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ABSTRACT For autonomous mobile robots to work safely in human-coexistent environments, human-ve-
locity estimation is essential. However, the human body periodically fluctuates to the front, rear, right, and 
left while walking. Also, a significant estimation error occurs due to the vibration of sensors installed in the 
robot. Quick trajectory adjustment requires high-accuracy and low-latency estimation, but these are in a trade-
off relationship. We thus propose a human velocity estimation system (VES) using the Kalman filter (KF) 
and least squares (LS) with adjustable window size (AWS) to control the accuracy and latency. The VES 
adjusts two window sizes to calculate a system noise distribution for KF and a velocity vector for LS using a 
newly proposed cost function, including accuracy (direction and magnitude) and latency (time delay) costs. 
To select window sizes suitable for walking trajectories and individual gaits, we collected human walking 
data, calculated the three costs, and selected the window sizes with the minimum cost. The results of experi-
ments using a laser range finder installed on a mobile robot indicate that the cost function could reveal win-
dow sizes to increase accuracy or reduce latency depending on walking trajectories and individual gaits, and 
the VES with AWS could enhance the performance of estimating human walking velocity for mobile robots.   

INDEX TERMS Autonomous mobile robot, Human-walking velocity estimation, Kalman filter,  
Least squares, Adjustable window size 

I.  INTRODUCTION 
Estimating human walking velocity with high accuracy and 
low latency is essential for autonomous mobile robot navi-
gation in human-coexisting environments [1]–[4]. Com-
monly used robot navigation methods, such as the velocity 
obstacle approach [5]–[7] and the potential method [8], as-
sume that the robot can measure human velocity with high 
accuracy and low latency (in real-time). However, this as-
sumption is not satisfied in real situations due to the system 
noise and observation noise in velocity estimation systems. 
Lower accuracy and higher latency prevent the robot from 
adequately predicting a human’s path, i.e., the coordinates 
and timing of interference with the human, so the robot will 
change the path repeatedly in a short time or get stuck with 
selecting a non-optimal path [9]. 
    To filter the above noises out, the Kalman filter (KF) and 
its derivatives are widely applied for estimating human 

presence and tracking humans [10]–[12]. KFs are effective 
in reducing observation noises while combining other sensor 
data. In [13], the robot detects the legs of pedestrians using 
random forest based on point clouds from a laser range finder 
(LRF) and follows the pedestrians using the tracked trajecto-
ries derived by extended Kalman filters (EKFs). In [14], the 
robot follows runners at a high speed (5 m/s) in outdoor en-
vironments using KF. In [15], the robot detects and tracks a 
target pedestrian occluded by obstacles and other pedestrians 
based on KF. While many studies have focused on human 
tracking, there have been relatively few studies on human-
velocity estimation for human-symbiotic mobile robots.  
    Humans have characteristics that periodically sway later-
ally, longitudinally, and vertically while walking due to their 
bio-mechanical structure [16]. Fig. 1 (a) shows human tra-
jectory estimated using point clouds from an LRF, where we 
can observe a 90-mm sway in the lateral direction. Figs. 1 (b) 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3432590

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



 

VOLUME XX, 2024 2 

and (c) show the velocity magnitude and direction calculated 
by the simple time differential of a human trajectory esti-
mated from an LRF, where the estimated values largely de-
viated from the expected value (ground truth). This directly 
indicates that a large velocity-estimation error occurs when 
the velocity estimation system (VES) adopts simple deriva-
tion methods. In addition, human velocity varies with the 
characteristics of humans, e.g., waking gaits, environmental 
conditions, and vibration noises due to the robot’s movement. 
If VES does not apply the appropriate filters to remove the 
above noises, the robot will suffer fatal effects, such as mis-
understanding the human’s intention, selecting a non-opti-
mal path, or chattering robot behavior [17]. Filters such as 
KFs can mitigate the above fluctuating noises, but too strong 
filtering will distort the original walking trajectories, e.g., 
phase delay.  
    Some studies have developed special noise filters to re-
duce human fluctuating noises [13], [18]. However, they do 
not consider differences in individual walking gaits and var-
ious walking trajectories, nor do they control estimation ac-
curacy and latency. Thus, developing a VES that can opti-
mize accuracy and latency while adapting to various condi-
tions remains challenging. As a simple but expandable sys-
tem, we propose a VES with adjustable window sizes (AWS) 
comprising KF, least squares (LS), and cost functions. First, 
the VES derives the current human position using KF, which 
uses both LRF data and the predicted position from the esti-
mated velocity while considering system and observation 
noises. The system noise is expressed as distribution, which 
we can adjust by changing a window size ℯ to define the dis-
tribution. It then estimates human velocity using LS, which 
adopts a window size ℓ suitable for walking conditions. Con-
ventionally, these window sizes are fixed after suitable val-
ues are found, e.g., optimizing a sliding window size for ve-
hicle localization [19]. However, adjusting the window sizes 
for KF and LS affects the performance of VES: for example, 
quick meandering movements require real-time followability 
and high responsiveness, so KF needs a small noise, and LS 
needs a small window. On the other hand, when high anti-
noise estimation is required, KF needs a large noise, and LS 
needs a large window.  
    In summary, we propose a VES that can adjust accuracy 
and latency. To achieve this, we estimate a human trajectory 
using KF and calculate a velocity using LS. A window size 
adjustment system adjusts ℯ for calculating a system noise in 
a KF process and ℓ  for calculating a velocity in an LS 

process, based on a cost function to learn {ℯ, ℓ} suitable for 
the purpose (high accuracy, low latency, or a balance be-
tween the two). This study contributes to developing a frame-
work for a human velocity estimation system that enables a 
measurement performance suitable for the target conditions 
and enhances the performance of mobile robot navigation. 

II.  RELATED AND REQUIRED WORKS 
We refer to the related works on estimating walking velocity 
with a function to control accuracy and latency and explain 
the requirements for the proposed VES.  

A. RELATED WORKS 
The inverted pendulum model is a popular model of human-
walking dynamics [20]. An inverted pendulum roughly ap-
proximates the motion of the walker’s center of mass. [21] 
revealed that lateral sway is 4.5 cm on average. [22] tracked 
pedestrians with shoe-mounted inertial sensors based on 
EKF. [23] recognized intentional actions of a human from 
the relative movements between a human and a robot using 
a clustering method. [24] estimated walking parameters 
based on a wrist-mounted inertial sensor using KF and a 
zero-velocity update. [25] compared two walking speed esti-
mation methods using shank- and foot-mounted inertia 
measurement units (IMU). [26] proposed an approach to mit-
igate walking speed estimation errors by estimating the low-
frequency noise components. Moreover, pedestrian localiza-
tion and tracking systems using KF [27] and a particle filter 
[28] have been proposed for autonomous vehicles. Many 
studies have focused on human tracking, and a few have ad-
dressed human-velocity estimation. However, they used 
IMUs positioned on shoes or bodies, which can directly 
measure the acceleration of the human. In our case, we use 
an LRF to indirectly measure human position, which makes 
accurate velocity estimation extremely difficult. We thus 
need a VES suitable for using the human position obtained 
from LRF. 
    In information processing, stronger filtering can reduce 
the noise from the signal, but it will distort even the correct 
signal due to past time-series data, and the time-series trend 
will include latency. As is well known, the relationship be-
tween noise reduction and high fidelity (and realtimeness) is 
generally a trade-off [29]. Mobile robots require safe and ef-
ficient navigation, needing a high-accuracy and low-latency 
VES. At the same time, their importance or priority depends 
on tasks and environments, so a VES also requires a function 

FIGURE 1.  Human information estimated from LRF data when human is naturally walking straight toward LRF. (a) Human walking trajectory, which has large lateral 
deviation due to natural lateral swing. (b) Magnitude of walking velocity. (c) Direction of walking velocity.  
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to adjust accuracy and latency. However, to date, there have 
been no studies on such adjustment functions. 

B. REQUIRED WORK: VES WITH AWS 
As explained in Section I, to estimate a human velocity with 
high accuracy and low latency, our VES needs a window-
size adjustment function to find window sizes suitable for 
walking trajectories and individual gaits. We thus developed 
a VES with AWS that can control the estimation accuracy 
and latency using our cost function. Fig. 2 shows the 
overview of our proposed system. It learns suitable window 
sizes based on costs calculated using differences from 
ground truth and then measures human velocity based on the 
selected window sizes for KF and LS. 

III.  VELOCITY ESTIMATION SYSTEM (VES) 
We explain the theory and system configurations of our VES 
consisting of KF and LS, as shown in Fig. 3. Table I lists the 
symbols used in the VES. In this study, we applied a first-order 
Kalman filter to each axis independently. 

A. OBSERVED HUMAN POSITION (SYSTEM INPUT)  
Many studies on estimating human presence and tracking use 
RGBD image sensors installed in the environment (not ro-
bots) [12], [27], or depth sensors installed in the robot [30]–
[32]. LRF can collect point clouds with higher accuracy, re-
liability, and robustness than image and depth sensors [13], 
[15]. In this study, the VES adopts an LRF to obtain the point 
clouds of pedestrians. It detects humans from point clouds 
and estimates their position and posture using the human de-
tection system proposed in our previous study [3]. The hu-
man detection system first extracts 5–15 successive point 
clouds corresponding to a human in our experimental setting. 
Then, it estimates eclipses from the extracted point clouds 
and calculates the human posture from the angle of long and 
short axes. We denote the observed human position in the 
target whole trajectory 𝓨𝓨 ∈ (step 𝑘𝑘 = 1, ⋯, 𝐾𝐾). 𝔂𝔂(𝑘𝑘) is the 
human position at step 𝑘𝑘 and consists of 𝑦𝑦1(𝑘𝑘) (longitudinal 
axis) and 𝑦𝑦2(𝑘𝑘) (lateral axis), which are given by 

 
𝓨𝓨 = {𝔂𝔂(1), … ,𝔂𝔂(𝑘𝑘), … ,𝔂𝔂(𝐾𝐾)}   , 

𝔂𝔂(𝑘𝑘) = {𝑦𝑦1(𝑘𝑘),𝑦𝑦2(𝑘𝑘)}𝑇𝑇   . 
(1) 

B. STATE AND OBSERVATION EQUATIONS FOR KF 
We denote the state vector of the human position 𝔁𝔁(𝑘𝑘) as 

 𝔁𝔁(𝑘𝑘) = {𝑥𝑥1(𝑘𝑘), 𝑥𝑥2(𝑘𝑘)}𝑇𝑇   . (2) 

   The VES estimates the velocity using LS, which is a com-
monly used approximation method. The estimated velocity 
using the window size ℓ, 𝓿𝓿�(𝑘𝑘)|ℓ, is simply given by   

 𝓿𝓿�(𝑘𝑘)|ℓ = LS�𝔁𝔁(𝑘𝑘 − ℓ), … ,𝔁𝔁(𝑘𝑘 − 1),𝔁𝔁(𝑘𝑘)�  , (3) 

where LS(∙) is the least squares function, and its argument is 
a time series data. To save space, please refer to [33] for a 
detailed calculation. The state equation is thus given by 

 𝔁𝔁(𝑘𝑘) = 𝔁𝔁(𝑘𝑘 − 1) + 𝓿𝓿�(𝑘𝑘 − 1)|ℓ ∙ ∆𝑡𝑡 + 𝝐𝝐(𝑘𝑘)   , (4) 

where 𝝐𝝐(𝑘𝑘) is the system noise at step 𝑘𝑘, and ∆𝑡𝑡 is the time 
gap between each step.  
    Then, we define the observation equation, which associ-
ates 𝔂𝔂(𝑘𝑘) with 𝔁𝔁(𝑘𝑘), as following: 

 𝔂𝔂(𝑘𝑘) = 𝔁𝔁(𝑘𝑘) + 𝝎𝝎(𝑘𝑘)   , (5) 

where 𝝎𝝎(𝑘𝑘) is the observation noise at step 𝑘𝑘. The measure-
ment noise of a sensor is often applied to 𝝎𝝎(𝑘𝑘).  

C. PREDICTION AND CORRECTION PHASES FOR KF 
We first explain the prediction phase. We denote the priori 
and posterior state vectors (i.e., human position) at step 𝑘𝑘 as 
𝔁𝔁�−(𝑘𝑘) and 𝔁𝔁�+(𝑘𝑘), respectively, and the priori and posterior 
error distributions at step 𝑘𝑘 as 𝜎𝜎𝔁𝔁�−2 (𝑘𝑘) and 𝜎𝜎𝔁𝔁�+

2 (𝑘𝑘), respec-
tively. 𝜎𝜎𝜖𝜖2(𝑘𝑘) is the system noise distribution at step 𝑘𝑘. In the 
prediction phase, the priori state vector 𝔁𝔁�−(𝑘𝑘) and the prior 
error distribution 𝜎𝜎𝔁𝔁�−2 (𝑘𝑘) can be given by 

 𝔁𝔁�−(𝑘𝑘) = 𝔁𝔁�+(𝑘𝑘 − 1) + 𝓿𝓿�(𝑘𝑘 − 1)|ℓ ∙ ∆𝑡𝑡   , (6) 

TABLE I.  Symbols for human velocity estimation system. 

𝑘𝑘, ∆𝑡𝑡 Step 𝑘𝑘 ∈ {1, … ,𝐾𝐾}, time between each step 
𝓨𝓨 Observed human trajectory  
𝔂𝔂(𝑘𝑘) Observed position vector {𝑦𝑦1(𝑘𝑘),𝑦𝑦2(𝑘𝑘)}𝑇𝑇 
𝔁𝔁(𝑘𝑘) State vector of human position {𝑥𝑥1(𝑘𝑘),𝑥𝑥2(𝑘𝑘)}𝑇𝑇 
𝔁𝔁�−(𝑘𝑘), 𝔁𝔁�+(𝑘𝑘) Priori and posteriori estimated position vector 
ℓ Window size for least squares (∈ ℤ (integer)) 
ℯ Window size for Kalman filter (∈ ℤ (integer)) 
𝓿𝓿�(𝑘𝑘)|ℓ Estimated velocity when using ℓ {𝑣𝑣�𝜃𝜃(𝑘𝑘),𝑣𝑣�𝑟𝑟(𝑘𝑘)}ℓ𝑇𝑇 
𝓿𝓿�(𝑘𝑘)|ℯ,ℓ Estimated velocity when using ℯ, ℓ 
𝓥𝓥�|ℓ Velocity of whole trajectory when using ℓ 
𝓥𝓥�|ℯ,ℓ Velocity of whole trajectory when using ℯ, ℓ 
𝜖𝜖(𝑘𝑘), 𝜖𝜖(𝑘𝑘)|ℯ System noise, system noise when using ℯ 
𝝎𝝎(𝒌𝒌) Observation noise �𝜔𝜔𝑦𝑦1(𝑘𝑘),𝜔𝜔𝑦𝑦2(𝑘𝑘)�

𝑇𝑇 
𝜎𝜎𝔁𝔁�−2 (𝑘𝑘), 𝜎𝜎𝔁𝔁�+

2 (𝑘𝑘) Priori and posteriori error distribution 
𝜎𝜎𝜖𝜖2(𝑘𝑘)|ℯ System noise distribution when using ℯ 
𝜎𝜎𝜔𝜔2(𝑘𝑘) Observation noise distribution (= 1.0) 
𝒦𝒦(𝑘𝑘) Kalman gain: 0 < 𝒦𝒦(𝑘𝑘) ≤ 1 
𝑑𝑑ℯ(𝑘𝑘) Displacement of human using ℯ 
𝑘𝑘𝑚𝑚 Time delay 
𝑣𝑣𝜃𝜃𝑇𝑇(𝑘𝑘), 𝑣𝑣𝑟𝑟𝑇𝑇(𝑘𝑘), 𝑘𝑘𝑚𝑚𝑇𝑇 True value of direction, magnitude, & time delay  
𝜃𝜃𝑚𝑚, 𝑠𝑠𝑚𝑚 Conditions (angle and time) of turning end  
𝑎𝑎, 𝑏𝑏 Coefficients for displacement system noise model 
𝒞𝒞 Cost function 
 

FIGURE 2.  System overview of walking velocity estimation using Kalman filter 
and least squares with adjustable window size. The system learns suitable pa-
rameters based on costs calculated using differences from ground truth. 
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 𝜎𝜎𝔁𝔁�−2 (𝑘𝑘) = 𝜎𝜎𝔁𝔁�+
2 (𝑘𝑘 − 1) + 𝜎𝜎𝜖𝜖2(𝑘𝑘)   . (7) 

    Next, for the correction phase, we denote the Kalman gain 
as 𝒦𝒦(𝑘𝑘). As Fig. 4 shows, the posterior state vector 𝔁𝔁�+(𝑘𝑘) 
and the posterior error distribution 𝜎𝜎𝔁𝔁�+

2 (𝑘𝑘) are given by  

 𝔁𝔁�+(𝑘𝑘) = 𝔁𝔁�−(𝑘𝑘) + 𝒦𝒦(𝑘𝑘)�𝔂𝔂(𝑘𝑘) − 𝔁𝔁�−(𝑘𝑘)�   , (8) 

 𝜎𝜎𝔁𝔁�+
2 (𝑘𝑘) = {1 −𝒦𝒦(𝑘𝑘)} 𝜎𝜎𝔁𝔁�−2 (𝑘𝑘)   . (9) 

    Then, 𝒦𝒦(𝑘𝑘) is updated by using  

 𝒦𝒦(𝑘𝑘) =
1

1 + 𝜎𝜎𝜔𝜔2(𝑘𝑘) 𝜎𝜎𝔁𝔁�−2 (𝑘𝑘)⁄    , (10) 

where 𝜎𝜎𝜔𝜔2(𝑘𝑘) is the observation noise distribution at step 𝑘𝑘.  

D. VELOCITY ESTIMATION USING LEAST SQUARES 
As explained earlier, 𝓿𝓿�(𝑘𝑘)|ℓ is the estimated velocity using 
the window size ℓ at step 𝑘𝑘. It consists of 𝑣𝑣�𝜃𝜃 (𝑘𝑘) (direction, 
angle) and 𝑣𝑣�𝑟𝑟(𝑘𝑘) (magnitude, speed), and is denoted by 

 𝓿𝓿�(𝑘𝑘)|ℓ = {𝑣𝑣�𝜃𝜃(𝑘𝑘)|ℓ, 𝑣𝑣�𝑟𝑟(𝑘𝑘)|ℓ}𝑇𝑇   . (11) 

    A large error would occur if we calculate the velocity us-
ing the simple time differential of the human’s position. We 
thus adopt 𝔁𝔁�+(𝑘𝑘) to the LS-based velocity estimation (3). 
The estimated velocity 𝓿𝓿�(𝑘𝑘)|ℓ is redefined by 

 𝓿𝓿�(𝑘𝑘)|ℓ = LS(𝔁𝔁�+(𝑘𝑘 − ℓ), … ,𝔁𝔁�+(𝑘𝑘 − 1),𝔁𝔁�+(𝑘𝑘))   . (12) 

   The estimated velocity in the whole trajectory 𝓥𝓥�|ℓ  is fi-
nally given by  

 𝓥𝓥�|ℓ = {𝓿𝓿�(1)|ℓ, … ,𝓿𝓿�(𝑘𝑘)|ℓ, … ,𝓿𝓿�(𝐾𝐾)|ℓ}   . (13) 

IV.  ANALYSIS OF ADJUSTABLE WINDOW SIZE  
Estimation accuracy and latency of the VES with KF and LS 
have a trade-off relationship corresponding to window sizes. 
To effectively reduce error and latency, we here analyze the 
significance of adjusting window sizes. 

A. ADJUSTABLE WINDOW SIZE 
From the equations in the previous subsections, we can iden-
tify the system noise distribution 𝜎𝜎𝜖𝜖2(𝑘𝑘) , the observation 
noise distribution 𝜎𝜎𝜔𝜔2(𝑘𝑘), and the window size of LS ℓ as the 
variable parameters. We assign the measurement error of 
LRF to 𝜎𝜎𝜔𝜔2(𝑘𝑘), as explained before, so we develop a system 

to adjust 𝜎𝜎𝜖𝜖2(𝑘𝑘) and ℓ to control the accuracy and latency.  

B. DISPLACEMENT AND SYSTEM NOISE RELATIONSHIP 
We first define the displacement of human 𝔂𝔂(𝑘𝑘) calculated 
using the window size ℯ as 𝑑𝑑ℯ(𝑘𝑘), which is given by 

 𝑑𝑑ℯ(𝑘𝑘) = |𝔂𝔂(𝑘𝑘) −𝔂𝔂(𝑘𝑘 − ℯ)|   . (14) 

    Here, we analyze the relationship between 𝑑𝑑ℯ(𝑘𝑘) and the 
system noise distribution 𝜎𝜎𝜖𝜖2(𝑘𝑘). From (8), 𝔁𝔁�+(𝑘𝑘) is deter-
mined by 𝒦𝒦(𝑘𝑘), which is the interior division ratio of 𝔁𝔁�−(𝑘𝑘) 
and 𝔂𝔂(𝑘𝑘). 𝜎𝜎𝜔𝜔2(𝑘𝑘) is fixed to the measurement error of LRF, 
so 𝒦𝒦(𝑘𝑘) decreases when 𝜎𝜎𝜖𝜖2(𝑘𝑘) is smaller while 𝒦𝒦(𝑘𝑘) in-
creases when 𝜎𝜎𝜖𝜖2(𝑘𝑘) is larger, as indicated in (7) and (10).  
    We consider a situation in which a human walks in the 𝑦𝑦1 
direction (Fig. 5 (a)). In this case, 𝑦𝑦1  displacement 𝑑𝑑ℯ(𝑘𝑘) 
will be large and must be only a signal to be measured (Fig. 
5 (b)), so responsiveness needs to be increased, i.e., 𝜎𝜎𝜖𝜖2(𝑘𝑘)|ℯ 
needs to be large to trust more in 𝔂𝔂(𝑘𝑘). At the same time, the 
𝑦𝑦2 displacement 𝑑𝑑ℯ(𝑘𝑘) will be small and should be ideally 
zero since it is caused by lateral sway or sensor noises (Fig. 
5 (c)), so noise suppression needs to be stronger, i.e., 𝜎𝜎𝜖𝜖2(𝑘𝑘)|ℯ 
needs to be small to trust more in 𝔁𝔁�−(𝑘𝑘).  
    Based on the above analysis, we summarize the effects of 
AWS in controlling estimation accuracy and latency by fo-
cusing on the relationship between 𝑑𝑑ℯ(𝑘𝑘)  and 𝜎𝜎𝜖𝜖2(𝑘𝑘)|ℯ . 
Larger 𝑑𝑑ℯ(𝑘𝑘) implies that the walking velocity is fast and/or 
the walking behavior change is large, so the system requires 
higher responsiveness. Alternatively, small 𝑑𝑑ℯ(𝑘𝑘)  implies 
that the effect of noise, such as lateral sway on 𝑑𝑑ℯ(𝑘𝑘), be-
comes relatively significant, so the system requires higher 
noise suppression. Consequently, as shown in Fig. 6 (a), 
when 𝑑𝑑ℯ(𝑘𝑘) is large, the system increases the responsiveness 
by making 𝜎𝜎𝜖𝜖2(𝑘𝑘)|ℯ  larger (trust in 𝔂𝔂(𝑘𝑘)). When 𝑑𝑑ℯ(𝑘𝑘)  is 
small, the system increases estimation accuracy by making 

FIGURE 3.  Diagram of human velocity estimation system, including KF and LS. 
KF consists of prediction and modification phases. 𝒂𝒂 and 𝒃𝒃 are constant value de-
rived by experiments. LS means least squares.  
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FIGURE 5.  Relationship between pedestrian’s displacement in 𝒚𝒚𝟏𝟏–𝒚𝒚𝟐𝟐 coordi-
nates and 𝝈𝝈𝝐𝝐(𝒌𝒌)

𝟐𝟐 . Larger 𝝈𝝈𝝐𝝐(𝒌𝒌)
𝟐𝟐  is effective in responsiveness for longitudinal (𝒚𝒚𝟏𝟏) 

axis while smaller 𝝈𝝈𝝐𝝐(𝒌𝒌)
𝟐𝟐  is effective in accuracy for lateral (𝒚𝒚𝟐𝟐) axis.  

𝑦𝑦1  

𝑦𝑦 2
  

𝑦𝑦2  

𝔁𝔁�+(𝑘𝑘) 𝔁𝔁�−(𝑘𝑘) 𝔂𝔂(𝑘𝑘) 

Observation 
distribution 

Posterior probability 
distribution 

Large 𝝈𝝈𝝐𝝐(𝒌𝒌)
𝟐𝟐  is effective 

𝑦𝑦 1
  

Time s 

Time s 

Time delay 

(c) 

(a) 

𝒦𝒦(𝑘𝑘) 1−𝒦𝒦(𝑘𝑘) 

(b) 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3432590

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



 

VOLUME XX, 2024 5 

𝜎𝜎𝜖𝜖2(𝑘𝑘)|ℯ smaller (trust in 𝔁𝔁�−(𝑘𝑘)).  

C. WINDOW SIZE FOR LEAST SQUARES  
We here explain how to adjust ℓ. As Fig. 6 (b) shows, a larger 
ℓ will provide more filtering effect, so the result has higher 
noise suppression, while a smaller ℓ will provide less filter-
ing effect in real time, so the result has higher responsiveness. 
Thus, controlling the balance between accuracy and latency 
using ℓ is easier than that using ℯ. 

D. MODIFICATION AND OPTIMIZATION 
Based on the above analyses, we modify the prediction phase 
(7) by adopting the system noise distribution when using ℯ 
𝜎𝜎𝜖𝜖2(𝑘𝑘)|ℯ as follows 

 𝜎𝜎𝔁𝔁�−2 (𝑘𝑘) = 𝜎𝜎𝔁𝔁�+
2 (𝑘𝑘 − 1) + 𝜎𝜎𝜖𝜖2(𝑘𝑘)|ℯ   . (15) 

    Then, we modify the definition of human velocity (11) and 
(13) by adopting the window size for KF ℯ as follows 

 

𝓿𝓿�(𝑘𝑘)|ℯ,ℓ = �𝑣𝑣�𝜃𝜃(𝑘𝑘)|ℯ,ℓ, 𝑣𝑣�𝑟𝑟(𝑘𝑘)|ℯ,ℓ�
𝑇𝑇   , 

𝓥𝓥�|ℯ,ℓ = �𝓿𝓿�(1)|ℯ,ℓ, … ,𝓿𝓿�(𝑘𝑘)|ℯ,ℓ, … ,𝓿𝓿�(𝐾𝐾)|ℯ,ℓ�   . 
(16) 

    The challenge here is how to find the optimal set {ℯ, ℓ} for 
the VES. We explain the adjustment system in Section V. 

V.  WINDOW SIZE ADJUSTMENT SYSTEM 
We found that the accuracy and latency can be controlled by 
adjusting ℯ and ℓ. We here explain a window size adjustment 
system we developed.  

A. FLOW OF SELECTING OPTIMAL WINDOW SIZES 
As discussed in Section IV, the system uses the human tra-
jectory 𝓨𝓨 and the window size {ℯ, ℓ} and then outputs 𝓥𝓥�|ℯ,ℓ, 
as shown in Figs. 2 and 3. The system learns the characteris-
tics of a human’s movement in the target environments and 
selects {ℯ, ℓ} to meet the required accuracy and latency. To 
this end, we first propose a cost function to evaluate the ac-
curacy and latency of 𝓥𝓥�|ℯ,ℓ. Then, we collect actual human 
walking data, calculate the costs, and select the window size 
set {ℯ, ℓ} suited to the purpose, as shown in Fig. 2.  

B. COST FUNCTION 
We propose a cost function for three elements to evaluate the 
velocity direction 𝒞𝒞(𝑣𝑣�𝜃𝜃), the velocity magnitude 𝒞𝒞(𝑣𝑣�𝑟𝑟), and 

the time delay for a human to change the direction 𝒞𝒞(𝑘𝑘𝑚𝑚). 
𝑘𝑘𝑚𝑚 is the time delay [s]. Each element varies in magnitude 
and dimension, so we standardize these three values. We first 
calculate the root mean square error (RMSE) of the training 
data (e.g., trajectories of human A) for each element. We 
then standardize the RMSE data by ℯ × ℓ  patterns of the 
RMSE. They are given by  

𝒞𝒞(𝑣𝑣�𝜃𝜃) = �
1

𝐾𝐾 ∙ 𝐻𝐻 ∑ ∑ (𝑣𝑣�𝜃𝜃(𝑘𝑘) − 𝑣𝑣𝜃𝜃𝑇𝑇(𝑘𝑘))2𝐾𝐾
𝑘𝑘=1𝐻𝐻

1
ℯ ∙ ℓ ∙ 𝐾𝐾 ∙ 𝐻𝐻 ∑ ∑ ∑ (𝑣𝑣�𝜃𝜃(𝑘𝑘) − 𝑣𝑣𝜃𝜃𝑇𝑇(𝑘𝑘))2𝐾𝐾

𝑘𝑘=1𝐻𝐻ℯ,ℓ

 , (17) 

𝒞𝒞(𝑣𝑣�𝑟𝑟) = �
1

𝐾𝐾 ∙ 𝐻𝐻 ∑ ∑ (𝑣𝑣�𝑟𝑟(𝑘𝑘) − 𝑣𝑣𝑟𝑟𝑇𝑇(𝑘𝑘))2𝐾𝐾
𝑘𝑘=1𝐻𝐻

1
ℯ ∙ ℓ ∙ 𝐾𝐾 ∙ 𝐻𝐻 ∑ ∑ ∑ (𝑣𝑣�𝑟𝑟(𝑘𝑘) − 𝑣𝑣𝑟𝑟𝑇𝑇(𝑘𝑘))2𝐾𝐾

𝑘𝑘=1𝐻𝐻ℯ,ℓ

 , (18) 

𝒞𝒞(𝑘𝑘𝑚𝑚) = �
1

𝑀𝑀 ∙ 𝐻𝐻∑ ∑ (𝑘𝑘𝑚𝑚 − 𝑘𝑘𝑚𝑚𝑇𝑇)2𝑀𝑀
𝑚𝑚=1𝐻𝐻

1
ℯ ∙ ℓ ∙ 𝑀𝑀 ∙ 𝐻𝐻 ∑ ∑ ∑ (𝑘𝑘𝑚𝑚 − 𝑘𝑘𝑚𝑚𝑇𝑇)2𝑀𝑀

𝑚𝑚=1𝐻𝐻ℯ,ℓ

 . (19) 

    We denote 𝑣𝑣𝜃𝜃𝑇𝑇(𝑘𝑘) as the true value of velocity direction, 
𝑣𝑣𝑟𝑟𝑇𝑇(𝑘𝑘) as the true value of velocity magnitude in the travel-
ing direction, and 𝑘𝑘𝑚𝑚𝑇𝑇  as the true value of the time delay for 
a human to change the direction. 𝐾𝐾 is the number of steps 
(data length), 𝐻𝐻 is the number of training sets (participants) 
(= 11), and 𝑀𝑀 is the number of turning patterns (= 1 or 2).  
    When selecting a window size {ℯ, ℓ}, we need to combine 
the cost of all three elements. We define the total cost 𝒞𝒞 by 
multiplying the weight coefficients {𝛼𝛼, 𝛽𝛽, 𝛾𝛾} as   

𝒞𝒞 = 𝛼𝛼 ∙ 𝒞𝒞(𝑣𝑣�𝜃𝜃) + 𝛽𝛽 ∙ 𝒞𝒞(𝑣𝑣�𝑟𝑟) + 𝛾𝛾 ∙ 𝒞𝒞(𝑘𝑘𝑚𝑚)   , (20) 

where {𝛼𝛼, 𝛽𝛽, 𝛾𝛾}must satisfy 𝛼𝛼 + 𝛽𝛽 + 𝛾𝛾 = 1 since the ratio 
should be kept constant. In this study, we adopt {𝛼𝛼, 𝛽𝛽, 𝛾𝛾} = 
{1/3, 1/3, 1/3} for balancing all terms of cost equally, but we 
can arbitrarily adjust according to the environment, e.g., so-
cial norms or robot attributes.  

C. TIME DELAY TO CHANGE DIRECTION 𝒌𝒌𝒎𝒎 
We here define 𝑘𝑘𝑚𝑚 and 𝑘𝑘𝑚𝑚𝑇𝑇 . Fig. 7 shows the process to de-
termine 𝑘𝑘𝑚𝑚 , where humans turn the direction from 15° to 
−15°, as an example. Humans take a couple of seconds to 
complete the turn. We first determined the time of starting a 
turn (𝑡𝑡 = 0), regarded as the time of passing through a turning 
point for simplicity, as shown in Figs. 9 (b) and (c). We then 
determined the time of finishing the turn 𝑘𝑘𝑒𝑒, regarded as the 
time when a human walks the target trajectory ± 𝜃𝜃𝑚𝑚 [°] dur-
ing a certain period 𝑠𝑠𝑚𝑚 [s] to confirm the end of a turn. Fi-
nally, we calculate 𝑘𝑘𝑚𝑚 (= 𝑘𝑘𝑒𝑒 − 𝑠𝑠𝑚𝑚) as the time when the di-
rection first enters within 𝜃𝜃𝑚𝑚, as the minimum delay of the 
system. We set 𝜃𝜃𝑚𝑚 = 5° and 𝑠𝑠𝑚𝑚 = 0.1 s for the experimental 
conditions in this study.  
    Then, we define 𝑘𝑘𝑚𝑚𝑇𝑇 , which is difficult to define since it 
should vary with the amount of turning direction, walking 
speed, and so on. [34] reported that the time for humans to 
take a step is 0.5 s, and [35] reported that the upper limit of 
the pelvic rotation angle when humans turn is 30°, which 
means that a turn of 60° takes 1.0 s (two steps). In this study, 

FIGURE 6.  Policy of adjusting window sizes for (a) Kalman filter and (b) least 
squares for controlling accuracy and latency.  
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we thus estimate 𝑘𝑘𝑚𝑚𝑇𝑇  by using proportional interpolation of 
the angle difference 𝛥𝛥𝑣𝑣𝜃𝜃  from the current to target trajecto-
ries when turning. 𝑘𝑘𝑚𝑚𝑇𝑇  is thus given by  
 𝑘𝑘𝑚𝑚𝑇𝑇 = 0.5 ∙ 𝛥𝛥𝑣𝑣𝜃𝜃 30⁄    . (21) 

    Note that the speed variables are not included in (21) since 
humans are required to walk naturally at a constant speed in 
the experiments.  

VI.  EVALUATION EXPERIMENTS 
The robot and LRF specifications we used in this study are 
shown in Fig. 8. The experimental conditions and scenes are 
shown in Figs. 9 and 10, respectively. This study was ap-
proved by the Ethics Review Committee on Research with 
Human Subjects of Waseda University. We obtained written 
informed consent from each participant in this study. 

A. DISPLACEMENT AND SYSTEM NOISE MODEL 
To clarify the relationship between accuracy and latency, we 
first performed Exp. 1 to model the relationship between 
𝑑𝑑ℯ(𝑘𝑘)  and 𝜎𝜎𝜖𝜖2(𝑘𝑘)|ℯ  with 11 participants aged 21–30. The 
participants walked straight with four different angles to the 
LRF (the robot), as shown in Fig. 9 (a). We asked the partic-
ipants to walk at 1.0 m/s. Note that the ground truth of the 
velocity was guaranteed by practicing constant-speed walk-
ing before the experiments started. We collected point clouds 
and then calculated 𝑑𝑑ℯ(𝑘𝑘) and 𝜎𝜎𝜖𝜖2(𝑘𝑘)|ℯ using the five differ-
ent ℯ = {0.2, 0.4, 0.6, 0.8, 1.0}, which are enough to extract 
the trends of the results. The tolerance latency of 0.5 s would 
be acceptable for social robots since humans take 0.5 s for 
one step during a walk [34], so we set the maximum tolerable 
latency to 0.5 s and searched for the minimum 𝜎𝜎𝜖𝜖2(𝑘𝑘)|ℯ 
within 0.5 s. Fig. 11 shows the relationship between 𝑑𝑑ℯ(𝑘𝑘) 
and 𝜎𝜎𝜖𝜖2(𝑘𝑘)|ℯ  for each ℯ. We found that 𝑑𝑑ℯ(𝑘𝑘) and 𝜎𝜎𝜖𝜖2(𝑘𝑘)|ℯ 
have a proportional relationship, as  

 𝜎𝜎𝜖𝜖2(𝑘𝑘)|ℯ = 𝑎𝑎 ∙ 𝑑𝑑ℯ(𝑘𝑘) + 𝑏𝑏   , (22) 

where 𝑎𝑎 and 𝑏𝑏 are the constant values shown in the lower-
right part of Fig. 11. All plots include the results of 11 par-
ticipants and four trajectories, so we can regard the equations 
as capturing general tendencies. The experimental results 
show that updating 𝜎𝜎𝜖𝜖2(𝑘𝑘)|ℯ  according to observed human 
displacement 𝑑𝑑ℯ(𝑘𝑘) has the potential to enable the VES to 
adjust estimation accuracy and latency. 

B. WINDOW SIZE ANALYSIS USING COSTS  
Based on the displacement and system noise model, we 

analyzed the relationship among the window size {ℯ, ℓ} and 
three costs. In Exp. 2, we prepared three different trajectories 
with a turning point (15°, 30°, and 45°) in the middle of the 
path (Fig. 9 (b)). The other experimental conditions were the 
same as Exp. 1. We calculated each cost using 25 {ℯ ×  ℓ} 
patterns = {(0.2, 0.4, 0.6, 0.8, 1.0) × (0.2, 0.4, 0.6, 0.8, 1.0)} 
by (17)–(19). As Fig. 12 shows, we found that the three costs 
have different tendencies and that the cost maps between ac-
curacy (𝒞𝒞(𝑣𝑣�𝜃𝜃)  and 𝒞𝒞(𝑣𝑣�𝑟𝑟) ) and latency (𝒞𝒞(𝑘𝑘𝑚𝑚) ) have a 

Specifications of robot 
Movement  Velocity 1 m/s 
Performance Acceleration 3 m/s2 
Platform Omnidirectional movement  
 by four omni wheels 
Weight 32 kg 

 
Specifications of LRF 

Model  UTM-30LX HOKUYO 
Distance range 0.06−10 m, Max 30 m 
Angular range 270° 
Angular resolution 0.25° 
Measurement resolution ±30 mm 
Scanning time 25 ms/scan 

 

LRF 

Omni wheel 
FIGURE 8.  Specification of robot equipped with omni wheels and LRF. 

FIGURE 9.  Overview of (a) Experiment 1 (straight walking), (b) Experiment 2 
(single turn), and (c) Experiment 3 (zigzag walking with robot moving). 
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FIGURE 7.  Example of determining response time for a human to change mov-
ing direction.   
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roughly inversed relationship, i.e., larger ℓ  and smaller ℯ 
lead to high accuracy while smaller ℓ leads to low latency. 
The results also show that 𝒞𝒞(𝑣𝑣�𝜃𝜃), 𝒞𝒞(𝑣𝑣�𝑟𝑟), and 𝒞𝒞(𝑘𝑘𝑚𝑚) were 
the smallest in {ℯ, ℓ} = {0.2, 0.6}, {0.2, 1.0}, and {0.2, 0.4}, 
respectively, as indicated by the red dots in Fig. 12. When 
applying {𝛼𝛼, 𝛽𝛽, 𝛾𝛾} = {1/3, 1/3, 1/3} as explained before, the 
total cost 𝒞𝒞 of 𝓥𝓥�|ℯ,ℓ was the lowest in {ℯ, ℓ} = {0.2, 0.6}. 
These findings confirm that window sizes can be used to con-
trol the estimation accuracy and latency. 

C. COMPARISONS IN DIFFERENT TRAJECTORIES 
To evaluate the applicability of the proposed system, we pre-
pared more complex conditions with Exp. 3. A pedestrian 
changes its walking direction several times while the robot 
(LRF) moves (Fig. 9 (c)). The robot’s trajectory is a straight 
line because we here inspect the impact of vibration noises 
due to the robot’s movement. The human’s walking direction 
and distance are in order of 75° (2 m), 0° (2 m), and 45° (2 
m). The robot moves straight at 0.4 m/s. We asked the same 
11 participants from Exps. 1 and 2 to walk at 1.0 m/s. Fig. 13 
shows the three cost maps, indicating a trade-off relationship 
between accuracy and latency, the same as in Exp. 2. Com-
pared with Exp. 2, 𝒞𝒞(𝑣𝑣�𝑟𝑟)  was almost exactly the same, 
𝒞𝒞(𝑣𝑣�𝜃𝜃) was similar, and 𝒞𝒞(𝑘𝑘𝑚𝑚) was largely deviated. The de-
viated 𝒞𝒞(𝑘𝑘𝑚𝑚)  occurred because 𝑘𝑘𝑚𝑚  would not converge 
when participants frequently changed their behaviors in a 
short time. This indicates that we need to redefine 𝑘𝑘𝑚𝑚 in the 
future. 𝒞𝒞(𝑣𝑣�𝜃𝜃), 𝒞𝒞(𝑣𝑣�𝑟𝑟), and 𝒞𝒞(𝑘𝑘𝑚𝑚) were the smallest in {ℯ, ℓ} 
= {0.2, 0.8}, {0.4, 0.8}, and {0.4, 0.4}, respectively, as indi-
cated by the red dots in Fig. 13. When applying {𝛼𝛼, 𝛽𝛽, 𝛾𝛾} = 
{1/3, 1/3, 1/3}, the total cost 𝒞𝒞 of 𝓥𝓥�|ℯ,ℓ  was the lowest in 
{ℯ, ℓ} = {0.2, 0.8}.  

    In Exps. 2 and 3, the shapes among the three cost maps are 
different. Moreover, the shapes of each cost map in Exp. 2 
are also different from those in Exp. 3. Our above analysis 
confirms that the proposed VES with AWS can extract dif-
ferent characteristics to optimize accuracy and latency de-
pending on walking trajectories. 

D. PERFORMANCE OF VES WITH AWS 
To evaluate the performance of controlling accuracy and la-
tency in the proposed VES with AWS, we calculated the 
RSME of 𝑣𝑣�𝜃𝜃, 𝑣𝑣�𝑟𝑟, and 𝑘𝑘𝑚𝑚 for Exps. 2 and 3, as shown in Fig. 
14. We compared the RMSEs calculated using individually 
optimized parameters (direction, magnitude, and time delay), 
mean of 25 {ℯ × ℓ} patterns, parameters with the maximum 
cost, and equally balanced parameters. Using individually 
optimized parameters enhanced the target elements but de-
graded others, i.e., accuracy vs. latency. In contrast, the se-
lection of equally balanced parameters ({ℯ, ℓ} = {0.2, 0.6} 
for Exp. 2 and {0.2, 0.8} for Exp. 3) led to all three elements 
achieving a high performance. 
    Here, we analyzed the effect of the equally balanced pa-
rameters (EBP). The EBP reduced the velocity direction 
RMSE to 1.86° and 5.11° for Exps. 2 and 3, respectively. In 
Exp. 3, the walking trajectory changes several times, and the 
robot’s movement generates noises in point clouds, which 
made the direction RSME in Exp. 3 larger than that in Exp. 
2, but the VES could select optimal window sizes {ℯ, ℓ} that 
enable the direction RSME to minimize. Moreover, the EBP 
reduced the velocity magnitude RMSE to 0.0464 m/s and 
0.146 m/s for Exps. 2 and 3, respectively. Even in Exp. 3, the 
VES could accurately estimate a velocity. Furthermore, the 
EBP decreased the time delay RMSE to 0.201 s and 0.218 s 
for Exps. 2 and 3, respectively. These values meet the 
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FIGURE 12.  Results of Experiment 2. Three costs (direction, magnitude, time delay) are calculated in 25 patterns of (𝓮𝓮, 𝓵𝓵), and the total cost is calculated using {𝜶𝜶, 𝜷𝜷, 
𝜸𝜸} = {1/3, 1/3, 1/3}. Results show that (𝓮𝓮, 𝓵𝓵) = (0.2, 0.6) is the lowest cost (0.77). Red dots are (𝓮𝓮, 𝓵𝓵) with the lowest cost. 
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𝜸𝜸} = {1/3, 1/3, 1/3}. Results show that (𝓮𝓮, 𝓵𝓵) = (0.2, 0.8) is the lowest cost (0.72). Red dots are (𝓮𝓮, 𝓵𝓵) with the lowest cost. 
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requirement of being smaller than the time required for a hu-
man to take one step (i.e., 0.5 s) [34].  
    We next statistically analyzed the RSMEs using different 
optimized methods, including the three individually opti-
mized parameters (direction, magnitude, and time delay) and 
equally balanced parameters. We adopted the Friedman test 
for multiple comparisons of three element’s RMSE. Then, 
we applied Scheffe’s paired comparison of different opti-
mized methods as a post-hoc test. The results of the statistical 
test are summarized in Table II. The Friedman test revealed 
statistical differences in all conditions. Moreover, Scheffe’s 
paired comparison revealed that using individually opti-
mized parameters, the VES could statistically improve the 
target elements than non-target elements for Exps. 2 and 3.  
    The above analysis confirmed that the proposed VES with 
AWS had a higher performance corresponding to the target 
purpose than when the VES selected other parameters. 

E. OPTIMAL PARAMETERS FOR INDIVIDUALS 
Finally, we investigate individual differences among partici-
pants. Fig. 15 shows selected parameters in the direction, 
magnitude, and time delay for the 11 participants in Exps. 2 
and 3. As shown in Fig. 15 (a), the optimal parameters in Exp. 
2 were similar among individuals, and in particular, the pa-
rameters in the magnitude were almost identical ({ℯ, ℓ} = 
{0.2, 1.0}). The walking trajectory in Exp. 2 was straight, so 
no individual differences appeared. However, the parameters 
for the direction are spread along the ℓ axis, meaning that the 
VES could deduce that lateral sway during walking differed 
among participants. The parameters for the time delay were 
slightly deviated. As shown in Fig. 15 (b), optimal parame-
ters in Exp. 3 were more deviated than Exp. 2, and those for 

time delay were remarkable. These results imply that the way 
of turning, e.g., turning radius and angular velocity, deviates 
largely depending on the participant. We confirmed from this 
analysis that the VES with AWS could reveal the existence 
of optimal window sizes suitable for individuals. 

F. LIMITATION AND FURTHER IMPROVEMENTS 
Through this study, we found that the proposed framework 
was capable of identifying window sizes suitable for walking 

Equally balanced 

FIGURE 14.  Performance of velocity estimation system with adjustable window size, including individually optimized parameters (direction, magnitude, and time 
delay), mean of 25 {𝓮𝓮 × 𝓵𝓵} patterns, parameters with maximum cost, and equally balanced parameters for Exps. 2 and 3. Individually optimized parameters enhanced 
the target performance but degraded others. In contrast, equally balanced parameters achieved all three criteria simultaneously.  
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TABLE II.  Statistical analysis of three element’s RSME for different optimized 
methods in Exps. 2 and 3. 

Element   Optimized method 
  Friedman test Scheffe’s paired comparison* 
Exp. 2   D(B)–M D(B)–T M–T 
Direction   𝜒𝜒2(2) = 25.88, 𝑝𝑝<0.001 𝑝𝑝<0.001 𝑝𝑝<0.005 n.s. 
Magnitude  𝜒𝜒2(2) = 56.18, 𝑝𝑝<0.001 𝑝𝑝<0.05 𝑝𝑝<0.001 𝑝𝑝<0.001 
Time delay  𝜒𝜒2(2) = 44.44, 𝑝𝑝<0.001 𝑝𝑝<0.001 n.s. 𝑝𝑝<0.001       
Exp. 3   D(B)–M D(B)–T M–T 
Direction   𝜒𝜒2(2) = 13.27, 𝑝𝑝<0.005 n.s. 𝑝𝑝<0.005 n.s. 
Magnitude  𝜒𝜒2(2) = 16.55, 𝑝𝑝<0.001 𝑝𝑝<0.005 𝑝𝑝<0.005 𝑝𝑝<0.005 
Time delay  𝜒𝜒2(2) = 12.88, 𝑝𝑝<0.005 𝑝𝑝<0.05 n.s. 𝑝𝑝<0.005 

* D: Direction, M: Magnitude, T: Time delay, B: Balanced ℓ 
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trajectories and individual gaits for time-series-based veloc-
ity estimation and that the proposed VES with AWS could 
improve the estimation performance following a target pur-
pose. The newly proposed cost function was useful for con-
trolling estimation accuracy and latency. Moreover, the pro-
posed system could be applied to a use case where an LRF is 
installed on a mobile robot. The preliminary results of this 
study would contribute to developing individually optimized 
measurements using data based on the robot’s movement ex-
perience. However, there are some limitations to be ad-
dressed in the future, as follows. 
1) AUTOMATIC PARAMETER TUNING SYSTEM 
In this study, the weight coefficients {𝛼𝛼, 𝛽𝛽, 𝛾𝛾} are tempo-
rally set to 1/3 (as described in subsection V. B). However, 
these coefficients should be tuned in accordance with the 
purpose or situation, e.g., when a robot needs to plan an ac-
curate trajectory by suppressing the human’s lateral sway, 
overtake a human by suppressing the human’s longitudinal 
sway, or immediately avoid a human who may be approach-
ing from out of sight. Moreover, the proposed VES currently 
learns the window sizes suitable for a condition beforehand, 
but the robot should be able to adjust window sizes autono-
mously in the introduced environments [36]. We plan to de-
velop an automatic parameter tuning system to tune the 
above coefficient in real time while combining error-tolerant 
navigation [17] if the system makes a judgment error.  
2) DEFINITION OF TIME DELAY 
In Exp. 3, 𝒞𝒞(𝑘𝑘𝑚𝑚) deviated largely because participants fre-
quently changed their behaviors in a short time, so we need 
to modify how to define 𝑘𝑘𝑚𝑚 and 𝑘𝑘𝑚𝑚𝑇𝑇 . Specifically, we will 
observe walking behaviors using a skeleton-based gait model 
when turning and introduce a system to predict a pedestrian’s 
motion using other obtainable information, such as head 
movement and gaze.  

VII.  CONCLUSION AND FUTURE WORK 
In this paper, we proposed a new approach to estimating hu-
man walking velocity with a function to control accuracy and 
latency. The proposed velocity estimation system (VES) 
consists of a Kalman filter (KF), least squares (LS), and a 
window-size adjustable system. The adjustable system tunes 
a window size ℯ for calculating a system noise in KF and a 
window size ℓ for calculating a velocity in LS by using a cost 
function including accuracy (velocity angle and magnitude) 
and latency (time delay) that can learn {ℯ, ℓ} suitable for an 
intended purpose (high accuracy, low latency, or a balance 
between the two). Experiments in which a robot was moving 
and humans were continuously changing their behaviors 
demonstrated that the proposed VES significantly improved 
the measurement performance thanks to selecting the appro-
priate window sizes compared to using other parameters. Our 
proposed method adopts a relative improvement strategy by 
optimizing system parameters, such as [37], not an absolute 
improvement strategy by collecting mathematical models, so 
it can be applied to other estimation methods that handle 
time-series data as a relative improvement approach. This 
study will contribute to developing a framework for a VES 

that can enable measurement performances suitable for the 
target conditions and enhance the performance of mobile ro-
bot navigation.  
    In future work, to achieve high-accuracy and low-latency 
estimation in a real unstructured environment, we will mod-
ify the cost function for finding the optimal window-size pa-
rameters, create a model to automatically update the weight 
coefficients, and perform experiments under a variety of con-
ditions to evaluate and improve our proposed system. 
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