an altitude above the freezing level (4.5 km 

altitude) in panels (a), (b), (c), and (d), respectively. 

 

FIGURE 4. Vertical structure of the 𝝆𝒉𝒗  at the same time as Fig. 3. 

Panels (a) and (b) are slices of the XZ and YZ planes, respectively. 
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Fig. 6 illustrates the lead-lag correlation coefficients and 

scatter plots of the temporal changes between the volume of  

𝑍ℎ, 𝑍𝑑𝑟, and 𝐾𝑑𝑝 above the freezing level and 𝑍ℎ below 2 km 

altitude. In the scatter plot, the full volume scan data above the 

freezing level, which are corrected  for time infomation using 

lead-lag time in panels (a,b,c-1), and 𝑍ℎ volume below 2 km 

altitude are used. In panels (a-1) and (c-1), it was observed that 

the 𝑍ℎ and 𝐾𝑑𝑝 volumes above the freezing level preceded the 

𝑍ℎ  volume below 2 km altitude by 8.5 and 11.5 min, 

respectively, with correlation coefficients of 0.76 and 0.74, 

respectively. The coefficient of determination for the 𝑍ℎ and 

𝐾𝑑𝑝 volume was 0.55 or greater, as shown in panels (a-2) and 

(c-2), respectively. These findings indicate that 𝑍ℎ  and 

𝐾𝑑𝑝 volumes above the freezing level can serve as valuable 

indicators for short-term predictions of near-surface rainfall 

volume. The previous studies reported that  𝐾𝑑𝑝 core, which is 

an area of enhanced positive 𝐾𝑑𝑝, near and below melting layer 

appears to be associated with downdrafts in storms (e.g., [30]). 

Therefore, the 𝐾𝑑𝑝  core volume is considered suitable for 

estimating near-surface rainfall volume, though this study did 

not explicitly define the 𝐾𝑑𝑝  core. However, for 𝑍𝑑𝑟 volume, 

despite a lead time of 20.5 min relative to surface rainfall, the 

correlation coefficient was a low value of 0.63. Additionally, 

the coefficient of determination for 𝑍𝑑𝑟 was 0.40, which was 

lower than those for 𝑍ℎ and 𝐾𝑑𝑝. Several factors may account 

for this low correlation with surface rainfall. 𝑍𝑑𝑟 tends to be 

more sensitive to very large liquid drops, possibly containing 

ice cores (drops exceeding 5 mm in diameter) or hail above the 

freezing level, in comparison to 𝐾𝑑𝑝  [16]. This distinction 

could contribute to the varying correlation coefficients between 

𝑍𝑑𝑟  and 𝐾𝑑𝑝 . Moreover, in this case,the absence of clearly 

observed 𝑍𝑑𝑟  columns may have contributed to the lower 

correlation between 𝑍𝑑𝑟 and near-surface rainfall.  

Fig. 7 presents the time-altitude distribution of 𝑍ℎ volume at 

> 45 dBZ, 𝑍𝑑𝑟 volume at > 3 dB, and 𝐾𝑑𝑝 volume at > 3 °/km. 

In the 𝑍ℎ and 𝐾𝑑𝑝 results of panels (a) and (c), three 

precipitation cores developed around 18:15:24, 18:30:24, and 

18:40:24 and were clearly observed falling from high altitudes 

to the ground. These results indicate that increases or 

decreases in near-surface rainfall can be accurately predicted 

with a lead time of more than 8.5 min using the 

𝑍ℎ and 𝐾𝑑𝑝 volumes. However, in this case, the 𝑍𝑑𝑟  volume 

did not clearly reveal the falling precipitation cores. In this case, 

the precipitation cores occur within a short time period and 

seems to temporally overlap each other. The temporal overlap 

of particles (hail, ice cry stal, rain, etc.) produced by different 

precipitation cores above the freezing level may have reduced 

the coefficient of determination for 𝑍𝑑𝑟.  
 

 

 

 

 

 

 

 

FIGURE 6. Lead-lag correlation coefficients and scatter plots of the 

temporal variations between (a) 𝒁𝒉, (b) 𝒁𝒅𝒓, and (c) 𝑲𝒅𝒑 volume above 

freezing level and 𝒁𝒉 below 2 km altitude.  

 

FIGURE 7. Time-altitude distribution of 𝒁𝒉 , 𝒁𝒅𝒓 , and 𝑲𝒅𝒑  volume in 

panels (a), (b), and (c), respectively. Dashed line indicates the freezing 

level. 
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B. CASE 2 

Case 2's storm was observed on August 22, 2020, from 

18:00:24 to 18:35:24 (JST). In Fig. 8, the 3D distribution of 

radar variables 𝑍ℎ, 𝑍𝑑𝑟, and 𝐾𝑑𝑝 using DP-PAWR at 18:14:54 

is presented. The horizontal extent of the storm spanned 2–3 

km, as evident in panel (a-1). When compared with case 1, the 

storm in case 2 was notably smaller. Precipitation cores formed 

at coordinates of 29 km (x) and -4.5 km (y). The vertical 

structure of 𝑍ℎ , 𝑍𝑑𝑟 , and 𝐾𝑑𝑝  did not reveal a melting layer 

signature around the freezing level, as indicated in panels (a-

2,3), (b-2,3), and (c-2,3). The echo top at 45 dBZ was situated 

at an altitude of 6 km. Even with weak convective activity, DP-

PAWR clearly captured the precipitation core. 

Fig. 9 illustrates the vertical structure of 𝜌ℎ𝑣 at the same time 

as Fig. 8. Panels (a) and (b) provide slices of the XZ and YZ 

planes at Y coordinates of -4.5 km and X coordinates of 28.5 

km, respectively. In case 2, it is difficult to define the melting 

layer from Fig. 9. However, because case 1 and 2 were 

observed at almost the same time, we also used the melting 

layer altitude of 4.5 km obtained in case 2.  

In Fig. 10, the temporal changes in the volume of 𝑍ℎ below 

2 km altitude, and 𝑍ℎ, 𝑍𝑑𝑟, and 𝐾𝑑𝑝 above the freezing level, 

are displayed. Panel (a) reveals an increase in surface rainfall 

volume from 18:18:24 to 18:25:24, peaking at 18:22:24. In 

panels (b), (c), and (d), the 𝑍ℎ, 𝑍𝑑𝑟 and 𝐾𝑑𝑝 volumes above the 

freezing level exhibited an approximate lead time of 8 min in 

relation to near-surface rainfall. The peak values for these 

variables were recorded around 18:14:24. 

Fig. 11 presents the lead-lag correlation coefficients and 

scatter plots depicting the temporal variations in radar full 

volume scan data between the volume of 𝑍ℎ , 𝑍𝑑𝑟 , and 𝐾𝑑𝑝 

above the freezing level and 𝑍ℎ below 2 km altitude. In panels 

(a-1), (b-1), and (c-1), the 𝑍ℎ, 𝑍𝑑𝑟  and 𝐾𝑑𝑝 volumes above the 

freezing level exhibited a lead time of 7–8 min compared to 

the volume of near-surface rainfall. Panels (a-2) and (b-2) 

reveal coefficients of determination for the 𝑍ℎ  and 

𝑍𝑑𝑟  volumes, exceeding 0.84, even with a smaller dataset due 

to the storm's short duration. These results underscore the 

usefulness of 𝑍ℎ and 𝑍𝑑𝑟 volumes above the freezing level as 

predictive indicators for near-surface rainfall volume. However, 

the coefficient of determination for the 𝐾𝑑𝑝  volume was 

slightly lower, registering a mere 0.47. As described in [13], 

𝐾𝑑𝑝  is most strongly correlated with intense convection and 

may not effectively track moderate deep convection activity. In 

this case, the convective storms were generally small with 

weak convective activity, leading to a relatively lower 

 

FIGURE 8. 3D distribution of the radar variables of 𝒁𝒉, 𝒁𝒅𝒓, and 𝑲𝒅𝒑. Panels (a), (b), and (c) show the maximum values of 𝒁𝒉, 𝒁𝒅𝒓, and 𝑲𝒅𝒑 along a 

direction, respectively. The numbers 1, 2, and 3 indicate the maximum values across the vertical and horizontal direction. The dashed line indicates 

the freezing level. 

 

 

FIGURE 9. Vertical structure of the 𝝆𝒉𝒗 at the same time as Fig. 8. 

Panels (a) and (b) are slices of the XZ and YZ planes. 
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coefficient of determination for the 𝐾𝑑𝑝 volume compared to 

the other variables.  

 Fig. 12 shows the time-altitude distribution of 𝑍ℎ, 𝑍𝑑𝑟, and 

𝐾𝑑𝑝  volume. In the 𝑍ℎ  and 𝑍𝑑𝑟  results in panels (a) and (b), 

respectively, two precipitation cores were observed to develop 

and decline during the analysis period. DP-PAWR accurately 

observed the movement of precipitation cores in very small and 

temporally short storms by making 3D observations every 30 

s. The precipitation cores descended from a high altitude 

towards the ground for approximately 8 min prior to the near-

surface rainfall beginning. For 𝑍𝑑𝑟 , the precipitation cores 

were clearly observed, indicating that the two cores generated 

in case 2 could be separated in time. These two points may have 

resulted in a different result from case 1. 

In the case of the  𝐾𝑑𝑝 result, the descent of the precipitation 

cores was distinctly observed. However, it was noted that the 

𝐾𝑑𝑝  volume was not observed for the second core, which 

resulted in very little near-surface rainfall. These findings 

indicate that 𝑍ℎ and 𝑍𝑑𝑟 volumes above the freezing level are 

valuable for quantitatively predicting the volume of near-

surface rainfall in case 2. While the 𝐾𝑑𝑝  volume above the 

freezing level may not be conducive to predicting near-surface 

rainfall volume quantitatively in very small storms, it can 

effectively detect developing precipitation cores in advance. 

For 𝐾𝑑𝑝  volume in this case, optimizing the threshold value 

may improve the accuracy of ground rainfall estimation, but 

since the objective of this paper is to predict heavy rainfall 

disasters using a simple threshold, changing the threshold value 

is a subject for future study. 

 

 

 

 

 

 

 

 

 

FIGURE 11. Lead-lag correlation coefficients and scatter plots of the 

temporal variations in between the volume of (a) 𝒁𝒉, (b) 𝒁𝒅𝒓, and (c) 𝑲𝒅𝒑 

above freezing level  and 𝒁𝒉 velow 2 km altitude.  

 

FIGURE 10. Temporal variation in the volume of 𝒁𝒉  below 2 km 

altitude, and 𝒁𝒉, 𝒁𝒅𝒓, and 𝑲𝒅𝒑 at an altitude above the freezing level 

(4.5 km altitude) in panels (a), (b), (c), and (d), respectively. 

 

 

FIGURE 12. Time-altitude distribution of 𝒁𝒉  volume, 𝒁𝒅𝒓  volume and 

𝑲𝒅𝒑  volume in panels (a), (b), and (c), respectively. Dashed line 

indicates the freezing level. 
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B. CASE 3 

The storm in case 3 was observed on July 30, 2021 from 

11:40:33 to 14:35:33 (JST). Fig. 13 shows the 3D distribution 

of radar variables at 13:31:33. The scale of the storm was about 

a dozen kilometers horizontally. The  𝑍ℎ shown in panel (a) 

indicate that there are at least two or more precipitation cores 

within the analysis area. The echo top of 45 dBZ was situated 

at an altitude of 7 km. The vertical structure of 𝑍ℎ, 𝑍𝑑𝑟, and 

𝐾𝑑𝑝 did not reveal a melting layer signature around the freezing 

level, as indicated in panels (a-2,3), (b-2,3), and (c-2,3).  

Fig. 14 shows the vertical structure of the 𝜌ℎ𝑣. It is difficult 

to define the melting layer from the distribution of the 𝜌ℎ𝑣  as 

in case 2. In this case, we decided to use the melting layer 

altitude of 4.7 km from the radiosonde data as shown in Fig. 

2(b).  

Fig. 15 indicates the temporal changes in the volume of the 

radar variables. Panel (a) reveals an increase in near-surface 

rainfall volume from 11:50:33 to 13:10:33, peaking at 12:43:33. 

In panels (b), (c), and (d) the 𝑍ℎ, 𝑍𝑑𝑟, and 𝐾𝑑𝑝 volumes above 

 

FIGURE 13. 3D distribution of the radar variables of 𝒁𝒉, 𝒁𝒅𝒓, and 𝑲𝒅𝒑. Panels (a), (b), and (c) show the maximum values of 𝒁𝒉, 𝒁𝒅𝒓, and 𝑲𝒅𝒑 along a 

direction, respectively. The numbers 1, 2, and 3 indicate the maximum values across the vertical and horizontal direction. The dashed line indicates the 

freezing level. 

 

 

FIGURE 14. Vertical structure of the 𝝆𝒉𝒗 at the same time as Fig. 13. 

Panels (a) and (b) are slices of the XZ and YZ planes at Y of 2 km 

and X of 34 km, respectively. 

 

FIGURE 15. Temporal variation in the volume of 𝒁𝒉 below 2 km 

altitude, and 𝒁𝒉 , 𝒁𝒅𝒓 , and 𝑲𝒅𝒑  at an altitude above the freezing 

level (4.7 km altitude) in panels (a), (b), (c), and (d), respectively. 
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the freezing level exhibited an approximate lead time of 5 min 

in relation to near-surface rainfall.  

Fig. 16 shows the lead-lag correlation coefficients and 

scatter plots depicting the temporal variations. In panels (a-1), 

(b-1), and (c-1), the 𝑍ℎ , 𝑍𝑑𝑟 , and 𝐾𝑑𝑝 volumes above the 

freezing level exhibited a lead time greater than 5 min 

compared to the volume of near-surface rainfall. The 

coefficients of determination are also greater than 0.5. In this 

case, all variables showed precise accuracy in predicting near-

surface rainfall.  

Fig. 17 shows the time-altitude distribution of the 𝑍ℎ, 𝑍𝑑𝑟, 

and 𝐾𝑑𝑝  volume. In all variables, we can clearly observe a 

strong precipitation core that occurred around 12:43. The DP-

PAWR accurately observed the movement of precipitation 

cores from high to low altitude.  

The results of 𝑍ℎ and 𝐾𝑑𝑝 are similar to case 1. Meanwhile, 

𝑍𝑑𝑟  had a greater coefficient of determination than case 1. 

Unlike case 1, the precipitation cores are developing, 

concentrated at the time 12:43 as shown in Fig. 17. In this case, 

no temporal overlap due to multiple precipitation cores 

occurring in a short period of time was observed, which may 

have avoided the complexity of the generation and distribution 

of particles at high altitude. Furthermore, the 𝑍𝑑𝑟 observations 

clearly showed the precipitation core.Hence, this result in case 

3 is also similar in trend to case 2. Finally, we have summarized 

the results in Table 2. 

 

IV. CONCLUSIONS 

This study aimed to explore the relationship between the 

volume of several radar variables (𝑍ℎ, 𝑍𝑑𝑟, and 𝐾𝑑𝑝) above the 

freezing level and near-surface rainfall using DP-PAWR for 

three distinct summer convective storms. The research delved 

into the quantitative predictability of near-surface rainfall 

volume based on these radar variables. 

In the case of heavy convective storms, as described in case 

1, it was observed that the 𝑍ℎ  and 𝐾𝑑𝑝 volumes above the 

freezing level had a lead time of over 8.5 min in relation to 

near-surface rainfall volume, with a coefficient of 

determination exceeding 0.55. The 𝑍𝑑𝑟  volume exhibited a 

weaker correlation with near-surface rainfall in this scenario.  

For the small-scale convective storm in case 2, the 𝑍ℎ and 

𝑍𝑑𝑟  volumes proved highly effective in predicting surface 

rainfall volume, with a lead time exceeding 7 minutes and a 

TABLE 2  

LEAD-LAG TIME AND COEFFICIENT OF DETERMINATION 

FOR THE SURFACE RAINFALL. 

  

 

  
Lead-

lag 

[min] 

coefficient of 

determination 

Case 1 

(heavy convective 

+multicore) 

 𝑍ℎ -8.5  0.58 

 𝑍𝑑𝑟 -20.5  0.40 

 𝐾𝑑𝑝 -11.5  0.55 

Case 2 
(weak convective) 

 𝑍ℎ -7.0  0.94 

 𝑍𝑑𝑟 -8.0  0.84 

 𝐾𝑑𝑝 -8.0  0.47 

Case 3 
(heavy convective 

+multicore) 

 𝑍ℎ -5.0 0.70 

 𝑍𝑑𝑟 -6.5  0.55 

 𝐾𝑑𝑝 -5.0  0.50 

 

 

FIGURE 16. Lead-lag correlation coefficients and scatter plots of the 

temporal variations in the radar volumetric data between (a) 𝒁𝒉, (b) 𝒁𝒅𝒓, 

and (c) 𝑲𝒅𝒑 above freezing level  and 𝒁𝒉 velow 2 km altitude.  

 

FIGURE 17. Time-altitude distribution of 𝒁𝒉 volume, 𝒁𝒅𝒓 volume and 

𝑲𝒅𝒑  volume in panels (a), (b), and (c), respectively. Dashed line 

indicates the freezing level. 
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coefficient of determination surpassing 0.84. However, the 

𝐾𝑑𝑝 volume above the freezing level was found to be less 

reliable in forecasting surface rainfall volume due to its limited 

sensitivity in this context of a small-scale convective storm.  

For heavy convective storms in cases 3, all variables showed 

the potential to predict near-surface rainfall with a coefficient 

of determination of 0.5 or better accuracy at least 5 min lead 

time. 

These results show that by combining the 30-s full volume 

scan data observed by DP-PAWR, it is possible to 

quantitatively predict surface rainfall for various types of 

developing convective storms, ranging in time from 5 minutes 

to around 11 minutes.  This research also holds promise for 

predicting precipitation-related flash flooding. In the future, an 

increase in DP-PAWR production in Japan is expected. 

Conducting statistical analyses across numerous storm cases is 

anticipated to enhance the accuracy of quantitative near-

surface rainfall forecasting by identifying combinations of 

high-altitude volume of several radar variables tailored to the 

scale of convective activity. 
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