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ABSTRACT The real-time simulation of large-scale agricultural operations will offer farmers data-
driven and physically consistent decision support, facilitated by predictive digital twins. To construct a
predictive digital twin, the initial step involves 3D reconstruction of plant geometry. In this paper, a high-
resolution, accurate 3D reconstruction of tomato plants, Tomato-NeRF, is proposed, which is specially used
for three-dimensional reconstruction of tomato plants. Our approach used a modular design to integrate
ideas from their research paper into Tomato-NeRF. By using hash encoding to map coordinates to trainable
feature vectors, we balance quality, memory usage, and performance in NeRF training. The proposal
sampler targets key regions for rendering, and customized loss functions are designed to optimize specific
tasks. The effectiveness of our approach is demonstrated by the ability to generate high-resolution
geometric models from phone camera data. Comparative results show that Tomato-NeRF has significant
advantages over Instant-NGP and MipNeRF in the tomato plant reconstruction task. The data acquisition
method is simpler and more efficient than other reconstruction methods, providing a practical solution for
real-time agricultural simulations.
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I. INTRODUCTION
Real-time simulation and predictive digital twins have become
important tools to support decision-making in large-scale
agricultural operations[1-6]. These technologies provide
farmers with data-driven and physically consistent insights to
optimize farming practices and increase productivity. A key
aspect of building predictive digital twins is the accurate three-
dimensional reconstruction of plant geometry. Accurate 3D
reconstruction of tomato plants offers several significant
benefits[7-13]. First, it can simulate large-scale agricultural
operations in real time, providing farmers with data-driven
decision support and physically consistent models. Second,
three-dimensional reconstruction of tomato plants provides
valuable visual analysis and understanding. By visualizing and
analyzing reconstructed tomato plant models, researchers and
agricultural experts can gain insight into the plant's
morphology, structure, and geometry. In addition, the
reconstructed 3D model helps in agricultural research and
optimization. Scientists can use these models to study the
effects of growing environment, light conditions and climate
factors on tomato growth and yield.

However, traditional methods of geometric reconstruction
of plants often involve expensive setups using LiDAR or
destructive imaging methods in controlled environments[14].
These approaches present challenges in terms of cost, data
collection, and scalability. With the development of computer
vision, researchers have recognized the great potential of 3D
reconstruction methods and have proposed many related
algorithms. Among these methods, the multi-view
reconstruction technique only needs to use the camera to
capture 2D images of the plant scene to reconstruct the 3D
structure. Compared with precision instrument measurement
methods, these technologies have lower equipment acquisition
cost, easy operation and wide applicability. As a result, they
have received a great deal of attention from researchers and
have been studied extensively. For example, Rose et al.[15]
reconstructed the three-dimensional structure of tomato
canopy using open source software. They further analyzed the
correlation between the obtained phenotypic parameters and
those obtained by the laser scanner. This method allowed them
to study the relationship between visual reconstruction and the
data obtained through laser scanning. COLMAP[16] is a
multifunctional pipeline that combines structure-from-motion
(SfM) and multi-view Stereo (MVS) algorithms. It provides
various functions for reconstructing ordered and unordered
image collections. COLMAP provides a graphical and
command line interface that makes it accessible and flexible
for multi-view reconstruction. Dandrifosse et al.[17] proposed
a method to reconstruct the three-dimensional structure of
wheat canopy using multi-resolution images. Zhu et al.[18]
proposed a method based on low-cost 3D reconstruction
technology to analyze phenotypic development of soybean
plants throughout their growth period. Multi-view images
were constructed by digital cameras from different angles,
image features were extracted by SURF algorithm, and
stereoscopic feature point matching was realized by RANSAC
algorithm. The multi-view reconstruction method based on

stereo matching needs to shoot images from different angles at
the same time, which is a tedious process of data acquisition
and needs to deal with algorithm details such as image
matching.
However, recent advances in 3D computer vision,

particularly Neural radiation Fields (NeRF), have
revolutionized 3D scene reconstruction[19]. NeRF and its
variants have recently been explored using volume rendering
methods to learn neural radiation fields for new view
synthesis[20]. NeRF allows the generation of detailed and
realistic visualizations that approach the quality of actual
photos. Its introduction opens up new possibilities for
capturing and reconstructing 3D scenes with impressive visual
fidelity[21]. As with traditional multi-view 3D reconstruction
methods, NeRF takes 2 images captured from different
viewpoints as input data. However, NeRF takes a novel
approach, directly utilizing MLP to learn the characteristics of
a scene. It implicitly stores scene information in a neural
network and uses volume rendering technology to generate
scene images from multiple viewpoints. This implicit
representation allows NeRF to capture fine detail and achieve
high quality rendering. It breaks through the limitation of
traditional explicit geometric model in multi-view
reconstruction. When NeRF was first introduced, its main
application was synthesizing new views, with a focus on
ensuring visual consistency between the generated image and
the reference image. However, the limitation of NeRF is that
its relatively limited focus is on precisely reconstructing the
geometry of the object being seen, where precision is
Paramount. Therefore, the original NeRF method was unable
to meet the strict requirements of geometric reconstruction
accuracy required for plant reconstruction. In addition, NeRF's
mlp structure is very expensive to train and evaluate, each job
is designed for its own specific task, different network
structure, training a NeRF model can take several hours.
Subsequent advances, such as nvidia's proposed instant-NGP
implementation of "5s training a NeRF"[22] received
researchers' attention; VolSDF[23], NeuS[24], and Geo-
NeuS[25], address these limitations by combining signature
distance function (SDF) representations to describe the surface
of a reconstructed object. Müller et al. presented Instant-NGP,
which realizes end-to-end 3D scene modeling and rendering
directly from RGB images. Key technological innovations
include the integration of multi-resolution Hash coding to
improve rendering efficiency, and the use of self-attention
mechanisms to enhance network structure. Instant-NGP
achieved faster results and higher reconstruction quality than
other advanced neurorendering technologies of the time. Xu et
al.[26] proposed a point-NeRF based NeRF model, using
MVSnet to get the initial neural Point cloud scene, and then
using the neural point cloud and neural features to build a
point-based radiation field rendering scene. These improved
methods complement the volume rendering techniques used in
NeRF, improve the accuracy of fitting the surface of the
constructed object, and increase the speed of NeRF training.
As a result, these advances significantly improve the ability of
models to learn to reconstruct the geometry of objects. These
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new implicit surface reconstruction methods can effectively
meet the requirement of reconstruction accuracy for complex
3D reconstruction tasks, including plant phenotype
construction.
In this work, we propose a high-resolution, accurate 3D

reconstruction of tomato plants to support data-driven
agricultural decision-making, called Tomato-Nerf. We
demonstrate the effectiveness of our approach by presenting a
high-resolution geometric model obtained from mobile phone
camera data. In addition, we discuss the potential applications
of these reconstructions, particularly in the development of
predictive digital twins for tomato plants, which enable real-
time decision support and optimization for tomato cultivation.
Overall, our research contributes to the advancement of
precision agriculture by introducing innovative methods for
three-dimensional reconstruction of tomato plants. The use of
neural radiation fields for accurate and efficient plant
geometric reconstruction has great potential for real-time
simulation, predictive digital twins, and data-driven decision-
making in agriculture.

II. Data Acquisition and Ground Truth Comparison
The focus of this study is on Israeli red tomato grown in

the intelligent greenhouse of Beijing Hongfu Group, under
standardized planting conditions that result in high yield and
quality as shown in Fig. 1.
In order to train NeRF models and obtain high-fidelity

tomato plant meshes, we collected multiple sets of tomato
plant photos in the form of 2D images. We filmed video clips
of tomato plants using a smartphone camera. Specifically, we
used an iPhone 13 Pro with a resolution of 4K and frame rate
of 30fps. The iPhone 13 Pro's main camera is equipped with a
12-megapixel sensor featuring 1.9-micron pixels, paired with a
26mm equivalent f/1.5 aperture lens. This setup provides
enhanced low-light performance and improved image quality.
The camera was positioned at a constant height while circling
around the plants to ensure comprehensive coverage. Simple
frame extraction was performed on the recorded videos to
obtain 2D images of the scene. Every 5th frame was extracted,
resulting in high resolution 4K images being obtained from
each video set of a tomato plant. We further processed these
images using the COLMAP library, which is a powerful
computer vision tool for reconstructing 3D scenes and
generating dense point clouds, mesh reconstructions, and
camera pose estimations by leveraging a large collection of 2D
images to recover the geometric structure of a 3D scene. Its
core capabilities are structure-from-motion (SfM) and
multiview geometry. SIFT and other algorithms are used to
detect and describe the local features of all images, and the
feature points between different images are matched to obtain
the feature matching relationship. Based on robust matching
results, the pose of each image is preliminarily estimated by
PnP algorithm.Add more images iteratively, optimize camera
parameters and 3D point position through bundle adjustment,
and get sparse point cloud and accurate camera pose. MVS
algorithm is used to match images in stereo and generate
dense point cloud. The camera parameters and images of

COLMAP output are saved in json format required by NeRF
as model training data. With the camera poses and RGB
values of each pixel obtained from the images, we assembled a
dataset suitable for training our NeRF model. The dataset
includes spatial location (x, y, z) and viewing direction (θ, φ)
for each image, along with corresponding RGB values.
The entire data collection process, from video recording to

dataset creation, took approximately 4 hours. To evaluate the
fidelity of the NeRF rendered mesh, lidar scan data of a
synthetic tomato plant was also acquired as ground truth
reference. At the beginning of this study, XX, YY and other
structured light 3D scanners were used to obtain tomato point
clouds. However, the experimental results found that due to
the soft tissue light transmission of tomatoes and high surface
gloss, high-quality 3D reconstruction results could not be
obtained using traditional scanners. The scanning point cloud
has serious fragmentation, data omission and noise. To solve
this problem, the Freescan Combo 3D scanner was used for
data acquisition, as shown in Fig. 2. The device integrates
structured light and single-point laser ranging technology,
scanning speeds of up to 2 million points per second.
Experiments show that the whole three-dimensional point
cloud of tomato can be obtained quickly with very high
precision by using this device.
Each LiDAR scan was completed at 1/4 and 1x resolution.

Due to occlusion between individual tomato fruits, multiple
scans were necessary to capture the complete structure. After
scanning the overall structure, we performed targeted scans of
individual fruits and aligned the point clouds from multiple
scans to generate a complete 3D point cloud of the plant. To
ensure data integrity, we used the 3D point cloud processing
software CloudCompare and applied a Statistical Outlier
Removal (SOR) filter with 50 nearest neighbors to eliminate
duplicate points.

FIGURE 1. Greenhouse growing environment for tomatoes
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FIGURE 2. The Scanner (a) and the sample of scan tomatoes (b)

FIGURE 3. The data collection process

By comparing the NeRF rendered mesh with the lidar
exported point cloud, we established a reliable ground truth
dataset to evaluate the accuracy and fidelity of our reconstructed
tomato plant model. The combined dataset and lidar ground
truth data laid the foundation for training and evaluating our
tomato plant reconstruction method based on NeRF.

III. METHOD
NeRF(Neural Radiance Fields) is a novel method for

representing 3D scenes based on neural networks. The core idea
is to use Multi-Layer Perceptron (MLP) to learn the color value
(RGB) and Density of each spatial position in the scene, and
construct a continuous five-dimensional radiation Field function.
Specifically, the NeRF system inputs are the coordinates

(x,y,z) of any three-dimensional space position and the Viewing
Direction of the camera, and the color (RGB) and Density of
that position are mapped by the neural network. During the
rendering process, multiple sample points are uniformly
sampled on the Camera Ray, and the (x,y,z) coordinates and
viewing direction of each point are entered into the MLP to
obtain the color and density. Based on these discrete samples,
Volume Rendering integrals are then applied to calculate the
RGB value of the light, that is, the color of the pixels in the
image. The training of NeRF requires multi-view image data

and corresponding camera parameters such as internal and
external parameters. By optimizing the network parameters to
fit the image prediction and ground truth, the model can learn
the three-dimensional geometry and reflection characteristics of
the scene. NeRF is trained to render never-before-seen
perspectives in high quality and can be used in a variety of 3D
modeling and rendering tasks.
Compared with traditional grid-based or voxel-based 3D

reconstruction and rendering technologies, NeRF can directly
learn continuous 3D scene representation from 2D image data
alone, and realize efficient 3D modeling and illumination
synthesis through deep learning. Moreover, Mip-NeRF
proposed the idea of using cone sampling to better deal with
anti-aliasing effects[27, 28]. It uses hierarchical coding to
improve the network's understanding of sampling range size.
This method can generate a more continuous and smooth image.
Instant-NGP is another influential general-purpose neural
renderer that can reconstruct complex 3D scenes directly from
RGB images. Its technological innovations include the use of
multi-resolution Hash coding to improve efficiency and self-
attention mechanisms to enhance the network. This method has
fast rendering speed and high quality reconstruction effect.
This paper presents Tomato-NeRF model, and the core idea

is to use multi-layer perceptrons (MLPS) to learn detailed
information about the color (RGB) and density of spatial
locations in each 3D scene, as shown in Fig. 4 and Fig. 5. The
input includes the coordinates (x, y, z) of any 3D space point
and the camera's viewing direction. The neural network does
this by mapping these inputs to corresponding color and density
values. The rendering process involves uniformly selecting
multiple sample points on the camera rays, entering their
coordinates and viewing Angle directions into the MLP for
color and density prediction, and finally obtaining the RGB
value of the synthesized image through volume rendering
integration. The Tomato-NeRF model uses the hash coding
technique, which allows for memory-efficient high-resolution
neural rendering. Hash coding maps input 3D coordinates to
high-dimensional random vectors through hash functions,
enhancing the ability of the network to represent complex 3D
scenes. It improves the sensitivity of the network to coordinate
information, and makes use of the local invariance of the hash
coding space to produce more generalized coordinate features.
Additionally, Tomato-NeRF utilizes a proposal sampler

strategy, focusing on critical visible surface areas to enhance
reconstruction quality. Sampling is based on the scene density
function, using the Hash MLP network for a balance between
speed and quality. Concatenating multiple density functions
enables cascading sampling and rendering for a finer
distribution. The core ideas include using an auxiliary network
for predicting sampling density, sampling according to the
predicted distribution, using the main network for color and
density prediction, and compositing perspectives through
volume rendering.
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Fig. 4. Structure diagram of tomato-NeRF

Fig. 5. The flow chart of tomato-NeRF

In terms of the loss function design, Tomato-NeRF
customizes it by enhancing RGB loss weight for improved color,
incorporating Silhouette Loss for shelter information, retaining
Density MSE Loss for geometry fitting, and adding a
Smoothness regular term. These constraints ensure key
attributes like color, shape, and density are maintained while
simplifying the training process by removing less impactful loss
items for tomatoes.

A. Hash Encoding
Tomato-NeRF was inspired by Instant-NGP design, using a

memory-efficient neural rendering scheme based on hash
coding. Hash coding enhances the ability of neural networks
to represent complex 3D scene structures by mapping input
3D coordinates to high-dimensional random vectors through
hash functions[22]. This technique improves the sensitivity of
the model to the coordinate input and uses the local invariance
of the hash coordinate space to produce more generalized
coordinate features, as shown in Fig. 6.
The spatial coordinate input (x,y,z) is encoded by a hash

function into a high-dimensional random vector. These
encoded vectors are fed into the multi-layer perceptron (MLP)
network together with the perspective direction vector. The
MLP network learns the mapping of coordinates to the
corresponding RGB color and density values. Multiple spatial
locations are sampled along each camera light and mapped

through this encoding and MLP pipeline. Finally, volume
rendering integrates the MLP output along the light to
synthesize a new perspective of the image.
The function of the hash function is to encode the spatial

coordinates into a high-dimensional random potential space,
so that the adjacent positions map to similar code vectors and
inject positional priors. Under the conditions of this
encoding,MLP networks model complex mappings from
coordinates to color and density values to represent 3D scenes.
Learning from the coding space facilitates fitting more
complex and high-frequency functions rather than direct
coordinate input.
The trainable features are the F-dimensional vectors and

arranged into an L-grid, where L represents the number of
resolution features and T represents the number of feature
vectors in each hash grid. Hash grid coding steps are as
follows: Given the input coordinates, find the surrounding
voxels at the L-resolution level and hash the vertices of these
grids; Using hash vertices as keys to find trainable F-
dimensional eigenvectors; According to the position of the
coordinates in space, the eigenvector of the input coordinates
is matched by linear interpolation; The feature vectors in each
grid are associated with any other parameters, such as Angle
of view direction, illumination, etc; The final vector is fed into
the neural network to predict the RGB and density outputs.
This encoding structure makes a trade-off between quality,
memory, and performance. The main parameters that can be
adjusted are the size of the hash table (T), the size of the
feature vector (F), and the number of resolutions (L).

Fig. 6. The illustration of the hash encoding

B. Proposal Sampler
The proposal sampler scheme strategically concentrates

samples on the scene region that holds the utmost significance

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3424908

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



VOLUME XX, 2017 1

in shaping the final rendering effect, typically the foremost
visible surface[29]. This targeted sampling approach markedly
enhances the overall quality of the reconstruction process. The
introduced learning sampling method relies on the density
function of the scene and boasts versatility in its
implementation.
The results show that the compact multi-layer perceptron

(MLP) using hash coding achieves an effective balance
between accuracy and efficiency, and verifies its effectiveness
in optimizing sampling. For further improvement, a significant
enhancement connects multiple density functions, facilitating
more detailed sampling and thus improving reconstruction
accuracy. This augmentation contributes to a more nuanced
and accurate sampling strategy, further elevating the precision
of the reconstruction outcomes.
In essence, the proposed samplers include:
An auxiliary network that predicts the sampling density per

location from coordinates;
Random sampling based on the predicted density

coordinates has more samples in the high-density region;
Feed the sample into the main network to predict color and

density values;
The predicted volume of the sample is fused to present the

final image;
Combined optimization of end-to-end density prediction

and rendering network enables learning samples to be
concentrated in significant areas.
In summary, the method strategically assigns computations

to key scene regions by predicting sample density and volume
fusion samples of concentrated areas. The joint training
process allows for a gradual concentration of samples in the
most important places, thereby improving the quality of
reconstruction.

Fig. 7. The proposal network structure diagram(a); Sample
representations(b)

C. Loss Function
Within the framework of the Tomato-NeRF model, we have

meticulously devised a loss function tailored to the specific
intricacies of tomato reconstruction. The formulation of this
loss function adheres to two fundamental principles: firstly, a
deliberate emphasis on optimizing pivotal color and shape
information; secondly, a strategic removal of extraneous
elements to streamline and simplify the training process.In
particular, our approach incorporates an RGB Loss with
augmented weights, strategically implemented to intensify
color fidelity. Additionally, the inclusion of Silhouette Loss, in
the form of binary cross entropy, introduces crucial tomato
shading information. Concurrently, we preserve the Mean
Squared Error (MSE) Loss pertaining to predicted density and
truth-sampling density to enforce constraints on scene
geometry information.
In contrast to the general NeRF framework, certain loss

components, such as those pertaining to normal direction and
sample consistency, have been judiciously excluded due to
their limited discernible impact on the training outcomes.
These simplifications have proven instrumental in
significantly accelerating the training speed while channeling
the model's expressiveness towards the paramount aspects of
color and shape, which are deemed more critical for the
nuanced task of tomato reconstruction.
The amalgamation of these diverse loss types within

Tomato-NeRF ensures a comprehensive constraint on color,
shape, and density. The incorporation of a consistent prior
further augments the model's capacity to generate high-quality
tomato reconstruction results, underscoring.
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With this customized Loss design, Tomato-NeRF can
efficiently produce high-quality tomato 3D reconstruction
results. Our exploration validates the importance and
effectiveness of NeRF model Loss design for specific
scenarios.

IV. Evaluation and discussion
Unlike object detection algorithms which use recall,

precision and mAP@0.5:0.95 as evaluation metrics, neural
radiance fields (NeRF) models employ Peak Signal-to-Noise
Ratio (PSNR), SSIM and LPIPS as assessment criteria[30].
PSNR, SSIM, and LPIPS are commonly used image quality
assessment metrics, each with its own advantages and
limitations: PSNR is the ratio of maximum signal power to
noise power, expressed in dB. The calculation of PSNR
requires both the original image before noise destruction and
the image after noise destruction. The mean square error
(MSE) of the noise image is used to calculate the noise power
component. For grayscale images with dimensions of m x n
pixels, MSE is calculated as follows:
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By combining brightness, contrast and structure comparison,

SSIM is closer to subjective evaluation. It better represents the
sensitivity of the human visual system to structural
information. However, SSIM involves more complex
calculations than PSNR. SSIM is a measure of structural
similarity between two images based on brightness, contrast
and structure of the image. In contrast to PSNR, this indicator
takes into account the specifics of human visual perception i
and provides a quality assessment function closer to that of the
average person. It is calculated by comparing local patches
(rectangular Windows) of pixels in the image. Its calculation
formula is as follows:
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Where, x and y are two image blocks of size N × N, µx and µy
are the average pixel values of x and y, σx and σy are the
variances of x and y, σxy is the covariance of x and y, and c1
and c2 are two constants to avoid instability when the
denominator approaches zero. The value of the SSIM ranges
from -1 to 1. 1 indicates that the SSIM is completely similar,
and -1 indicates that the SSIM is completely different. LPIPS
extracts deep features using a pretrained VGG network and
computes distances in feature space to evaluate perceptual
similarity. By leveraging deep learning, LPIPS further
improves consistency with human perception. However, it
requires a pretrained CNN, making it more computationally
expensive. Lower LPIPS values denote higher perceptual
similarity and better quality.

A. Model Training
An experiment was conducted in the intelligent greenhouse of

Beijing Hongfu Group.To validate our proposed model, we used
an accurate 3D scanning system to capture ground-based true
point cloud data for 5 groups of tomato samples and 5 groups of
cherry tomato samples. We then recorded video footage of the
tomato scene by bypassing the sample and following the data
collection protocol described in our method. The video data is
preprocessed and provided as input to the Tomato-NeRF model
for training and inference. In addition, we constructed a multi-
scale dataset following the approach of Mip-NeRF to examine
the model's capability for anti-aliasing and multi-scale reasoning.
This dataset was generated by downsampling each image in the
original dataset by factors of 2, 4, and 8, while adjusting the
intrinsic camera parameters accordingly. These downsampled
images were combined with the original high-resolution images
to form the multi-scale dataset. Based on the principles of
projective geometry, this simulates rendering the scene with
the camera positioned at 2, 4 and 8 times the original distance.
There are 720 original images and they are downsampled by
factors of 2, 4, and 8. 7/8 of the images are used for training,
and the remaining 1/8 of the images are uniformly spaced and
used for evaluation. The model training device is an HP laptop
with 16GB RAM, Intel(R) Core(TM) i7-10870H CPU @
2.20GHz, NVIDIA GeForce RTX 2070 (8G). During training
on this dataset, we weighted the loss contribution of each pixel
by the area it occupied in the original high-resolution image.
This balances the impact of the few low-resolution pixels and the
many high-resolution pixels. Quantitative evaluation was
performed by averaging each error metric across all four scales.
To benchmark the performance of Tomato-NeRF, we performed
comparative experiments with the universal NeRF-rendering
systems Mip-NeRF and Instant-NGP using the same dataset.

B. Evaluation
As shown in Fig. 9, the NeRF model outputs the RGB color

and density value of each pixel, where the density value
contains the depth information. By combining these predicted
density values with known camera parameters, point clouds
representing the 3D scene geometry can be acquired through
depth interpolation on novel view RGB images.
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The evaluation of the point cloud predicted by Tomato-
NeRF uses the CloudCompare open source software. The real
point cloud and Tomato-NeRF predicted point cloud were
imported for comprehensive comparative analysis. In order to
improve the accuracy, both the predicted point cloud and the
real point cloud are normalized.Then, the quality of the
predicted point cloud is evaluated by calculating the average
distance and standard deviation between the two sets of point
clouds. A quantitative point cloud analysis is then performed
to measure the accuracy of the Tomato-NeRF reconstruction
compared to ground-based real data.
Specifically, we utilize CloudCompare software to visualize

the point cloud reconstruction results of different
methods.Through the color mapping reconstruction error code
for the RGB values, green said error is low, the orange and red
error is higher. It can be observed that the vast majority of the
Tomato-NeRF point cloud appears dark green, indicating that
its reconstruction fidelity is significantly higher than other
methods, and it has the ability to retain complex details. This
is consistent with the quantitative experiments presented in the
paper. Through a visual examination of Fig. 10 a unique
pattern emerges that highlights Tomato-NeRF's unique
advantage in point cloud representation. The alternative
method shows large orange-red areas in the rendered point
cloud, emphasizing a large deviation from ground reality. In
contrast, the point cloud generated by Tomato-NeRF is mostly
green, indicating a smaller error.

Fig. 8. A real tomato model obtained by the scanner

Fig. 9. The plant point cloud extracted from the predicted model

To sum up, the point cloud visualization in Fig. 10 provides
intuitive visual evidence, which confirms the excellence of
Tomato-NeRF in 3D scene representation and detail
preservation, and further validates the accuracy advantage
reflected by the quantitative indicators in this study.
The quantitative evaluation results are shown in Table 1.

The average distance and standard deviation between the
predicted point cloud generated by Tomato-NeRF and the
reference LiDAR scan are 5.2mm and 2.1mm, respectively.
These findings show that Tomato-NeRF has remarkable
similarity and accuracy in the modeling of Tomato's intrinsic
complex geometric structure. In contrast, Tomato-NeRF
showed substantial improvement in quantitative results
compared to the baseline methods Instant-NGP and Mip-
NeRF. The mean distances of Instant-NGP and Mip-NeRF are
15.7mm and 10.3mm, respectively, and the standard
deviations are 5.2mm and 3.1mm, respectively. This
highlights tomato - NeRF's outstanding performance in the
Tomato reconstruction task. The lower mean distance and
standard deviation values affirm Tomato-NeRF's accuracy in
faithfully capturing the three-dimensional complexity of the
Tomato. Similarly, for cherry tomatoes, our Tomato-NeRF
method obtains an average distance of 4.8mm and a standard
deviation of 1.9mm. This confirms the power of the method in
modeling and reconstructing the complex geometry of cherry
tomatoes. Compared with Instant-NGP(mean distance 14.2mm,
standard deviation 4.7mm) and Mip-NeRF(mean distance
9.5mm, standard deviation 2.8mm), Tomato-NeRF achieves
significant improvement in quantitative indicators, thus
reflecting its excellent reconstruction performance in cherry
tomato scenes. Compared to the baseline method, the
quantitative evaluation of Tomato-NeRF emphasizes its ability
to generate highly accurate and detailed geometric
representations of tomatoes. The normalization process and
rigorous analysis help improve the accuracy of Tomato-NeRF,
making it an invaluable tool for powerful and reliable 3D
reconstruction of complex organic structures.
In addition, we computed the PSNR, SSIM and LPIPS

between Tomato-NeRF rendered images and ground truth
images. As shown in Table 2, Tomato-NeRF achieved a PSNR
of 27.55, SSIM of 0.894 and LPIPS of 0.148. In comparison,
Instant-NGP obtained a PSNR of 26.54, SSIM of 0.849 and
LPIPS of 0.182, while Mip-NeRF scored 27.28 in PSNR,
0.889 in SSIM and 0.176 in LPIPS. Tomato-NeRF
outperformed the general-purpose frameworks across all
metrics. Across all metrics, Tomato-NeRF outperformed the
general-purpose frameworks.Similarly, for cherry Tomato
scenes, our Tomato-NeRF method also achieves excellent
image reconstruction quality. It achieved a PSNR of 28.12,
SSIM of 0.912, and LPIPS of 0.124, significantly outpacing
Instant-NGP(PSNR 26.87, SSIM 0.883, LPIPS 0.159) and
Mip-NeRF(PSNR 27.92, SSIM 0.903, LPIPS 0.149)
performance. This is a testament to the Tomato-NeRF
framework's excellent rendering ability in complex cherry
tomato scenes. Considering many target indexes such as
PSNR, SSIM and LPIPS, our method is superior to the
existing general framework and has reached a new level of
image quality in the reconstruction of cherry tomato. The
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results demonstrate that Tomato-NeRF can also realistically
render the surface textures and color details to produce novel
views closer to the ground truth images. This further verifies
both the reconstruction and rendering capacities of Tomato-
NeRF.
The biggest practical trade-offs between these methods are

time versus space. Tomato-NeRF achieved remarkable
accuracy in modeling complex geometric structures of
tomatoes, with an average distance of 5.2mm and a standard
deviation of 2.1mm between the predicted point cloud and the
reference LiDAR scan. This indicates a high degree of fidelity
in the 3D reconstruction process. Tomato-NeRF is a
substantial improvement over the baseline methods Instant-
NGP and Mip-NeRF. For example, in the reconstruction of
tomatoes, Tomato-NeRF obtained an average distance of
4.8mm and a standard deviation of 1.9mm, significantly
outperforming Instant-NGP and Mip-NeRF. The study
emphasizes the ability of Tomato-NeRF to generate highly
accurate and detailed geometric representations of tomatoes.
This is crucial for applications that require accurate 3D models,
such as agricultural monitoring and robotic harvesting. The
evaluation of PSNR, SSIM, and LPIPS metrics further
highlights Tomato-NeRF's superior image reconstruction
quality. For cherry tomato scenes, Tomato-NeRF achieved a
PSNR of 28.12, SSIM of 0.912, and LPIPS of 0.124,
outperforming both Instant-NGP and Mip-NeRF. The method
proved to be effective for both common tomatoes and cherry
tomatoes, demonstrating its universality and robustness on
different tomato varieties with different geometric complexity.
Overall, the study highlights Tomato-NeRF's robustness and
effectiveness in achieving high-precision 3D reconstructions
and realistic renderings, making it a valuable tool for
agricultural and other applications that require detailed 3D
models.

Fig. 10. Color-based error plot of extracted point cloud for tomato

TABLE I
POINT CLOUD RECONSTRUCTION QUALITY COMPARISON

Tomato
Method Average Distance Standard Deviation

Tomato-NeRF 5.2 2.1
Instant-NGP 15.7 5.2
Mip-NeRF 10.3 3.1

Cherry Tomato
Method Average Distance Standard Deviation

Tomato-NeRF 4.8 1.9
Instant-NGP 14.2 4.7
Mip-NeRF 9.5 2.8

TABLE II
QUANTITATIVE COMPARISON. WE REPORT LPIPS (LOWER IS BETTER) AND

PSNR/SSIM (HIGHER IS BETTER)
Tomato

Method PSNR↑ SSIM↑ LPIPS↓
Tomato-NeRF 27.55 0.894 0.148
Instant-NGP 26.54 0.849 0.182
Mip-NeRF 27.28 0.889 0.176

Cherry Tomato
Method PSNR↑ SSIM↑ LPIPS↓

Tomato-NeRF 28.12 0.912 0.124
Instant-NGP 26.87 0.883 0.159
Mip-NeRF 27.92 0.903 0.149

V. Conclusion
Developing predictive digital twins for plants can lay the

foundation for real-time simulation, predictive digital twins,
and data-driven decision-making in agricultural practices. This
paper introduces a multi-view reconstruction method for
tomato plants, Tomato-NeRF, which is specially tailored for
tomato reconstruction. It significantly improves the accuracy
of Tomato complex geometry modeling, and the average
distance between the predicted point cloud and the reference
liDAR scan is 5.2mm, and the standard deviation is 2.1mm.
The high fidelity of this 3D reconstruction is a substantial
improvement over baseline methods such as Instant-NGP and
Mip-NeRF. Specifically, for cherry tomatoes, the mean
distance of Tomato-NeRF is 4.8mm and the standard deviation
is 1.9mm, which is significantly better than other methods.
Tomato-nerf also perform well in image reconstruction quality,
with a PSNR of 28.12,SSIM of 0.912, and LPIPS of 0.124 for
Cherry Tomatoes scenes. This method is very practical
because of its simple data acquisition and the ability to create
high-resolution geometric models from mobile phone camera
data. Future research could further explore the integration of
the Tomato-NeRF model with advanced IOT technology to
achieve a more intelligent and responsive decision support
system in the agricultural field. By deploying sensors in
agricultural environments, we can get a rich stream of data in
real time, covering plant growth, soil quality, meteorological
conditions and more.
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