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ABSTRACT Over the past ten years, global electricity networks have undergone rapid advancements, 

primarily driven by the widespread adoption of renewable energy resources (RES). While these sources have 

accompanied in a gathering of advantages, such as cost-effective operation of wind and solar photovoltaic 

(PV) installations and the mitigation of environmental hazards linked with traditional power sources, they 

have also introduced a host of challenges to planning and operation of power systems. Also, Plug-in electric 

vehicles (PEVs) stand out as a highly promising technology for reducing carbon emissions in the 

transportation sector, aligning with the global Net-zero target. The standard optimal power flow (OPF) 

problem, which is naturally nonlinear, has become even more complex with the addition of renewable energy 

sources and plug-in electric vehicles along with traditional thermal power generators. This increased 

complexity comes from the unpredictable and intermittent nature of these new resources. Monte Carlo 

techniques are used to estimate the production costs of renewable energy sources and plug-in electric vehicles 

(PEVs) and analyze their viability. The uncertainty of the renewable sources and PEVs is modeled using 

Weibull, lognormal, and normal probability distribution functions (PDFs). The comprehensive OPF, 

incorporating renewable energy components and PEVs, is cast as a single objective problem encompassing 

various objectives, such as decreasing fuel costs, total emissions, voltage deviations, and real transmission 

losses. This research shares a common objective by introducing a novel hybrid metaheuristic optimization 

algorithm (MRGTO) to address the OPF challenge. Additionally, the study explores the impact of renewable 

energy resources and Vehicle-to-Grid (V2G) on the stochastic OPF problem. The MRGTO employs artificial 

gorilla troops optimizer (GTO) with manta ray foraging optimization (MRFO) algorithm to achieve the 

optimal results for the OPF problem with stochastic RES and V2G. The developed technique is expected to 

increase the solution accuracy through increasing the solution diversity through an optimization procedure. 

Initial assessments are executed on benchmark functions. After that, a combined model of wind and PV-

integrated IEEE 30-bus system are executed by the proposed MRGTO algorithm and other well-known 

optimization algorithms. Additionally, the effectiveness of the proposed method is assessed using the IEEE 

30-bus test system under different scenarios. The evaluations have shown the proposed MRGTO technique 

to be superior at attainment a best solution for the OPF problem considering stochastic wind and PV power 

and V2G. Moreover, the obtained solutions confirmed the MRGTO technique would be more effective in 

optimization with quicker convergence rate, and higher convergence precision. After testing, the 

effectiveness of the MRGTO algorithm has been found to be much robust than the conventional artificial 

gorilla troops optimizer, manta ray foraging optimization, and other well-known published heuristics, 

metaheuristics, and hybrid optimization techniques. 

INDEX TERMS Optimal Power Flow, plug-in electric vehicle, renewable energy sources, V2G, artificial 

gorilla troops optimizer, manta ray foraging optimization.
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I. INTRODUCTION 

The demanding requirement to decrease operating costs in 

conventional power generators and reduce emissions of 

greenhouse gas from these types of generating units has 

encouraged many electric power firms to shift in the 

direction of utilize from the RES. Furthermore, 

developments in renewable energy technologies have greatly 

contributed to their rise as the most cost-effective and 

globally aware resources [1]. Photovoltaic (PV) and wind-

turbine (WT) systems are among the RESs that have been 

integrated into power systems to reduce the negative 

environmental impact of fossil fuels [2]. However, the 

integration of RESs in the grid causes a significant challenge 

because of the unpredictability of wind speed and solar 

irradiation, which can lead to uncertainty [3][4]. To enhance 

the precision and practicality of wind and SPV modeling, the 

Weibull probability distribution function has been employed 

for the prediction of the wind speed [5], while the lognormal 

probability distribution function has been utilized to imitate 

the sporadic characteristics of solar irradiance in previous 

studies [6].  

Presently, as an essential design plan of power-generating 

systems operation infrastructure in smart cities environment, 

electric vehicles (EVs) have concerned significant interest 

because of fossil fuel scarcity, wide environmental changes, 

and the rapid development of communication technology in 

smart cities [7]. The existence of electric vehicles introduces 

additional uncertainty, further complicating matters. 

Consequently, it is crucial to consider the dynamic nature of 

RESs to confirm the safe and profitable operation of the 

power system. The integration of RESs in smart grids has 

several advantages, such as reducing peak energy demand 

and lowering energy losses. However, because these RESs 

depend on weather conditions, uncertainty in weather 

forecasts can impact grid reliability and increase energy 

generation costs [8], [9]. Additionally, the integration of 

RESs in smart grids presents environmental and policy-

related challenges [10]. 

The recent increasing rate of energy storage solutions, 

notably electric vehicles (EVs), featuring diverse charging 

profiles, has significantly impacted the optimization of 

power dispatch strategies. This trend has spurred a 

remarkable surge in research and publications within this 

domain [11]. One of the pivotal aspects of this evolution is 

the incorporation of EVs into the grid as mobile energy 

storage units. These PEVs not only serve as a means of 

transportation but also function as distributed energy 

resources [12]. They can both draw power from the grid and 

supply excess energy back to it, making them dynamic assets 

in the electricity system. The intersection of PEVs, wind, and 

PV systems in the power dispatch problem represents a 

complex and dynamic landscape. Researchers are actively 

exploring innovative approaches to optimize the utilization 

of these resources, taking into account the dynamic charging 

patterns of PEVs and the intermittent nature of wind and PV 

generation. 

The OPF is a way used to regulate the best operating point in 

terms of control variables to improve choosy objective 

functions and has become a critical feature of the generation 

and operation of modern power systems [13] [14]. As RESs 

are being combined into the generation mix, they must be 

included in the OPF analysis [15]. However, the integration 

of PEVs into the electrical network poses a challenge due to 

their uncertain power consumption or injection behavior. 

PEVs' charging can increase the transmission lines' load, 

which can be addressed through the vehicle-to-grid (V2G) 

model. This model enables PEVs to supply surplus power to 

the grid through designated devices when stationary, thus 

mitigating the effect of their combined impact on the system 

[16]. 

Over the last ten years, the majority of research efforts have 

gone toward finding solutions for OPF problems related to 

thermal plants. Researchers' interest in the OPF problem 

combined with RESs has lately grown as a result of RESs' 

increased integration into the electricity system. Biswas et al. 

[17] try to find a best solution for the OPF problem using 

adopting various evolutionary techniques whereas 

considering the high penetration of thermal, wind, solar, and 

hydropower plants. Gaussian Bare-bones Levy Circulatory 

System-Based Optimization algorithm has been used to 

optimize OPF considering the WTs and PVs in [18]. In Ref. 

[19], a gradient bald eagle search optimization algorithm 

with local escaping operator method was suggested and 

assessed on the IEEE 30-bus power network integrated with 

renewable energy and V2G uncertainty. He et al. proposed a 

method for combined scheduling of wind, thermal, and 

hydropower, which includes spinning reserve [20]. When it 

comes to real-time economic dispatch (ED), precise 

prediction can lead to a narrower range of uncertainty than 

in long-term scheduling. In order to model the uncertain 

behavior of renewable generation plants and PEVs, 

probability distribution functions (PDFs) can be utilized, as 

demonstrated by Chang, who employed Weibull PDF for 

modeling wind speed and lognormal distribution for 

modeling solar irradiance [16]. Vaderobli et al. enhanced the 

energy cost for PV stations under various weather conditions 

[21], while the authors in  [22] developed a hybrid 

optimization approach for short-term scheduling of solar-

wind-hydrothermal generation. Hassan et al. [23] handle 

adopting a Chaotic Bonobo Optimizer (CBO) for solving 

three contradictive objective functions in which least fuel 

cost’s values, emission level, and power loss are achieved. 

The modified white shark optimization has been utilized for 

reaching to the optimum results for the OPF issue [24], in 

which several kinds of renewable energies were 

incorporated. 

The previous literature shows that instant OPFs have been 

utilized in the past. However, practical power systems are 

dynamic, and their operating conditions continuously 
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change. Therefore, decisions based solely on instant OPFs 

may not be accurate, which is why this paper employs a 

dynamic OPF that considers various time instances to 

provide system operators with correct and optimal solutions 

[25]. The main objective of this article is to reduce the total 

fuel cost, which includes the cost of conventional generators, 

the cost of RESs, and the generation cost for PEVs at 

different time intervals. To represent uncertainties related to 

wind, PV, and PEV systems, this study employs Weibull, 

lognormal, and normal probability density functions (PDFs), 

and uncertainty costs are computed by Monte Carlo 

simulations. Though, there are various uncertainties that 

need to be considered, and multiple methods can be used to 

calculate uncertainty costs. For example, in [26], the authors 

proposed a stochastic optimization process that accounts for 

uncertainties in electricity demand, natural gas 

infrastructures, PV generating units, and wind power 

generation by mixed-integer linear programming (MILP).  

Also, according to the literature, employing metaheuristic 

algorithms as innovative methodologies for OPF problem 

involving Wind, PV, and EVs has demonstrated 

commendable outcomes. Although these algorithms have 

gained widespread approval, their performance metrics, 

encompassing factors such as convergence and efficiency, 

may exhibit notable disparities. Furthermore, the tenets of 

the no-free-lunch theorems underscore a fundamental 

reality: the absence of a universally superior metaheuristic 

algorithm capable of optimally addressing every conceivable 

optimization problem [27]. In light of this principle, the 

development of alternative, novel Metaheuristic Algorithms 

(MAs) holds the potential to yield superior outcomes 

compared to those documented in the existing literature. 

Thus, the dynamic landscape of metaheuristic approaches 

prompts a search for newer methodologies that could 

possibly cover the achievements of their already published 

counterparts. These reasons encourage us to propose a novel 

optimization technique.  

The Artificial Gorilla Troops Optimizer (GTO) and the 

Manta Ray Foraging Optimization (MRFO) algorithm 

represent two robust population-based metaheuristic 

techniques. They draw inspiration from the social 

intelligence observed in gorilla troops and the distinct 

foraging strategies of manta rays, including chain foraging, 

cyclone foraging, and somersault foraging. Those 

techniques, similar other optimization methods, start with a 

randomly produced group of solutions inside the area of the 

problem [28]. After this, these solutions are updated using 

information from previous solutions and historical data and, 

but only for a limited number of repeats [29]. As the 

solutions slowly improve, their quality gets better, helping 

find more ideal answers for the problem. These techniques 

were used in many different areas and thoroughly tested with 

lots of test functions, with good results. However, they have 

some weaknesses. For example, they are too slow to 

converge for some complex, high-dimensional problems, 

and they cannot guarantee finding the absolute best solution 

quickly enough. 

The GTO method has the advantages of fast convergence and 

high effectiveness. Furthermore, GTO is defined by its 

straightforwardness, easy application, and fast convergence, 

but it can still get stuck in local optima [30]. In the literature, 

some articles have been done in order to address these 

restrictions. In [31], the authors suggested a new technique 

for regulating the strength control parameters of the GTO 

using fitness-based crossover (FBC) strategy and periodic 

Tangent Flight (TF) operator to improve the exploration and 

exploitation capabilities of the technique to address 

parameters extraction of three different PV modules. In [32], 

the authors suggested a hybrid GTO and zebra optimization 

approach in order to progress the stochastic behavior of the 

GTO technique for Hybrid optimized-ANFIS based MPPT 

for hybrid microgrid. In this article, hybrid metaheuristic 

optimization technique (MRGTO) is suggested for 

addressing and optimizing the OPF problem with 

incorporated RES and PEVs. This improvement of MRGTO 

method rises exploration capability compared to the GTO 

and MRFO algorithms. Additionally, the investigation of the 

MRGTO method will not diminish as the number of 

iterations increases, avoiding it from being stuck in local 

minimum values. The MRGTO algorithm is confirmed when 

it is applied on the enhanced IEEE 30-bus power system with 

EVs and RESs and obtained results are compared to several 

optimization algorithms. The IEEE 30-bus test systems have 

been adapted through incorporating wind, solar, and EVs 

power systems. Although the standard OPF is already a 

large-scale, nonlinear, non-convex constrained optimization 

issue, the complexity increases further when integrating 

Wind, PV, and PEVs due to the intermittent nature of these 

sources. Also, this paper focus on the dynamic OPF while 

the load demand is varying in order to show the effect of the 

high penetration of RES beside the V2G station on the 

operational flexibility of the electric power system. Figure 1 

shows the proposed framework. 

The main contributions of this article can be outlined as 

follows: 

• Presenting MRGTO, an enhanced version of 

Artificial gorilla troops optimizer (GTO) based on 

hybrid with manta ray foraging optimization 

(MRFO) to show improved performance in real-

world optimization problems, primarily in OPF 

situations, taking into consideration the complexity 

of stochastic RESs and EVs. 

• Comparing the competences and attained results of 

the proposed technique and its counterparts 

including beluga whale optimization (BWO), runge 

kutta algorithm (RUN), tuna swarm optimization 

(TSO), and dung beetles optimizer (DBO), as well 

as the original GTO and MRFO techniques, 

displays the suggested MRGTO’s optimization 

power. 
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FIGURE 1.  Configuration of the proposed framework 

 

• Approving the presented MRGTO for improving 

the different OPF functions and reduction of 

operating cost and emission level. The results 

demonstrate that MRGTO can attain a high 

performance in solving the different OPF issues. 

• Emphasis on dynamic OPF considerations, 

specifically addressing varying load demand to 

showcase the influence of high-RES penetration 

and Vehicle-to-Grid (V2G) stations on electric 

power system operational flexibility. 

The rest of the paper is organized as follows: Section 2 

outlines the mathematical formulation of OPF and its 

operating constraints, and Sections 3 explains the output 

models for WT, SPV, EVs units and load demand 

uncertainty. Section 4 introduces the original GTO algorithm 

and the MRFO algorithm, while Section 5 applies the 

MRGTO algorithm to solve the OPF problem in the presence 

of RESs and EVs, presenting the results obtained for seven 

benchmark functions. Section 6 presents statistical analysis 

and robustness, and Section 7 concludes the paper by 

summarizing the main findings. 

 

 

II. The OPF’s Calculated Model 

The dynamic optimal power flow (DOPF) problem is a 

complex and nonlinear one, which requires identifying the 

most appropriate control variable values that minimize the 

fitness function while satisfying several operational 

constraints. The primary goal of this paper is to reduce the 

total operation cost, including the expenses related with 

thermal and RESs, in addition to the cost of integrating EVs 

into the network. The control variables optimized in this 

study include real and reactive power outputs of generators, 

besides voltages, transformer tap ratios, and shunt VAR 

capacitors [33]. In this study, our overarching objective is to 

tackle this complexity head-on and devise strategies that lead 

to a more efficient and cost-effective power system. 

Specifically, we aim to optimize the allocation of resources 

by curbing the total generation cost. This encompasses a 

multifaceted approach, encompassing the optimal utilization 

of both traditional thermal generation and increasingly vital 

renewable energy sources. Moreover, with the rising 

prominence of electric vehicles (EVs) as an integral part of 

the modern energy landscape, we are also dedicated to 

addressing the challenges of integrating these EVs into the 

Read the IEEE 30-bus test system 
Data Read MRGTO algorithm Data Read RES Data

number of population 
,and maximum number 

of iteration

Run power flow determine initial state 
variable Monte-Carlo method for WT, PV, PEV

Create population randomly 
for each decision variables

Run MRGTO algorithm Fitness evaluation 

Is termination 
condition satisfied 

Update decision 
variables 

No Yes
Save optimal solution 

and Generate 
optimization curves

Renewable energy 
sources

Electric vehicle 

V2G unit

Thermal power 
plants

Cost information 

scenarios of the Load 
demand 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3425754

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



 

VOLUME XX, 2017 1 

power grid, while minimizing the associated costs and 

enhancing grid reliability. 

The underlying objective of the DOPF is to find the optimal 

values of control variables that achieve specific goals while 

adhering to a set of equality and inequality constraints. 

Mathematically, the OPF problem can be formulated as 

follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒, 𝑓(𝑥, 𝑢) (1)  

Constrained by: 

𝑔(𝑥, 𝑦) = 0 (2)  

ℎ(𝑥, 𝑦) ≤ 0 (3)  

A.  The Operation Cost for the Thermal generating units   

The fossil fuel-powered thermal generators’ function, and the 

expense of the fuel can be articulated in the subsequent way 

[13]: 

 𝐹( 𝑃𝑐𝑔) =∑𝛼𝑖𝑃𝑐𝑔,𝑖
2 + 𝛽𝑖

𝑁𝑔

𝑖=1

𝑃𝑐𝑔,𝑖 + 𝛾𝑖 
(4)  

where 𝐹 represents the fuel cost for thermal power plants, 𝑁𝑔 

refers to the whole number of the traditional generators, 

𝑃𝑐𝑔,𝑖  denotes the real power output from generator i. the 

coefficients of the operating cost according to the i-th thermal 

generators are represented by 𝛼𝑖 , 𝛽𝑖 , and 𝛾𝑖.When the multi-

valve loading effect is taken into account, the quadratic fuel 

cost becomes more accurate. Thus, the cost function 

incorporating the valve point loading effect (VPLE) can be 

formulated as follows [13]: 

𝐹( 𝑃𝑐𝑔) =∑𝛼𝑖𝑃𝑐𝑔,𝑖
2 + 𝛽𝑖

𝑁𝑔

𝑖=1

𝑃𝑐𝑔,𝑖 + 𝛾𝑖

+ |𝑒𝑖 × sin(𝑔𝑖(𝑃𝑐𝑔,𝑖
𝑚𝑖𝑛 −𝑃𝑐𝑔,𝑖))| 

(5)  

The valve point cost coefficients of the i-th thermal generator 

are denoted by 𝑒𝑖 and 𝑔𝑖 while 𝑃𝑐𝑔,𝑖
𝑚𝑖𝑛   denotes the lowest active 

power that the i-th generators can produce. 

B.  The operating Cost for WT and SPV generators 

Developing an accurate cost model for Renewable Energy 

Sources (RES), such as wind or solar, can be difficult due to 

their variable nature. In a study published in [34], the authors 

have proposed a cost model for RES that is owned by the ISO 

and does not include fuel costs. It is critical to assess the 

scheduled versus actual capacity of RES as it can affect the 

total operational cost of the power system. By precisely 

estimating the RES capacity, operation costs can be 

minimized. To construct the cost function for RES sources, 

two scenarios must be considered. Firstly, if the actual 

capacity is less than the scheduled capacity, the Independent 

System Operator (ISO) must compensate for the shortfall by 

dispatching power from other plants, incurring a reserve cost. 

Secondly, if the RES's real power exceeds its scheduled 

capacity, surplus power goes to waste unless conventional 

generators reduce their output. The ISO will have to pay a 

penalty cost equal to the excess quantity of RES if this is not 

possible.  

Wind turbine (WT) and solar photovoltaic (SPV) units operate 

without requiring fuel and typically only incur main 

maintenance or operational costs. The energy produced by 

these renewable sources is charged based on a jointly 

contracted agreement. Private parties are responsible for 

bearing the direct costs of WT and SPV units, which can be 

defined as below: 

𝐶𝑊𝑗
(𝑃 𝑊𝑠,𝑗

) = 𝑔𝑊𝑑
𝑃 𝑊𝑠,𝑗

 (6)  

The direct cost of the j-th wind turbine generator is represented 

by 𝐶𝑊𝑗
, while 𝑔𝑊𝑑

 refers to the WT generator's coefficient of 

direct cost. 𝑃 𝑊𝑠,𝑗
 denotes the scheduled production of the j-th 

wind generator. The following formula is used to calculate the 

scheduled power related with the k-th SPV generator's direct 

cost: 

𝐶𝑆𝑘(𝑃 𝑆𝑠,𝑘) = 𝑔𝑆𝑑𝑃 𝑆𝑠,𝑘 (7)  

where the scheduled generation of the k-th SPV unit is 

indicated by 𝑃 𝑆𝑠,𝑘, and the SPV unit's direct cost coefficient is 

represented by 𝑔𝑆𝑑. 

C.  Cost Calculation of the WT generating Units 

The equation below represents the penalty cost that system 

operators bear for the surplus power produced using WT units: 

𝐶𝑈𝑤,𝑗 (𝑃 𝑊𝑎,𝑗
− 𝑃 𝑊𝑠,𝑗

)

= 𝑝𝑊,𝑗 (𝑃 𝑊𝑎,𝑗
− 𝑃 𝑊𝑠,𝑗

)           

= 𝑝𝑊,𝑗∫ (𝑃𝑊,𝑗

𝑃𝑊𝑟,𝑗

𝑃𝑊𝑠,𝑗

− 𝑃 𝑊𝑠,𝑗
) 𝐹𝑊(𝑃𝑊,𝑗)  𝑑𝑃𝑊,𝑗 

(8)  

where 𝑃 𝑊𝑎,𝑗
 , and  𝑃𝑊𝑠,𝑗

, represent the available, schedule 

output power from j-th wind turbine generator, respectively 

and 𝑃𝑊𝑟,𝑗
 refers to the j-th WT unit's rated output power.  𝑝𝑊,𝑗 

denotes the coefficient of the penalty cost for the j-th wind 

turbine unit while 𝐹𝑊(𝑃𝑊,𝑗) refers to the PDF of the j-th WT 

generator's generated power. The following formula is used to 

determine reserve cost, which is the cost that is dependent on 

this power reserve.: 

𝐶𝑂𝑤,𝑗 (𝑃 𝑊𝑠,𝑗
− 𝑃 𝑊𝑎,𝑗

)

= 𝑅𝑊,𝑗 (𝑃 𝑊𝑠,𝑗
− 𝑃 𝑊𝑎,𝑗

)           

= 𝑅𝑊,𝑗∫ (𝑃 𝑊𝑠,𝑗

𝑃𝑊𝑠,𝑗

0

− 𝑃 𝑊𝑎,𝑗
) 𝐹𝑊(𝑃𝑊,𝑗)  𝑑𝑃𝑊,𝑗 

(9)  

The coefficient for the reserve cost by the j-th WT generating 

unit is represented by 𝑅𝑊,𝑗. Moreover, the calculation of the 

probability of power production for multiple WT generators at 

different wind velocities. 

D.  Cost Calculation of SPV Units 
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The following formula can be used to determine the penalty 

cost for the k-th SPV unit: 

𝐶𝑈𝑆,𝐾(𝑃 𝑆𝑎,𝐾 − 𝑃 𝑆𝑠,𝐾) = 𝑝𝑆,𝐾(𝑃 𝑆𝑎,𝐾 − 𝑃𝑆𝑠,𝐾)  

= 𝑝𝑆,𝐾 ∙ 𝐹𝑆(𝑃 𝑆𝑎,𝐾 > 𝑃𝑆𝑠,𝐾)

∙ [ 𝐸(𝑃 𝑆𝑎,𝐾 > 𝑃𝑆𝑠,𝐾) − 𝑃 𝑆𝑠,𝐾] 

(10)  

𝑃 𝑆𝑎,𝐾  𝑎𝑛𝑑  𝑃𝑆𝑠,𝑗represent the K-th SPV generator's current and 

scheduled power, respectively, 𝑝𝑆,𝐾  denotes the coefficient of 

the penalty cost with respect to the K-th SPV generators, 

𝐹𝑆(𝑃 𝑆𝑎,𝐾 > 𝑃𝑆𝑠,𝐾) indicates the possibility that the k-th SPV 

generators will produce surplus power compared to 𝑃 𝑆𝑎,𝐾 . 

𝐸(𝑃 𝑆𝑎,𝐾 > 𝑃𝑆𝑠,𝐾) refers to the expected excess electricity 

output. The reserve cost is computed using the following 

formula in the event that it is overestimated: 

𝐶𝑂𝑆,𝐾(𝑃 𝑆𝑠,𝐾 − 𝑃 𝑆𝑎,𝐾) = 𝑅𝑆,𝐾(𝑃 𝑆𝑠,𝐾 − 𝑃 𝑆𝑎,𝐾)  

= 𝑅𝑆,𝐾 ∙ 𝐹𝑆(𝑃 𝑆𝑎,𝐾 < 𝑃𝑆𝑠,𝐾)

∙ [ 𝑃 𝑆𝑠,𝐾 − 𝐸(𝑃 𝑆𝑎,𝐾 < 𝑃𝑆𝑠,𝐾)] 

(11)  

where 𝑅𝑆,𝐾  refers to the coefficient of reserve cost for the K-th 

SPV generator, 𝐹𝑆(𝑃 𝑆𝑎,𝐾 < 𝑃𝑆𝑠,𝐾) denotes the absence of SPV 

generators' potential, and  𝐸(𝑃 𝑆𝑎,𝐾 < 𝑃𝑆𝑠,𝐾) represents the 

SPV generator’s predictable power fewer than 𝑃𝑆𝑠,𝐾. 

E.  Cost of EV units 

The use of V2G technology presents a unique opportunity for 

intelligent energy management and electricity trade. With 

renewable energy sources becoming increasingly prevalent, 

V2G provides utility companies with the ability to utilize the 

energy stored in electric vehicles to mitigate grid congestion 

and meet peak load demands. V2G technology allows electric 

vehicles to function as mobile storage assets, optimizing 

energy usage and supporting the grid, while still allowing EV 

owners to control when their vehicle is available for use [35]. 

As well as researching the development and suitability of 

electric vehicles (EVs) and battery-electric vehicles (BEV), 

attention must also be given to the growing symbiotic 

relationship between the developing smart grid and electric 

vehicles. Currently, several car manufacturers are investing 

significant resources in producing and developing new electric 

vehicle models. The formula for determining the direct cost of 

the n-th EV unit in relation to scheduled power is as below: 

𝐶𝑒𝑣𝑛(𝑃 𝑒𝑣𝑠,𝑛) = 𝑑𝑒𝑣𝑛𝑃 𝑒𝑣𝑠,𝑛 (12)  

In this equation, 𝑑𝑒𝑣𝑛  is the the n-th EV generator’s direct cost 

coefficient. 𝑃 𝑒𝑣𝑠,𝑛  represents the scheduled production using 

the n-th EV generator. 

The n-th EV unit’s reserve cost is expressed as follows: 

𝐶𝑅𝑒𝑣,𝑛(𝑃 𝑒𝑣𝑠,𝑛 − 𝑃 𝑒𝑣𝑎𝑣,𝑛)

= 𝐻𝑅𝑒𝑣,𝑛(𝑃 𝑒𝑣𝑠,𝑛 − 𝑃𝑒𝑣𝑎𝑣,𝑛)  

= 𝐻𝑅𝑒𝑣,𝑛∫ (𝑃 𝑒𝑣𝑠,𝑛

𝑃𝑝𝑒𝑣,𝑛

0

− 𝑃𝑒𝑣,𝑛)𝑓𝑒𝑣(𝑝𝑒𝑣,𝑛)𝑑𝑝𝑒𝑣,𝑛 

(13)  

where 𝑃 𝑒𝑣𝑠,𝑛 and 𝑃 𝑒𝑣𝑎𝑣,𝑛 represent the n-th EV unit's actual and 

scheduled power, respectively,𝐻𝑅𝑒𝑣,𝑛 represents the reserve 

cost coefficient for the n-th electric vehicle generators. The 

reserve cost is computed using the following formula in the 

event that it is overstated: 

𝐶𝑃𝑝𝑒𝑣,𝑛(𝑃 𝑒𝑣𝑠,𝑛 − 𝑃 𝑒𝑣𝑎𝑣,𝑛)

= 𝐻𝑃𝑒𝑣,𝑛(𝑃 𝑒𝑣𝑎𝑣,𝑛 − 𝑃𝑒𝑣𝑠,𝑛)  

= 𝐻𝑃𝑒𝑣,𝑛∫ (𝑃𝑒𝑣,𝑛

𝑃𝑒𝑣𝑟,𝑛

𝑃𝑒𝑣,𝑛

− 𝑃𝑒𝑣𝑠,𝑛)𝑓𝑒𝑣(𝑝𝑒𝑣,𝑛)𝑑𝑝𝑒𝑣,𝑛 

(14)  

where 𝑃𝑒𝑣𝑟,𝑛 represents the n-th EV unit's rated power. 𝐻𝑃𝑒𝑣,𝑛 

denotes the penalty cost coefficient for the n-th electric vehicle 

generators.  

F.  Carbon Tax Model 

Conventional units release harmful pollutants into the 

surroundings, and with the escalation of production from 

thermal units, the discharge of gases. These dangerous 

emissions are computed as follows: 

𝐸 =∑ (𝑎𝑖𝑃𝑐𝑔,𝑖
2 + 𝑏𝑖

𝑁𝐺

𝑖=1
𝑃𝑐𝑔,𝑖+𝑐𝑖)  × 0.01 +

𝜔𝑖𝑒
( 𝑃𝑐𝑔,𝑖 𝜇𝑖)  

(15)  

where 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 , 𝜔𝑖 𝑎𝑛𝑑 𝜇𝑖 represent the thermal generators’ 

emission coefficients.  

Recently, several countries have implemented carbon taxes as 

a measure to safeguard the environment, encourage the 

adoption of RESs, and address the risks of global warming. 

Power generation firms are under significant pressure to 

generate green energy from sustainable sources and limit their 

detrimental emissions. Consequently, carbon taxes are being 

imposed on such polluting models. The cost of carbon 

emissions, expressed in dollars per hour, is given by: 

𝐶𝐸𝐶 = 𝐶𝑇  ×  𝐸  (16)  

where 𝐶𝑇  refers to the carbon tax of gasses per unit value. 

G.  Objective Functions 

In this paper, we discuss the objective functions used for the 

DOPF problem, which are comprised of several models 

discussed in the previous subsections. Specifically, we 

consider two fitness functions, which are described below: 

1)  REDUCING OF THE TOTAL COST 

Without taking emissions into account, the first objective 

function suggested in this article is made in order to reduce the 

overall cost. The second fitness function, on the other hand, 

accounts for emissions. As a result, the first fitness function 

seeks to reduce the subsequent: 
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𝐹1 =  𝐹( 𝑃𝑐𝑔) +∑[ 𝐶𝑊𝑗
(𝑃 𝑊𝑠,𝑗

)

𝑁𝑊

𝑗=1

+ 𝐶𝑈𝑤,𝑗 (𝑃 𝑊𝑎,𝑗
− 𝑃 𝑊𝑠,𝑗

)

+ 𝐶𝑂𝑤,𝑗 (𝑃 𝑊𝑠,𝑗
− 𝑃 𝑊𝑎,𝑗

)]  

+∑[ 𝐶𝑆𝑘(𝑃 𝑆𝑠,𝑘)

𝑁𝑃

𝐾=1

+ 𝐶𝑈𝑆,𝐾(𝑃 𝑆𝑎,𝐾 − 𝑃 𝑆𝑠,𝐾)

+ 𝐶𝑂𝑆,𝐾(𝑃 𝑆𝑠,𝐾 − 𝑃 𝑆𝑎,𝐾)]

+∑[ 𝐶𝑒𝑣𝑙(𝑃 𝑒𝑣𝑠,𝑙)

𝑁𝑉

𝑙=1

+ 𝐶𝑈𝑒𝑣,𝑙(𝑃 𝑒𝑣𝑎,𝑙 − 𝑃 𝑒𝑣𝑠,𝑙)

+ 𝐶𝑂𝑒𝑣,𝑙(𝑃 𝑒𝑣𝑠,𝑙 − 𝑃 𝑒𝑣𝑎,𝑙)] 

(17)  

where 𝑁𝑊, 𝑁𝑃 𝑎𝑛𝑑 𝑁𝑉 refer to the combined count of WT, 

SPV, and EV generators, respectively. When considering the 

modeling of CT, the second objective function can be obtained 

by adding the CT from Equation 16 to Equation 17. 

𝐹2 =  𝐹( 𝑃𝑐𝑔) +∑[ 𝐶𝑊𝑗
(𝑃 𝑊𝑠,𝑗

)

𝑁𝑊

𝑗=1

+ 𝐶𝑈𝑤,𝑗 (𝑃 𝑊𝑎,𝑗
− 𝑃 𝑊𝑠,𝑗

)

+ 𝐶𝑂𝑤,𝑗 (𝑃 𝑊𝑠,𝑗
− 𝑃 𝑊𝑎,𝑗

)]  

+∑[ 𝐶𝑆𝑘(𝑃 𝑆𝑠,𝑘)

𝑁𝑃

𝐾=1

+ 𝐶𝑈𝑆,𝐾(𝑃 𝑆𝑎,𝐾 − 𝑃 𝑆𝑠,𝐾)

+ 𝐶𝑂𝑆,𝐾(𝑃 𝑆𝑠,𝐾 − 𝑃 𝑆𝑎,𝐾)]  

+∑[ 𝐶𝑒𝑣𝑙(𝑃 𝑒𝑣𝑠,𝑙)

𝑁𝑉

𝑙=1

+ 𝐶𝑈𝑒𝑣,𝑙(𝑃 𝑒𝑣𝑎,𝑙 − 𝑃 𝑒𝑣𝑠,𝑙)

+ 𝐶𝑂𝑒𝑣,𝑙(𝑃 𝑒𝑣𝑠,𝑙 − 𝑃 𝑒𝑣𝑎,𝑙)] + 𝐶𝐸𝐶 

(18)  

Furthermore, it should be noted that these two objective 

functions are subject to certain equality and inequality 

constraints, which can be expressed as shown below: 

2)  THE ACTIVE POWER LOSSES 

This equation can be used to define the active power losses: 

𝑃𝐿 =∑𝐺𝑘[𝑉𝑖
2 + 𝑉𝑗

2 − 2𝑉𝑖𝑉𝑗𝑐𝑜𝑠(𝜃𝑖 − 𝜃𝑗)]

𝑛𝑙

𝑘=1

 (19)  

where 𝑃𝐿 denotes the active power loss, 𝐺𝑘 refers to the 𝑘’th 

line’s conductance. 𝑉𝑖 , 𝑉𝑗, 𝜃𝑖 and 𝜃𝑗 are the voltage 

magnitudes at buses i and j and their angles, respectively. 

3)  THE VOLTAGE DEVIATIONS 

The following formula can be used to express the voltage 

fluctuations at the load buses: 

𝑉𝐷 =∑|𝑉𝑘 − 1|

𝑁𝐿

𝑗=1

 (20)  

One per unit (p.u.) is the reference value for a nominal value 

that can be used as a benchmark. 𝑁𝐿 shows the bus number 

relating to the load. 

4)  EQUALITY RESTRICTIONS 

The equality constraints, which may be expressed as follows, 

represent the power flow equations that are used to preserve 

power equilibrium: 

𝑃𝐺𝑖 − 𝑃𝐷𝑖 − 𝑉𝑖∑𝑉𝑗(𝐺𝑖𝑗cos𝜃𝑖𝑗 + 𝐵𝑖𝑗sin𝜃𝑖𝑗)

𝑁𝐿

𝑗=1

= 0 (21)  

 𝑄𝐺𝑖 − 𝑄𝐷𝑖 − 𝑉𝑖∑𝑉𝑗(𝐺𝑖𝑗sin𝜃𝑖𝑗 − 𝐵𝑖𝑗cos𝜃𝑖𝑗)

𝑁𝐿

𝑗=1

= 0 (22)  

where the actual and reactive power generated are, 

respectively, 𝑃𝐺𝑖 and, 𝑄𝐺𝑖. While, 𝑃𝐷𝑖  and, 𝑄𝐷𝑖 reflect the bus 

j's demand active and reactive power, respectively. 𝐺𝑖𝑗  
denotes the transfer conductance between two buses, and 𝐵𝑖𝑗 
denotes their susceptance. 

5)  INEQUALITY RESTRICTIONS 

The constraints on inequality are related to the operational 

limitations that are placed on the various components of the 

power system, including the security limitations that are 

depending on the lines and load busses. 

6)  UNIT RESTRICTIONS 

All producing buses must have their real power and voltage 

limits kept within predetermined lower and upper bounds. 

      𝑉𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑉𝐺𝑖 ≤ 𝑉𝐺𝑖

𝑚𝑎𝑥    , 𝑖 = 1,2,3… ,𝑁𝑇 (23)  
      𝑃𝑐𝑔,𝑖

𝑚𝑖𝑛 ≤ 𝑃𝑐𝑔,𝑖 ≤  𝑃𝑐𝑔,𝑖
𝑚𝑎𝑥 , 𝑖 = 1,2,3… ,𝑁𝑔 (24)  

      𝑃 𝑊𝑠,𝑗

𝑚𝑖𝑛 ≤ 𝑃 𝑊𝑠,𝑗
≤ 𝑃 𝑊𝑠,𝑗

𝑚𝑎𝑥 , 𝑗 = 1,2,3… ,𝑁𝑊 (25)  

      𝑃𝑆𝑠,𝐾
𝑚𝑖𝑛 ≤ 𝑃𝑆𝑠,𝐾 ≤ 𝑃𝑆𝑠,𝐾

𝑚𝑎𝑥 , 𝑘 = 1,2,3… ,𝑁𝑃 (26)  

      𝑃𝑃𝐸𝑉𝑃𝐸𝑉,𝑙
𝑚𝑖𝑛 ≤ 𝑃𝑃𝐸𝑉𝑃𝐸𝑉,𝑙 ≤ 𝑃𝑃𝐸𝑉𝑃𝐸𝑉,𝑙

𝑚𝑎𝑥  ,

𝑙 = 1,2,3… ,𝑁𝑉 
(27)  

     𝑄𝑐𝑔,𝑖
𝑚𝑖𝑛 ≤ 𝑄𝑐𝑔,𝑖 ≤  𝑄𝑐𝑔,𝑖

𝑚𝑎𝑥  , 𝑖 = 1,2,3… ,𝑁𝑔 (28)  

      𝑄 𝑊𝑠,𝑗

𝑚𝑖𝑛 ≤ 𝑄 𝑊𝑠,𝑗
≤ 𝑄 𝑊𝑠,𝑗

𝑚𝑎𝑥, 𝑗 = 1,2,3… ,𝑁𝑊 (29)  

      𝑄𝑆𝑠,𝐾
𝑚𝑖𝑛 ≤ 𝑄𝑆𝑠,𝐾 ≤ 𝑄𝑆𝑠,𝐾

𝑚𝑎𝑥 , 𝑘 = 1,2,3… ,𝑁𝑃 (30)  

      𝑄𝑃𝐸𝑉𝑃𝐸𝑉,𝑙
𝑚𝑖𝑛 ≤ 𝑄𝑃𝐸𝑉𝑃𝐸𝑉,𝑙 ≤ 𝑄𝑃𝐸𝑉𝑃𝐸𝑉,𝑙

𝑚𝑎𝑥  ,

𝑘 = 1,2,3… ,𝑁𝑉 
(31)  

where 𝑁𝑇 represents the quantity of unit buses. The voltage 

limits for these buses are specified in Equation 23, while 

Equations 24 through 27 establish the limits on active power 

output for thermal units, wind turbines (WT), solar 

photovoltaic (SPV), and EV units. Additionally, Equations 28 

through 21 describe the reactive power capacities of the 

producing buses. 

7)  LIMITATIONS ON LINE AND LOAD BUS VOLTAGES 

𝑆𝑙𝑖 ≤ 𝑆𝑙𝑖
𝑚𝑎𝑥 ,     𝑖 = 1,2,3. . . , 𝑁𝑙 (32)  

𝑉𝐿𝑖
𝑚𝑖𝑛 ≤ 𝑉𝐿𝑖 ≤ 𝑉𝐿𝑖

𝑚𝑎𝑥 , 𝑖 = 1,2,3. . . , 𝑁𝐿 (33)  
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where, 𝑆𝑙𝑖 denotes the apparent power of the line i'th.  𝑆𝑙𝑖
𝑚𝑎𝑥 

signifies the extreme border of the apparent power of line i'th.  

𝑉𝐿𝑖
𝑚𝑖𝑛 , 𝑉𝐿𝑖

𝑚𝑎𝑥 indicate the minor and higher voltage magnitude, 

respectively. 𝑁𝑙  refers to the number of transmission lines.  

III. The Stochastic WT power, SPV Power, EV power 

Models, and Load demand uncertainty 

A.  Modelling of wind turbine power 

In order to represent the average power production of WT 

units, Weibull PDFs are employed in the subsequent manner 

[36]: 

 fν(ν)=
𝐾

C
 . (

ν

C
)
K-1

.e
-(

ν

C
)
K

 (34)  

where ν represents the wind speed m/s, K refers to Weibull 

distribution shape parameter, and C indicates the Weibull 

distribution scale parameter. 

Where K stands for the Weibull distribution shape parameter, 

C for the Weibull distribution scale parameter, and v for the 

wind speed in meters per second. 

The following represents the Weibull distribution mean: 

 𝑀𝑤𝑡=C . Γ (1+ 1
K⁄ ) (35)  

The gamma function formula is as follows:    

Γx=∫ tx-1e-t dt
∞

0

    , x > 0 (36)  

The power output of wind turbine (WT) units is primarily 

affected by wind speed and the power curve of the WT, which 

can be described by the following equation: 

Pw(ν)=

{
 
 

 
 

  0             ν≤νci  &   ν>νco

    
ν2-νci

2

νnom
2 -νci

2
. P Wr

   νci< ν≤νnom

P Wr
           νnom< ν≤νco

 (37)  

where νci , νco , and νnom are the cut-in, cut-out and rated wind 

speed, respectively. Whereas, WT units' rated power is 

represented by 𝑃 𝑊𝑟. It is clear from Eq. (37), that there is no 

output power if ν rises over νco and falls below νci.  Moreover, 

power is produced by the wind turbine while the wind speed 

is between two values νnom and νco. For those distinct regions, 

possibilities can be stated as follows [37]: 

 𝐹w(Pw){Pw = 0} = 1 − exp (−(
νci

C
)
k

)

+ exp (−(
νco

C
)
k

)   

(38)  

 𝐹w(Pw){Pw = Pwr} = exp (−(
νnom

C
)
k

)

− exp (−(
νco

C
)
k

)   

(39)  

 

Unlike the discrete regions mentioned earlier, the power 

output of wind turbines (WT) is continuous between the cut-

in and rated wind speeds. Therefore, the potential for this range 

is determined as follows [24]: 

𝐹w(Pw)=
𝐾(νnom − νci)

𝐶𝐾 ∗ Pwr

(νci

+
Pw

Pwr

(νnom − νci))

𝑘−1

∗ exp 

(

 −(
νci +

Pw

Pwr
(νnom − νci)

𝑐
)

𝑘

)

  

(40)  

B.  Modelling of Solar Photovoltaic power 

 

A lognormal function is used to more precisely characterize 

the frequency distribution in order to account for changing 

weather conditions. The parameters for the lognormal 

distribution function are calculated using the global irradiation 

mean and standard deviation. A lognormal Probability Density 

Function (PDF) governs sun irradiance (I), which affects the 

output of solar photovoltaic (SPV) devices. The following 

formula [38] can be used to express the likelihood of the solar 

irradiance: 

   f𝐼 (I )=
I

 I 𝝁√𝟐𝝅
 . e

(
−[𝑙𝑛 𝑋 −𝝈]2

2μ
)
 ,     I  > 0 (41)  

where the standard deviation (STD) and mean are denoted, 

respectively, by 𝜇 and 𝜎. The following formula can be used 

to express the lognormal distribution's mean: 

  𝑀𝑙𝑑=e
(𝝈+

𝝁𝟐

𝟐
 )
 (42)  

The relationship between the solar irradiance and the energy 

produced by the solar photovoltaic (SPV) units can be stated 

directly as follows [39]. 

𝑃𝑠𝑟(I )=

{
 
 

 
   𝑃𝑠𝑟 (

𝐼2

𝐼𝑠𝑟𝐼𝑐
)         ;   0  < I  <  𝐼𝑐

𝑃𝑠𝑟 (
𝐼

𝐼𝑠𝑟
)        ;         I  > 𝐼𝑐

 (43)  

In the given equation, 𝑃𝑠𝑟 denotes the SPV units’ rated output, 

𝐼𝑐  is a specific irradiance point, and 𝐼𝑠𝑟 refers to the solar 

irradiance at the rated environment. It is crucial to remember 

that the energy allocated for solar power is negotiable and is 

decided upon by the private company selling the solar power 

as well as the system operators. The following computations 

can be used to calculate the costs related to overestimating or 

underestimating the output of the solar photovoltaic (SPV) 

devices [40]: 

𝐶𝑈𝑆(𝑃 𝑆𝑎 − 𝑃 𝑆𝑠) = 𝑝𝑆(𝑃 𝑆𝑎 − 𝑃𝑆𝑠)  

= 𝑝𝑆∑[𝑃 𝑆𝑆+ − 𝑃 𝑆𝑆]

N+

𝑁=1

∗ 𝑓𝑝𝑠+ 
(44)  

𝐶𝑂𝑆(𝑃 𝑆𝑠 − 𝑃 𝑆𝑎) = 𝑅𝑆(𝑃 𝑆𝑠 − 𝑃 𝑆𝑎)  

= 𝑅𝑆 ∑[𝑃 𝑆𝑆−𝑃 𝑆𝑆−]

N−

𝑁=1

∗ 𝑓𝑝𝑠− 
(45)  
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where 𝑃 𝑆𝑆+ and 𝑃 𝑆𝑆− denote the excess power and insufficient 

power. 𝑓𝑝𝑠+ and 𝑓𝑝𝑠− indicate the relative occurrences of 𝑃 𝑆𝑆+ 

and 𝑃 𝑆𝑆−. 

C.  Modelling of vehicle-to-grid power 

As stated in reference [41], the distribution of the deployment 

of electric vehicles as a vehicle-to-grid (V2G) source follows 

a normal distribution and can be mathematically represented 

by: 

𝑓𝑝𝑒𝑣 =
1

√2𝜋𝜑2
𝑒
−
(𝑃𝑝𝑒𝑣−𝜇)

2

2𝜑2  (46)  

where 𝜇 and 𝜑 are the mean and SD of a normal PDF. 𝑃𝑝𝑒𝑣 

refers to the available V2G power. 

D.  Modelling of Load demand uncertainty 

Uncertainties in load modeling are represented using the PDF 

of a normal distribution, as follows: 

𝑓𝑑(𝑃𝑑) =
1

𝜎𝑑√2𝜋
𝑒𝑥𝑝 [−

(𝑃𝑑 − 𝜇𝑑)
2

2𝜎𝑑
2

] (47)  

In this equation, 𝜇𝑑 and 𝜎𝑑 denote the average and std values, 

respectively. 𝑃𝑑 refers to the probability density of the load's 

normal distribution. The scenarios of the Load demand were 

generated through Monte Carlo simulations using a normal 

distribution PDF with a sample size of 1000, where 𝜇𝑑 is equal 

to 70 and 𝜎𝑑 is equal to 10, as displayed in Figure 2. The 

probability of load demand and the scenario of predictable 

load can be calculated as follows: 

𝜏𝑑,𝑖 = ∫
1

𝜎𝑑√2𝜋
𝑒𝑥𝑝 [−

(𝑃𝑑 − 𝜇𝑑)
2

2𝜎𝑑
2

] 𝑑𝑃𝑑

𝑃𝑑,𝑖
𝑚𝑎𝑥

𝑃𝑑,𝑖
𝑚𝑖𝑛

 (48)  

𝑃𝑑,𝑖 =
1

𝜏𝑑,𝑖
∫

𝑃𝑑

𝜎𝑑√2𝜋
𝑒𝑥𝑝 [−

(𝑃𝑑 − 𝜇𝑑)
2

2𝜎𝑑
2

] 𝑑𝑃𝑑

𝑃𝑑,𝑖
𝑚𝑎𝑥

𝑃𝑑,𝑖
𝑚𝑖𝑛

 (49)  

where, 𝑃𝑑,𝑖
𝑚𝑖𝑛, 𝑃𝑑,𝑖

𝑚𝑎𝑥 are the max and min bounds of interval 𝑖. 
The backward reduction algorithm (BRA), as detailed in 

reference [6], was utilized for the purpose of scenario 

reduction.  

 

FIGURE 2.  scenarios of the Load demand through Monte Carlo 

simulations. 

IV. Mathematical model of the metaheuristic Algorithms 

This study introduces an innovative approach to improve the 

performance of the artificial gorilla troops optimizer (GTO) 

algorithm by hybridizing it with manta ray foraging 

optimization (MRFO). The objective is to address the 

identified weaknesses of the GTO while retaining its existing 

search operators. The proposed method involves replacing a 

portion of the worst solutions generated in each iteration with 

solution candidates according to the representative candidates 

of the current population. Through incorporating this MRFO 

algorithm in the GTO, the balance between exploration and 

exploitation is improved, and the algorithm's ability to handle 

premature convergence is enhanced, resulting in significant 

optimization performance improvements. The authors suggest 

that other algorithms with similar shortcomings could also 

benefit from the proposed MRFO technique. The initial steps 

of the original GTO and MRFO algorithms are described in 

this section. 

A.  Gorilla Troops Optimizer (GTO) 

1)  EXPLORATION PHASE 

During the exploration stage, three different operators were 

employed: To investigate the GTO algorithm further, relocate 

to an unidentified area. The shift to other gorillas, the second 

component, improves the balance between exploitation and 

exploration. The 3rd component relates to the exploration 

stage; specifically, moving to a well-known region knowingly 

improves the GTO algorithm's capacity to find various 

improvement spaces. The following equation can be used to 

represent these various operators [42]: 

 
𝐺𝑋(𝑡 + 1)

= {

(𝑢𝑏 − 𝑙𝑏) × 𝑟1 + 𝑙𝑏,                      𝑟𝑎𝑛𝑑 < 𝑧 
(𝑟2 − 𝐶) × 𝑋𝑟(𝑡) + 𝐷 × 𝐵, 𝑟𝑎𝑛𝑑 ≥ 0.5 

𝑋(𝑖) − 𝐷 × (𝐷 × (𝑋(𝑡) − 𝐺𝑋𝑟(𝑡)) + 𝑟3 × (𝑋(𝑡) − 𝐺𝑋𝑟(𝑡))) , 𝑟𝑎𝑛𝑑 < 0.5  

 

(50) 𝐶 = (cos(2 ×𝑟4) + 1) × (1 −
𝑖𝑡

𝑀𝑎𝑥𝑖𝑡
) 

𝐷 = 𝐶 × 𝑘 

𝐵 = 𝐸 × 𝑋(𝑡) 
𝐸 = [−𝐶, 𝐶] 

Where, 𝐺𝑋(𝑡 + 1) refers to the gorilla candidate location in 

the following cycle. 𝑙𝑏 and 𝑢𝑏 represents the lower and upper 

limits of the variables, respectively. 𝑟1, 𝑟𝑎𝑛𝑑, 𝑟2, 𝑟3, and 𝑟4 

indicate random values ranging from 0 to 1.  𝑧 is a variable 

with a range of 0 to 1. 𝑋(𝑡) is the present vector of the gorilla 

location whereas 𝑋𝑟(𝑡) represents one among the gorillas 

chosen at random from the entire group of gorillas and also 

𝐺𝑋𝑟(𝑡). 𝑘 denotes a random number between -1 and 1. 

1)  EXPLOITATION STAGE 

There are two behaviors used during the exploitation stage. In 

the exploitation phase, two tactics are utilized. When 𝐶 ≥ 𝑊, 

the first tactic is called "Follow the Silverback." The parameter 

𝑊 needs to be set prior to the optimization process. 

Mathematically, the first tactic is determined as below: 
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𝐺𝑋(𝑡 + 1) = 𝐷 ×𝑀 × (𝑋(𝑡) − 𝑋𝑠𝑖𝑙𝑣𝑒𝑟𝑏𝑎𝑐𝑘)

+ 𝑋(𝑡) 

(51) 
𝑀 = (|

1

𝑁
∑𝐺𝑋𝑖(𝑡)

𝑁

𝑖=1

|

𝑔

)

1
𝑔

 

𝑔 = 2𝐷 

Where 𝑋𝑠𝑖𝑙𝑣𝑒𝑟𝑏𝑎𝑐𝑘 indicates the optimal solution, 𝑁 represents 

the maximum number of gorillas. 

The second step is the struggle for adult females, and it is used 

once 𝐶 < 𝑊. The equation that follows is used to compute this 

mechanism: 

𝐺𝑋(𝑖) = 𝑋𝑠𝑖𝑙𝑣𝑒𝑟𝑏𝑎𝑐𝑘

− (𝑋𝑠𝑖𝑙𝑣𝑒𝑟𝑏𝑎𝑐𝑘 × 𝑄 − 𝑋(𝑡) × 𝑄)

× 𝐴 

(52) 𝑄 = 2 × 𝑟5 − 1 

𝐴 = 𝛽 × 𝐻 

𝐻 = {
𝑁1,   𝑟𝑎𝑛𝑑 ≥ 0.5
𝑁2,   𝑟𝑎𝑛𝑑 < 0.5

 

Where 𝛽 indicates a parameter that needs to be set to a value 

prior to optimization. 𝑟5 refers to a value chosen at random 

between 0 and 1. 

B.  Manta Ray Foraging Optimization (MRFO) 

Manta Ray Foraging Optimization (MRFO) suggested by 

Zhao et al. in 2020 [43]. It imitates the behavior of a manta 

ray. The creation of MRFO involves mimicking common 

foraging techniques like chaining, cyclone, and somersaulting. 

Manta rays observe the position of the plankton and then swim 

towards it, establishing an organized line so that the plankton 

that the preceding manta rays missed will be consumed by the 

subsequent manta rays. The location with a larger 

concentration of plankton is preferable. With the exception of 

the initial one, all manta rays now travel in the direction of the 

best position as well as the one in front of it. This process, 

referred to as "chain foraging," has the following mathematical 

expression [44]: 
𝑋𝑖,𝑗(𝑡 + 1)

= {
𝑋𝑖,𝑗(𝑡) + (𝑋𝑏𝑒𝑠𝑡,𝑗(𝑡) − 𝑋𝑖,𝑗(𝑡)) × (𝑟(: ) − 𝜆)∆∀𝑖= 1, 𝑗 ∈ 𝑁𝑉𝑎𝑟

𝑋𝑖,𝑗(𝑡) + (𝑋𝑖−1,𝑗(𝑡) − 𝑋𝑖,𝑗(𝑡)) × (𝑟(: ) − 𝜆)∆∀𝑖> 1:𝑁𝑝𝑜𝑝
 (53) 

𝜑 = 2 × 𝑟(: ) × √|log(𝑟(: ))| (54) 

When a group of manta rays locates a large concentration of 

plankton in deep water, they join together head-to-tail to form 

a spiral chain. Each manta ray in the chain goes in the direction 

of the plankton position and the one in front of it. This process, 

referred to as "cyclone foraging," can be stated as follows: 
𝑋𝑖,𝑗(𝑡 + 1)

= {
𝑋𝑏𝑒𝑠𝑡,𝑗(𝑡) + ∆𝑋𝑖,𝑗 × (𝑟 − 𝛽)∆∀𝑖= 1, 𝑗 ∈ 𝑁𝑉𝑎𝑟

𝑋𝑏𝑒𝑠𝑡,𝑗(𝑡) + 𝑟 × (𝑥𝑖−1,𝑗(𝑡) − 𝑋𝑖,𝑗(𝑡)) + 𝛽 × ∆𝑋𝑖,𝑗∆∀𝑖> 1:𝑁𝑝𝑜𝑝
 

(55) 

𝛽 = 2 × 𝑒𝑥𝑝 (𝑟1 ×
𝑇𝑚𝑎𝑥 − 𝑡 + 1

𝑇𝑚𝑎𝑥
) × sin(2𝜋𝑟1) (56) 

In order to maximize plankton intake, manta rays move in a 

frequent, unpredictable, cyclic, and local manner during the 

final stage of "somersault foraging." Every manta ray moves 

to and from the plankton position, which serves as a reference, 

before somersaulting to a new location. This step has the 

following mathematical expression: 

𝑋𝑖,𝑗(𝑡 + 1) = 𝑋𝑖,𝑗(𝑡) + 𝑆𝐹 × (𝑟2𝑋𝑏𝑒𝑠𝑡,𝑗 − 𝑟3𝑋𝑖,𝑗(𝑡)) ∆∀𝑖∈ 𝑁𝑝𝑜𝑝 (57) 

𝑋𝑏𝑒𝑠𝑡,𝑗 can be well-defined as shown in Eq. (54) which 

describes the optimum position with high food concentration. 

If the low concentration is confirmed, the random location is 

set as shown in Eq. (57). 
𝑋𝑖,𝑗(𝑡 + 1)

= {
𝑋𝑏𝑒𝑠𝑡,𝑗(𝑡) + ∆𝑋𝑖,𝑗 × (𝑟 − 𝛽)∆∀𝑖= 1, 𝑗 ∈ 𝑁𝑉𝑎𝑟

𝑋𝑏𝑒𝑠𝑡,𝑗(𝑡) + 𝑟 × (𝑥𝑖−1,𝑗(𝑡) − 𝑋𝑖,𝑗(𝑡)) + 𝛽 × ∆𝑋𝑖,𝑗∆∀𝑖> 1:𝑁𝑝𝑜𝑝
 
(58) 

𝛽 = 2 × 𝑒𝑥𝑝 (𝑟1 ×
𝑇𝑚𝑎𝑥 − 𝑡 + 1

𝑇𝑚𝑎𝑥
) × sin(2𝜋𝑟1) (59) 

𝑋𝑖,𝑗(𝑡 + 1)

= {
𝑋𝑟𝑎𝑛𝑑(𝑡) + ∆𝑋𝑖,𝑗 × (𝑟 − 𝛽)∆∀𝑖= 1, 𝑗 ∈ 𝑁𝑉𝑎𝑟

𝑋𝑏𝑒𝑠𝑡,𝑗(𝑡) + 𝑟 × (𝑥𝑖−1,𝑗(𝑡) − 𝑋𝑖,𝑗(𝑡)) + 𝛽 × ∆𝑋𝑖,𝑗∆∀𝑖> 1:𝑁𝑝𝑜𝑝
 
(60) 

𝑋𝑟𝑎𝑛𝑑(: ) = 𝐿𝑏 + 𝑟(: ) × (𝐻𝑏 − 𝐿𝑏) (61) 

Actually, there are two distinct characteristics that 

metaheuristic algorithms share: exploitation and exploration. 

Metaheuristic algorithms are superior to other algorithms 

because of these two traits. Within MRFO, search spaces will 

be conducted if 𝑡 𝑇𝑚𝑎𝑥
⁄  is less than rand. The MRFO control 

system is described by 𝑁𝑝𝑜𝑝, 𝑇𝑚𝑎𝑥, and 𝑆𝐹 which should be 

closely adhered to guarantee its optimal performance. 

C.  Hybrid GTO and MRFO algorithm (MRGTO) 

The flowchart of the MRGTO technique is shown in Figure 3, 

where the position of the MRFO in the hybrid algorithm is 

highlighted. By incorporating the MRFO, the MRGTO 

algorithm is able to explore more extensively, leading to an 

enhanced performance. The basic steps of the proposed 

MRGTO technique can be outlined by the iterative steps 

displayed in Algorithm 1. 
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FIGURE 3.  Flowchart of proposed MRGTO algorithm.

 

Algorithm 1: Pseudocode of the MRGTO technique  

Set the control parameter (problem dimension (d), maximum number of iterations, population size), lower and upper 

limits (lb, ub)  

     Set the population's initial value at random.  

    Assess the objective function of the new solution  

   Determine the optimal outcome.   

     While iter ≤ MaxIt 

          Update the C and D using Eq. (50)  

% Exploration phase 

          For i=1:N 

             Update the location Gorilla using Equation (50) 

         End For 

% Create group 

        Calculate the objective function values of Gorilla 

        if GX is better than X, replace them 

       Set Xsilverback as the location of silverback (best location) 

          For i=1:N 

                 If 𝑟𝑎𝑛𝑑 < 0.5 

End

No

it  Maxit

Start
Initialize gorillas and set parameters 

nPop, Maxit, β1, z, α, β2
Evaluate gorilla fitness

Update the C, D using Eq. (50)

Yes

Update the gorilla position 

using Eq. (50)

Calculate the gorilla fitness 

for the new solution

Set the best solution 

Exploration phase

i   nPop

Update the position using Eq. (51) 

Yes

C    W

Update the position using Eq. (52) 

Yes No

Calculate the gorilla fitness for 

the new solution
Set the best solution 

Return the best solution

Exploitation phase

No

Check if 

rand< 0.5

Update position using 

operators by Eq. (53)

Check if 

coef< rand

Update position using 

operators by Eq. (60)

No

Yes

NoYes
Update position using 

operators by Eq. (58)
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% Chain foraging 

                    Update the new position of each individual by Eq. (55) 

                 Else If  

                     If 𝑐𝑜𝑒𝑓 < 𝑟𝑎𝑛𝑑 

% Spiral foraging 

                            Update the new position of each individual by Eq. (58) 

                     Else If  

%Somersault foraging 

                           Update the new position of the each individual using Eq.(60) 

                   End If 

              End If 

          End For  

% Exploitation phase 

          For i=1:N 

                 If |𝐶| ≥ 1 

                     Update the place of Gorilla by Equation (51) 

                Else If  

                     Update the place of Gorilla by Equation (52) 

               End If 

          End For  

% Create group 

        Verify the new positions' boundaries and evaluate the fitness values. 

        Choose the new solution if the fitness improves 

        iter=iter+1 

    End while  

   Output the optimal solution 

D.  Computational complexity 

The GTO technique's computational complexity depends on 

three essential procedures: initialization, objective function 

evaluation, and updating of gorillas. Since there is N gorilla, 

the computational complexity in the initialization procedure is 

equal to O(N). In contrast, the computational complexity in the 

update mechanism procedure is according to two stages of 

exploration and exploitation. In each of the stages, an updating 

operation is executed on all the solutions in the optimization 

area, and the optimal solution is performed, which is equal to 

O(T × N) + O(T × N × D) × 2. Where T indicates the maximum 

value of iterations, and D refers to the dimensions of the issues. 

Consequently, the GTO technique's computational complexity 

is O(N × (1 + T + TD) × 2). When the computational 

complexity of the MRFO’s part is added, The exploration 

phase increased by O(T × N × D). Consequently, the MRGTO 

algorithm's computational complexity is O(N × (1 + T + TD) 

× 3). 

V. Simulation Results and Discussion 

 

The results of the experiments conducted on 7 common test 

functions using the suggested technique and modern methods 

are shown in this section. Ref. [45] provides the mathematical 

formulation for these benchmark functions. The experiments 

provide a comprehensive evaluation of the techniques. 

Additionally, the section includes four examples that assess 

the effectiveness and applicability of the previously described 

MRGTO method. 

A.  Benchmark functions 

In this subsection, a demonstration is presented to exhibit the 

exceptional performance of the MRGTO method by 

conducting experiments on 7 benchmark functions, 

implemented in MATLAB (R2016a) on a computer with an 

Intel(R) Core i5-4210U CPU 2.40 GHz and 8GB RAM. The 

experiments were carried out to compare the MRGTO 

algorithm with seven recently proposed techniques, namely 

MRFO, BWO, RUN, DBO, TSO, and the original GTO 

algorithm. The maximum number of iterations for all studied 

algorithms was 200, and the number of populations was 50. 

Table I displays the parameter settings of the studied 

techniques. 
TABLE I 

THE PARAMETER SETTINGS FOR THE ALGORITHMS USED IN THE 

COMPARATIVE STUDY. 

Algorithm Parameter 

MRGTO 𝛽 = 3,𝑊 = 0.8, 𝑃 = 0.03, 𝑆 = 2 (Default) 

GTO 𝛽 = 3,𝑊 = 0.8, 𝑃 = 0.03 (Default) 

BWO Wf = [0.1 0.05] (Default) 

MRFO S=2 (Default) 

DBO 𝑘, 𝜆 = 0.1, 𝑏 = 0.3, 𝑆 = 0.5 (Default) 
 

The average value and standard deviation of the results 

achieved by these algorithms were utilized to evaluate their 
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performance. Lower average value and standard deviation 

indicate greater stability and robustness in global optimization 

competence. Table II displays the statistical outcomes attained 

using the MRGTO algorithm and 5 other well-known methods 

for solving the seven benchmark functions, where the best 

results are highlighted in boldface. According to the table, the 

MRGTO technique surpasses the other methods in terms of 

average value for most of the benchmark functions. The lowest 

average rank value in Figure 4 belongs to MRGTO, indicating 

its superior performance over all other algorithms. This result 

confirms the effectiveness of our approach in identifying 

global optima for various problems. Additionally, Figure 5 

presents the convergence curves for each benchmark function, 

which demonstrate that the MRGTO approach has a 

significantly superior convergence characteristics compared to 

the MRFO, BWO, RUN, DBO, TSO, and the original GTO 

algorithm.  The rapid convergence capability of the MRGTO 

approach enhances its possible as a competent approach for 

solving real-world optimization problems. In conclusion, the 

results prove that the MRGTO technique is highly efficient 

and operative for solving these types of problems. The MRFO 

and GTO algorithms also exhibit robust effectiveness and rank 

as the second and third best, respectively. 

 

TABLE II 

THE STATISTICAL RESULTS OF BENCHMARK FUNCTIONS BY THE MRGTO TECHNIQUE AND OTHER RECENT METHODS. 
Function MRGTO GTO MRFO BWO RUN DBO TSO 

F1 Best 0 1.3E-176 8.8E-180 1.5E-111 9.07E-86 2.59E-64 4.6E-118 

Mean 0 9.1E-152 3E-168 3.8E-106 5.02E-77 4.6E-40 1.07E-94 

Median 0 4.2E-170 8.2E-174 6.8E-108 1.06E-82 2.24E-49 5.3E-106 

Worst 0 1.8E-150 5.3E-167 2.5E-105 1E-75 5.64E-39 2.15E-93 

std 0 4.1E-151 0 6.8E-106 2.24E-76 1.35E-39 4.8E-94 

Rank 1 3 2 4 6 7 5 

F2 Best 2.7E-199 2.96E-85 5.73E-92 1.95E-57 1.04E-47 6.66E-36 2.98E-58 

Mean 2.8E-187 1.44E-80 2.78E-85 2.56E-54 1.87E-43 2.95E-22 1.66E-50 

Median 5.6E-191 5.06E-82 8.8E-87 1.15E-54 1.2E-44 7.84E-30 2.01E-52 

Worst 5E-186 9.29E-80 3.19E-84 1.18E-53 2.3E-42 5.34E-21 2.41E-49 

std 0 2.93E-80 7.82E-85 3.58E-54 5.35E-43 1.19E-21 5.44E-50 

Rank 1 3 2 4 6 7 5 

F3 Best 0 3.8E-167 1.7E-172 6.4E-104 5.75E-77 7.93E-70 3.4E-113 

Mean 0 3.9E-149 5.2E-162 5.5E-100 2.33E-62 6.56E-18 1.48E-89 

Median 0 9.3E-157 4.9E-167 1.2E-101 1.5E-69 1.23E-43 9.2E-100 

Worst 0 7.4E-148 8.3E-161 7.3E-99 4.54E-61 1.31E-16 2.79E-88 

std 0 1.7E-148 1.8E-161 1.6E-99 1.01E-61 2.93E-17 6.24E-89 

Rank 1 3 2 4 6 7 5 

F4 Best 1.2E-196 8.11E-88 3.32E-88 9.97E-55 1.35E-42 1.13E-36 4.03E-60 

Mean 1.2E-186 1.3E-80 1.1E-83 2.03E-52 2.09E-35 1.11E-17 8.06E-49 

Median 2.2E-192 8.8E-83 1.57E-84 5.03E-53 5.61E-39 3.95E-26 1.61E-50 

Worst 2.3E-185 1.37E-79 1.44E-82 1.38E-51 4.16E-34 1.94E-16 8.05E-48 

std 0 3.51E-80 3.22E-83 4.03E-52 9.3E-35 4.35E-17 1.89E-48 

Rank 1 3 2 4 6 7 5 

F5 Best 1.13E-10 4.82E-05 24.05046 0.000406 23.34961 25.89342 3.3E-05 

Mean 4E-06 3.890629 24.74472 0.010977 24.73586 26.53501 2.932789 

Median 1.91E-06 0.003429 24.73866 0.006422 24.85999 26.54883 0.100044 

Worst 2.32E-05 26.5186 25.81043 0.05599 26.52757 27.55468 26.85013 

std 7.38E-06 9.448749 0.428115 0.015734 0.832917 0.385201 8.100797 

Rank 1 4 6 2 5 7 3 

F6 Best 1.25E-30 1.28E-07 4.8E-06 2.47E-08 7.23E-09 0.000529 5.72E-06 

Mean 9.27E-20 0.000152 2.36E-05 5.36E-07 1.19E-08 0.009263 0.003695 

Median 2.34E-24 2.01E-05 1.09E-05 3.77E-07 1.19E-08 0.005537 0.00104 

Worst 1.82E-18 0.001805 0.000139 1.4E-06 2.24E-08 0.03888 0.018609 

std 4.06E-19 0.0004 3.13E-05 4.28E-07 3.7E-09 0.009978 0.00494 

Rank 1 5 4 3 2 7 6 

F7 Best 6.29E-06 5.83E-06 1.75E-05 2.65E-06 3.74E-05 0.00037 2.22E-05 

Mean 9.16E-05 0.000168 0.000226 0.000257 0.00042 0.004664 0.000684 

Median 7.22E-05 0.000152 0.00019 0.000225 0.000413 0.004214 0.00065 

Worst 0.000237 0.000421 0.000832 0.000674 0.000865 0.012705 0.002054 

std 7.58E-05 0.00012 0.000189 0.000205 0.000268 0.003369 0.000585 

Rank 1 2 3 4 5 7 6 

Average Rank 1 3.285714 3 3.571429 5.142857 7 5 

Final ranking 1 3 2 4 6 7 5 
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FIGURE 4.  The average ranks attained using the tied rank test for 23 

functions using several techniques. 

Statistical Analysis of MRGTO: Table III demonstrates the 

statistical analysis of discrepancies between MRGTO and 

other algorithms by the Wilcoxon rank-sum test (WRST), a 

paired examination for identifying significant differences 

between two approaches. The symbols "+/=/-" in the table 

show whether MRGTO performs better, similarly, or worse 

than the comparison approach at a significance level of 

α=0.05. The table also presents the statistical results of 

MRGTO in several dimensions and functions, representing its 

comparative performance compared to the comparison 

method. The results expose that MRGTO outperforms other 

comparison methods in the statistics of these benchmark 

functions Therefore, it can be concluded that the MRGTO 

method shows superior performance compared to other 

approaches across most functions, highlighting its substantial 

benefit over other techniques. 
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F7 

FIGURE 5.  The convergence curves of the studied techniques for seven benchmark functions. 

TABLE III 
THE STATISTICAL RESULTS ATTAINED BY THE WILCOXON RANK-SUM TEST. 

MRGTO 

vs. 
GTO MRFO DBO TSO RUN BWO 

Function P winner P winner P winner P winner P winner P winner 

F1 8.01E-09 + 8.01E-09 + 8.01E-09 + 8.01E-09 + 8.01E-09 + 8.01E-09 + 

F2 6.80E-08 + 6.80E-08 + 6.80E-08 + 6.80E-08 + 6.80E-08 + 6.80E-08 + 

F3 8.01E-09 + 8.01E-09 + 8.01E-09 + 8.01E-09 + 8.01E-09 + 8.01E-09 + 

F4 6.80E-08 + 6.80E-08 + 6.80E-08 + 6.80E-08 + 6.80E-08 + 6.80E-08 + 

F5 6.27E-08 + 6.27E-08 + 6.27E-08 + 6.27E-08 + 6.27E-08 + 6.27E-08 + 

F6 6.80E-08 + 7.90E-08 + 6.80E-08 + 6.80E-08 + 6.80E-08 + 6.80E-08 + 

F7 5.65E-02 = 1.56E-01 = 6.80E-08 + 1.61E-04 + 4.68E-05 + 4.70E-03 + 

WRST 

(+/=/-) 
6/1/0 6/1/0 7/0/0 7/0/0 7/0/0 7/0/0 

B.  The study case results 

This section assesses the MRGTO technique's performance 

using the modified IEEE-30 bus test system. The objective is 

to lower the overall cost of generation and accelerate the 

convergence of the OPF problem, which includes EVs and 

RESs. We examine four scenarios, both with and without the 

V2G energy source. On a laptop with an I7-8700 CPU and 16 

GB RAM, MATLAB 2016a and MATPOWER are used to 

run the simulation. The algorithms are run ten times with a 

population of fifty and a 200-iteration on each run. The two 

traditional GTO and MRFO algorithms, along with other 

currently used techniques, are contrasted with the MRGTO 

algorithm. Two objective functions including generator cost 

and total cost with a carbon tax are the basis for the 

comparison. The outcomes demonstrate that, with regard to 

both objectives, the MRGTO algorithm performs better than 

the other optimization techniques. 

Six generators and 24 load buses connected by 41 branches 

make up the IEEE 30-bus system. Bus 1 is the slack bus. 

According to [13], the range of voltage magnitudes for load 

buses and generators is 0.95 p.u. to 1.1 p.u.; for tap-changing 

transformers, it is 0.9 p.u. to 1.1 p.u.; and for VAR 

compensators, it is 0 p.u. to 0.05 p.u. In this study, the system 

is updated by adding electric vehicle (EV), wind turbine (WT), 

and solar photovoltaic (SPV) units in addition to the current 

thermal generators. The thermal generators are situated at 

buses 1, 2, and 8, and in case studies 1 and 2, there is also an 

SPV unit at bus 13, a WT unit at bus 5, and a bus 11 unit. For 

cases 3 and 4, the EV unit is located at bus 11 instead of the 

WT unit. Figure 6 illustrates the modified system grid, which 

includes three generators. All of the cost and emission 

coefficients that were employed in the thermal generators’ 

estimates are shown in Table IV. 
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FIGURE 6.  The Modified IEEE 30-bus test system. 

TABLE IV 

THERMAL GENERATORS' COSTS AND EMISSION COEFFICIENTS FOR THE SYSTEM UNDER INVESTIGATION. 

Unit   Bus no.  𝛼 𝛽 𝛾 𝑒 𝑔 𝑎 𝑏 𝑐 𝜔 𝜇 

PG1 1 0 2 0.00375 18 0.037 4.091 -5.554 6.49 0.0002 6.667 

PG2 2 0 1.75 0.0175 16 0.038 2.543 -6.047 5.638 0.0005 3.333 

PG8 8 0 3.25 0.00834 12 0.045 5.326 -3.55 3.38 0.002 2 

The frequency distribution of wind speeds for the WT 

generators using Weibull fitting is displayed in Figures 7a and 

7b [46]. The power curve was derived after 8000 Monte-Carlo 

simulations. The WT generator at bus 5 has Weibull 

Probability Density Function (PDF) parameters of c = 9 and k 

= 2, whereas the WT generator at bus 11 has PDF parameters 

of c = 10 and k = 2. The Weibull distribution average for buses 

5 and 11 is 𝑀𝑤𝑡 = 7.976 m/s and 8.862 m/s, respectively. An 

installed 3 MW wind turbine had cut-in wind speed (νci= three 

m/s, cut-out wind speed (νco = twenty-five m/s), and rated 

wind speed (νnom = sixteen m/s). 

 

The process for calculating the lognormal PDF parameters, 

which are based on the average and standard deviation (STD) 

of the global irradiation as stated in [47], is comparable to the 

procedure used to calculate the PV generators’ output. In 

particular, the following criteria are chosen: = 6, = 0.6, and I = 

483 W/m is the lognormal mean. The frequency distribution is 

then produced using the Monte-Carlo approach with a sample 

size of 8000, as seen in Fig. 8a, which is fitted to the lognormal 

distribution of solar irradiation. Additionally, Figure 8b shows 

the histogram for the SPV units' output, illustrating how the 

variability in solar irradiance causes the SPV output to be 

stochastic. 

29

30

27 28

2526

23

15 18 19

20

17

1614

13 12

1
3

4

11

9

6

7

52

8

22

21

24

10

VAR compensator

Thermal generator

Transformers

Wind Turbines PV

Load PEV

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3425754

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



 

VOLUME XX, 2017 1 

 

 

(a) at bus 5 (b) at bus 11 

FIGURE 7.  The distribution of wind speed for the WT units located at bus 5 and 11. 

 

 
 

(a) Solar irradiance distribution (b) Active power distribution 

FIGURE 8.  The distribution of solar irradiance and real power for the SPV units at bus 13. 

 

FIGURE 9.  The normal distribution for the EV unit at bus 11. 

Furthermore, Figure 9 shows the normal distribution for the 

EV unit which, in case studies 3 and 4, is located at bus 11 

instead of the wind generator. 8000 Monte-Carlo simulations 

were performed in order to produce the power curve. For the 

EV unit located at bus 11, the parameters of the normal 

distribution are a mean of 10 and a standard deviation of 2. 

 

In this case, the proposed MRGTO algorithm is applied to 

solve the OPF problem considering stochastic renewable 

energy sources (RES) with and without Vehicle-to-grid (V2G) 

technology, as below: 

1)  CASE 1: OPTIMIZATION OF THE FUEL COST WITH 
RES 

The objective of the case study was to utilize the MRGTO 

algorithm to decrease the overall cost of power generation, 

while also confirming that the system constraints remained 

within their predetermined boundaries. The coefficients of the 

direct cost for WPGs were 𝑔𝑊𝑑1
  = 1.6 and 𝑔𝑊𝑑2

 = 1.75, and 
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the penalty cost coefficients for underutilized wind power 

were assumed to be 𝑝𝑊1= 𝑝𝑊2= 1.5, while the reserve cost 

coefficients for overestimation were 𝑅𝑊1= 𝑅𝑊2= 3. Also, the 

direct cost coefficient 𝑔𝑆𝑑, penalty cost coefficient 𝑝𝑆, and 

reserve cost coefficient 𝑅𝑆 for SPGs were proposed to be 1.6, 

1.5, and 3, respectively. The best outcomes for cases 1 and 2 

as produced by several algorithms, such as MRGTO, GTO, 

and MRFO, are shown in Table V. The results of the 

simulation clearly show that the suggested MRGTO method 

outperforms the other algorithms, achieving a minimum total 

cost of 781.5325 ($/h) for the first case. 

Figure 10 illustrates the convergence behavior of the analyzed 

for the first Case using the studied algorithms. The 

convergence refers to the tendency of a system to approach a 

stable state or a consistent result over iterations. This stability 

is crucial as it indicates the reliability and effectiveness of the 

techniques being employed. The convergence behavior 

depicted in Figure 10 provides valuable insights into how 

quickly or slowly each technique reaches a stable solution, as 

well as any oscillations or fluctuations that may occur during 

the convergence process. From this figure, the convergence 

characteristics of the proposed MRGTO algorithm is faster 

than the conventional GTO and MRFO algorithms. This 

distinction underscores the efficacy and efficiency of the 

MRGTO technique in reaching a stable solution within fewer 

iterations, demonstrating its potential to significantly enhance 

computational efficiency and optimization performance in the 

analyzed context.  

As seen in Figure 11a, all of the buses' voltage profiles for 

Case 1 were within the designated ranges. The generating 

unit's reactive power is a dependent or state variable in the 

OPF problem, and after optimization, the reactive power 

restrictions need to be met. Table V illustrates how the 

MRGTO algorithm effectively produces generator reactive 

powers within the specified bounds. Figure 12a displays the 

generator reactive power profile of all compared algorithms 

for case 1.  A statistical study of several methods is displayed 

in Table VI such as EESWHO [48], WHO [48], MPA [15], 

MPSO [15], GA [15], GOA [49], BWOA [49], GWO [49], 

ALO [49], PSO [49], GSA [49], MFO [49], BMO [49], 

SHADE-SF [40], JS [50], CGO [50], FPA [50], GPC [50], 

WSO [51], NGO [51], POA [51], ESMA [52], SMA [52], 

BWOA [52], MSA [52], PSO [53], GA [53], TFWO [53], 

TLBO [53], TLTFWO [53], and MTFWO [54] in addition to 

the MRFO, GTO, and MRGTO algorithms for the first case. 

The table clearly shows that, in this particular example, the 

MRGTO algorithm outperforms both the traditional MRFO 

and GTO algorithms as well as the previously published 

methods. 

Higher accuracy and robustness are delivered by the suggested 

MRGTO technique, as demonstrated by the results shown in 

Table VI. Additionally, the table validates MRGTO's efficacy 

and shows how it outperforms more than thirty well-known 

algorithms for the OPF problem. Boxplots are used to confirm 

that the method is effective in locating solutions inside a 

limited range. The shape of the boxplots demonstrates that the 

MRGTO algorithm regularly provides good outcomes and 

exhibits highly competitive performance relative to other 

approaches. The boxplots for case 1 in Fig. 13a indicate that 

the suggested MRGTO technique produces more precise 

optimization results. The boxplots' tight distribution suggests 

that the method can reliably find solutions inside a limited 

range, which is an important feature for handling issues of this 

nature. 
TABLE V 

THE OUTCOMES OF CASES 1 AND 2 FOR THE MRGTO ALGORITHM AND OTHER RECENTLY EMPLOYED OPTIMIZATION ALGORITHMS. 

 Min Max 
Case 1  Case 2 

MRGTO GTO MRFO MRGTO GTO MRFO 

Generator active power 

PG1(MW) 50 200 134.9079 134.9079 134.9103 125.3276 125.1087 124.7534 

PG2(MW) 20 80 29.38132 26.76084 28.71013 33.09102 32.45242 31.47858 

PW1(MW) 0 75 44.27896 42.70002 43.28014 46.05411 45.70349 45.25554 

PG8(MW) 10 35 10.00017 10 10.00453 10 10 10.0002 

PW2(MW) 0 60 37.33276 35.99119 37.29648 38.79667 38.50471 38.12388 

PS1(MW) 0 50 33.26212 38.85147 34.98677 35.47765 36.97566 39.13389 

Generator voltage 

V1(p.u.) 0.95 1.1 1.071628 1.072738 1.072514 1.070406 1.069948 1.070045 

V2(p.u.) 0.95 1.1 1.056928 1.057066 1.056861 1.056714 1.05631 1.056455 

V5 (p.u.) 0.95 1.1 1.034543 1.033222 1.034633 1.035572 1.035308 1.035155 

V8 (p.u.) 0.95 1.1 1.090462 1.06822 1.045422 1.064734 1.039887 1.092908 

V11 (p.u.) 0.95 1.1 1.099794 1.096972 1.096998 1.09835 1.099664 1.098441 

V13 (p.u.) 0.95 1.1 1.050028 1.043226 1.045881 1.049993 1.064558 1.049578 

Objective function 

Fuel cost ($/h) 781.5325 782.0754 781.9462 790.6934 791.3568 791.3423 

Fuel thermal unit cost 443.5091 434.8298 441.2941 433.8454 431.1451 426.9973 

Wind generation cost 249.4191 239.3955 245.8239 260.8168 258.5331 255.6042 

Solar generation cost 88.60423 107.8501 94.82825 96.03116 101.6786 108.7408 

Emission (ton/h) 1.761871 1.762517 1.762288 0.989614 0.977172 0.957355 

Total cost ($/h) - - - 808.3382 808.7798 808.4119 

Carbon tax ($/h) - - - 17.83 17.83 17.83 

Transmission loss (MW) 5.763185 5.811409 5.78833 5.347085 5.345029 5.345496 

Voltage deviation (p.u.) 0.456662 0.443573 0.447871 0.458937 0.499965 0.457548 

Generator reactive power 

QG1(MVAR) -20 150 -2.80206 -0.34855 -0.48751 -2.92847 -3.28612 -3.24456 
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QG2(MVAR) -20 60 12.41104 12.91998 11.05175 11.08102 11.33861 11.5107 

QW1(MVAR) -30 35 21.88723 21.35411 22.54309 22.25324 22.84209 22.28209 

QG8(MVAR) -15 40 40 40 40 40 34.06228 40 

QW2(MVAR) -25 30 30 30 29.88348 30 30 30 

QS1(MVAR) -20 25 15.49823 13.23168 14.12589 15.44846 20.91078 15.32024 
 

 

FIGURE 10.  The convergence behavior of the analyzed algorithms for Case 1. 

 

  

(a) Case 1 (b) Case 2 

FIGURE 11.  The voltage magnitude of the examined techniques. 
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(a) Case 1 (b) Case 2 

FIGURE 12.  The generator reactive power profile for all the algorithms. 
 

TABLE VI 

THE STATISTICAL ANALYSIS CONDUCTED FOR THE FIRST CASE. 

Technique  Min. Average  Median Max. STD 

MRGTO 781.5325 781.9982 781.898 782.4832 0.340527 

GTO 782.0754 782.6609 782.5239 783.8048 0.594211 

MRFO 781.9462 782.2266 782.261 782.4978 0.172706 

WHO [48] 781.6866 782.1924 782.2067 782.7441 0.332675 

EESWHO [48] 781.6322 782.3088 782.3227 782.8886 0.375421 

MPA [15] 781.924 782.3531 - 782.6771 0.2474 

MPSO [15] 782.9268 783.9104 - 786.06 0.9685 

GA [15] 782.8023 783.1872 - 784.2214 0.3809 

GOA [49] 785.7109 804.0168 - 823.4731 9.52 

BWOA [49] 784.8148 788.2471 - 795.4683 5.83 

GWO [49] 781.6645 783.0412 - 783.3359 0.275 

ALO [49] 781.6562 784.3253 - 791.9234 2.49 

PSO [49] 781.9047 784.9048 - 794.4221 2.52 

GSA [49] 782.2237 785.8603 - 794.8996 2.43 

MFO [49] 781.6928 782.492 - 783.9305 0.477 

BMO [49] 781.6519 781.8187 - 783.5284 0.344 

SHADE-SF [40] 782.30 - - - - 

JS [50] 781.6387 - - - - 

CGO [50] 782.195 - - - - 

FPA [50] 782.8596 - - - - 

GPC [50] 782.4229 - - - - 

WSO [51] 781.733 782.4562 - 783.7659 0.6722 

NGO [51] 781.8438 782.335 - 782.9944 0.3766 

POA [51] 782.1865 782.8452 - 785.3441 0.9205 

ESMA [52] 781.9376 - - - - 

SMA [52] 781.958 - - - - 

BWOA [52] 784.342 - - - - 

MSA  [52] 782.423 - - - - 

PSO [53] 782.71 783.2148 - 783.7969 0.89 

GA [53] 783.2565 784.6206 - 786.7536 1.37 

TFWO [53] 782.3068 782.6754 - 783.2645 0.63 

TLBO [53] 782.4558 782.9740 - 783.8231 0.94 

TLTFWO [53] 781.9791 782.2216 - 782.4136 0.20 

MTFWO [54] 781.8715 781.9661 - 782.2456 0.25 
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(a) Case 1 (b) Case 2 

FIGURE 13.  The boxplots for all the compared algorithms for Cases 1 and 2. 

2)  CASE 2: OPTIMIZATION OF THE FUEL COST WITH 
RES AND A CARBON TAX. 

This section presents the analysis of the MRGTO technique's 

performance on the modified IEEE 30-bus test system, 

specifically in Case 2. The overall costs in this instance 

comprised the costs of thermal fuel, wind, photovoltaic, and 

emissions. As it was a single-objective minimization issue, the 

value of the fitness function corresponding to the total costs. 

The results of the MRGTO algorithm and other optimization 

techniques, such as MRFO and GTO, are displayed in Table 

V, where MRGTO achieves the lowest cost of 808.3382 $/h. 

Figure 14 shows the convergence curve for the algorithms 

under study, and Figure 12b shows the reactive powers for the 

generator bus that the algorithms produced. All calculated 

values are within the designated limits. The voltage profile for 

the load buses acquired from all the algorithms is combined in 

Figure 11b. 

 

FIGURE 14.  The convergence behavior of the analyzed techniques for Case 2. 

The results of 20 runs of each method are shown in Table VII, 

together with the average simulation duration and the best, 

average, and worst output values for each objective function. 

In comparison to the GTO and MRFO algorithms, the 

suggested MRGTO method showed higher optimization and 

efficiency. The reliability of the MRGTO technique is evident 

from its outputs, which consistently outperformed those of 

other optimization methods, such as GBES [19], BES [19], DE 

[19], GOA [49], BWOA [49], GWO [49], ALO [49], PSO 

[49], GSA [49], MFO [49], BMO [49], GWO [55], SHADE-

SF [40], ABC [55], CSA [55], JS [50], CGO [50], FPA [50], 

GPC [50], ESMA [52], SMA [52], BWOA [52], MSA  [52], 

PSO [53], GA [53], TFWO [53], TLBO [53], TLTFWO [53], 

MTFWO [54]. Additionally, as shown in Figure 13b, boxplots 

were employed to assess the consistency of the optimal 

solutions obtained by the suggested MRGTO and other current 

algorithms. 
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TABLE VII 

STATISTICAL ANALYSIS OF CASE STUDY 2. 

lgorithm Min. Mean Median Max. STD 

MRGTO 808.3382 809.0565 809.2046 809.5393 0.399472 

GTO 808.7798 809.3398 809.3791 809.8774 0.379161 

MRFO 808.412 809.2303 809.3477 809.5973 0.317642 

GBES [19] 808.7192 809.0436 809.0949 809.133 0.125 

BES [19] 808.8582 809.6389 809.8551 810.1221 0.479 

DE [19] 822.5771 834.8417 835.641 845.5061 7.461 

GOA [49] 822.3074 839.1499 - 857.8005 9.32 

BWOA [49] 821.4095 824.358 - 830.89 2.66 

GWO [49] 811.2516 811.4707 - 811.6266 0.126 

ALO [49] 811.4334 811.7083 - 814.2972 0.536 

PSO [49] 811.5916 812.7758 - 818.8017 1.43 

GSA [49] 811.5264 811.7708 - 813.3572 0.4.97 

MFO [49] 811.4229 811.7398 - 812.4613 0.342 

BMO [49] 810.7982 810.7739 - 811.1199 0.145 

GWO [55] 809.93 - - - - 

SHADE-SF [40] 810.346 - - - - 

ABC [55] 811.26 - - - - 

CSA [55] 811.53 - - - - 

JS [50] 810.1201 - - - - 

CGO [50] 811.4568 - - - - 

FPA [50] 811.6664 - - - - 

GPC [50] 810.324 - - - - 

ESMA [52] 810.3558 - - - - 

SMA [52] 810.3739 - - - - 

BWOA [52] 812.0366 - - - - 

MSA  [52] 810.8843 - - - - 

PSO [53] 811.4062 812.5325 - 813.5510 0.57 

GA [53] 812.6163 813.7541 - 815.4792 2.25 

TFWO [53] 811.3949 812.3127 - 813.1720 1.16 

TLBO [53] 811.5219 812.3812 - 813.2546 1.43 

TLTFWO [53] 810.8444 810.9632 - 811.2148 0.18 

MTFWO [54] 810.2265 810.3940 - 810.4835 0.12 
 

 

 

3)  CASE 3: OPTIMIZATION OF THE FUEL COST WITH 
STOCHASTIC VEHICLE-TO-GRID AND RES 

Table VIII presents the optimal solutions, as produced by the 

MRGTO algorithm and other algorithms covered in this 

article, for all conceivable configurations of the modified 

IEEE 30-bus power system, which now includes the EV 

generators in addition to the thermal, wind, and PV generators. 

The decision variable values demonstrate that all problem 

constraints are satisfied, proving the efficacy of the methods. 

The table also shows the lowest generation costs, or 790.5985, 

790.7433, and 790.7578 $/h, that the corresponding generation 

schedules utilizing the MRGTO, MRFO, and GTO algorithms 

were able to achieve. 

For the identical condition, the suggested MRGTO algorithm 

consistently finds the best solution, as do the MRFO and GTO 

algorithms. The convergence curves for these algorithms are 

displayed in Figure 15, where the suggested MRGTO 

performs better at convergence than the original MRFO and 

GTO methods. the reactive powers for the generator bus using 

the techniques are displayed in Figure 16a, and every value 

were within the given bounds. In OPF problems, the load bus's 

voltage profile is a crucial factor that needs to be carefully 

taken into account. Additionally, all buses' operating voltages 

must be between 0.95 and 1.1 p.u. Figure 17a presents a visual 

representation of the voltage profiles for Case 3, 

demonstrating that the optimization process has met the 

specified requirements successfully. 

TABLE VIII 

THE RESULTS OBTAINED FOR CASE 3, COMPARING THE PERFORMANCE OF THE MRGTO ALGORITHM TO THAT OF RECENT OPTIMIZATION ALGORITHMS. 

 Min Max 
Case 3 Case 4 

MRGTO GTO MRFO MRGTO GTO MRFO 

Generator active power 

PG1(MW) 50 200 134.9079 134.9147 134.9102 128.71 128.931 128.7286 

PG2(MW) 20 80 42.65446 42.88033 44.13195 46.53888 47.8019 46.80258 

PW1(MW) 0 75 48.17972 47.61746 47.8695 48.90774 49.40477 48.96339 

PG8(MW) 10 35 10.00023 10.00166 10.00263 10 10 10.00339 

PW2(MW) 0 60 11.81638 11.83559 11.93693 11.92402 11.99354 11.94876 

PS1(MW) 0 50 42.15619 42.48824 40.89682 43.41195 41.37493 43.04765 

Generator voltage 

V1(p.u.) 0.95 1.1 1.073781 1.072283 1.073093 1.072819 1.072221 1.072739 

V2(p.u.) 0.95 1.1 1.059454 1.058812 1.058692 1.059307 1.058872 1.058995 
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V5 (p.u.) 0.95 1.1 1.037196 1.037395 1.035647 1.037319 1.037559 1.036696 

V8 (p.u.) 0.95 1.1 1.038062 1.039324 1.087031 1.038244 1.063071 1.038203 

V11 (p.u.) 0.95 1.1 1.1 1.099438 1.098344 1.1 1.1 1.099933 

V13 (p.u.) 0.95 1.1 1.057408 1.060869 1.05367 1.059793 1.052084 1.062201 

Objective function 

Fuel cost ($/h) 790.5985 790.7433 790.7578 798.4438 798.2806 798.5125 

Fuel thermal unit cost 490.0207 490.8738 495.4342 489.8514 495.0526 490.8848 

Wind generation cost 155.5145 153.3653 154.3269 158.3181 160.2455 158.5334 

Solar generation cost 119.8176 121.1857 115.2908 124.6182 117.0578 123.3429 

PEV generation cost 25.24571 25.31847 25.70583 25.65617 25.92474 25.75143 

Emission (ton/h) 1.759981 1.76071 1.760163 1.20728 1.223358 1.208619 

Total cost ($/h) - - - 819.9696 820.0931 820.0622 

Carbon tax ($/h) - - - 17.83 17.83 17.83 

Transmission loss (MW) 6.314878 6.338008 6.348032 6.092641 6.106188 6.094371 

Voltage deviation (p.u.) 0.458911 0.469984 0.451495 0.465705 0.452886 0.472146 

Generator reactive power 

QG1(MVAR) -20 150 -1.84214 -4.38956 -2.12345 -2.32171 -3.03954 -1.93687 

QG2(MVAR) -20 60 13.81378 13.61564 12.11212 13.14153 11.3716 12.44868 

QW1(MVAR) -30 35 23.02463 23.42983 21.39729 22.86799 22.4968 22.3947 

QG8(MVAR) -15 40 34.16205 35.9093 40 34.06459 40 34.08843 

QPEV(MVAR) -25 30 29.96487 29.41258 29.26405 29.80935 29.81514 29.66683 

QS1(MVAR) -20 25 18.12346 19.30042 16.6371 18.97823 15.89177 19.87592 
 

 

FIGURE 15.  The convergence behavior of the analyzed techniques for Cases 3 and 4. 

 

  

(a) Case 3 (b) Case 4 

FIGURE 16.  The generator reactive power profile of the studied techniques. 
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(a) Case 3 (b) Case 4 

FIGURE 17.  The voltage magnitude of the studied techniques for Cases 3 and 4. 

Table IX presents the standard deviation values for the best 

and average results obtained by the MRGTO algorithm and 

other algorithms considered in this study. The low standard 

deviation values obtained by MRGTO for both best and 

average results suggest that it achieved an optimal or near-

optimal solution during each run. Figure 18a presents a 

boxplot that visually compares the distribution results of all 

algorithms over 20 runs in this case. The plot demonstrates that 

MRGTO exhibit strong and consistent performance, with 

showing higher accuracy than other algorithms. 
TABLE IX 

STATISTICAL ANALYSIS OF CASE STUDY 3. 

Algorithm Min. Mean Median Max. STD 

MRGTO 790.5985 791.0494 791.0774 791.4633 0.346048 

GTO 790.7433 791.2288 791.2592 791.6889 0.336478 

MRFO 790.7578 791.2036 791.2509 791.5453 0.245773 

GBES [19] 791.3507 791.8828 791.8873 792.4156 0.294026 

BES [19] 791.4415 792.2648 792.2981 793.1239 0.416398 

DE [19] 802.5099 830.6065 828.8514 854.9425 21.55934 

LSO [19] 807.1078 823.5439 823.6603 850.6178 14.8507 

SMA [19] 804.8356 822.0662 819.609 840.6084 10.68986 

 

  

(a) Case 3 (b) Case 4 

FIGURE 18.  Boxplots comparing the performance of the studied methods for the third and fourth Cases. 
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4)  CASE 4: OPTIMIZATION OF THE OPERATING COST 
WITH A CARBON TAX AND STOCHASTIC VEHICLE-TO-
GRID AND RES. 

In this scenario, the aim was to minimize the total cost of 

thermal, wind, PV, and PEV generation as well as the emission 

cost. The proposed MRGTO algorithm and other well-known 

methods were employed to achieve this objective. The optimal 

solutions and control variable values for these methods are 

presented in Tables VIII. Additionally, Figure 19 illustrates 

that the MRGTO algorithm demonstrates a better convergence 

rate than the original GTO and MRFO methods. These 

findings indicate the superiority of the MRGTO algorithm 

over existing methods in terms of optimality and convergence. 

The generator reactive power profile of all compared 

algorithms for Case 4 is shown in Figure 16b. Furthermore, 

Figure 17b displays the voltage profiles of the MRGTO, GTO, 

and MRFO algorithms for the whole buses. 

 

FIGURE 19.  The convergence behavior of the analyzed techniques for Case 4. 

Table X showcases that the MRGTO algorithm achieved low 

standard deviation values for both the best and average 

outcomes, indicating that it likely reached an optimal or nearly 

optimal solution during the simulation. Figure 18b presents a 

visual representation of the consistency of the proposed 

MRGTO and other existing algorithms in achieving the 

optimal solution, using boxplots. 

TABLE X 

STATISTICAL ANALYSIS OF CASE STUDY 4. 

Algorithm Min. Mean Median Max. STD 

MRGTO 819.9696 820.3886 820.3388 821.1714 0.307322 

GTO 820.0931 820.7106 820.6857 821.3316 0.400932 

MRFO 820.0622 820.5963 820.5705 821.4605 0.465448 

GBES [19] 820.373 821.016 820.9745 821.5573 0.341034 

BES [19] 820.4051 821.0891 821.0207 821.9714 0.516716 

DE [19] 825.7615 837.9958 838.0892 847.4443 6.939199 

LSO [19] 833.2156 843.8339 842.8787 859.0379 9.426536 

SMA [19] 831.9909 840.2487 840.0777 848.1718 5.895258 

5)  CASE 5: STOCHASTIC DYNAMIC OPTIMAL POWER 
FLOW CONSIDERING THE VEHICLE-TO-GRID AND RES 

The stochastic OPF with variation of load demand was 

suggested in the comprehensive information. Table XI 

provides a comprehensive overview of 24 representative 

scenarios. Each scenario is uniquely identified by a scenario 

number, and the ratio loading of Pd. As shown in Table XI, the 

lowest share of power from the wind Turbines, PV, and EV 

occurs when the system load is at its least level (scenario 3, 

with a loading of 39.27834%). Minimum loading corresponds 

to the lowest existing in the grid, resulting in lower 

transmission losses. Conversely, the highest share of power 

from the wind Turbines, PV, and EV is recorded while the 

system is operating at its maximum load (scenario 1, with a 

loading of 104.0753%). 
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TABLE XI 

COMPREHENSIVE OVERVIEW OF 24 REPRESENTATIVE SCENARIOS. 

Scenario number % Loading 𝑃𝑑 Wind power (MW) PV power (MW) EV power (MW) 

1 104.0753 75 49.99999 10.84417 

2 97.48467 75 50 10.17107 

3 39.27834 0 23.57336 9.042482 

4 101.5853 75 50 15 

5 99.74474 75 50 10.10425 

6 81.36331 75 50 10.92151 

7 49.23189 2.247454 50 9.107048 

8 58.27154 27.68968 49.98975 9.257913 

9 92.444 74.99933 49.99985 10.3593 

10 86.17302 75 49.99999 10.73568 

11 44.91196 1.082235 38.95371 8.951662 

12 94.30378 75 50 10.29915 

13 79.54886 75 50 15 

14 61.78872 37.65572 49.99763 9.130649 

15 76.77018 74.99957 50 10.91434 

16 65.08182 46.81012 50 9.344616 

17 51.47053 8.292616 49.99324 9.336999 

18 68.83229 57.43867 49.99796 9.355709 

19 71.53372 65.73984 49.90447 9.643435 

20 83.21835 75 50 15 

21 74.18913 72.96787 49.87712 9.276738 

22 89.64533 75 50 10.53808 

23 54.48136 16.8702 49.98561 9.286423 

24 42.01018 0 31.30776 9.265005 

Figure 20 illustrates the ratio loading of Pd (demand) obtained 

through Monte Carlo simulations in Case 5. The data 

presented in Figure 20 provides insights into how the system's 

load demand varies under different scenarios and conditions. 

By analyzing the ratio loading of Pd, one can understand the 

system's resilience, its ability to handle fluctuations, and its 

overall operational performance. This figure serves as a 

valuable tool for decision-makers and researchers in assessing 

the reliability and efficiency of the electric power system, 

especially in scenarios involving high penetration of 

renewable energy sources and electric vehicles. 

 

FIGURE 20.  The ratio loading of Pd through Monte Carlo simulations (Case 5). 

Table XII presents the outcomes derived from Case 5 utilizing 

the proposed MRGTO algorithm. Each scenario is detailed 

with respective values for various parameters. These 

parameters include PG1, PG2, and PG8 representing thermal 

power generation outputs from different sources, Pw1 

indicating wind power generation, and Ps1 denoting solar 

power generation. Additionally, PPEV refers to the power 

supplied by plug-in electric vehicles (PEVs). The table also 

lists fuel costs, emissions, power loss, and voltage deviation, 

providing comprehensive insights into the algorithm's 
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performance under different conditions. These results serve as 

valuable data for evaluating the efficacy and competence of 

the MRGTO algorithm in optimizing power flow and resource 

allocation within the electric power system. It is noted from 

this table that the lowest value of the fuel cost (objective 

function) is when the system load is at its least level (scenario 

3) and in the opposite while the system load is the highest 

level, the fuel cost has the most value (646.5487 $/h). 
TABLE XII 

THE RESULTS OBTAINED FOR CASE 5 USING THE PROPOSED MRGTO ALGORITHM. 

Scenario 

no. 
PG1 PG2 Pw1 PG8 Ps1 PPEV 

Fuel cost 

($/h) 

Emission 

(ton/h) 

Power loss 

(MW) 

Voltage 

deviation (p.u.) 

1 134.9076 20.00318 75 10 49.99999 10.84417 646.5487 1.76454 5.805432 0.484136 

2 115.7349 20 75 10 50 10.17107 600.0138 0.581431 4.634414 0.520734 

3 50.12255 20 0 10.00034 23.57336 9.042482 240.5447 0.104086 1.423994 0.332423 

4 123.0207 20 75 10 50 15 636.0603 0.869355 5.128004 0.476559 

5 122.6258 20 75 10 50 10.10425 615.9663 0.84999 5.053485 0.487961 

6 65.95518 21.0508 75 10.00012 50 10.92151 470.1903 0.117454 2.343977 0.601591 

7 49.99935 20 2.247454 10 50 9.107048 286.485 0.104028 1.830691 0.681217 

8 49.99808 20 27.68968 10 49.98975 9.257913 331.2372 0.104027 1.793868 0.341524 

9 100.485 20 74.99933 10 49.99985 10.3593 563.1211 0.282061 3.857219 0.463935 

10 81.40477 20 75 10 49.99999 10.73568 512.3199 0.153266 2.926082 0.566418 

11 49.97538 20 1.082235 10.00175 38.95371 8.951662 266.5029 0.104016 1.684241 0.214687 

12 106.06 20 75 10 50 10.29915 576.9872 0.359535 4.102292 0.520387 

13 55.9813 21.4697 75 10 50 15 457.7996 0.107071 2.009524 0.614698 

14 49.99979 20 37.65572 10.00025 49.99763 9.130649 348.4848 0.104028 1.674812 0.726302 

15 53.56624 20 74.99957 10 50 10.91434 428.952 0.105949 1.913468 0.639959 

16 49.98313 20 46.81012 10.00016 50 9.344616 364.8399 0.10402 1.696134 0.438499 

17 49.99917 20 8.292616 10 49.99324 9.336999 297.4368 0.104028 1.754539 0.774314 

18 50.00033 20 57.43867 10 49.99796 9.355709 383.4855 0.104028 1.721966 0.447705 

19 49.42911 20.00132 65.73984 10 49.90447 9.643435 397.4399 0.103767 1.991612 0.61549 

20 68.24005 20 75 10 50 15 490.7913 0.121206 2.39926 0.595829 

21 49.9929 20 72.96787 10.00009 49.87712 9.276738 410.3174 0.104025 1.862729 0.331108 

22 91.91248 20 75 10 50 10.53808 541.0691 0.20543 3.395703 0.547323 

23 50.00003 20 16.8702 10 49.98561 9.286423 312.3486 0.104028 1.742098 0.764619 

24 50.01649 20.0003 0 10 31.30776 9.265005 252.9555 0.104036 1.532709 0.233594 

Figure 21 illustrates the hourly power share of Thermal, Wind 

Turbine (WT), Photovoltaic (PV), and Plug-in Electric 

Vehicles (PEV) obtained through the implementation of the 

MRGTO algorithm in the fifth Case. This figure provides a 

visual representation of how power generation from different 

sources varies throughout the day. 

 

FIGURE 21.  Hourly active power share of Thermal, WT, PV, and PEV using MRGTO algorithm (Case 5). 
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Figure 22 displays the voltage profile for each scenario for the 

case 5. Figure 24 presents the best settings of the decision 

variables for the respective scenarios in the fifth Case. It is 

clear that the voltages are within their permissible bounds. The 

reactive power settings of the units for these scenarios in this 

case are displayed in Figures 23. 

 

FIGURE 22.  Voltage profiles of the load bus in the scenarios of Case 5. 

 

FIGURE 23.  The reactive power settings of the generation units for every scenario in the fifth Case. 
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FIGURE 24.  The best PV bus voltage values for the scenarios within Case 5. 

 

Figure 25 depicts the hourly generation cost of Thermal, Wind 

Turbine (WT), Photovoltaic (PV), and Plug-in Electric 

Vehicles (PEV) across different scenarios utilizing the 

MRGTO algorithm in Case 5. This visualization provides a 

detailed breakdown of the costs of power generation from 

various sources over a day. Thermal generation typically 

involves higher costs due to fuel expenses and operational 

considerations than renewable sources like WT and PV, which 

benefit from free fuel sources (wind and sunlight).  By 

analyzing the hourly generation costs for each scenario and 

energy source, stakeholders can evaluate the economic 

implications of different power generation strategies and 

assess the feasibility of participating renewable energy and 

electric vehicles into the system. This figure is a valuable tool 

for decision-makers in optimizing generation strategies to 

minimize costs while ensuring reliability and sustainability in 

the electric power system . 

 

FIGURE 25.  Hourly generation cost of Thermal, WT, PV, and PEV units for each scenarios using MRGTO algorithm (Case 5).

VI.  Conclusions 

in this paper, to improve the more complicated optimal power 

flow (OPF) problem, the novel hybrid metaheuristic 

optimization algorithm (MRGTO) has been created and 

presented. The MRGTO algorithm was used to regulate the 

DOPF solutions for an IEEE 30-bus system with traditional 

thermal generators and wind turbine, photovoltaic (PV), and 
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plug-in electric vehicle (PEV) units in order to assess its 

efficacy. First, the proposed algorithm was evaluated by 

applying it to seven numerical optimization test functions. 

Based on benchmark statistical data, it was found that the 

MRGTO outperformed seven popular optimization 

techniques, including MRFO, BWO, RUN, DBO, TSO, and 

the original GTO algorithm. Furthermore, the MRGTO 

algorithm effectively reduced both emissions and the overall 

system generating costs from the stochastic OPF problem.  

Four cases were examined in order to demonstrate the efficacy 

of the suggested MRGTO approach. In the first two scenarios, 

the focus was on defining the optimum control settings for the 

IEEE 30-bus system without PEVs. These scenarios included 

adding wind and PV beside the two thermal power plants. In 

comparison to other methods, the acquired findings show that 

the MRGTO method performs better.  

The proposed MRGTO produced outstanding results, 

obtaining the lowest hourly fuel cost of $781.5325 per hour 

for the first case and the lowest hourly total cost of $808.3382 

per hour. These results provide strong proof of the MRGTO's 

superiority over other contemporary techniques in terms of 

control variable optimization. In the third and fourth scenarios, 

renewable energy resources like wind, photovoltaics, and 

PEVs were employed to simulate the OPF problem, and the 

best control variables were determined using the suggested 

MRGTO technique. The MRGTO achieved the lowest fitness 

values of $790.5985 per hour and $819.9696 per hour, 

demonstrating impressive consistency outperformance. In 

comparison to the other algorithms under study, the MRGTO 

algorithm demonstrated a quick and steady convergence 

characteristic curve and outperformed algorithms like MRFO 

and GTO algorithms. Additionally, the suggested MRGTO 

algorithm is assessed through comparison with various 

heuristic approaches documented in the recent literature. In 

Case 5, The MRGTO algorithm's exploration effectiveness 

remained consistent across iterations, avoiding local optima 

solutions. In Case 5, the MRGTO algorithm successfully 

optimized power generation from Thermal, Wind Turbine 

(WT), Photovoltaic (PV), and PEVs, as evidenced by the 

hourly power share and generation cost analyses. The obtained 

results showcase the algorithm's effectiveness in managing 

power generation from diverse sources, optimizing generation 

costs, and accommodating the variability inherent in 

renewable energy and electric vehicle integration. Overall, the 

MRGTO algorithm in Case 5 provides valuable insights into 

the optimization of power flow in complex systems, 

highlighting its potential for enhancing sustainability, 

efficiency, and reliability in the electric power grid. The 

MRGTO algorithm may eventually be used for planning and 

expansion studies related to power systems, such as those 

involving the addition of hydropower, fuel cell, and hydrogen 

power generation. 
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