

VOLUME XX, 2017 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2022.Doi Number

Uncovering Determinants of Code
Quality In Education Via Static Code
Analysis
Danilo Nikolić1, (Graduate Student Member, IEEE), Darko Stefanović1, (Member, IEEE),
Miroslav Nikolić2, (Graduate Student Member, IEEE), Dušanka Dakić1, (Member, IEEE),
Miroslav Stefanović1, (Member, IEEE), Sara Koprivica (Graduate Student Member, IEEE)
1Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
2Open Institute of Technology, University of Malta, XBX 1425, Malta

Corresponding author: Darko Stefanović (e-mail: darko.stefanovic@uns.ac.rs).

ABSTRACT The role of static code analysis in enhancing the quality of software codes is widely

acknowledged. Static code analysis facilitates the examination of code for irregularities without program

execution, which significantly impacts project quality. Furthermore, tools for static code analysis serve as

educational aids, imparting essential lessons on coding practices. Motivated by the growing complexity of

software projects and the pivotal role of code quality in academic performance within computing disciplines,

this research examines over 500 student projects using static code analysis tools. The aim is to determine

metrics that influence the code quality of student projects. The study investigates how metrics, such as project

setup, influence code quality and students' academic performances. By adopting a broad approach, the

investigation determines the overall impact of these metrics on the technical integrity of software engineering

projects and academic outcomes. Insights derived from this study are anticipated to enhance teaching

strategies and curriculum development, aiming to improve academic performance by promoting better code

quality.

INDEX TERMS academic performance, code quality, education, educational practices, static code analysis

I. INTRODUCTION

The quality of source code is a fundamental aspect of any

software product, necessitating continuous verification and

monitoring to ensure its robustness, efficiency, and

maintainability. Static code analysis plays a main role in

this process of continuous improvement [1]. This method

was created in the early 1960s to enhance compiler

operations by evaluating source code without executing it

[2]. The primary objective of static code analyses is to

detect potential bugs, vulnerabilities, and unwanted

patterns within the code that may lead to problems in

software functionality or its security. Using this analysis

helps find and fix problems early before the software moves

on to the testing or production stages [1].

Since then different tools for static code analysis have

been developed and over the years expanded their

application to debugging tools and software development

frameworks, marking a significant evolution from its

inception [1], [3].

The evolution of static analysis tools from basic lexical

analyzers to sophisticated systems that can examine code

for a wide range of programming languages highlights their

essential role in maintaining and improving code quality

[3]. These tools are capable of identifying deviations from

defined quality standards without making automatic

modifications to the code itself, demonstrating their

extensive utility in ensuring the robustness, efficiency, and

maintainability of software products. A growing number of

tools enable static analysis of code written in various

programming languages, generating reports and

highlighting deviations from defined code quality standards

[3], [4]. As modern software systems continue to grow and

evolve, the need for such analysis tools becomes

increasingly significant. These tools are finding their place

not only in the industry but also in education, where they

are being applied to projects developed by future software

engineers [5], [6].

Within the scope of this research, static code analysis

serves as a tool for the objective evaluation of the quality

of student software projects, thereby allowing for further

examination of their correlation with academic

performance.

The foundation of this research is in the understanding

that the quality of software code can significantly impact

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3426299

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

 D. Nikolic et al.: Uncovering Determinants of Code Quality In Education Via Static Code Analysis

2 VOLUME XX, 2017

 the success of software projects [2], [7], and thereby, the

educational outcomes achieved by students in the domain

of software engineering [8].

The emphasis on clearly defined software quality

standards [9], guides the focus toward the need for a tool

that provides quantitative metrics of software quality. In

this paper, SonarQube [10] has been used for retrieving

such metrics. SonarQube is an open-source tool designed

for reviewing code quality by conducting static code

analysis. This approach supports the theory that, through

the proper measurement and analysis of quality metrics [7],

the technical value of software projects can be enhanced,

thereby enriching the knowledge acquired by students.

This research aims to investigate and analyze the

correlation between code quality metrics obtained through

the implementation of static code analysis using the

SonarQube tool and course grades and the time taken for

passing projects. The study also examines how various

factors, including the mode of teaching (online versus

traditional approach), choice of technologies, collaboration

mode (team-based or individual), the academic year in

which the project was undertaken, project size, as well as

the use of version control tools and static code analysis

tools, influence the quality of code generated by students.

Within the framework of the study, quantitative research

was conducted to analyze the correlation between code

quality metrics and students' academic performances in the

field of software engineering, utilizing a random sample of

over 500 student projects. The code quality metrics

analyzed in the study include duplications, security

hotspots, vulnerabilities, bugs, and code smells, which are

generated by the selected tool for conducting the analysis.

This approach allows for a comprehensive investigation of

the impact of various factors on learning outcomes in the

domain of software engineering. The study employed a

variety of statistical analysis methods, including Kendall's

rank correlation, Binomial Logistic Regression, and the

Mann-Whitney U test, to uncover the correlations between

project setup variables, code quality, and student academic

performance.

The contribution of this paper is to enrich the existing

knowledge in the field of software engineering education.

Through a detailed analysis of static code analysis metrics,

the study identifies key factors that contribute to high-

quality student software projects. The use of static code

analysis tools and the choice of technology emerged as

significant positive influences, whereas larger project sizes

were found to have a negative correlation with code quality.

Additionally, the results include the effects of other

variables, observed within the research, on code quality.

Furthermore, a clear correlation between code quality and

the academic performance achieved by students is

presented and described.

The expectation is that this research will lay the

groundwork for the development of improved strategies for

teaching software engineering, which should result in a

generation of software engineers ready to face the

challenges of contemporary software development.

The findings presented in the study are intended to

provide educators, students, and professionals in software

engineering with deeper insights into how learning

approaches, technology choices, and collaboration can

affect code quality and, consequently, students' academic

performances. This study provides significant insights into

the impact of various project setup metrics on code quality

and academic performance in software engineering

education. By employing a multi-dimensional analysis, we

bridge the gap between educational practices and software

engineering standards, offering actionable insights for

curriculum designers and educators to enhance academic

outcomes.

Beyond the introduction and conclusion, the paper is

organized as follows: Section II provides a literature review

in the field of static code analysis, highlighting the

importance of applying static analysis tools in the industry,

as well as their potential and methods of application in

education. Section III describes the procedure of static code

analysis tool selection, as well as the chosen metrics for

research. Pre-processing of the data and the statistical

methods that are used are represented in Section IV.

Section V presents the results obtained from the conducted

research, and Section VI discusses these results and

establishes relationships between the observed variables

and code quality metrics. This section also outlines some

limitations of the research, providing a comprehensive

overview of the state of static code analysis in both the

professional and educational realms.

II. LITERATURE REVIEW

With the advancement of static code analysis tools, there

has been a significant increase in scholarly research in the

area of static code analysis. As part of prior work in the

field, a literature review was conducted [4], highlighting the

most commonly used tools in scientific research, and the

programming languages they support, among other aspects.

On the other hand, some research often focuses on newly

developed static code analysis tools. A study [11]

introduces a tool for the static analysis of Programmable

Logic Controller (PLC) program code, detailing its

application and the results it achieves in industrial projects.

An empirical study illustrating the use of static code

analysis in the industry and the willingness of developers

of varying seniority levels to utilize these tools is described

in [12]. The same paper also demonstrates that these tools

are increasingly being used as a mandatory part of the

deployment pipeline in the industry. The study [13]

underscores the necessity for a deeper understanding and

measurement of software quality beyond traditional

metrics. Additionally, this study compares programming

habits between professionals in the industry and students,

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3426299

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

 D. Nikolic et al.: Uncovering Determinants of Code Quality In Education Via Static Code Analysis

VOLUME XX, 2017 3

highlighting areas where students are more prone to making

mistakes that could compromise the code quality.

Furthermore, static code analysis tools are increasingly

finding their application in education. Research [5] presents

the CodeMaster tool based on static code analysis, which

automatically grades student projects, emphasizing the

importance of such tools in enhancing the quality of

education for future IT engineers. Similarly, another study

[14] discusses the use of tools for the automatic verification

of programming tasks, underlining their significance in

educational applications.

In [15], the results of an experiment are shown where

students independently utilized the Programming Mistake

Detector (PMD) static code analysis tool to correct

irregularities in their projects. The results of this study also

reveal that students largely understand the reports

generated by this static code analysis tool and have the

ability to amend these irregularities.

Another study [16] incorporated a static code analysis

tool into the educational process in a manner that a portion

of the students used the tool during their project work,

while a control group did not use the tool for their projects.

The results indicate that students who used the static code

analysis tool achieved better outcomes and developed

higher-quality source code compared to the control group.

In [17] the development and implementation of the Edgar

system for the automatic evaluation of software projects is

described. This system provides an objective and efficient

way to assess a large number of student projects, as well as

timely and useful feedback to students. Within their study,

the importance of this system's objectivity in the process of

evaluating student projects as opposed to traditional

grading methods is emphasized, showcasing an example

and results of using the Edgar tool in an educational system.

Authors of [18] underscores the importance of

incorporating static code analysis tools into the educational

process. This research also speaks to the need for

introducing new metrics to be used in analyzing student

projects in comparison to industry projects. Additionally,

the paper addresses various impacts on code quality among

students, with research [19] highlighting the significance

and impact of teamwork on the quality of student projects.

This investigation is an example of the effective application

of these tools in the educational process, especially

emphasizing the ability to identify students who contribute

less during teamwork and how this reflects on the code

quality. Another study [20], that discusses the impact of

teamwork on project outcomes, also talks about the

challenges of creating group projects, the influence of

project size on outcomes, and the results and methods of

evaluating such projects.

Beyond the impact of teamwork on student project

outcomes, another variable examined is the choice of

project technology. Research [21] shows that the choice of

software technologies can significantly impact the quality

of the source code. Therefore, this research investigates

how the selection of specific technologies influences

project success and code quality.

Furthermore, the study [22] explores the impact of

functional and object-oriented paradigms on code quality,

presenting significant differences in terms of specific code

quality metrics in its findings. In a similar vein, research

[23] yields results that lead to the conclusion that utilizing

the C++ programming language instead of C can lead to

enhancements in software quality, reduction in complexity,

decreased error proneness, and lower maintenance effort.

Although research [24] discusses the differing outcomes

achieved by students in an online education environment

compared to traditional classroom instruction, this

literature review did not identify any studies discussing the

direct impact of different teaching methods on code quality

in student projects.

As a determinant of code quality, the use of versioning

tools will also be considered. In this context, the study [25]

demonstrates how the use of versioning tools using

Bitbucket [26] contributes to the understanding and

application of coding standards. Conversely, research [27]

highlights that utilizing versioning tools using Github [28]

facilitates the implementation of static code analysis,

thereby ensuring a higher quality of the project's source

code.

The experience of software engineers is measured in

various ways as a metric in the industry. Studies [29], [30]

show how the experience of software engineers affects the

quality of code they produce during development.

Research [31] analyzes how the number of lines of code

affects the complexity of software and concludes that an

increase in the number of lines of code in a software project

leads to increased complexity. This, in turn, affects the

increase in the number of errors, as well as maintenance

difficulties, reliability, and software performance.

A special category of literature included in this review

focuses on methods of measuring student performances in

various areas. Thus, [24], [32], [33] consider the grade a

student achieves in a course as an indicator of academic

performance upon completion of that course. On the other

hand, another variable indicating student performance is

whether the student fulfills their obligations on time.

Studies [24], [34] also take the metric of time or adherence

to deadlines in terms of fulfilling obligations as a variable

indicating the performance of the student.

Ways of applying static code analysis tools are analyzed

in [35], [36]. These researches identify different strategies

for using static code analysis tools on projects. The first

identified strategy in the research [35] entails the

continuous application of static code analysis tools on the

source code of a project during the software development

process, whereas the second strategy involves applying

tools immediately after software development is

completed. These strategies have been evaluated within the

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3426299

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

 D. Nikolic et al.: Uncovering Determinants of Code Quality In Education Via Static Code Analysis

4 VOLUME XX, 2017

research [36], presenting the advantages and disadvantages

of their application.
The review paper [37], which explores the software

obfuscation metric through a systematic literature review,

highlights the importance of this metric for code quality, as

well as the need for standardization of this metric. Such

standardization would facilitate its incorporation into static

code analysis tools and enable broader studies on industrial

projects to be conducted.

In summary, the importance of using static code analysis

tools is reflected in the increasing need to enhance code

quality in industrial projects [11], [12]. Following closely

behind the industry, the significance of improving code

quality has begun to be applied in the education of future

software engineers in various ways. Some research [18]

shows examples where students independently apply these

tools to their projects to correct the irregularities they find,

whereas on the other hand, certain studies [5], [17] suggest

systems and tools that enable educators to evaluate student

projects most efficiently and objectively possible. Our

study, on the other hand, aims to explore different factors

in the setup of student projects that can affect the quality of

the source code. This review encompasses research that

analyzes these factors and places them in the context of

educating future software engineers. Thus, study [19]

discusses the factor of team and individual projects, then

study [21] highlights the factor of technology choice,

followed by [16] the use of static code analysis tools during

project work, as well as the teaching mode [24]. In addition

to the impact of these and other factors on code quality, this

study will also measure whether code quality can be

correlated with the student's performance in their courses,

in terms of the grade obtained and the speed of passing the

project [33], [34].

The synthesis of the results obtained from the analysis of

the studies covered in the literature review is presented in

Table I.
TABLE I

SYNTHESIS OF LITERATURE REVIEW

Topic Paper

Static code analysis tools in the industry [3], [11], [12]

Static code
analysis tools

in education

Used by professors [5], [13], [17]

Used by students [14], [15], [16]

Determents of

code quality

Collaboration mode [19], [20]

Technology choice [21]

Project size [31]

Experience [29], [30]

Version control usage [25], [27]

Static analysis usage [16]

Teaching method [24]

While previous studies have explored individual factors

affecting code quality, this study uniquely integrates

multiple dimensions, to provide a comprehensive

understanding of their combined impact on both code

quality and academic performance. Additionaly, study [38]

focuses on the impact of code quality and submission

behavior on teaching strategies but does not consider other

project setup variables. Research [39] examines learning

behavior and code quality improvement in an automated

programming assessment environment, focusing on

individual learning behaviors without considering broader

project setup factors. Study [40] analyzes the gap between

the software industry and software engineering education,

primarily focusing on curriculum alignment without

delving into the combined impact of project setup variables

on code quality.

This literature review highlights the diversity of tools

and approaches in static code analysis, making it evident

that the focus of most research in this area is directed

toward two main aspects: enhancing the technical quality

of software projects and measuring the impact of these

tools' applications for educational purposes. However, few

studies directly explore the impact of various aspects on

code quality and how, if at all, the generated code quality

affects the academic performance of future software

engineers, leaving room for further research in this area.

This study seeks to bridge this gap by exploring how

different factors affect the efficacy of static code analysis

in an educational setting. The aim is to expand the current

understanding of these factors, using empirical evidence to

support or refute the existing findings from the literature.

Furthermore, there is significant interest in the

community for the application and evaluation of static code

analysis in both industry and education. However, there is

substantial room for additional research that could provide

deeper insights into how different pedagogical and

technical interventions may impact code quality and

whether there is a clear correlation between code quality

and students' academic performance. This study addresses

these questions.

Unlike previous research, this research uniquely

quantifies the influence of project setup variables on code

quality and examines their direct correlation with academic

performance metrics. Additionally, this study employs a

broader, multi-dimensional analysis that integrates various

educational contexts, providing a comprehensive

understanding of static code analysis's role in enhancing

software engineering education.

III. SELECTION OF STATIC CODE ANALYSIS TOOL AND

PRESENTATION OF CHOSEN METRICS

In section II of this study, various research are mentioned

where different tools for static code analysis were utilized

on software projects. However, for this study, a single tool

will be used to analyze all projects included in the research.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3426299

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

 D. Nikolic et al.: Uncovering Determinants of Code Quality In Education Via Static Code Analysis

VOLUME XX, 2017 5

The number of tools available for static code analysis is

substantial, yet, as described in the study [4], tools such as

CppCheck [41], FindBugs [42], SonarQube [10], PMD[43],

and Splint [44] are most frequently used in research.

A. SELECTION OF TOOL FOR STATIC CODE ANALYSIS

Some of the tools for static code analysis enable analysis of

source codes written in a single programming language,

whereas others provide support for conducting analyses in

various programming languages [3]. Given that the analysis

in this study will include software projects whose source

code is written in different programming languages, the

first criterion (C1) for tool selection includes only those

tools that offer support for all programming languages used

in the projects involved in this research.

The second criterion (C2) for tool selection is the

availability of a free version that provides quality analyses

of the code. Primarily due to financial constraints for

conducting the research.

Finally, as a third criterion (C3), results obtained from a

study [45] that uses the Determining an Evaluation

Methodology for Software Methods and Tools (DESMET)

[46] for evaluating static code analysis tools were utilized.

Results from [45] represent SonarQube as the best tool

(with a score over 69%) for conducting static code analysis

by DESMET evaluation.

By applying these criteria, the tool chosen for static code

analysis is SonarQube, which will be used in conducting

the research. This tool offers support for all programming

languages included in this study, allows for the analysis of

metrics that will be used in the research in its free version,

and finally, has received the highest rating within [45]

according to the DESMET methodology of evaluation. The

presentation of tools and their compliance with the

specified criteria is shown in Table II.

TABLE II

SELECTION OF STATIC CODE ANALYSIS TOOL

Tool C1 C2 C3

SonarQube ✓ ✓ ✓

FindBugs ✖ ✓ ✖

PMD ✖ ✓ ✖

CppCheck ✖ ✖ ✖

Splint ✖ ✓ ✖

SonarQube is an open-source tool developed by

SonarSource for continuous code quality review. It

conducts static analysis of the code, providing detailed

reports on bugs, code smells, vulnerabilities, security

hotspots, and code duplications [47]. Research [48] has

demonstrated SonarQube's effectiveness as a valuable tool

for identifying various types of code irregularities. Beyond

irregularity identification, SonarQube offers additional

benefits including effort estimation, detailed problem

descriptions, and guidance for modifying source code to

resolve problems, thereby positively affecting productivity

in software development [49]. Furthermore, numerous

studies have been conducted to verify the accuracy of the

reports generated by SonarQube, reinforcing its importance

and credibility [45], [50].

B. CODE QUALITY METRICS

According to the software product code quality standard

ISO/IEC 25010 [9], eight quality categories of code are

defined as follows:

1. Functional Suitability,

2. Performance Efficiency,

3. Compatibility,

4. Interaction Capability,

5. Reliability,

6. Security,

7. Maintainability,

8. Flexibility,

9. Safety.

The selected tool, SonarQube, addresses the categories

of reliability, maintainability, and security from the

ISO/IEC 25010 standard within its basic set of code quality

rules [51]. Other categories from [9] are less emphasized as

they often require domain-specific knowledge and context

that goes beyond automated static code analysis.

In addition to these categories, it also includes the

category of source code complexity and emphasizes the

importance of these metrics in depicting the quality level of

the source code in its documentation. The subcategories of

these metrics that quantitatively represent code quality and

will be used in this research are [51]:

• Code duplication increases software complexity

and makes maintenance more difficult, which

directly affects code quality reduction. By

removing duplicates, development teams can

significantly improve software reliability and

efficiency, facilitating updates and reducing the

potential for errors [52].

• Security hotspots and vulnerabilities play a crucial

role in assessing code quality, as their presence

can seriously compromise the reliability and

maintainability of software. Detecting and

correcting these vulnerabilities not only increases

software security but also contributes to an overall

improvement in code quality, making it more

resistant to attacks and easier to maintain.

Integrating the measurement of security

vulnerabilities as a code quality metric allows

organizations to develop more robust and secure

software products, thereby raising the overall

quality standard in the software industry [53].

• Bugs are direct indicators of the quality of the

software development process and are essential for

maintaining software functionality [1].

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3426299

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

 D. Nikolic et al.: Uncovering Determinants of Code Quality In Education Via Static Code Analysis

6 VOLUME XX, 2017

• Code smells indicate critical flaws in design,

implementation, or maintenance processes that

could potentially degrade software quality,

highlighting the need for continuous research and

advanced detection methods to ensure the

development of high-quality software [54], [55].

SonarQube quantitatively represents all these metrics in

the reports it generates, and these results will be used in the

analysis of this study. Quantitative measurement, in this

case, refers to the number of recorded irregularities from a

specific category found within the source code of the

software project. In addition to the number of recorded

irregularities, this tool also generates additional

information about specific irregularities, such as severity,

labeling each irregularity with a level of danger: blocker,

critical, major, and minor. These additional attributes

describing irregularities will not be considered during the

analysis within this study.

C. PROJECT SETUP METRICS AS DETERMINANTS OF
CODE QUALITY

Based on the literature review presented in section II key

metrics are identified that will be analyzed as determinants

of code quality in student projects within this study are

presented in Table III.
TABLE III

PROJECT SETUP METRICS USED AS DETERMINANTS OF CODE QUALITY

Metric Label Possible values

Technology choice TC

1. .NET

2. Spring and Angular

3. Java
4. .NET - WPF

5. .NET and Angular

6. HTML, CSS, and JS

Collaboration mode CM Team/Individual

Project size PS Number of code lines

Academic Year AY I, II, III, IV

Version control
usage

VCU Used/Not used

Static analysis
usage

SAU Used/Not used

Teaching method TM Online/Live

1) TECHNOLOGY CHOICE (TC)

Depending on the technology chosen for software

development, different types of irregularities in the code

may occur more frequently, significantly impacting

software quality [21]. The mentioned study indicates that

functional languages lead to better code quality compared

to procedural languages. Similarly, another study [22]

highlights the increased complexity associated with these

languages. Additionally, a study [23] directly compares C

and C++ programming languages, presenting results that

show the use of C++ reduces complexity, as well as the

number of other irregularities. Based on these studies, our

research considers the choice of technology as a

determinant of code quality, assuming that the technology

choice can influence the outcome of code quality in student

projects.

2) COLLABORATION MODE (CM)

Another metric used in this research as a determinant of

code quality is the collaboration mode, whether students

organized their projects in teams or developed their projects

individually. A certain number of projects included in this

research consists of projects developed individually,

whereas another group includes team projects. Previous

studies [19], [20] emphasize the impact of team projects on

code quality outcomes. However, the results of this

research will display differences in code quality outcomes

between individual and team-organized projects.

3) PROJECT SIZE (PS)

Indicators in the industry suggest that code quality

decreases as project size increases [31]. The number of

lines of code developed in the project is taken as an

indicator of project size in this research. Through these

analysis results, we aim to demonstrate whether students

make bigger mistakes when working on larger projects

compared to the code quality analysis results on smaller

projects. This aims to answer whether project size is a

significant determinant of code quality in software

engineering education.

4) ACADEMIC YEAR (AY)

It has been shown that the experience of software

developers in the industry plays a significant role in the

quality of code they generate [29], [30]. These studies list

various metrics for measuring developer experience. In this

research, the academic year in which the student works on

a specific project is taken as an indicator of the developer’s

experience. This measure of experience reflects the

experience students have gained in understanding software

development.

5) VERSION CONTROL USAGE (VCU)

The use of version control tools is considered one of the

possible determinants of code quality. The research [25]

included in the literature review in section II of this paper

emphasizes the significance of using version control tools

like Bitbucket and implementing peer code review

processes in student projects. The study also shows that the

use of these tools contributes to the understanding and

application of coding standards, identification of

irregularities, and improvement of coding skills among

students. Our research includes student projects that used

version control tools and those that did not. This way, this

paper aims to demonstrate whether and to what extent the

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3426299

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

 D. Nikolic et al.: Uncovering Determinants of Code Quality In Education Via Static Code Analysis

VOLUME XX, 2017 7

use of version control tools contributes to higher code

quality.

6) STATIC ANALYSIS USAGE (SAU)

Section II of this paper described studies [15], [16] that

discuss the results of using static code analysis tools in the

teaching process. This research will cover student projects

within courses where the use of static analysis tools was

mandatory, as well as projects developed without these

tools. This will not only show whether the use of these tools

achieves higher code quality in software projects but will

also provide a clearer picture of students' abilities to handle

static analysis tools, interpret the results, and rectify

detected irregularities.

7) TEACHING METHOD (TM)

Due to the Covid-19 classes were mainly held online during

the one semester of the 2019/2020 academic year and also

throughout the 2020/2021 academic year. Student projects

from these years were used for this research to show the

results students achieve in terms of code quality in an

online teaching mode. After these academic years, classes

returned to the traditional mode of teaching, i.e., held in

person at the University premises. The second part of the

projects used in this research involves projects that were

carried out when the faculty's teaching was conducted in a

traditional mode. Numerous studies, such as [24], examine

the impact of online teaching on the results students

achieve. However, there are still no studies examining the

impact of this teaching mode on the quality of code

generated by students. This research will present the results

of analyzing projects carried out in both mentioned

teaching modes and discuss the determinacy of the teaching

method on code quality.

D. METRICS AS DETERMINANTS OF ACADEMIC
PERFORMANCE

In addition to the metrics used as determinants of code

quality, this research also establishes academic

performance metrics, for which the correlation with the

code quality of student projects has been examined. The

academic performance metrics set are the grades students

achieve in the course within which the analyzed project was

carried out, as well as the number of attempts needed for a

student to complete the project.

The metrics of academic performance are represented in

Table IV.
TABLE IV

METRICS USED AS DETERMINANTS OF ACADEMIC PERFORMANCE

Metric Label Possible values

Grade G NP, 6, 7, 8, 9, 10

Project completion
timeframe

PCT >0

1) GRADE (G)

In many research studies [32], [33], grades are considered

an indicator of performance at all levels of education.

The first academic performance metric in higher

education chosen for this research is the grade a student

achieved in the course for which the project, subjected to

static code analysis, was carried out. Possible values for the

grade metric range from 6 to 10, as well as the 'NP' (Not

Passed) mark, which is assigned to students who have not

yet completed the course. These grades are defined

according to the standards of the Faculty of Technical

Sciences, where the observations were recorded, and were

taken from courses held in previous years, with grades

assigned by the course instructors.

FIGURE 1. Research framework

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3426299

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

 D. Nikolic et al.: Uncovering Determinants of Code Quality In Education Via Static Code Analysis

8 VOLUME XX, 2017

The grading scale used ranges from 6 to 10, where 6

represents the lowest possible passing grade, and 10

represents the highest possible grade. The goal of

monitoring this metric is to analyze the relationship

between the results of code quality and the grade a student

achieves in the course.

2) PROJECT COMPLETION TIMEFRAME (PCT)

 In addition to grades, the Project Completion Timeframe

(PCT) required for a student to successfully pass the course

project was also recorded as an academic performance

indicator. PCT is measured by the number of attempts a

student takes to pass the course project. Possible values for

this metric are positive integers (>0), indicating the number

of attempts, and the 'NP' value, which is assigned if the

student has not yet completed the course project. The

inclusion of this metric as an indicator of academic

performance is supported by other studies in the field of

education[34], which often consider the dimension of time

along with outcomes as indicators of academic

performance.

E. RESEARCH FRAMEWORK

Within the scope of this research, based on the metrics

presented, an examination and analysis will be conducted

to determine the extent to which a correlation exists

between variables from the project setup category and the

code quality. Furthermore, an examination and analysis of

the correlation between code quality and the academic

performance of students will also be undertaken. The

research framework is presented in Fig. 1.

IV. METHODOLOGY

Data were collected by observing various project setups

across different courses from different academic years,

according to seven variables outlined in Section III.

Subsequently, analyses of these student projects were

conducted using the SonarQube tool, with results from each

individual project being recorded alongside the academic

outcomes students achieved in the course.

A. DATA PRE-PROCESSING

The dataset examined was devoid of missing values or

duplicated rows. It comprised nominal variables with

binary outcomes (e.g., SAU, VCU, TM, and CM) where 1

indicated usage or a specific condition being met, and 0

represented its absence. Specifically:

• SAU and VCU were coded 1 when utilized and 0

otherwise,

• TM was 1 for online lecture attendance and 0 for

live attendance, and,

• CM was 1 when students collaborated in teams

and 0 when they worked individually.

In addition to binary nominal variables, it comprises a

nominal variable with 6 values, i.e. TC. It has the following

values:

• .NET and Angular (130 occurrences),

• .NET (126 occurrences),

• HTML/CSS/JS (74 occurrences),

• Java and WPF (62 occurrences each),

• Spring and Angular (52 occurrences).

The dataset also included variables measured on

continuous scales, such as:

• bugs (range: 0 to 201),

• duplications % (range: 0 to 45.9),

• code smells (range: 0 to 2600),

• security hotspots (range: 0 to 92),

• PS (range: 64 to 3200)

Finally, there are 4 ordinal variables: AY, G, PCT, and

vulnerabilities.

As it is shown in Table V and Fig. 2, all continuous

variables are right-skewed. They are also on different

scales, with PS having the largest scale (min: 64.0, max:

32,000) and duplications % having the smallest scale (min:

0.0, max: 45.9)

TABLE V

SUMMARY STATISTICS FOR CONTINUOUS VARIABLES

 B CS D(%) PS SH

Min. 0.0 0.0 0.0 64 0.0

1st Quartile 0.0 40.0 1.4 1,300 1.0

Median 5.0 277.0 5.0 5,250 4.0

Mean 17.2 356.7 7.2 9234 5.9

3rd Quartile 22.0 573.0 12 17,000 8.0

Max 201.0 2,600 45.9 32,000 92.0

Within the dataset's ordinal variables, the PCT is noted

for having the highest count of factors, totaling 9, whereas

vulnerabilities exhibit the widest range, reaching 12, as

detailed in Fig. 3. With a consideration of 1 degree of

freedom, the standard deviations for these variables are as

follows: 1.05 for AY, 1.53 for G, 1.07 for PCT, and 3.53

for vulnerabilities.

The distribution of the binary nominal variables in the

dataset is as follows: for code quality, 222 instances are

marked as 0 and 284 as 1; collaboration mode shows 189

instances of 0 and 317 of 1; static analysis usage is observed

with 436 instances of 0 and 70 of 1; teaching method

records 417 instances of 0 and 89 of 1; version control

exhibits 136 instances of 0 and 370 of 1.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3426299

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

 D. Nikolic et al.: Uncovering Determinants of Code Quality In Education Via Static Code Analysis

VOLUME XX, 2017 9

During the dataset preparation, three key data pre-

processing steps were employed: encoding of the TC

variable, the introduction of a novel variable termed code

quality (created as the interaction term), and data

standardization.

1) FREQUENCY-BASED ENCODING OF TC VARIABLE

Encoding of the TC variable was performed based on the

frequency of category occurrences. This was done for two

reasons:

• frequency encoding converted the category

frequencies into ordinal values, thereby preserving

the information on the relative prevalence of each

category,

• this method was chosen to avoid the dummy

variable trap, which could potentially lead to an

increase in the dataset's dimensionality, also

known as the curse of dimensionality.

FIGURE 2. Continous variables’ data distribution

s s s

 s s

 s s s

 s s

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3426299

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

 D. Nikolic et al.: Uncovering Determinants of Code Quality In Education Via Static Code Analysis

10 VOLUME XX, 2017

2) CREATION OF NEW VARIABLE (CQ)

To investigate the association and impact of the project

setup variables vector, which encompasses bugs (B),

duplications % (D), vulnerabilities (V), code smells (CS),

and security hotspots (SH), on code quality, a new binary

variable named code quality (CQ) was developed. The

binary outcomes for this variable were defined as {0,1},

with a selected threshold of 0.5 serving as the benchmark

for classification. In constructing this variable, all

contributing factors were accorded equal significance.

The formulation for calculating the dependent variable,

CQ, is given by (1).

Weights are uniformly distributed, summing to 1 (Wi =

0.2) whereas the variable base value is its value proportion

of its maximum value, for example, if the maximum range

of bugs variable is 100 and the observation value is 40 then

B x Wb = 0.4 x 0.2 = 0.08.

𝐶𝑄 = 𝐵 𝑥 𝑊𝑏 + 𝐷 𝑥 𝑊𝑑 + 𝐹 𝑥 𝑊𝑓 + 𝐶𝑆 𝑥 𝑊𝑐𝑠 + 𝑆𝐻 𝑥 𝑊𝑠ℎ (1)

The classification of an observation as 1 (indicating

higher code quality) or 0 (indicating lower code quality) is

determined based on whether the computed value of CQ

meets or exceeds the 0.5 threshold (2).

{
0 𝑖𝑓 𝐶𝑄 < 0.5
1 𝑖𝑓 𝐶𝑄 ≥ 0.5

 (2)

FIGURE 3. Ordinal variables’ data distribution

 s

 s s

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3426299

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

 D. Nikolic et al.: Uncovering Determinants of Code Quality In Education Via Static Code Analysis

VOLUME XX, 2017 11

This approach ensures that each variable contributes

equally to the overall assessment of code quality,

facilitating a balanced and comprehensive evaluation.

3) DATA TRANSFORMATION - STANDARDIZATION

In order to fit the statistical analysis technique to test the

impact of the project setup on the code quality, it is needed

to conduct data transformation and standardize existing

scales to the variance of 1 and mean of 0 {(Xi-Xmean)/Xstd}

B. ANALYSIS - Impact of project setup on the code
quality

1) CORRELATIONS BETWEEN VARIABLES

Associations between all project setup variables and CQ,

totaling five, were explored using the Kendall rank

correlation coefficient (Table VI). This coefficient was

selected following the identification of a monotonic

relationship among non-normally distributed data. To

address multicollinearity, the variance inflation factor

(VIF) was employed, adopting a threshold of 5, as depicted

in Fig. 4. Given that Logistic Regression requires

independence of inputs, the interpretation of each input's

coefficient/slope is conducted with the assumption that

other inputs are held constant. A VIF of 5 is generally

considered the threshold beyond which the precision of

coefficient estimations could be significantly compromised

[56].

2) CAUSATION AND EFFECT SIZE

In examining the effects of project setup variables on CQ,

Binomial Logistic Regression was utilized, aiming for a 5%

significance level to ascertain statistically significant

impacts. To enhance the interpretability of effect size, odds

ratios were included in the analysis, calculated as the

exponential of the coefficients (OR=e), and presented in

Table VII. Binomial logistic regression, a statistical

technique for classifying the effects of independent

variables on a binary categorical dependent variable,

assumes a monotonic or linear relationship between

variables, and absence of the multicollinearity. This

method produces coefficients that have a multiplicative

relationship with the odds, facilitating the calculation of the

influence of each independent variable on the dependent

variable [57].

The importance of each independent variable was

determined through permutation importance, with 10

iterations conducted to calculate the mean permutation

importance scores and standard deviation for each variable,

as shown in Table VI. Permutation importance assesses the

significance of a variable on the prediction coefficients by

repeatedly shuffling values of a single independent variable

whereas other variables remain constant. This process,

through iterations, reduces variability and randomness in

the findings [58].

A synergistic effect of variable pairs was examined using

conditional partial dependence plots, presented in Fig. 5.

These plots reveal associative effects of features of interest

on the dependent variable, including the direction of such

effects. Unlike regular partial dependence plots,

conditional partial dependence plots account for the

influences of other independent variables [59].

This methodology stands out by simultaneously

examining multiple project setup variables and their

interactions, providing a more holistic view of the factors

influencing code quality. This multi-dimensional approach

is novel and fills a significant gap in existing research.

C. ANALYSIS - Impact of the code quality on academic
performance

1) MANN-WHITNEY U TEST

To evaluate statistically significant causation between the

CQ factors (0 and 1) and variables influencing student

academic performance, identified as G and PCT, the Mann-

Whitney U test was conducted, as shown in Table IX. The

choice of the Mann-Whitney U test was due to the non-

normal distribution of data and the ordinal scale of the

dependent variables (G and PCT). This test is a non-

parametric median test that compares differences in the

dependent variable between two independent groups

without requiring a specific data distribution, whether

symmetric or asymmetric [60].

Before testing, two alternative hypotheses were

designed.

Test 1 - the impact of the code quality on the grade.

• H0: The CQ does not have a statistically

significant impact on student G.

• H1: The CQ has a statistically significant

impact on student G.

Test 2 - the impact of the CQ on the PCT:

• H0: The code quality does not have a

statistically significant impact on the PCT.

• H1: The code quality has a statistically

significant impact on the PCT.

V. RESULTS

A. IMPACT OF PROJECT SETUP VARIABLES ON CQ

The analysis showed that SAU and TC have a statistically

significant positive correlation to CQ, whereas PS has a

statistically significant negative correlation to CQ. All

other independent variables have not shown a statistically

significant correlation to CQ, based on the significance

level of 5%.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3426299

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

 D. Nikolic et al.: Uncovering Determinants of Code Quality In Education Via Static Code Analysis

12 VOLUME XX, 2017

TABLE VI

CORRELATION BETWEEN PROJECT SETUP VARIABLES AND CQ

Variables Tau p

SAU 0.0543 0.0222

VCU 0.0748 0.0925

PS -0.0954 0.0417

AY 0.0380 0.3019

TM 0.0632 0.1551

CM -0.0405 0.3625

TC 0.1281 0.0105

All variables demonstrating a statistically significant

correlation with the dependent variable exhibited a

Variance Inflation Factor (VIF) lower than 5. The sole

independent variables possessing a VIF exceeding 5 were

VCU and AY. The absence of high collinearity among

variables is one of the fundamental assumptions of the

Binomial Logistic Regression model.

FIGURE 4. Variance Inflation Factor (VIF) – serves as an indicator of
multicollinearity among predictors in a regression model, showing the
degree to which the variance of an estimated regression coefficient is
inflated due to correlations among the predictors.

The logistic regression analysis revealed a statistically

significant causal relationship between SAU, PS, and TC

with CQ. SAU emerged as the only input exhibiting a

positive relationship with the dependent variable.

Specifically, the utilization of static code analysis tools

during development was associated with a 1.31-fold

increase in the odds of producing high-quality code, as

indicated by the odds ratio value. If students used .NET and

Angular or only .NET, the odds of developing high-quality

code are multiplied by 1.68. Conversely, PS is negatively

related to the target variable. The odds ratio for PS

indicated a roughly 44% decrease in the odds of developing

high-quality code with each one-standard-deviation

increase in the number of lines of code (PS). Results of

Binomial Logistic Regression are presented in Table VII.
TABLE VII

BINOMINAL LOGISTIC REGRESSION RESULTS

Variables Coefficient
Std.
error

z value Pr(>|z|) OR

SAU 0.2679 0.1066 2.5117 0.0120 1.3072

PS -0.5790 0.1308 4.4272 0.0000 0.5604

TM 0.1022 0.1138 0.8981 0.3691 1.1076

CM -0.1087 0.1491 -0.7288 0.4661 0.8970

TC 0.5214 0.1455 -3.6453 0.0003 1.6844

To evaluate the importance of each variable, permutation

importance was calculated across 10 iterations. This

analysis demonstrated that all three variables, SAU, PS,

and TC, held comparable levels of importance in the

model's predictive accuracy, each exhibiting an extremely

low standard error, presented in Table VIII.

TABLE VIII

CORRELATION BETWEEN INDEPENDENT VARIABLES AND CQ

Variables Tau p

SAU 0.1259 0.0000

PS 0.1375 0.0039

TC 0.1259 0.0000

. In the final phase of analysis, the synergistic effect of

those three independent variables, SAU, PS, and TC, on the

dependent variable (CQ) was examined using partial

dependence plots. For this purpose, a new Binomial

Logistic Regression model was fitted, this time utilizing

non-transformed inputs to ensure interpretability. Among

the interactions explored, a demonstrable synergistic effect

was identified exclusively between the PS and TC variables

and presented in Fig. 5. By combining a lower project size

(number of lines of code) with technologies encoded in the

range 120 – 130, t.e. the .NET and Angular or only .NET,

the chances for high-quality code development are

increasing

0 1 2 3 4 5 6 7 8 9 10

SAU

TC

CM

PS

TM

AY

VCU

Variance Inflation Factor

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3426299

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

 D. Nikolic et al.: Uncovering Determinants of Code Quality In Education Via Static Code Analysis

VOLUME XX, 2017 13

FIGURE 5. Interaction effect – an indicator of the combined influence of
Project Size (PS) and Technology Choice (TC) on Code Quality (CQ)

B. RELATIONSHIP BETWEEN THE CQ AND STUDENT
ACADEMIC PERFORMANCE

The Mann-Whitney U test was applied to explore

disparities in grades between students who surpassed the

CQ threshold and those who did not. Findings suggested

that students with higher CQ exhibited marginally superior

median exam G and reduced variance (Median = 9,

Interquartile Range (IQR) = 2) relative to their counterparts

with lower CQ (Median = 9, IQR = 3). The outcomes of the

Mann-Whitney U tests revealed a statistically significant

causal relationship between CQ and G. The effect size was

further qua C ’s D ,

which stood at 0.3189, indicating a moderate effect

magnitude on G in favor of students with higher CQ.

Additionally, the Mann-Whitney U test was employed to

investigate variations between the CQ groups concerning

the PCT. Results showed no difference in median and

interquartile range between students with higher CQ and

those with lower (Median = 2, IQR = 1), implying that the

time taken to complete a project does not significantly

influence the quality of the code produced.

These correlations are presented in Table IX.

TABLE IX

MANN-WHITNEY U TESTS RESULTS

Variables W p

CQ → G 26830 0.0029

CQ → PCT 29562 0.1971

VI. DISCUSSION AND LIMITATIONS

This section discusses the findings from the previous

section, highlighting key factors that impact code quality in

student projects and exploring their implications for

software development education.

A. IMPACT OF PROJECT SETUP VARIABLES ON CQ

The results obtained from the analysis emphasize that

certain project setup variables significantly influence the

quality of the code generated by students. Notably, the use

of static code analysis tools during project work is

positively correlated with higher code quality, suggesting

these tools are crucial in guiding students toward better

coding practices. This finding underlines the notion that

incorporating these tools into the educational process can

markedly enhance the learning experience by offering

instant feedback on potential irregularities and

opportunities for source code enhancement.

Conversely, the observed variable Project Size (PS)

shows a negative correlation with code quality, indicating

that larger projects are more likely to encounter quality

problems. This outcome could be attributed to the increased

complexity and a higher likelihood of irregularities in

larger codebases. It indicates the need for educators to

carefully consider the scope of projects assigned to

students, perhaps emphasizing incremental development

and continuous testing to manage complexity and maintain

high code quality.

The variable Technology Choice (TC) also emerged as a

significant factor for generating high-quality code, with

specific technologies leading to better outcomes. This

finding points to the importance of selecting appropriate

technologies that not only align with educational goals but

also support best coding practices and project management.

It is also noteworthy that some technologies might have a

more challenging learning curve for students, which could

affect their code quality.

Interestingly, variable, Collaboration Mode (CM) did not

show a statistically significant impact on Code Quality

(CQ) in this sample. This outcome suggests that the

decision of whether a project is undertaken individually or

in a team, may not be a critical factors when organizing a

project. Teamwork often yields better results compared to

individual tasks [19], [20]. Yet, it is not uncommon for only

a small number of team members, or even a single

participant, to be actively involved in team projects. This

factor was not considered in this analysis and represents a

foundation for further examination of this variable and its

significance regarding code quality.

The Teaching Method (TM) variable also did not show a

statistically significant impact on Code Quality (CQ)

according to this analysis. In this context, it implies that the

choice between conducting courses in-person or online

does not affect the code quality that students produce in

their projects. Although the online teaching environment

necessitated by the COVID-19 pandemic has affected many

aspects of education [24], [61], this study presents different

findings, indicating that online instruction does not

significantly impact the quality of code generated by

students.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3426299

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

 D. Nikolic et al.: Uncovering Determinants of Code Quality In Education Via Static Code Analysis

14 VOLUME XX, 2017

These observations do not diminish the possible value

and importance of teamwork or the potential benefits of

different teaching methods, which could affect other

learning aspects not directly measured through code

quality.

B. CORRELATION BETWEEN CQ AND ACADEMIC
PERFORMANCE

Within the research findings, the correlation between Code

Quality (CQ) and students' academic performance was

analyzed. The analysis reveals a clear correlation between

these variables, specifically showing that students with

higher grades (G) generate source code of better quality.

This correlation underscores the importance of code quality

not just as a technical measure, but also as an educational

outcome that reflects students' understanding and

application of software engineering principles, and presents

the possibility of using code quality analysis results to

generate the grade a student achieves in the course.

Furthermore, this correlation also indicates that teachers

who have reviewed the projects possess the ability to

recognize code quality and award corresponding grades

However, no significant correlation was found between

Code Quality (CQ) and Project Completion Timeframe

(PCT). This indicates that the time required to complete

projects does not affect the quality of the generated code,

which may imply that students who take longer are

investing time in refining and improving their work to

achieve higher quality. This finding suggests the need to

investigate additional variables that could influence the

timing of project submissions, such as the complexity of

the project, the clarity of assignment instructions, and the

presence of other academic obligations.

One of the most frequently mentioned limitations of

static code analysis tools is the possibility of reports

generating false positive or false negative results [1], [45].

This research did not consider the possibility of such

outcomes, which could affect the CQ variable used for

analysis to a certain extent.

Regarding the variable within the group describing

students' academic performance, the G variable did not

account for other factors that might influence the grade a

student receives in the course, such as quizzes, tests,

theoretical exams, etc.

The limitation regarding the Academic Year (AY)

variable, which is supposed to describe the experience

possessed by the student, excludes the possibility of other

indicators of the student experience, such as knowledge and

skills obtained outside of the university, as well as

previously acquired experience and knowledge (for

example, in earlier education). These factors were not

included in the assessment of student experience in this

research.

Another limitation of this research is that the sample on

which the dataset was created was obtained only from

courses across different programs at the Faculty of

Technical Sciences, University of Novi Sad. Part of further

research in the field certainly involves expanding the

dataset with data from various technical universities in

Serbia, as well as in other countries.

VII. CONCLUSION

The conducted research offers insights into factors

affecting the code quality in student software projects and

the relationship between code quality and academic

performance. The positive impact of static code analysis

tools on code quality highlights the importance of

integrating these tools into computing education to support

student learning and development. Additionally, findings

on project size and technology choice provide practical

guidelines for educators in creating effective and

supportive learning environments.

Although the study did not find a significant impact of

collaboration mode or teaching method on code quality,

this suggests that from the perspective of code quality in

student projects, the project setup in courses can be

organized either as team-based or individual work,

depending on the instructor's preference. Additionally, the

results of this study indicate that from the standpoint of the

code quality produced by students, the course curriculum

can be effectively delivered both in-person and online.

The correlation between code quality and academic

performance further emphasizes the need for educational

strategies that focus not only on technical skills but also on

the quality of work produced by students. By promoting an

environment that prioritizes code quality, educators can

better prepare students for the challenges of professional

software development.

This research provides a detailed analysis of the factors

influencing code quality in educational contexts. The

findings offer valuable implications for improving teaching

strategies and curriculum development in software

engineering education. The unique contributions of this

multi-dimensional approach are highlighted, clearly

distinguishing this work from existing studies in the same

area.

One possible direction for future research involves

increasing the model's complexity (order of polynomials

and regularization) to develop a predictive classification

model, with the need to define and monitor additional

metrics such as true positives, false positives, true

negatives, false negatives, recall, and precision on unseen

data.

This research contributes to the ongoing discussion on

improving learning outcomes in computing education and

lays the groundwork for future studies that could further

explore additional factors and interventions that could

further enhance both code quality and academic

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3426299

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

 D. Nikolic et al.: Uncovering Determinants of Code Quality In Education Via Static Code Analysis

VOLUME XX, 2017 15

performance in computing disciplines. Building upon these

findings, it is anticipated that this research will pave the

way for the development of improved learning strategies in

software engineering, ultimately fostering a new generation

of software engineers who are well-equipped to navigate

the complexities of contemporary software development.

ACKNOWLEDGMENT

This research has been supported by the Ministry of Science,

Technological Development and Innovation (Contract No.

451-03-65/2024-03/200156) and the Faculty of Technical

Sciences, University of Novi Sad through the project

“S A s R s W k R s s

Teaching and Associate Positions at the Faculty of Technical

S s, U s N S ” (N . -3394/1).

REFERENCES
[1] B. Chess and J. West, Secure Programming with Static Code Analysis.

Addison-Wesley Professional, 2007.

[2] A. Møller and M. I. Schwartzbach, Static Program Analysis.

Department of Computer Science, Aarhus University, 2020. [Online].
Available: https://cs.au.dk/~amoeller/spa/

[3] M. Beller, R. Bholanath, S. Mcintosh, and A. Zaidman, Analyzing the

State of Static Analysis: A Large-Scale Evaluation in Open Source
Software. 2016. doi: 10.1109/SANER.2016.105.

[4] D. S ć, D. N k ć, D. D k , I. S s ć, S. R s ,

“S C A s s T s: A S s L R w,” ,
pp. 0565–0573. doi: 10.2507/31st.daaam.proceedings.078.

[5] C. G. Von Wangenheim et al., “C s –Automatic Assessment

 G A I S ! P s.,” Inform. Educ.,
vol. 17, no. 1, pp. 117–150, 2018.

[6] A. K , N. T š , V. L , V. ć, Demystifying

Sonar Tool Estimates in the Contexts of Familiar and Unfamiliar
Software Projects: An Empirical Study with Junior Developers. 2023.

doi: 10.24867/IS-2023-T4.1-6_03541.

[7] M. L. Shooman, Software Quality: Theory and Management.
Chapman & Hall, 1996.

[8] H. Keuning, B. Heeren, and J. Jeuring, Code Quality Issues in Student

Programs. 2017, p. 115. doi: 10.1145/3059009.3059061.
[9] “ISO/IEC : , S s s s w – Systems

and software Quality Requirements and Evaluation (SQuaRE) –

S s s w q s.” I O
Standardization, 2011. [Online]. Available:

https://www.iso.org/standard/35733.html

[10] S S , “S Q .” [O]. A :
https://www.sonarsource.com

[11] H. P , F. A , R. R , F. G , “S C

Analysis of IEC 61131-3 Programs: Comprehensive Tool Support and
Experiences from Large-S I s A ,” IEEE Trans.

Ind. Inform., vol. PP, pp. 1–1, Aug. 2016, doi:

10.1109/TII.2016.2604760.
[12] A. Komosar, S. Kijanovic, V. Mandic, D. Nikolic, and T. Vuckovic,

“O A S C A s s T s S IT

I s : A E S ,” 17th IADIS International

Conference Information Systems 2024, Faculty of Technical Sciences,

University of Novi Sad, Trg Dositeja Obradovica 6, Novi Sad, Serbia,

2024, pp. 76–83.
[13] L. G V. A , “O w s

 q ,” 2017 43rd Euromicro Conference on Software

Engineering and Advanced Applications (SEAA), IEEE, 2017, pp. 52–
56.

[14] B. Hass, C. Yuan, and Z. Li, On the Automatic Assessment of Learning

Outcome in Programming Techniques. 2019, p. 278. doi:
10.1109/ISKE47853.2019.9170370.

[15] E. A. A O , S. A. A O , . W. k , “O s
static analysis to engage students with software quality improvement:

A x w P D,” 2023 IEEE/ACM 45th International

Conference on Software Engineering: Software Engineering

Education and Training (ICSE-SEET), 2023, pp. 179–191. doi:

10.1109/ICSE-SEET58685.2023.00023.
[16] P. A , . L. B , . C , “S w A s

to Support Students in Object-Oriented Programming Tasks: An

E S ,” IEEE Access, vol. 8, pp. 132171–132187, 2020,
doi: 10.1109/ACCESS.2020.3010172.

[17] I. k ć, L. B k ć, B. š ć, . B ć, “B

 C s A P Ass ss S s ,”
IEEE Access, vol. 8, pp. 81154–81172, 2020, doi:

10.1109/ACCESS.2020.2990980.

[18] R. Cardell-O , “H w S w s H N
P s?,” J . , . –62.

[19] H.-M. Chen, B. Nguyen, and C.-R. D w, “C -quality evaluation

scheme for assessment of student contributions to programming
 s,” J. Syst. Softw., vol. 188, p. 111273, Feb. 2022, doi:

10.1016/j.jss.2022.111273.

[20] E. A A. , “A s
s s’ s s

 ss s,” ACM Trans. Comput. Educ. TOCE, vol. 21, no. 3, pp.

1–22, 2021.

[21] B. R , D. P s , V. F k , P. D , “A s s

 s q ,” Proc FSE

2014, pp. 155–165, Nov. 2014, doi: 10.1145/2635868.2635922.
[22] R. Harrison, L. G. Smaraweera, M. R. Dobie, and P. H. Lewis,

“C P P s: E F
and Object-O P s,” Softw. Eng. J., vol. 11, pp. 247–254,

Aug. 1996, doi: 10.1049/sej.1996.0030.

[23] P. B I. N , “Ass ss
 : s ++,”

2011 33rd International Conference on Software Engineering (ICSE),

2011, pp. 171–180. doi: 10.1145/1985793.1985817.
[24] T. F C. R í , “T s s

 s s s ,”

RIED Rev. Iberoam. Educ. Distancia, vol. 25, no. 1, pp. 299–322,
2022.

[25] S. Sripada, R. Reddy, and A. Sureka, In Support of Peer Code Review

and Inspection in an Undergraduate Software Engineering Course.
2015, p. 6. doi: 10.1109/CSEET.2015.8.

[26] “B k .” [O]. A : s:// k .

[27] J. Ludwig, S. Xu, and F. Webber, Compiling static software metrics
for reliability and maintainability from GitHub repositories. 2017, p.

9. doi: 10.1109/SMC.2017.8122569.

[28] “G H .” [O]. A : s:// .
[29] H. H kk , F. D s w, J. B ss , “L k D

Experience to Coding Style in Open-S R s s,” 2021

IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER), Mar. 2021, pp. 516–520. doi:

10.1109/SANER50967.2021.00057.

[30] Y. Cho, J. -H. Kwon, J. Yi, and I. -Y. K , “Ex D
Experience Metrics for Better Effort-Aware Just-In-Time Defect

P ,” IEEE Access, vol. 10, pp. 128218–128231, 2022, doi:

10.1109/ACCESS.2022.3227339.
[31] S. B J. , “A s s

s w x ,” 2014 International Conference on Advances

in Engineering & Technology Research (ICAETR - 2014), 2014, pp.
1–4. doi: 10.1109/ICAETR.2014.7012875.

[32] D. K s , “T C S ss: D S

Source Code Analysis Tool to Predict Course Performance and

I K C s P E ,” . :

10.13140/RG.2.2.28072.75528.

[33] O. S. K H. B , “S s s
 s ,” Int. J.

Distance Educ. Technol. IJDET, vol. 17, no. 3, pp. 25–36, 2019.

[34] B. A D . F. B , “T I E V s
A P U s S s D s L ,”

vol. 6, pp. 1233–1249, Dec. 2022.

[35] D. S ć, D. N k ć, S. H , T. V čk ć, D. D k ,
“I s s s s s s,” IOP

Conf. Ser. Mater. Sci. Eng., vol. 1163, p. 012012, Aug. 2021, doi:

10.1088/1757-899X/1163/1/012012.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3426299

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

 D. Nikolic et al.: Uncovering Determinants of Code Quality In Education Via Static Code Analysis

16 VOLUME XX, 2017

[36] D. N k ć, S. H , D. D k ć, T. L ć, D. S ć,

“EVALUATION OF STRATEGIES OVER STATIC CODE
ANALYSIS TOOLS,” .

[37] S. A. E , A. A. D , J. H. A w , “ s S w

Obfuscation Quality–A S s L R w,” IEEE Access,
vol. 9, pp. 99024–99038, 2021, doi: 10.1109/ACCESS.2021.3094517.

[38] Y. B , T. W , H. W , “A T S s

 Ex C Q S ss B ,” IEEE Access,
vol. 7, pp. 152744–152754, 2019, doi:

10.1109/ACCESS.2019.2948640.

[39] H.-M. Chen, B.-A. Nguyen, Y.-X. Yan, and C.-R. D w, “A s s
Learning Behavior in an Automated Programming Assessment

E : A C Q P s ,” IEEE Access, vol. 8, pp.

167341–167354, 2020, doi: 10.1109/ACCESS.2020.3024102.
[40] D. O K. O , “P s s G B w S w

I s S w E E ,” IEEE Access, vol.

7, pp. 117527–117543, 2019, doi: 10.1109/ACCESS.2019.2936660.
[41] C k D T , “C C k.” [Online]. Available:

http://cppcheck.sourceforge.net

[42] T F B s P , “F B s.” [O]. A :

http://findbugs.sourceforge.net

43] P D P , “P D.” [O]. A : s:// . .

[44] S D s, “S .” [O]. A :
http://www.splint.org

[45] D. N k ć, D. S ć, D. D k ć, S. S ć, S. R s ć,
“A s s T s S C A s s,” 2021 20th

International Symposium INFOTEH-JAHORINA (INFOTEH), 2021,

pp. 1–6. doi: 10.1109/INFOTEH51037.2021.9400688.
[46] B. A. K , “E s w s

 : T x s,” ACM

SIGSOFT Softw. Eng. Notes, vol. 21, no. 1, pp. 11–14, 1996.
[47] J. García-Muñoz, M. García-Valls, and J. Escribano-Barreno,

“I s H S Q S w Q

 ,” 6, . 6 –470. doi: 10.1007/978-3-319-40162-
1_50.

[48] V. L , V. ć, A. K , D. T , How long do Junior

Developers take to Remove Technical Debt Items? 2020. doi:
10.1145/3382494.3422169.

[49] V. L , N. S äk , D. T , “S S Q ss s

have a significant but small effect on faults and changes. A large-scale
 s ,” J. Syst. Softw., vol. 170, p. 110750, Jul. 2020, doi:

10.1016/j.jss.2020.110750.

[50] . B ss , V. L , S. R , N. S äk , “O
Diffuseness of Technical Debt Items and Accuracy of Remediation

T W Us S Q ,” Inf. Softw. Technol., vol. 128, p.

106377, Jul. 2020, doi: 10.1016/j.infsof.2020.106377.
[51] “S Q D .” . [O]. A :

https://www.sonarqube.org/docs/

[52] C. -H. Cao, Y. -N. Tang, H. Zhou, Y. -L. L , Z. s ł k,
“DBSCAN-Based Automatic De-Duplication for Software Quality

I s D ,” IEEE Access, vol. 11, pp. 17882–17890, 2023, doi:

10.1109/ACCESS.2022.3164192.
[53] D. K. K. S , P. P. G. D. As k , D. W k , “A

Comprehensive Approach to Evaluating Software Code Quality

T F x Q ,” 2023 International Research
Conference on Smart Computing and Systems Engineering (SCSE),

Jun. 2023, pp. 1–8. doi: 10.1109/SCSE59836.2023.10215004.

[54] M. A. A. Hilmi, A. Puspaningrum, Darsih, D. O. Siahaan, H. S.

S s , A. S. R , “R s T s, D s,

P s, C s C S : SLR,” IEEE Access, vol. 11,

pp. 129536–129551, 2023, doi: 10.1109/ACCESS.2023.3334258.
[55] S. D w , R. S. R , A. s , . G , “A N

A C S D : A E S ,” IEEE

Access, vol. 9, pp. 162869–162883, 2021, doi:
10.1109/ACCESS.2021.3133810.

[56] J. Fox, Applied Regression Analysis and Generalized Linear Models,

3rd ed. Los Angeles: Sage Publications, 2016.
[57] G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to

Statistical Learning: With Applications in R. New York: Springer,

2013.

[58] A. C , D. A. E , B. T , “S s V

V I Ass ss C P s,”

ArXiv, vol. abs/2309.07593, 2023, [Online]. Available:
https://api.semanticscholar.org/CorpusID:261823259

[59] C. Molnar et al., Relating the Partial Dependence Plot and

Permutation Feature Importance to the Data Generating Process.
2023, p. 479. doi: 10.1007/978-3-031-44064-9_24.

[60] K. Rubarth, P. Sattler, H. Zimmermann, and F. Konietschke,

“Es T s W x –Mann–Whitney Effects in
F C s D D s s,” Symmetry, vol. 14, p. 244, Jan.

2022, doi: 10.3390/sym14020244.

[61] K. Q , X. X , Q. H , G. D , “E W S
P W I S O E s,”

IEEE Access, vol. 11, pp. 72601–72617, 2023, doi:

10.1109/ACCESS.2023.3295580.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3426299

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

 D. Nikolic et al.: Uncovering Determinants of Code Quality In Education Via Static Code Analysis

VOLUME XX, 2017 17

DANILO NIKOLIĆ (Graduate Student

 , IEEE) w s V š , S ,

in 1996. He received the B.S. and M.S.
degrees in information systems engineering

from the Faculty of Technical Sciences,

University of Novi Sad, Novi Sad, Serbia, in
2019 and 2020, respectively, where he is

currently pursuing a Ph.D. degree in

information systems engineering. From
2019 to 2020, he was a Teaching Associate

and since 2020, he has been a Teaching

Assistant at the Department of Industrial Engineering and Engineering
Management, Chair for Information and Communication Systems, Faculty

of Technical Sciences, University of Novi Sad. His research interests

include static code analysis and tools for static code analysis.

DARKO STEFANOVIĆ (Member, IEEE) was

born in Novi Sad, Serbia, in 1972. He received

a B.S. degree in mechanical engineering and a
M.S. and Ph.D. degree in industrial engineering

and engineering management from the Faculty

of Technical Sciences, University of Novi Sad,
Novi Sad, in 1999, 2005, and 2012,

respectively. From 2001 to 2012, he was a

Teaching Assistant, and from 2012 to 2017, he
was an Assistant Professor, and Associate

Professor from 2017 to 2022 at the Department

of Industrial Engineering and Engineering Management, Chair for
Information and Communication Systems, Faculty of Technical Sciences,

University of Novi Sad, where he has been an Full Professor, since 2022.

He is currently the Vice-Dean for Science and International Cooperation, at
the Faculty of Technical Sciences, at the University of Novi Sad, and the

Head of the Chair of Information and Communication Systems. He has

published in several international information systems journals. His
research interests include ERP systems, e-learning systems, e-government

systems, data mining, static code analysis and business process mining in

production planning

MIROSLAV NIKOLIĆ (Graduate Student
Member, IEEE) was born in 1991. He

received B.A. in Research Sociology and

M.S. in Applied Data Science and Artificial
Intelligence from University of Belgrade -

Serbia and Open Institute of Technology -

Malta, respectively. He wrote his theses in
the realm of applied statistics and machine

learning.

He is currently enrolled as a PhD student
at Faculty of Organizational Sciences,

University of Belgrade, focussing on numerical optimization advancements

in foundation models and transformer architectures.

DUŠANKA DAKIĆ. (Member, IEEE) was

born in Novi Sad, Serbia in 1993. She

received her B.S. degree in Engineering
Management in 2016, her M.S. degree in

Information Systems Engineering in 2017,

and her Ph.D. degree in engineering
management in 2023 from the Faculty of

Technical Sciences at the University of Novi

Sad, Serbia.
From 2016 to 2024, she was a Research

Assistant, and since 2024, she has been an

Associate Professor with the Engineering Management Department at the
Faculty of Technical Sciences, University of Novi Sad, Serbia. She is the

author of 20 conference papers and 5 journal articles. Her research interests

include Data Quality, Code Quality, Static Code Analysis, Business Process
Management, Process Mining, and Business Information Systems.

MIROSLAV STEFANOVIĆ (Member, IEEE)

was born in Loznica, Serbia, in 1975. He

received a B.S. degree in information
management and an M.S. and Ph.D. degree in

information systems engineering from the

Faculty of Technical Sciences, University of
Novi Sad, Novi Sad, Serbia, in 2014 and 2023,

respectively, From 2015 to 2016, he was a

Teaching Associate, and from 2016 to 2023, he
was a Teaching Assistant, and since 2023 he has

been an Assistant Professor at the Department

of Industrial Engineering and Engineering Management, Chair for
Information and Communication Systems, Faculty of Technical Sciences,

University of Novi Sad. His research interests other than code reviewing and

static code analysis, include blockchain technologies, especially the
implementation of blockchain technology in fields other than

cryptocurrency, mainly e-government and land administration systems.

SARA KOPRIVICA. (Graduate Student

Member, IEEE) born in 1996 in Novi Sad,
Serbia, holds a bachelor's degree with honors

and an MSc degree in information technology

from the University of Novi Sad. Currently
pursuing her doctoral studies in the same

field, Sara serves as an assistant at the

Department of Information and
Communication Systems at the Faculty of

Technical Sciences, University of Novi Sad.

In addition to her academic pursuits, Sara has
gained research experience through her engagement as a researcher at the

National Research Council in Palermo, Italy. Her professional journey

extends to consultancy roles in various projects concerning information
technology and electronic governance. Her research interests include

information technology, information systems, static code analysis,
electronic governance, technology acceptance models, and automation of

the literature review. Sara is the author of more than 20 research papers.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3426299

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

