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ABSTRACT The role of static code analysis in enhancing the quality of software codes is widely 

acknowledged. Static code analysis facilitates the examination of code for irregularities without program 

execution, which significantly impacts project quality. Furthermore, tools for static code analysis serve as 

educational aids, imparting essential lessons on coding practices. Motivated by the growing complexity of 

software projects and the pivotal role of code quality in academic performance within computing disciplines, 

this research examines over 500 student projects using static code analysis tools. The aim is to determine 

metrics that influence the code quality of student projects. The study investigates how metrics, such as project 

setup, influence code quality and students' academic performances. By adopting a broad approach, the 

investigation determines the overall impact of these metrics on the technical integrity of software engineering 

projects and academic outcomes. Insights derived from this study are anticipated to enhance teaching 

strategies and curriculum development, aiming to improve academic performance by promoting better code 

quality. 

INDEX TERMS academic performance, code quality, education, educational practices, static code analysis

I. INTRODUCTION 

The quality of source code is a fundamental aspect of any 

software product, necessitating continuous verification and 

monitoring to ensure its robustness, efficiency, and 

maintainability. Static code analysis plays a main role in 

this process of continuous improvement [1]. This method 

was created in the early 1960s to enhance compiler 

operations by evaluating source code without executing it 

[2]. The primary objective of static code analyses is to 

detect potential bugs, vulnerabilities, and unwanted 

patterns within the code that may lead to problems in 

software functionality or its security. Using this analysis 

helps find and fix problems early before the software moves 

on to the testing or production stages [1].  

Since then different tools for static code analysis have 

been developed and over the years expanded their 

application to debugging tools and software development 

frameworks, marking a significant evolution from its 

inception [1], [3]. 

The evolution of static analysis tools from basic lexical 

analyzers to sophisticated systems that can examine code 

for a wide range of programming languages highlights their 

essential role in maintaining and improving code quality 

[3]. These tools are capable of identifying deviations from 

defined quality standards without making automatic 

modifications to the code itself, demonstrating their 

extensive utility in ensuring the robustness, efficiency, and 

maintainability of software products. A growing number of 

tools enable static analysis of code written in various 

programming languages, generating reports and 

highlighting deviations from defined code quality standards 

[3], [4]. As modern software systems continue to grow and 

evolve, the need for such analysis tools becomes 

increasingly significant. These tools are finding their place 

not only in the industry but also in education, where they 

are being applied to projects developed by future software 

engineers [5], [6].  

Within the scope of this research, static code analysis 

serves as a tool for the objective evaluation of the quality 

of student software projects, thereby allowing for further 

examination of their correlation with academic 

performance. 

The foundation of this research is in the understanding 

that the quality of software code can significantly impact
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 the success of software projects [2], [7], and thereby, the 

educational outcomes achieved by students in the domain 

of software engineering [8]. 

The emphasis on clearly defined software quality 

standards [9], guides the focus toward the need for a tool 

that provides quantitative metrics of software quality. In 

this paper, SonarQube [10] has been used for retrieving 

such metrics. SonarQube is an open-source tool designed 

for reviewing code quality by conducting static code 

analysis. This approach supports the theory that, through 

the proper measurement and analysis of quality metrics [7], 

the technical value of software projects can be enhanced, 

thereby enriching the knowledge acquired by students. 

This research aims to investigate and analyze the 

correlation between code quality metrics obtained through 

the implementation of static code analysis using the 

SonarQube tool and course grades and the time taken for 

passing projects. The study also examines how various 

factors, including the mode of teaching (online versus 

traditional approach), choice of technologies, collaboration 

mode (team-based or individual), the academic year in 

which the project was undertaken, project size, as well as 

the use of version control tools and static code analysis 

tools, influence the quality of code generated by students. 

Within the framework of the study, quantitative research 

was conducted to analyze the correlation between code 

quality metrics and students' academic performances in the 

field of software engineering, utilizing a random sample of 

over 500 student projects. The code quality metrics 

analyzed in the study include duplications, security 

hotspots, vulnerabilities, bugs, and code smells, which are 

generated by the selected tool for conducting the analysis. 

This approach allows for a comprehensive investigation of 

the impact of various factors on learning outcomes in the 

domain of software engineering. The study employed a 

variety of statistical analysis methods, including Kendall's 

rank correlation, Binomial Logistic Regression, and the 

Mann-Whitney U test, to uncover the correlations between 

project setup variables, code quality, and student academic 

performance. 

The contribution of this paper is to enrich the existing 

knowledge in the field of software engineering education. 

Through a detailed analysis of static code analysis metrics, 

the study identifies key factors that contribute to high-

quality student software projects. The use of static code 

analysis tools and the choice of technology emerged as 

significant positive influences, whereas larger project sizes 

were found to have a negative correlation with code quality. 

Additionally, the results include the effects of other 

variables, observed within the research, on code quality. 

Furthermore, a clear correlation between code quality and 

the academic performance achieved by students is 

presented and described.  

The expectation is that this research will lay the 

groundwork for the development of improved strategies for 

teaching software engineering, which should result in a 

generation of software engineers ready to face the 

challenges of contemporary software development. 

The findings presented in the study are intended to 

provide educators, students, and professionals in software 

engineering with deeper insights into how learning 

approaches, technology choices, and collaboration can 

affect code quality and, consequently, students' academic 

performances. This study provides significant insights into 

the impact of various project setup metrics on code quality 

and academic performance in software engineering 

education. By employing a multi-dimensional analysis, we 

bridge the gap between educational practices and software 

engineering standards, offering actionable insights for 

curriculum designers and educators to enhance academic 

outcomes.  

Beyond the introduction and conclusion, the paper is 

organized as follows: Section II provides a literature review 

in the field of static code analysis, highlighting the 

importance of applying static analysis tools in the industry, 

as well as their potential and methods of application in 

education. Section III describes the procedure of static code 

analysis tool selection, as well as the chosen metrics for 

research. Pre-processing of the data and the statistical 

methods that are used are represented in Section IV. 

Section V presents the results obtained from the conducted 

research, and Section VI discusses these results and 

establishes relationships between the observed variables 

and code quality metrics. This section also outlines some 

limitations of the research, providing a comprehensive 

overview of the state of static code analysis in both the 

professional and educational realms. 

 
II. LITERATURE REVIEW 

With the advancement of static code analysis tools, there 

has been a significant increase in scholarly research in the 

area of static code analysis. As part of prior work in the 

field, a literature review was conducted [4], highlighting the 

most commonly used tools in scientific research, and the 

programming languages they support, among other aspects. 

On the other hand, some research often focuses on newly 

developed static code analysis tools. A study [11] 

introduces a tool for the static analysis of Programmable 

Logic Controller (PLC) program code, detailing its 

application and the results it achieves in industrial projects. 

An empirical study illustrating the use of static code 

analysis in the industry and the willingness of developers 

of varying seniority levels to utilize these tools is described 

in [12]. The same paper also demonstrates that these tools 

are increasingly being used as a mandatory part of the 

deployment pipeline in the industry. The study [13] 

underscores the necessity for a deeper understanding and 

measurement of software quality beyond traditional 

metrics. Additionally, this study compares programming 

habits between professionals in the industry and students,
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highlighting areas where students are more prone to making 

mistakes that could compromise the code quality. 

Furthermore, static code analysis tools are increasingly 

finding their application in education. Research [5] presents 

the CodeMaster tool based on static code analysis, which 

automatically grades student projects, emphasizing the 

importance of such tools in enhancing the quality of 

education for future IT engineers. Similarly, another study 

[14] discusses the use of tools for the automatic verification 

of programming tasks, underlining their significance in 

educational applications. 

In [15], the results of an experiment are shown where 

students independently utilized the Programming Mistake 

Detector (PMD) static code analysis tool to correct 

irregularities in their projects. The results of this study also 

reveal that students largely understand the reports 

generated by this static code analysis tool and have the 

ability to amend these irregularities. 

Another study [16] incorporated a static code analysis 

tool into the educational process in a manner that a portion 

of the students used the tool during their project work, 

while a control group did not use the tool for their projects. 

The results indicate that students who used the static code 

analysis tool achieved better outcomes and developed 

higher-quality source code compared to the control group. 

In [17] the development and implementation of the Edgar 

system for the automatic evaluation of software projects is 

described. This system provides an objective and efficient 

way to assess a large number of student projects, as well as 

timely and useful feedback to students. Within their study, 

the importance of this system's objectivity in the process of 

evaluating student projects as opposed to traditional 

grading methods is emphasized, showcasing an example 

and results of using the Edgar tool in an educational system. 

Authors of [18] underscores the importance of 

incorporating static code analysis tools into the educational 

process. This research also speaks to the need for 

introducing new metrics to be used in analyzing student 

projects in comparison to industry projects. Additionally, 

the paper addresses various impacts on code quality among 

students, with research [19] highlighting the significance 

and impact of teamwork on the quality of student projects. 

This investigation is an example of the effective application 

of these tools in the educational process, especially 

emphasizing the ability to identify students who contribute 

less during teamwork and how this reflects on the code 

quality. Another study [20], that discusses the impact of 

teamwork on project outcomes, also talks about the 

challenges of creating group projects, the influence of 

project size on outcomes, and the results and methods of 

evaluating such projects. 

Beyond the impact of teamwork on student project 

outcomes, another variable examined is the choice of 

project technology. Research [21] shows that the choice of 

software technologies can significantly impact the quality 

of the source code. Therefore, this research investigates 

how the selection of specific technologies influences 

project success and code quality. 

Furthermore, the study [22] explores the impact of 

functional and object-oriented paradigms on code quality, 

presenting significant differences in terms of specific code 

quality metrics in its findings. In a similar vein, research 

[23] yields results that lead to the conclusion that utilizing 

the C++ programming language instead of C can lead to 

enhancements in software quality, reduction in complexity, 

decreased error proneness, and lower maintenance effort. 

Although research [24] discusses the differing outcomes 

achieved by students in an online education environment 

compared to traditional classroom instruction, this 

literature review did not identify any studies discussing the 

direct impact of different teaching methods on code quality 

in student projects. 

As a determinant of code quality, the use of versioning 

tools will also be considered. In this context, the study [25] 

demonstrates how the use of versioning tools using 

Bitbucket [26] contributes to the understanding and 

application of coding standards. Conversely, research [27] 

highlights that utilizing versioning tools using Github [28] 

facilitates the implementation of static code analysis, 

thereby ensuring a higher quality of the project's source 

code. 

The experience of software engineers is measured in 

various ways as a metric in the industry. Studies [29], [30] 

show how the experience of software engineers affects the 

quality of code they produce during development.  

Research [31] analyzes how the number of lines of code 

affects the complexity of software and concludes that an 

increase in the number of lines of code in a software project 

leads to increased complexity. This, in turn, affects the 

increase in the number of errors, as well as maintenance 

difficulties, reliability, and software performance.  

A special category of literature included in this review 

focuses on methods of measuring student performances in 

various areas. Thus, [24], [32], [33] consider the grade a 

student achieves in a course as an indicator of academic 

performance upon completion of that course. On the other 

hand, another variable indicating student performance is 

whether the student fulfills their obligations on time. 

Studies [24], [34] also take the metric of time or adherence 

to deadlines in terms of fulfilling obligations as a variable 

indicating the performance of the student. 

Ways of applying static code analysis tools are analyzed 

in [35], [36]. These researches identify different strategies 

for using static code analysis tools on projects. The first 

identified strategy in the research [35] entails the 

continuous application of static code analysis tools on the 

source code of a project during the software development 

process, whereas the second strategy involves applying 

tools immediately after software development is 

completed. These strategies have been evaluated within the 
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research [36], presenting the advantages and disadvantages 

of their application.  
The review paper [37], which explores the software 

obfuscation metric through a systematic literature review, 

highlights the importance of this metric for code quality, as 

well as the need for standardization of this metric. Such 

standardization would facilitate its incorporation into static 

code analysis tools and enable broader studies on industrial 

projects to be conducted. 

In summary, the importance of using static code analysis 

tools is reflected in the increasing need to enhance code 

quality in industrial projects [11], [12]. Following closely 

behind the industry, the significance of improving code 

quality has begun to be applied in the education of future 

software engineers in various ways. Some research [18] 

shows examples where students independently apply these 

tools to their projects to correct the irregularities they find, 

whereas on the other hand, certain studies [5], [17] suggest 

systems and tools that enable educators to evaluate student 

projects most efficiently and objectively possible. Our 

study, on the other hand, aims to explore different factors 

in the setup of student projects that can affect the quality of 

the source code. This review encompasses research that 

analyzes these factors and places them in the context of 

educating future software engineers. Thus, study [19] 

discusses the factor of team and individual projects, then 

study [21] highlights the factor of technology choice, 

followed by [16] the use of static code analysis tools during 

project work, as well as the teaching mode [24]. In addition 

to the impact of these and other factors on code quality, this 

study will also measure whether code quality can be 

correlated with the student's performance in their courses, 

in terms of the grade obtained and the speed of passing the 

project [33], [34].  

The synthesis of the results obtained from the analysis of 

the studies covered in the literature review is presented in 

Table I. 
TABLE I 

SYNTHESIS OF LITERATURE REVIEW 

Topic Paper 

Static code analysis tools in the industry [3], [11], [12] 

Static code 
analysis tools 

in education 

Used by professors [5], [13], [17] 

Used  by students [14], [15], [16] 

Determents of 

code quality 

Collaboration mode [19], [20] 

Technology choice [21] 

Project size [31] 

Experience [29], [30] 

Version control usage [25], [27] 

Static analysis usage [16] 

Teaching method [24] 

 

While previous studies have explored individual factors 

affecting code quality, this study uniquely integrates 

multiple dimensions, to provide a comprehensive 

understanding of their combined impact on both code 

quality and academic performance. Additionaly, study [38] 

focuses on the impact of code quality and submission 

behavior on teaching strategies but does not consider other 

project setup variables. Research [39] examines learning 

behavior and code quality improvement in an automated 

programming assessment environment, focusing on 

individual learning behaviors without considering broader 

project setup factors. Study [40] analyzes the gap between 

the software industry and software engineering education, 

primarily focusing on curriculum alignment without 

delving into the combined impact of project setup variables 

on code quality. 

This literature review highlights the diversity of tools 

and approaches in static code analysis, making it evident 

that the focus of most research in this area is directed 

toward two main aspects: enhancing the technical quality 

of software projects and measuring the impact of these 

tools' applications for educational purposes. However, few 

studies directly explore the impact of various aspects on 

code quality and how, if at all, the generated code quality 

affects the academic performance of future software 

engineers, leaving room for further research in this area. 

This study seeks to bridge this gap by exploring how 

different factors affect the efficacy of static code analysis 

in an educational setting. The aim is to expand the current 

understanding of these factors, using empirical evidence to 

support or refute the existing findings from the literature. 

Furthermore, there is significant interest in the 

community for the application and evaluation of static code 

analysis in both industry and education. However, there is 

substantial room for additional research that could provide 

deeper insights into how different pedagogical and 

technical interventions may impact code quality and 

whether there is a clear correlation between code quality 

and students' academic performance. This study addresses 

these questions. 

Unlike previous research, this research uniquely 

quantifies the influence of project setup variables on code 

quality and examines their direct correlation with academic 

performance metrics. Additionally, this study employs a 

broader, multi-dimensional analysis that integrates various 

educational contexts, providing a comprehensive 

understanding of static code analysis's role in enhancing 

software engineering education. 

 
III. SELECTION OF STATIC CODE ANALYSIS TOOL AND 

PRESENTATION OF CHOSEN METRICS 

In section II of this study, various research are mentioned 

where different tools for static code analysis were utilized 

on software projects. However, for this study, a single tool 

will be used to analyze all projects included in the research. 
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The number of tools available for static code analysis is 

substantial, yet, as described in the study [4], tools such as 

CppCheck [41], FindBugs [42], SonarQube [10], PMD[43], 

and Splint [44] are most frequently used in research. 

A. SELECTION OF TOOL FOR STATIC CODE ANALYSIS 

Some of the tools for static code analysis enable analysis of 

source codes written in a single programming language, 

whereas others provide support for conducting analyses in 

various programming languages [3]. Given that the analysis 

in this study will include software projects whose source 

code is written in different programming languages, the 

first criterion (C1) for tool selection includes only those 

tools that offer support for all programming languages used 

in the projects involved in this research. 

The second criterion (C2) for tool selection is the 

availability of a free version that provides quality analyses 

of the code. Primarily due to financial constraints for 

conducting the research. 

Finally, as a third criterion (C3), results obtained from a 

study [45] that uses the Determining an Evaluation 

Methodology for Software Methods and Tools (DESMET) 

[46] for evaluating static code analysis tools were utilized. 

Results from [45] represent SonarQube as the best tool 

(with a score over 69%) for conducting static code analysis 

by DESMET evaluation. 

By applying these criteria, the tool chosen for static code 

analysis is SonarQube, which will be used in conducting 

the research. This tool offers support for all programming 

languages included in this study, allows for the analysis of 

metrics that will be used in the research in its free version, 

and finally, has received the highest rating within [45] 

according to the DESMET methodology of evaluation. The 

presentation of tools and their compliance with the 

specified criteria is shown in Table II. 

 
TABLE II 

SELECTION OF STATIC CODE ANALYSIS TOOL 

Tool C1 C2 C3 

SonarQube ✓ ✓ ✓ 

FindBugs ✖ ✓ ✖ 

PMD ✖ ✓ ✖ 

CppCheck ✖ ✖ ✖ 

Splint ✖ ✓ ✖ 

 

SonarQube is an open-source tool developed by 

SonarSource for continuous code quality review. It 

conducts static analysis of the code, providing detailed 

reports on bugs, code smells, vulnerabilities, security 

hotspots, and code duplications [47]. Research [48] has 

demonstrated SonarQube's effectiveness as a valuable tool 

for identifying various types of code irregularities. Beyond 

irregularity identification, SonarQube offers additional 

benefits including effort estimation, detailed problem 

descriptions, and guidance for modifying source code to 

resolve problems, thereby positively affecting productivity 

in software development [49]. Furthermore, numerous 

studies have been conducted to verify the accuracy of the 

reports generated by SonarQube, reinforcing its importance 

and credibility [45], [50]. 

B. CODE QUALITY METRICS 

According to the software product code quality standard 

ISO/IEC 25010 [9], eight quality categories of code are 

defined as follows: 

1. Functional Suitability, 

2. Performance Efficiency, 

3. Compatibility, 

4. Interaction Capability, 

5. Reliability, 

6. Security, 

7. Maintainability, 

8. Flexibility, 

9. Safety. 

 

The selected tool, SonarQube, addresses the categories 

of reliability, maintainability, and security from the 

ISO/IEC 25010 standard within its basic set of code quality 

rules [51]. Other categories from [9] are less emphasized as 

they often require domain-specific knowledge and context 

that goes beyond automated static code analysis. 

In addition to these categories, it also includes the 

category of source code complexity and emphasizes the 

importance of these metrics in depicting the quality level of 

the source code in its documentation. The subcategories of 

these metrics that quantitatively represent code quality and 

will be used in this research are [51]: 

• Code duplication increases software complexity 

and makes maintenance more difficult, which 

directly affects code quality reduction. By 

removing duplicates, development teams can 

significantly improve software reliability and 

efficiency, facilitating updates and reducing the 

potential for errors [52]. 

• Security hotspots and vulnerabilities play a crucial 

role in assessing code quality, as their presence 

can seriously compromise the reliability and 

maintainability of software. Detecting and 

correcting these vulnerabilities not only increases 

software security but also contributes to an overall 

improvement in code quality, making it more 

resistant to attacks and easier to maintain. 

Integrating the measurement of security 

vulnerabilities as a code quality metric allows 

organizations to develop more robust and secure 

software products, thereby raising the overall 

quality standard in the software industry [53]. 

• Bugs are direct indicators of the quality of the 

software development process and are essential for 

maintaining software functionality [1].
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• Code smells indicate critical flaws in design, 

implementation, or maintenance processes that 

could potentially degrade software quality, 

highlighting the need for continuous research and 

advanced detection methods to ensure the 

development of high-quality software [54], [55]. 

 

SonarQube quantitatively represents all these metrics in 

the reports it generates, and these results will be used in the 

analysis of this study. Quantitative measurement, in this 

case, refers to the number of recorded irregularities from a 

specific category found within the source code of the 

software project. In addition to the number of recorded 

irregularities, this tool also generates additional 

information about specific irregularities, such as severity, 

labeling each irregularity with a level of danger: blocker, 

critical, major, and minor. These additional attributes 

describing irregularities will not be considered during the 

analysis within this study.  

C. PROJECT SETUP METRICS AS DETERMINANTS OF 
CODE QUALITY 

Based on the literature review presented in section II key 

metrics are identified that will be analyzed as  determinants 

of code quality in student projects within this study are 

presented in Table III. 
TABLE III 

PROJECT SETUP METRICS USED AS DETERMINANTS OF CODE QUALITY 

Metric Label Possible values 

Technology choice TC 

1. .NET 

2. Spring and Angular 

3. Java 
4. .NET - WPF 

5. .NET and Angular 

6. HTML, CSS, and JS 

Collaboration mode CM Team/Individual 

Project size PS Number of code lines  

Academic Year AY I, II, III, IV 

Version control 
usage 

VCU Used/Not used 

Static analysis 
usage 

SAU Used/Not used 

Teaching method TM Online/Live 

 

1) TECHNOLOGY CHOICE (TC) 

Depending on the technology chosen for software 

development, different types of irregularities in the code 

may occur more frequently, significantly impacting 

software quality [21]. The mentioned study indicates that 

functional languages lead to better code quality compared 

to procedural languages. Similarly, another study [22] 

highlights the increased complexity associated with these 

languages. Additionally, a study [23] directly compares C 

and C++ programming languages, presenting results that 

show the use of C++ reduces complexity, as well as the 

number of other irregularities. Based on these studies, our 

research considers the choice of technology as a 

determinant of code quality, assuming that the technology 

choice can influence the outcome of code quality in student 

projects. 

 

2) COLLABORATION MODE (CM) 

Another metric used in this research as a determinant of 

code quality is the collaboration mode, whether students 

organized their projects in teams or developed their projects 

individually. A certain number of projects included in this 

research consists of projects developed individually, 

whereas another group includes team projects. Previous 

studies [19], [20] emphasize the impact of team projects on 

code quality outcomes. However, the results of this 

research will display differences in code quality outcomes 

between individual and team-organized projects. 

 

3) PROJECT SIZE (PS) 

Indicators in the industry suggest that code quality 

decreases as project size increases [31]. The number of 

lines of code developed in the project is taken as an 

indicator of project size in this research. Through these 

analysis results, we aim to demonstrate whether students 

make bigger mistakes when working on larger projects 

compared to the code quality analysis results on smaller 

projects. This aims to answer whether project size is a 

significant determinant of code quality in software 

engineering education. 

 

4) ACADEMIC YEAR (AY) 

It has been shown that the experience of software 

developers in the industry plays a significant role in the 

quality of code they generate [29], [30]. These studies list 

various metrics for measuring developer experience. In this 

research, the academic year in which the student works on 

a specific project is taken as an indicator of the developer’s 

experience. This measure of experience reflects the 

experience students have gained in understanding software 

development.  

 

5) VERSION CONTROL USAGE (VCU) 

The use of version control tools is considered one of the 

possible determinants of code quality. The research [25] 

included in the literature review in section II of this paper 

emphasizes the significance of using version control tools 

like Bitbucket and implementing peer code review 

processes in student projects. The study also shows that the 

use of these tools contributes to the understanding and 

application of coding standards, identification of 

irregularities, and improvement of coding skills among 

students. Our research includes student projects that used 

version control tools and those that did not. This way, this 

paper aims to demonstrate whether and to what extent the 
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use of version control tools contributes to higher code 

quality. 

 

6) STATIC ANALYSIS USAGE (SAU) 

Section II of this paper described studies [15], [16] that 

discuss the results of using static code analysis tools in the 

teaching process. This research will cover student projects 

within courses where the use of static analysis tools was 

mandatory, as well as projects developed without these 

tools. This will not only show whether the use of these tools 

achieves higher code quality in software projects but will 

also provide a clearer picture of students' abilities to handle 

static analysis tools, interpret the results, and rectify 

detected irregularities. 

 

7) TEACHING METHOD (TM) 

Due to the Covid-19 classes were mainly held online during 

the one semester of the 2019/2020 academic year and also 

throughout the 2020/2021 academic year. Student projects 

from these years were used for this research to show the 

results students achieve in terms of code quality in an 

online teaching mode. After these academic years, classes 

returned to the traditional mode of teaching, i.e., held in 

person at the University premises. The second part of the 

projects used in this research involves projects that were 

carried out when the faculty's teaching was conducted in a 

traditional mode. Numerous studies, such as [24], examine 

the impact of online teaching on the results students 

achieve. However, there are still no studies examining the 

impact of this teaching mode on the quality of code 

generated by students. This research will present the results 

of analyzing projects carried out in both mentioned 

teaching modes and discuss the determinacy of the teaching 

method on code quality. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D. METRICS AS DETERMINANTS OF ACADEMIC 
PERFORMANCE 

In addition to the metrics used as determinants of code 

quality, this research also establishes academic 

performance metrics, for which the correlation with the 

code quality of student projects has been examined. The 

academic performance metrics set are the grades students 

achieve in the course within which the analyzed project was 

carried out, as well as the number of attempts needed for a 

student to complete the project. 

The metrics of academic performance are represented in 

Table IV. 
TABLE IV 

METRICS USED AS DETERMINANTS OF ACADEMIC  PERFORMANCE 

Metric Label Possible values 

Grade G NP, 6, 7, 8, 9, 10 

Project completion 
timeframe 

PCT >0 

 

1) GRADE (G) 

In many research studies [32], [33], grades are considered 

an indicator of performance at all levels of education.  

The first academic performance metric in higher 

education chosen for this research is the grade a student 

achieved in the course for which the project, subjected to 

static code analysis, was carried out. Possible values for the 

grade metric range from 6 to 10, as well as the 'NP' (Not 

Passed) mark, which is assigned to students who have not 

yet completed the course. These grades are defined 

according to the standards of the Faculty of Technical 

Sciences, where the observations were recorded, and were 

taken from courses held in previous years, with grades 

assigned by the course instructors.  

FIGURE 1. Research framework 
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The grading scale used ranges from 6 to 10, where 6 

represents the lowest possible passing grade, and 10 

represents the highest possible grade. The goal of 

monitoring this metric is to analyze the relationship 

between the results of code quality and the grade a student 

achieves in the course. 

 

2) PROJECT COMPLETION TIMEFRAME (PCT) 

 In addition to grades, the Project Completion Timeframe 

(PCT) required for a student to successfully pass the course 

project was also recorded as an academic performance 

indicator. PCT is measured by the number of attempts a 

student takes to pass the course project. Possible values for 

this metric are positive integers (>0), indicating the number 

of attempts, and the 'NP' value, which is assigned if the 

student has not yet completed the course project. The 

inclusion of this metric as an indicator of academic 

performance is supported by other studies in the field of 

education[34], which often consider the dimension of time 

along with outcomes as indicators of academic 

performance. 

E. RESEARCH FRAMEWORK 

Within the scope of this research, based on the metrics 

presented, an examination and analysis will be conducted 

to determine the extent to which a correlation exists 

between variables from the project setup category and the 

code quality. Furthermore, an examination and analysis of 

the correlation between code quality and the academic 

performance of students will also be undertaken. The 

research framework is presented in Fig. 1. 

 
IV. METHODOLOGY 

Data were collected by observing various project setups 

across different courses from different academic years, 

according to seven variables outlined in Section III. 

Subsequently, analyses of these student projects were 

conducted using the SonarQube tool, with results from each 

individual project being recorded alongside the academic 

outcomes students achieved in the course. 

A. DATA PRE-PROCESSING 

The dataset examined was devoid of missing values or 

duplicated rows. It comprised nominal variables with 

binary outcomes (e.g., SAU, VCU, TM, and CM) where 1 

indicated usage or a specific condition being met, and 0 

represented its absence. Specifically:  

• SAU and VCU were coded 1 when utilized and 0 

otherwise, 

• TM was 1 for online lecture attendance and 0 for 

live attendance, and, 

• CM was 1 when students collaborated in teams 

and 0 when they worked individually. 

 

In addition to binary nominal variables, it comprises a 

nominal variable with 6 values, i.e. TC. It has the following 

values: 

• .NET and Angular (130 occurrences), 

• .NET (126 occurrences), 

• HTML/CSS/JS (74 occurrences), 

• Java and WPF (62 occurrences each), 

• Spring and Angular (52 occurrences). 

 

The dataset also included variables measured on 

continuous scales, such as:  

• bugs (range: 0 to 201), 

• duplications % (range: 0 to 45.9), 

• code smells (range: 0 to 2600), 

• security hotspots (range: 0 to 92), 

• PS ( range: 64 to 3200) 

Finally, there are 4 ordinal variables: AY, G, PCT, and 

vulnerabilities. 

As it is shown in Table V and Fig. 2, all continuous 

variables are right-skewed. They are also on different 

scales, with PS having the largest scale (min: 64.0, max: 

32,000) and duplications % having the smallest scale (min: 

0.0, max: 45.9) 

 
TABLE V 

SUMMARY STATISTICS FOR CONTINUOUS VARIABLES 

 B CS D(%) PS SH 

Min. 0.0 0.0 0.0 64 0.0 

1st Quartile 0.0 40.0 1.4 1,300 1.0 

Median 5.0 277.0 5.0 5,250 4.0 

Mean 17.2 356.7 7.2 9234 5.9 

3rd Quartile 22.0 573.0 12 17,000 8.0 

Max 201.0 2,600 45.9 32,000 92.0 

 

Within the dataset's ordinal variables, the PCT is noted 

for having the highest count of factors, totaling 9, whereas 

vulnerabilities exhibit the widest range, reaching 12, as 

detailed in Fig. 3. With a consideration of 1 degree of 

freedom, the standard deviations for these variables are as 

follows: 1.05 for AY, 1.53 for G, 1.07 for PCT, and 3.53 

for vulnerabilities. 

The distribution of the binary nominal variables in the 

dataset is as follows: for code quality, 222 instances are 

marked as 0 and 284 as 1; collaboration mode shows 189 

instances of 0 and 317 of 1; static analysis usage is observed 

with 436 instances of 0 and 70 of 1; teaching method 

records 417 instances of 0 and 89 of 1; version control 

exhibits 136 instances of 0 and 370 of 1.
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During the dataset preparation, three key data pre-

processing steps were employed: encoding of the TC 

variable, the introduction of a novel variable termed code 

quality (created as the interaction term), and data 

standardization.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1) FREQUENCY-BASED ENCODING OF TC VARIABLE 

Encoding of the TC variable was performed based on the 

frequency of category occurrences. This was done for two 

reasons:  

• frequency encoding converted the category 

frequencies into ordinal values, thereby preserving 

the information on the relative prevalence of each 

category,  

• this method was chosen to avoid the dummy 

variable trap, which could potentially lead to an 

increase in the dataset's dimensionality, also 

known as the curse of dimensionality.

FIGURE 2. Continous variables’ data distribution 
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2) CREATION OF NEW VARIABLE (CQ) 

To investigate the association and impact of the project 

setup variables vector, which encompasses bugs (B), 

duplications % (D), vulnerabilities (V), code smells (CS), 

and security hotspots (SH), on code quality, a new binary 

variable named code quality (CQ) was developed. The 

binary outcomes for this variable were defined as {0,1}, 

with a selected threshold of 0.5 serving as the benchmark 

for classification. In constructing this variable, all 

contributing factors were accorded equal significance. 

The formulation for calculating the dependent variable, 

CQ, is given by (1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Weights are uniformly distributed, summing to 1 (Wi = 

0.2) whereas the variable base value is its value proportion 

of its maximum value, for example, if the maximum range 

of bugs variable is 100 and the observation value is 40 then 

B x Wb = 0.4 x 0.2 = 0.08. 

 

𝐶𝑄 = 𝐵 𝑥 𝑊𝑏 +  𝐷 𝑥 𝑊𝑑 +  𝐹 𝑥 𝑊𝑓 + 𝐶𝑆 𝑥 𝑊𝑐𝑠 + 𝑆𝐻 𝑥 𝑊𝑠ℎ       (1) 

 

The classification of an observation as 1 (indicating 

higher code quality) or 0 (indicating lower code quality) is 

determined based on whether the computed value of CQ 

meets or exceeds the 0.5 threshold (2).  

 

{
0   𝑖𝑓 𝐶𝑄 < 0.5
1   𝑖𝑓 𝐶𝑄 ≥ 0.5

 (2) 

 

FIGURE 3. Ordinal variables’ data distribution 
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This approach ensures that each variable contributes 

equally to the overall assessment of code quality, 

facilitating a balanced and comprehensive evaluation. 

 

3) DATA TRANSFORMATION - STANDARDIZATION  

In order to fit the statistical analysis technique to test the 

impact of the project setup on the code quality, it is needed 

to conduct data transformation and standardize existing 

scales to the variance of 1 and mean of 0 {(Xi-Xmean)/Xstd} 

 

B. ANALYSIS - Impact of project setup on the code 
quality 

1) CORRELATIONS BETWEEN VARIABLES 

Associations between all project setup variables and CQ, 

totaling five, were explored using the Kendall rank 

correlation coefficient (Table VI). This coefficient was 

selected following the identification of a monotonic 

relationship among non-normally distributed data. To 

address multicollinearity, the variance inflation factor 

(VIF) was employed, adopting a threshold of 5, as depicted 

in Fig. 4. Given that Logistic Regression requires 

independence of inputs, the interpretation of each input's 

coefficient/slope is conducted with the assumption that 

other inputs are held constant. A VIF of 5 is generally 

considered the threshold beyond which the precision of 

coefficient estimations could be significantly compromised 

[56]. 

 

2) CAUSATION AND EFFECT SIZE 

In examining the effects of project setup variables on CQ, 

Binomial Logistic Regression was utilized, aiming for a 5% 

significance level to ascertain statistically significant 

impacts. To enhance the interpretability of effect size, odds 

ratios were included in the analysis, calculated as the 

exponential of the coefficients (OR=e), and presented in 

Table VII. Binomial logistic regression, a statistical 

technique for classifying the effects of independent 

variables on a binary categorical dependent variable, 

assumes a monotonic or linear relationship between 

variables, and absence of the multicollinearity. This 

method produces coefficients that have a multiplicative 

relationship with the odds, facilitating the calculation of the 

influence of each independent variable on the dependent 

variable [57]. 

The importance of each independent variable was 

determined through permutation importance, with 10 

iterations conducted to calculate the mean permutation 

importance scores and standard deviation for each variable, 

as shown in Table VI. Permutation importance assesses the 

significance of a variable on the prediction coefficients by 

repeatedly shuffling values of a single independent variable 

whereas other variables remain constant. This process, 

through iterations, reduces variability and randomness in 

the findings [58]. 

A synergistic effect of variable pairs was examined using 

conditional partial dependence plots, presented in Fig. 5. 

These plots reveal associative effects of features of interest 

on the dependent variable, including the direction of such 

effects. Unlike regular partial dependence plots, 

conditional partial dependence plots account for the 

influences of other independent variables [59]. 

This methodology stands out by simultaneously 

examining multiple project setup variables and their 

interactions, providing a more holistic view of the factors 

influencing code quality. This multi-dimensional approach 

is novel and fills a significant gap in existing research. 

C. ANALYSIS - Impact of the code quality on academic 
performance 

1) MANN-WHITNEY U TEST 

To evaluate statistically significant causation between the 

CQ factors (0 and 1) and variables influencing student 

academic performance, identified as G and PCT, the Mann-

Whitney U test was conducted, as shown in Table IX. The 

choice of the Mann-Whitney U test was due to the non-

normal distribution of data and the ordinal scale of the 

dependent variables (G and PCT). This test is a non-

parametric median test that compares differences in the 

dependent variable between two independent groups 

without requiring a specific data distribution, whether 

symmetric or asymmetric [60]. 

Before testing, two alternative hypotheses were 

designed. 

Test 1 - the impact of the code quality on the grade. 

• H0: The CQ does not have a statistically 

significant impact on student G. 

• H1: The CQ has a statistically significant 

impact on student G. 

 

Test 2 - the impact of the CQ on the PCT: 

• H0: The code quality does not have a 

statistically significant impact on the PCT. 

• H1: The code quality has a statistically 

significant impact on the PCT. 

 
V. RESULTS 

A. IMPACT OF PROJECT SETUP VARIABLES ON CQ 

The analysis showed that SAU and TC have a statistically 

significant positive correlation to CQ, whereas PS has a 

statistically significant negative correlation to CQ. All 

other independent variables have not shown a statistically 

significant correlation to CQ, based on the significance 

level of 5%.
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TABLE VI 

CORRELATION BETWEEN PROJECT SETUP VARIABLES AND CQ 

Variables Tau p 

SAU 0.0543 0.0222 

VCU 0.0748 0.0925 

PS -0.0954 0.0417 

AY 0.0380 0.3019 

TM 0.0632 0.1551 

CM -0.0405 0.3625 

TC 0.1281 0.0105 

 

All variables demonstrating a statistically significant 

correlation with the dependent variable exhibited a 

Variance Inflation Factor (VIF) lower than 5. The sole 

independent variables possessing a VIF exceeding 5 were 

VCU and AY. The absence of high collinearity among 

variables is one of the fundamental assumptions of the 

Binomial Logistic Regression model. 

 

FIGURE 4. Variance Inflation Factor (VIF) – serves as an indicator of 
multicollinearity among predictors in a regression model, showing the 
degree to which the variance of an estimated regression coefficient is 
inflated due to correlations among the predictors. 

 

The logistic regression analysis revealed a statistically 

significant causal relationship between SAU, PS, and TC 

with CQ. SAU emerged as the only input exhibiting a 

positive relationship with the dependent variable. 

Specifically, the utilization of static code analysis tools 

during development was associated with a 1.31-fold 

increase in the odds of producing high-quality code, as 

indicated by the odds ratio value. If students used .NET and 

Angular or only .NET, the odds of developing high-quality 

code are multiplied by 1.68. Conversely, PS is negatively 

related to the target variable. The odds ratio for PS 

indicated a roughly 44% decrease in the odds of developing 

high-quality code with each one-standard-deviation 

increase in the number of lines of code (PS). Results of 

Binomial Logistic Regression are presented in Table VII. 
TABLE VII 

BINOMINAL LOGISTIC REGRESSION RESULTS 

Variables Coefficient 
Std. 
error 

z value Pr(>|z|) OR 

SAU 0.2679 0.1066 2.5117 0.0120 1.3072 

PS -0.5790 0.1308 4.4272 0.0000 0.5604 

TM 0.1022 0.1138 0.8981 0.3691 1.1076 

CM -0.1087 0.1491 -0.7288 0.4661 0.8970 

TC 0.5214 0.1455 -3.6453 0.0003 1.6844 

 

To evaluate the importance of each variable, permutation 

importance was calculated across 10 iterations. This 

analysis demonstrated that all three variables, SAU, PS, 

and TC, held comparable levels of importance in the 

model's predictive accuracy, each exhibiting an extremely 

low standard error, presented in Table VIII. 

 
TABLE VIII 

CORRELATION BETWEEN INDEPENDENT VARIABLES AND CQ 

Variables Tau p 

SAU 0.1259 0.0000 

PS 0.1375 0.0039 

TC 0.1259 0.0000 

 

. In the final phase of analysis, the synergistic effect of 

those three independent variables, SAU, PS, and TC, on the 

dependent variable (CQ) was examined using partial 

dependence plots. For this purpose, a new Binomial 

Logistic Regression model was fitted, this time utilizing 

non-transformed inputs to ensure interpretability. Among 

the interactions explored, a demonstrable synergistic effect 

was identified exclusively between the PS and TC variables 

and presented in Fig. 5. By combining a lower project size 

(number of lines of code) with technologies encoded in the 

range 120 – 130, t.e. the .NET and Angular or only .NET, 

the chances for high-quality code development are 

increasing

0 1 2 3 4 5 6 7 8 9 10

SAU

TC

CM

PS

TM

AY

VCU

Variance Inflation Factor
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FIGURE 5. Interaction effect – an indicator of the combined influence of 
Project Size (PS) and Technology Choice (TC) on Code Quality (CQ)  

B. RELATIONSHIP BETWEEN THE CQ AND STUDENT 
ACADEMIC PERFORMANCE 

The Mann-Whitney U test was applied to explore 

disparities in grades between students who surpassed the 

CQ threshold and those who did not. Findings suggested 

that students with higher CQ exhibited marginally superior 

median exam G and reduced variance (Median = 9, 

Interquartile Range (IQR) = 2) relative to their counterparts 

with lower CQ (Median = 9, IQR = 3). The outcomes of the 

Mann-Whitney U tests revealed a statistically significant 

causal relationship between CQ and G. The effect size was 

further qua                                   C    ’s D    , 

which stood at 0.3189, indicating a moderate effect 

magnitude on G in favor of students with higher CQ. 

Additionally, the Mann-Whitney U test was employed to 

investigate variations between the CQ groups concerning 

the PCT. Results showed no difference in median and 

interquartile range between students with higher CQ and 

those with lower (Median = 2, IQR = 1), implying that the 

time taken to complete a project does not significantly 

influence the quality of the code produced. 

These correlations are presented in Table IX. 

 
TABLE IX 

MANN-WHITNEY U TESTS RESULTS 

Variables W p 

CQ →   G 26830 0.0029 

CQ → PCT 29562 0.1971 

 
VI. DISCUSSION AND LIMITATIONS 

This section discusses the findings from the previous 

section, highlighting key factors that impact code quality in 

student projects and exploring their implications for 

software development education. 
 

A. IMPACT OF PROJECT SETUP VARIABLES ON CQ 

The results obtained from the analysis emphasize that 

certain project setup variables significantly influence the 

quality of the code generated by students. Notably, the use 

of static code analysis tools during project work is 

positively correlated with higher code quality, suggesting 

these tools are crucial in guiding students toward better 

coding practices. This finding underlines the notion that 

incorporating these tools into the educational process can 

markedly enhance the learning experience by offering 

instant feedback on potential irregularities and 

opportunities for source code enhancement. 

Conversely, the observed variable Project Size (PS) 

shows a negative correlation with code quality, indicating 

that larger projects are more likely to encounter quality 

problems. This outcome could be attributed to the increased 

complexity and a higher likelihood of irregularities in 

larger codebases. It indicates the need for educators to 

carefully consider the scope of projects assigned to 

students, perhaps emphasizing incremental development 

and continuous testing to manage complexity and maintain 

high code quality. 

The variable Technology Choice (TC) also emerged as a 

significant factor for generating high-quality code, with 

specific technologies leading to better outcomes. This 

finding points to the importance of selecting appropriate 

technologies that not only align with educational goals but 

also support best coding practices and project management. 

It is also noteworthy that some technologies might have a 

more challenging learning curve for students, which could 

affect their code quality. 

Interestingly, variable, Collaboration Mode (CM) did not 

show a statistically significant impact on Code Quality 

(CQ) in this sample. This outcome suggests that the 

decision of whether a project is undertaken individually or 

in a team, may not be a critical factors when organizing a 

project. Teamwork often yields better results compared to 

individual tasks [19], [20]. Yet, it is not uncommon for only 

a small number of team members, or even a single 

participant, to be actively involved in team projects. This 

factor was not considered in this analysis and represents a 

foundation for further examination of this variable and its 

significance regarding code quality. 

The Teaching Method (TM) variable also did not show a 

statistically significant impact on Code Quality (CQ) 

according to this analysis. In this context, it implies that the 

choice between conducting courses in-person or online 

does not affect the code quality that students produce in 

their projects. Although the online teaching environment 

necessitated by the COVID-19 pandemic has affected many 

aspects of education [24], [61],   this study presents different 

findings, indicating that online instruction does not 

significantly impact the quality of code generated by 

students.
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These observations do not diminish the possible value 

and importance of teamwork or the potential benefits of 

different teaching methods, which could affect other 

learning aspects not directly measured through code 

quality. 

B. CORRELATION BETWEEN CQ AND ACADEMIC 
PERFORMANCE 

Within the research findings, the correlation between Code 

Quality (CQ) and students' academic performance was 

analyzed. The analysis reveals a clear correlation between 

these variables, specifically showing that students with 

higher grades (G) generate source code of better quality. 

This correlation underscores the importance of code quality 

not just as a technical measure, but also as an educational 

outcome that reflects students' understanding and 

application of software engineering principles, and presents 

the possibility of using code quality analysis results to 

generate the grade a student achieves in the course. 

Furthermore, this correlation also indicates that teachers 

who have reviewed the projects possess the ability to 

recognize code quality and award corresponding grades 

However, no significant correlation was found between 

Code Quality (CQ) and Project Completion Timeframe 

(PCT). This indicates that the time required to complete 

projects does not affect the quality of the generated code, 

which may imply that students who take longer are 

investing time in refining and improving their work to 

achieve higher quality. This finding suggests the need to 

investigate additional variables that could influence the 

timing of project submissions, such as the complexity of 

the project, the clarity of assignment instructions, and the 

presence of other academic obligations. 

One of the most frequently mentioned limitations of 

static code analysis tools is the possibility of reports 

generating false positive or false negative results [1], [45]. 

This research did not consider the possibility of such 

outcomes, which could affect the CQ variable used for 

analysis to a certain extent.  

Regarding the variable within the group describing 

students' academic performance, the G variable did not 

account for other factors that might influence the grade a 

student receives in the course, such as quizzes, tests, 

theoretical exams, etc.  

The limitation regarding the Academic Year (AY) 

variable, which is supposed to describe the experience 

possessed by the student, excludes the possibility of other 

indicators of the student experience, such as knowledge and 

skills obtained outside of the university, as well as 

previously acquired experience and knowledge (for 

example, in earlier education). These factors were not 

included in the assessment of student experience in this 

research.  

Another limitation of this research is that the sample on 

which the dataset was created was obtained only from 

courses across different programs at the Faculty of 

Technical Sciences, University of Novi Sad. Part of further 

research in the field certainly involves expanding the 

dataset with data from various technical universities in 

Serbia, as well as in other countries. 

 
VII. CONCLUSION 

The conducted research offers insights into factors 

affecting the code quality in student software projects and 

the relationship between code quality and academic 

performance. The positive impact of static code analysis 

tools on code quality highlights the importance of 

integrating these tools into computing education to support 

student learning and development. Additionally, findings 

on project size and technology choice provide practical 

guidelines for educators in creating effective and 

supportive learning environments. 

Although the study did not find a significant impact of 

collaboration mode or teaching method on code quality, 

this suggests that from the perspective of code quality in 

student projects, the project setup in courses can be 

organized either as team-based or individual work, 

depending on the instructor's preference. Additionally, the 

results of this study indicate that from the standpoint of the 

code quality produced by students, the course curriculum 

can be effectively delivered both in-person and online. 

The correlation between code quality and academic 

performance further emphasizes the need for educational 

strategies that focus not only on technical skills but also on 

the quality of work produced by students. By promoting an 

environment that prioritizes code quality, educators can 

better prepare students for the challenges of professional 

software development. 

This research provides a detailed analysis of the factors 

influencing code quality in educational contexts. The 

findings offer valuable implications for improving teaching 

strategies and curriculum development in software 

engineering education. The unique contributions of this 

multi-dimensional approach are highlighted, clearly 

distinguishing this work from existing studies in the same 

area. 

One possible direction for future research involves 

increasing the model's complexity (order of polynomials 

and regularization) to develop a predictive classification 

model, with the need to define and monitor additional 

metrics such as true positives, false positives, true 

negatives, false negatives, recall, and precision on unseen 

data. 

This research contributes to the ongoing discussion on 

improving learning outcomes in computing education and 

lays the groundwork for future studies that could further 

explore additional factors and interventions that could 

further enhance both code quality and academic 
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performance in computing disciplines. Building upon these 

findings, it is anticipated that this research will pave the 

way for the development of improved learning strategies in 

software engineering, ultimately fostering a new generation 

of software engineers who are well-equipped to navigate 

the complexities of contemporary software development. 

ACKNOWLEDGMENT 

This research has been supported by the Ministry of Science, 

Technological Development and Innovation (Contract No. 

451-03-65/2024-03/200156) and the Faculty of Technical 

Sciences, University of Novi Sad through the project 

“S              A   s    R s      W  k    R s       s    

Teaching and Associate Positions at the Faculty of Technical 

S      s, U     s       N    S  ” (N .   -3394/1). 

REFERENCES 
[1] B. Chess and J. West, Secure Programming with Static Code Analysis. 

Addison-Wesley Professional, 2007. 

[2] A. Møller and M. I. Schwartzbach, Static Program Analysis. 

Department of Computer Science, Aarhus University, 2020. [Online]. 
Available: https://cs.au.dk/~amoeller/spa/ 

[3] M. Beller, R. Bholanath, S. Mcintosh, and A. Zaidman, Analyzing the 

State of Static Analysis: A Large-Scale Evaluation in Open Source 
Software. 2016. doi: 10.1109/SANER.2016.105. 

[4] D. S        ć, D. N k   ć, D. D k  , I. S  s     ć,     S. R s   , 

“S      C    A    s s T   s: A S s        L          R    w,”     , 
pp. 0565–0573. doi: 10.2507/31st.daaam.proceedings.078. 

[5] C. G. Von Wangenheim et al., “C     s   –Automatic Assessment 

    G          A   I            S   ! P      s.,” Inform. Educ., 
vol. 17, no. 1, pp. 117–150, 2018. 

[6] A. K    , N. T  š  , V. L         ,     V.      ć, Demystifying 

Sonar Tool Estimates in the Contexts of Familiar and Unfamiliar 
Software Projects: An Empirical Study with Junior Developers. 2023. 

doi: 10.24867/IS-2023-T4.1-6_03541. 

[7] M. L. Shooman, Software Quality: Theory and Management. 
Chapman & Hall, 1996. 

[8] H. Keuning, B. Heeren, and J. Jeuring, Code Quality Issues in Student 

Programs. 2017, p. 115. doi: 10.1145/3059009.3059061. 
[9] “ISO/IEC      :    , S s   s     s   w                – Systems 

and software Quality Requirements and Evaluation (SQuaRE) – 

S s        s   w    q            s.” I             O                
Standardization, 2011. [Online]. Available: 

https://www.iso.org/standard/35733.html 

[10] S    S     , “S    Q   .” [O     ]. A        : 
https://www.sonarsource.com 

[11] H. P       , F. A      , R. R     ,     F. G            , “S      C    

Analysis of IEC 61131-3 Programs: Comprehensive Tool Support and 
Experiences from Large-S     I   s      A          ,” IEEE Trans. 

Ind. Inform., vol. PP, pp. 1–1, Aug. 2016, doi: 

10.1109/TII.2016.2604760. 
[12] A. Komosar, S. Kijanovic, V. Mandic, D. Nikolic, and T. Vuckovic, 

“O      A              S      C    A    s s T   s        S       IT 

I   s   : A  E         S    ,”    17th IADIS International 

Conference Information Systems 2024, Faculty of Technical Sciences, 

University of Novi Sad, Trg Dositeja Obradovica 6, Novi Sad, Serbia, 

2024, pp. 76–83. 
[13] L. G        V. A       , “O                  w           s         

     q      ,”    2017 43rd Euromicro Conference on Software 

Engineering and Advanced Applications (SEAA), IEEE, 2017, pp. 52–
56. 

[14] B. Hass, C. Yuan, and Z. Li, On the Automatic Assessment of Learning 

Outcome in Programming Techniques. 2019, p. 278. doi: 
10.1109/ISKE47853.2019.9170370. 

[15] E. A. A O   , S. A. A O   ,      . W.  k     , “O       s     
static analysis to engage students with software quality improvement: 

A   x         w    P D,”    2023 IEEE/ACM 45th International 

Conference on Software Engineering: Software Engineering 

Education and Training (ICSE-SEET), 2023, pp. 179–191. doi: 

10.1109/ICSE-SEET58685.2023.00023. 
[16] P. A        ,  . L. B       ,      . C       , “S   w    A       s 

to Support Students in Object-Oriented Programming Tasks: An 

E         S    ,” IEEE Access, vol. 8, pp. 132171–132187, 2020, 
doi: 10.1109/ACCESS.2020.3010172. 

[17] I.   k      ć, L. B k ć, B.     š     ć,      . B       ć, “B        

  C        s    A         P           Ass ss     S s   ,” 
IEEE Access, vol. 8, pp. 81154–81172, 2020, doi: 

10.1109/ACCESS.2020.2990980. 

[18] R. Cardell-O     , “H w     S   w          s H    N      
P         s?,” J  .     ,   .   –62. 

[19] H.-M. Chen, B. Nguyen, and C.-R. D w, “C   -quality evaluation 

scheme for assessment of student contributions to programming 
       s,” J. Syst. Softw., vol. 188, p. 111273, Feb. 2022, doi: 

10.1016/j.jss.2022.111273. 

[20] E. A              A.               , “A            s        
s      s’           s        s                                      

 ss       s,” ACM Trans. Comput. Educ. TOCE, vol. 21, no. 3, pp. 

1–22, 2021. 

[21] B. R  , D. P s    , V. F  k  ,     P. D      , “A       s     s     

                       s          q                ,” Proc FSE 

2014, pp. 155–165, Nov. 2014, doi: 10.1145/2635868.2635922. 
[22] R. Harrison, L. G. Smaraweera, M. R. Dobie, and P. H. Lewis, 

“C         P           P       s:    E             F          
and Object-O       P      s,” Softw. Eng. J., vol. 11, pp. 247–254, 

Aug. 1996, doi: 10.1049/sej.1996.0030. 

[23] P. B                I. N      , “Ass ss                         
                                     :   s               ++,”    

2011 33rd International Conference on Software Engineering (ICSE), 

2011, pp. 171–180. doi: 10.1145/1985793.1985817. 
[24] T. F          C. R   í    , “T       s                           s  

                      s   s           s                           ,” 

RIED Rev. Iberoam. Educ. Distancia, vol. 25, no. 1, pp. 299–322, 
2022. 

[25] S. Sripada, R. Reddy, and A. Sureka, In Support of Peer Code Review 

and Inspection in an Undergraduate Software Engineering Course. 
2015, p. 6. doi: 10.1109/CSEET.2015.8. 

[26] “B     k  .” [O     ]. A        :     s://      k  .    

[27] J. Ludwig, S. Xu, and F. Webber, Compiling static software metrics 
for reliability and maintainability from GitHub repositories. 2017, p. 

9. doi: 10.1109/SMC.2017.8122569. 

[28] “G  H  .” [O     ]. A        :     s://      .    
[29] H. H kk , F. D  s  w,     J. B    ss  , “L  k    D         

Experience to Coding Style in Open-S      R   s      s,”    2021 

IEEE International Conference on Software Analysis, Evolution and 
Reengineering (SANER), Mar. 2021, pp. 516–520. doi: 

10.1109/SANER50967.2021.00057. 

[30] Y. Cho, J. -H. Kwon, J. Yi, and I. -Y. K , “Ex        D         
Experience Metrics for Better Effort-Aware Just-In-Time Defect 

P         ,” IEEE Access, vol. 10, pp. 128218–128231, 2022, doi: 

10.1109/ACCESS.2022.3227339. 
[31] S. B          J.         , “A s                       s            

s   w          x   ,”    2014 International Conference on Advances 

in Engineering & Technology Research (ICAETR - 2014), 2014, pp. 
1–4. doi: 10.1109/ICAETR.2014.7012875. 

[32] D. K  s        , “T   C       S    ss: D            S       

Source Code Analysis Tool to Predict Course Performance and 

I        K   C      s    P           E        ,”     .    : 

10.13140/RG.2.2.28072.75528. 

[33] O. S. K        H. B    , “S                                     s  s  
                   s                                   ,” Int. J. 

Distance Educ. Technol. IJDET, vol. 17, no. 3, pp. 25–36, 2019. 

[34] B. A       D . F. B   , “T   I         E           V    s        
A        P              U     s    S      s    D s      L       ,” 

vol. 6, pp. 1233–1249, Dec. 2022. 

[35] D. S        ć, D. N k   ć, S. H    , T. V čk   ć,     D. D k  , 
“I                 s        s          s     s                s s,” IOP 

Conf. Ser. Mater. Sci. Eng., vol. 1163, p. 012012, Aug. 2021, doi: 

10.1088/1757-899X/1163/1/012012.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3426299

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



 D. Nikolic et al.: Uncovering Determinants of Code Quality In Education Via Static Code Analysis 

 

16 VOLUME XX, 2017 

 

[36] D. N k   ć, S. H    , D. D k ć, T. L   ć,     D. S        ć, 

“EVALUATION OF STRATEGIES OVER STATIC CODE 
ANALYSIS TOOLS,”     . 

[37] S. A. E   , A. A. D    ,     J. H. A  w   , “   s      S   w    

Obfuscation Quality–A S s        L          R    w,” IEEE Access, 
vol. 9, pp. 99024–99038, 2021, doi: 10.1109/ACCESS.2021.3094517. 

[38] Y. B  , T. W   ,     H. W   , “A               T        S        s 

   Ex        C    Q           S    ss    B       ,” IEEE Access, 
vol. 7, pp. 152744–152754, 2019, doi: 

10.1109/ACCESS.2019.2948640. 

[39] H.-M. Chen, B.-A. Nguyen, Y.-X. Yan, and C.-R. D w, “A    s s    
Learning Behavior in an Automated Programming Assessment 

E          : A C    Q       P  s       ,” IEEE Access, vol. 8, pp. 

167341–167354, 2020, doi: 10.1109/ACCESS.2020.3024102. 
[40] D. O        K. O   , “P  s       s        G   B  w        S   w    

I   s            S   w    E           E        ,” IEEE Access, vol. 

7, pp. 117527–117543, 2019, doi: 10.1109/ACCESS.2019.2936660. 
[41] C      k D           T   , “C  C   k.” [Online]. Available: 

http://cppcheck.sourceforge.net 

[42] T   F   B  s P      , “F   B  s.” [O     ]. A        : 

http://findbugs.sourceforge.net 

43] P D P      , “P D.” [O     ]. A        :     s://   .      .   

[44] S      D        s, “S     .” [O     ]. A        : 
http://www.splint.org 

[45] D. N k   ć, D. S        ć, D. D k ć, S. S        ć,     S. R s  ć, 
“A    s s        T   s     S      C    A    s s,”    2021 20th 

International Symposium INFOTEH-JAHORINA (INFOTEH), 2021, 

pp. 1–6. doi: 10.1109/INFOTEH51037.2021.9400688. 
[46] B. A. K         , “E          s   w                      s          

      : T                   x                       s,” ACM 

SIGSOFT Softw. Eng. Notes, vol. 21, no. 1, pp. 11–14, 1996. 
[47] J. García-Muñoz, M. García-Valls, and J. Escribano-Barreno, 

“I              s H           S    Q        S   w    Q       

          ,”    6,   .  6 –470. doi: 10.1007/978-3-319-40162-
1_50. 

[48] V. L         , V.      ć, A. K    ,     D. T    , How long do Junior 

Developers take to Remove Technical Debt Items? 2020. doi: 
10.1145/3382494.3422169. 

[49] V. L         , N. S     äk ,     D. T    , “S    S    Q     ss  s 

have a significant but small effect on faults and changes. A large-scale 
          s    ,” J. Syst. Softw., vol. 170, p. 110750, Jul. 2020, doi: 

10.1016/j.jss.2020.110750. 

[50]  . B    ss    , V. L         , S. R     ,     N. S     äk , “O      
Diffuseness of Technical Debt Items and Accuracy of Remediation 

T    W    Us    S    Q   ,” Inf. Softw. Technol., vol. 128, p. 

106377, Jul. 2020, doi: 10.1016/j.infsof.2020.106377. 
[51] “S    Q    D            .”     . [O     ]. A        : 

https://www.sonarqube.org/docs/ 

[52] C. -H. Cao, Y. -N. Tang, H. Zhou, Y. -L. L ,     Z.    s  ł k, 
“DBSCAN-Based Automatic De-Duplication for Software Quality 

I s        D   ,” IEEE Access, vol. 11, pp. 17882–17890, 2023, doi: 

10.1109/ACCESS.2022.3164192. 
[53] D. K. K. S      , P. P. G. D. As  k ,     D. W  k            , “A 

Comprehensive Approach to Evaluating Software Code Quality 

T         F  x     Q            ,”    2023 International Research 
Conference on Smart Computing and Systems Engineering (SCSE), 

Jun. 2023, pp. 1–8. doi: 10.1109/SCSE59836.2023.10215004. 

[54] M. A. A. Hilmi, A. Puspaningrum, Darsih, D. O. Siahaan, H. S. 

S   s  ,     A. S. R    , “R s      T    s, D               s, 

P       s,     C        s    C    S    : SLR,” IEEE Access, vol. 11, 

pp. 129536–129551, 2023, doi: 10.1109/ACCESS.2023.3334258. 
[55] S. D w     , R. S. R  , A.   s   ,      . G    , “A N     

A            C    S     D        : A  E         S    ,” IEEE 

Access, vol. 9, pp. 162869–162883, 2021, doi: 
10.1109/ACCESS.2021.3133810. 

[56] J. Fox, Applied Regression Analysis and Generalized Linear Models, 

3rd ed. Los Angeles: Sage Publications, 2016. 
[57] G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to 

Statistical Learning: With Applications in R. New York: Springer, 

2013. 

[58] A. C     , D. A. E       ,     B. T      , “S    s        V     

V        I          Ass ss             C           P          s,” 

ArXiv, vol. abs/2309.07593, 2023, [Online]. Available: 
https://api.semanticscholar.org/CorpusID:261823259 

[59] C. Molnar et al., Relating the Partial Dependence Plot and 

Permutation Feature Importance to the Data Generating Process. 
2023, p. 479. doi: 10.1007/978-3-031-44064-9_24. 

[60] K. Rubarth, P. Sattler, H. Zimmermann, and F. Konietschke, 

“Es             T s        W    x  –Mann–Whitney Effects in 
F         C  s      D    D s   s,” Symmetry, vol. 14, p. 244, Jan. 

2022, doi: 10.3390/sym14020244. 

[61] K. Q  , X. X  , Q. H ,     G. D   , “E     W          S       
P           W    I              S              O         E      s,” 

IEEE Access, vol. 11, pp. 72601–72617, 2023, doi: 

10.1109/ACCESS.2023.3295580. 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3426299

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



 D. Nikolic et al.: Uncovering Determinants of Code Quality In Education Via Static Code Analysis 

 

VOLUME XX, 2017 17 

DANILO NIKOLIĆ (Graduate Student 

      , IEEE) w s         V š  , S     , 

in 1996. He received the B.S. and M.S. 
degrees in information systems engineering 

from the Faculty of Technical Sciences, 

University of Novi Sad, Novi Sad, Serbia, in 
2019 and 2020, respectively, where he is 

currently pursuing a Ph.D. degree in 

information systems engineering. From 
2019 to 2020, he was a Teaching Associate 

and since 2020, he has been a Teaching 

Assistant at the Department of Industrial Engineering and Engineering 
Management, Chair for Information and Communication Systems, Faculty 

of Technical Sciences, University of Novi Sad. His research interests 

include static code analysis and tools for static code analysis.  
 
 
 

DARKO STEFANOVIĆ (Member, IEEE) was 

born in Novi Sad, Serbia, in 1972. He received 

a B.S. degree in mechanical engineering and a 
M.S. and Ph.D. degree in industrial engineering 

and engineering management from the Faculty 

of Technical Sciences, University of Novi Sad, 
Novi Sad, in 1999, 2005, and 2012, 

respectively. From 2001 to 2012, he was a 

Teaching Assistant, and from 2012 to 2017, he 
was an Assistant Professor, and Associate 

Professor from 2017 to 2022 at the Department 

of Industrial Engineering and Engineering Management, Chair for 
Information and Communication Systems, Faculty of Technical Sciences, 

University of Novi Sad, where he has been an Full Professor, since 2022. 

He is currently the Vice-Dean for Science and International Cooperation, at 
the Faculty of Technical Sciences, at the University of Novi Sad, and the 

Head of the Chair of Information and Communication Systems. He has 

published in several international information systems journals. His 
research interests include ERP systems, e-learning systems, e-government 

systems, data mining, static code analysis and business process mining in 

production planning 

 

 

 
MIROSLAV NIKOLIĆ (Graduate Student 
Member, IEEE) was born in 1991. He 

received B.A. in Research Sociology and 

M.S. in Applied Data Science and Artificial 
Intelligence from University of Belgrade - 

Serbia and Open Institute of Technology - 

Malta, respectively. He wrote his theses in 
the realm of applied statistics and machine 

learning.  

He is currently enrolled as a PhD student 
at Faculty of Organizational Sciences, 

University of Belgrade, focussing on numerical optimization advancements 

in foundation models and transformer architectures. 
 

 
 

 

 
 

 
 

DUŠANKA DAKIĆ. (Member, IEEE) was 

born in Novi Sad, Serbia in 1993. She 

received her B.S. degree in Engineering 
Management in 2016, her M.S. degree in 

Information Systems Engineering in 2017, 

and her Ph.D. degree in engineering 
management in 2023 from the Faculty of 

Technical Sciences at the University of Novi 

Sad, Serbia.  
From 2016 to 2024, she was a Research 

Assistant, and since 2024, she has been an 

Associate Professor with the Engineering Management Department at the 
Faculty of Technical Sciences, University of Novi Sad, Serbia. She is the 

author of 20 conference papers and 5 journal articles. Her research interests 

include Data Quality, Code Quality, Static Code Analysis, Business Process 
Management, Process Mining, and Business Information Systems. 

 

 
 

 

 

MIROSLAV STEFANOVIĆ (Member, IEEE) 

was born in Loznica, Serbia, in 1975. He 

received a B.S. degree in information 
management and an M.S. and Ph.D. degree in 

information systems engineering from the 

Faculty of Technical Sciences, University of 
Novi Sad, Novi Sad, Serbia, in 2014 and 2023, 

respectively, From 2015 to 2016, he was a 

Teaching Associate, and from 2016 to 2023, he 
was a Teaching Assistant, and since 2023 he has 

been an Assistant Professor at the Department 

of Industrial Engineering and Engineering Management, Chair for 
Information and Communication Systems, Faculty of Technical Sciences, 

University of Novi Sad. His research interests other than code reviewing and 

static code analysis, include blockchain technologies, especially the 
implementation of blockchain technology in fields other than 

cryptocurrency, mainly e-government and land administration systems. 

 

 

 

SARA KOPRIVICA. (Graduate Student 

Member, IEEE) born in 1996 in Novi Sad, 
Serbia, holds a bachelor's degree with honors 

and an MSc degree in information technology 

from the University of Novi Sad. Currently 
pursuing her doctoral studies in the same 

field, Sara serves as an assistant at the 

Department of Information and 
Communication Systems at the Faculty of 

Technical Sciences, University of Novi Sad. 

In addition to her academic pursuits, Sara has 
gained research experience through her engagement as a researcher at the 

National Research Council in Palermo, Italy. Her professional journey 

extends to consultancy roles in various projects concerning information 
technology and electronic governance. Her research interests include 

information technology, information systems, static code analysis, 
electronic governance, technology acceptance models, and automation of 

the literature review. Sara is the author of more than 20 research papers. 

 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3426299

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/


