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ABSTRACT Breast cancer is a critical health issue affecting the well-being of women. Breast cancer is
one of the most common causes of the increase in the mortality rate of women around the world. Early
detection of breast cancer can, to some extent, decrease the number of deaths caused and also improve
treatment outcomes and patient survival rates. Traditional Machine learning (ML) and Deep learning (DL)
approaches have proven to be more successful in predicting breast cancer. In terms of privacy and early
detection, Federated Learning (FL), a decentralized ML approach, offers a promising solution for training
predictive models on distributed healthcare data while ensuring privacy and security. This paper proposes
a novel framework that combines the benefits of integrating Shapley values and game theory concepts
with FL for breast cancer prediction. The framework uses Shapley values for feature selection from 30
features of the Wisconsin Diagnostic Breast Cancer (WDBC) dataset from University of California Irvine
machine learning repository (UCI ML). The framework also addresses the issue of poor-performing clients
by introducing a payoff mechanism based on individual client accuracy. Clients with higher accuracy are
given greater influence in the model aggregation process, encouraging client competition and improving the
overall model performance. Our framework proves to be promising by achieving a prediction accuracy of
94.47% in the FL environment. The proposed approach provides a privacy-preserving solution for breast
cancer prediction in an FL environment, by combining Shapley values and game theory. The results of this
study can help in the development of more accurate and robust breast cancer prediction models, contributing
to improved patient outcomes and healthcare decision-making.

INDEX TERMS Federated Learning, Machine Learning, Shapley Values, Game theory, Incentive Mecha-
nism

I. INTRODUCTION

Breast cancer is the most prevalent cancer among women
worldwide and continues to be a major factor in cancer deaths
in women. Reduced quality of life and higher rates of anxiety
and depression are linked to breast cancer [1]. It accounts for
around 685,000 deaths till 2020, out of the total 2.3 million
cases detected [2]. Breast cancer is a form of metastatic
cancer that frequently spreads to distant organs such as the
bone, liver, lung, and brain [3]. Figure 1 depicts the total
number of cancer deaths across all ages and sexes. The figure
also indicates that breast cancer takes fourth place in the
number of deaths caused around the world. Early detection
of breast cancer is crucial for successful treatment and im-
proved outcomes. Several methods are available for the early
detection of breast cancer, including self-examinations, clin-
ical breast examinations, mammography, and other imaging
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techniques. Many investigations are using ML and artificial
intelligence (AI) to analyze massive volumes of data and
create more precise breast cancer prediction models [4].
These models can include a wide range of variables and
increase the accuracy of risk assessment. There has been an
increased interest in applying Al in the early detection of
breast cancer. ML is one such technology that has enhanced
and added techniques for predicting breast cancer [6], [7].
ML has transformed several domains, including healthcare,
by facilitating the development of appropriate prediction
models [8]. Several ML algorithms like Gated Recurrent
Unit Support Vector Machine (GRU-SVM) [9], Linear Re-
gression, Nearest Neighbour Search, Softmax Regression,
and Support Vector Machine (SVM) have been successfully
deployed in predicting breast cancer [10]. Also, several DL
techniques [11] like Feed forward neural network, Deep
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Tracheal, bronchus, and lung cancer 2.04 million
Colon and rectum cancer |EEEG— .09 milion
Stomach cancer | 057,185
Breast cancer N 700,660
Pancreatic cancer R 531,107
Esophageal cancer | 498,067
Prostate cancer NS 456,836
Liver cancer | EEG—_— 154,577
Leukemia | 334,592
Cervical cancer N 280,479
Non-Hodgkin lymphoma N 254,614
Brain and central nervous system cancer N 246,253
Bladder cancer | 228,734
Lip and oral cavity cancer [ 199,398
Ovarian cancer [N 198,412
Gallbladder and biliary tract cancer N 172,441
Kidney cancer I 166,438

Larynx cancer il 123,356
Other pharynx cancer [l 114,207
Multiple myeloma Jll 113,474
Uterine cancer il
Nasopharynx cancer il
Malignant skin melanoma il 62,844
Other cancers |l 56,833
Non-melanoma skin cancer il 56,054
Thyroid cancer 6
Mesothelioma J 29,251
Hodgkin lymphoma Jj 27,552
Testicular cancer | 10,842

FIGURE 1: Total annual number of deaths from cancers
across all ages and both sexes, broken down by cancer type

(5]

neural network, and Multilayer Perceptron (MLP), [12] were
successfully implemented to predict breast cancer [13].
However, the success of these ML and DL models majorly
depends on the availability of large and different datasets
for training purposes [14]. In scenarios where sensitive and
private data is involved, like medical records or personal data,
managing data privacy is very difficult and it is a topic of
concern.

FL has emerged as a revolutionary solution for addressing
data privacy issues. It allows different clients to collaborate
and train the shared model by retaining data at their own loca-
tion [15], [16]. Though FL proves to be a promising approach
for predicting breast cancer [17], it has several significant
challenges like data heterogeneity, communication overhead,
resource limitations, model heterogeneity, lack of centralized
control, security hazards, and difficulties with convergence
speed [18].

To address these challenges, this research integrates the con-
cepts of Shapley values and game theory. The Shapley value
is one of the concepts from cooperative game theory [19].
Meanwhile, game theory [20], [21] is a branch of mathemat-
ics and economics that deals with the way for analyzing and
predicting how entities make decisions when their outcomes
are dependent on the actions of other entities [22]. This
study harnesses Shapley and game theory concepts, where
Shapley values are used for feature selection in WBCD
and game theory is used for client selection during model
aggregation. Shapley values provide a unique feature of inter-
preting the contribution of each feature in ML models [23].
Game theory is strategically chosen to enhance FL’s privacy-
preserving aspects. In a collaborative environment where
data is distributed across multiple clients, game theory [24]
helps incentivize participation and model contribution while
addressing privacy concerns associated with centralized ap-
proaches. In the context of breast cancer prediction, where
interpretability is crucial for clinical acceptance, Shapley’s
values are more prominent [25]. Similarly, in a collabora-
tive healthcare scenario, where data privacy is paramount,
game theory provides a strategic framework to incentivize
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collaboration without compromising individual privacy. By
combining Shapley values and game theory, our approach
offers a tailored solution to the challenges presented by breast
cancer prediction in an FL environment. The combination
of interpretability, privacy preservation, and collaborative
optimization positions Shapley values and game theory as the
preferred methodologies for achieving meaningful insights
while addressing the complexities of healthcare data. The
proposed work aims to boost the efficiency of FL in breast
cancer prediction, emphasizing both accuracy and data pri-
vacy. Figure 2 depicts the framework of FL.
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FIGURE 2: Federated Learning process

A. KEY CONTRIBUTIONS
The main contributions of this research are as follows:

« We present details about the implementation of FL and
its drawbacks in breast cancer prediction and how Shap-
ley and game theory help in enhancing the performance
of FL.

o We propose a methodology that helps in developing
a more robust, efficient, and privacy-preserving model
that encourages active participation and cooperation
among nodes leading to better-performing model qual-

1ty.

B. PAPER ORGANIZATION

The rest of the paper is organized as follows. Section II
provides an overview of related work in FL, Shapley, and
game theory applications in healthcare. Section III presents
the methodology, describing the feature selection using Shap-
ley values and the game theory-based FL algorithm. Section
IV presents the experimental setup, discusses the results
obtained, summarizes the findings, and limitations of this
research. Section V describes implementation Challenges in
Real-World Clinical Settings. Section VI presents the theo-
retical and business implications of the proposed model. Fi-
nally, Section VII gives the conclusion and future directions
pertaining to the research.

C. RESEARCH PROBLEM

The primary challenge is to develop a decentralized, game-
theoretic FL system for training a binary classification model
on a breast cancer dataset. This system should allow multiple
clients, each with their data, to train local models. These
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local models are then aggregated on a server to form a global
model. Additionally, the system should employ Shapley ad-
ditive explanations (SHAP) values to analyze the importance
of features from the dataset. The key issues to address include
preserving privacy, improving interpretability, and increasing
accuracy in breast cancer prediction.

Il. BACKGROUND AND RELATED WORK

This research paper focuses on the application of FL, Shapley
values, and game theory for breast cancer prediction. The
following literature survey provides an overview of related
studies and their contributions in the areas of breast cancer
prediction, FL, Shapley values, and game theory.

A. BREAST CANCER PREDICTION

Breast cancer is among the leading causes of cancer-related
deaths worldwide [26]. Early detection and accurate predic-
tion can lead to timely intervention [27], improving patient
outcomes.

The authors in [28] focused on designing a breast cancer
prediction system. The authors use the WBCD dataset for
experimentation. The potential of the proposed model for
accurately predicting breast cancer is evaluated by apply-
ing several classification techniques like Logistic Regression
(LR), SVM, and K-Nearest Neighbour(KNN). This work
achieves a maximum classification accuracy of 99.28% with
KNN as a classifier.

The authors in [29] aimed to predict breast cancer using dif-
ferent ML approaches applying demographic, laboratory, and
mammographic data. Algorithms like Random Forest(RF),
MLP, gradient-boosting trees, and genetic algorithms were
used in this study. RF presented higher performance com-
pared to other techniques (accuracy 80%, sensitivity 95%,
specificity 80%, and the area under the curve (AUC) 0.56).
The authors in [30] applied five ML algorithms namely SVM,
RF, LR, Decision tree (C4.5), and KNN on the WBCD.
The objective of this work is to predict breast cancer using
ML algorithms and to find out which is the most effective
algorithm. According to the results obtained in this work,
SVM outperformed all other classifiers and achieved the
highest accuracy (97.2%).

The authors in [31] aim to assess the effectiveness of differ-
ent basic and ensemble ML algorithms in predicting breast
cancer. A dataset of 1503 suspected breast cancer cases
was extracted from a hospital-based electronic database and
used for evaluation. Wrapper-J48, wrapper-SVM, wrapper-
Naive Bayes(NB), LR, and correlation-based feature selec-
tion methods were used in this work to identify the important
risk factors. The performance of basic ML algorithms like
NB, Bayesian network, RF, MLP, SVM, C4.5, eXtreme Gra-
dient Boosting (XGBoost), decision tree, and two ensemble
algorithms, including Confidence weighted voting and voting
techniques were compared in this work to predict breast
cancer before and after performing feature selection. They
evaluate the performance of these algorithms using relevant
metrics and techniques to determine their accuracy and re-
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liability in detecting breast cancer cases. According to the
results in the above work, RF presented the best performance
before and after performing feature selection with AUC of
0.799 and 0.798.

The authors in [32] contribute to the understanding of ML
techniques like SVM, KNN, RF, artificial neural networks
(ANNSs), and LR for breast cancer prediction. Through a
comparative study, the authors offer valuable insights into the
performance and effectiveness of different algorithms. The
results of this work reveal that the ANNs obtained the highest
accuracy of 98.57%.

The above survey reveals that though several studies high-
lighted the effectiveness of various ML algorithms for breast
cancer prediction, there remains a lack of focus on the
integration of decentralized data sources, preserving patient
privacy, and interpretability of these algorithms.

B. FEDERATED LEARNING

FL is the new dawn of Al The increase in Internet of
Things (IoT) devices and the increasing importance of data
privacy and security led to the exploration of decentralized
learning methods. In 2016, Google researchers introduced
the concept of FL as a solution to these challenges [40]-
[42]. FL allows distributed learning without the transferring
of raw data between the client and server thereby improving
the privacy of the data [43]-[45]. FL can use large amounts of
data on remote devices [46], [47]. It is majorly implemented
in places where privacy is very important [48], especially in
the medical field [49]. Table 1 is the summary of the existing
works.

The following steps brief the working of FL:

1) Initialization: A central server creates a global model
depending on the dataset available.

2) This global model is then shared with participating
devices or clients.

3) The models are trained on clients’ data locally.

4) The trained models are sent back to the server.

5) The models sent from each client are aggregated on the
server side using aggregation algorithms.

6) The server sends the new updated global model to the
client and this process repeats till the optimal model is
created.

The authors in [33] aims to provide an overview of FL, a
distributed ML approach. This survey covers various topics
of FL, which include its definition, principles, algorithms,
applications, and respective challenges. The study dives into
the basic concepts of FL, such as FL optimization, and
several privacy-preserving mechanisms. The advantages and
disadvantages of FL and its applications in various domains
are also discussed in this paper.

The authors in [50] offer a comprehensive overview of FL,
discussing the challenges, methods, and future directions. It
serves as a valuable resource for researchers, practitioners,
and policymakers interested in understanding and advancing
FL techniques and applications.
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TABLE 1: Summary of the literature review

Ref. no. Key Concept Key Findings Open Issues
[28] Breast cancer prediction  Highlighted effectiveness  No privacy protection measures
system; WBCD; LR, of KNN as a classifier in
SVM, KNN breast cancer prediction
[31] Effectiveness of ML al-  RF showed the best perfor-  No privacy protection measures,
gorithms; Hospital-based — mance computational cost, and time com-
electronic database; NB, plexity calculation
RF
[32] ML techniques for breast ~ANNs obtained the high- Lack of privacy protection mea-
cancer prediction; SVM,  est accuracy sures
KNN, RF, ANNs, LR
[33] Overview of FL Introduction to principles, Need more explanation of FL in
algorithms, and challenges  healthcare
of FL
[34] Security in FL in health-  Blockchain-based FL sys-  The computation cost is expensive
care tem to protect against poi-
soning attacks
[35] Federated transfer learn-  "FedHealth" approach for = The work can be expanded for other
ing in healthcare; Wear-  accurate healthcare recom-  datasets with more evaluation met-
able devices mendations rics
[36] Shapley values for feature ~ Advantages and Less exploration on the medical
selection challenges of Shapley datasets
values
[37] Shapley values in ML Importance of Shapley Less exploration on the medical
values in ML datasets
[38] Game theory in cloud Game-theoretic method  Scope of game theory for healthcare
computing for cyber-threat  sector less explored
information sharing
[39] FL and Shapley value Client selection in FL with  Number of clients used in imple-

Shapley value

mentation is minimum

The authors in [51] present the high-level design of FL,
outlining the architectural components and their interactions.
This work also highlights the key challenges encountered
during the development process and provides solutions to
address these challenges.

The authors in [34] focus on enhancing the security and
privacy of FL in healthcare systems, which are currently
susceptible to adversarial attacks. A blockchain-based FL
system, combined with Secure Multi-Party Computation is
introduced in this work in order to protect against poisoning
attacks. The local models from clients are scrutinized through
an encrypted inference process. The models that are poisoned
are identified and removed. and after verification, the local
models are aggregated on a blockchain node.

The authors in [35] introduce "FedHealth", a novel federated
transfer learning approach that is designed for wearable
healthcare. This framework addresses two primary chal-
lenges, lack of personalization in models trained solely on
the cloud and the difficulty in aggregating isolated user
data without breaching privacy and security. Through the
combination of FL and TL, the FedHealth approach ensures
accurate and personalized healthcare recommendations from
wearable devices. The efficiency of the approach was proved
through wearable activity recognition tests and a Parkinson’s
disease diagnosis application.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4

The studies in [33] [50] [51] [35] [34] are relevant to our
work as they also use FL, but the proposed approach en-
hances FL performance by integrating Shapley values for
feature selection and a payoff mechanism for model aggre-
gation. The proposed approach addresses the limitations of
the blockchain-based FL system in [34] and the "FedHealth"
approach in [35] by integrating Shapley values and a payoff
mechanism. The majority of the mentioned works empha-
sized boosting the performance and privacy of FL. However,
game theory has been used less to improve the performance
of global models. The proposed approach uses FL, Shapley
values, and game theory for breast cancer prediction improv-
ing model performance and ensuring data privacy.

C. SHAPLEY VALUES

Shapley (1953) introduced Shapley values, a cooperative
game theory concept, to quantify the contribution of each
feature in a prediction model. It provides insights into feature
importance and helps interpret the model’s decision-making
process [52].

When referring to the survey related to Shapley values, the
authors in [36] use Shapley values for feature selection. The
theoretical background and methodology of Shapley values
are presented in this work. The advantages of Shapley like
interpretation ability and fairness are discussed in this work
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TABLE 2: Comparative Analysis of Studies in Sections 2.2, 2.3, and 2.4

Section Study Description/Key Findings Accuracy Privacy Security
22 [21] Comprehensive overview of FL - Emphasized  Emphasized
[38] Challenges, methods of FL - - -

[39] High-level design of FL - - -
[22] Blockchain-based FL system - High High
[23] FL and TL for wearables High High -
2.3 [24] Feature selection with Shapley - - -
[25] Shapley values in ML - - -
[41] Hybrid ReliefF & Shapley Over 80% - -
2.4 [26] Cyber-threat sharing in cloud - - Enhanced

[45] Game-theoretical FL setup

Over 90%  High -

along with the challenges and drawbacks.
The authors in [37] focus on the Shapley value in the con-
text of ML. In ML, Shapley values are needed to measure
the importance of the individual features in the predictive
model. Several practical aspects of Shapley values like com-
putational complexity, approximation methods, and potential
applications in different ML tasks are also addressed.
The authors in [53] introduce a feature selection approach
that uses a filter-wrapper technique which is a combination of
ReliefF and Shapley Value. The proposed method using Reli-
efF and Shapley value was used to select the most prominent
features, which were later applied in the classifiers; SVM,
RF, and NB. The efficiency of the dataset is tested on five dif-
ferent medical datasets from the UCI repository namely the
WBCD dataset, Parkinson’s dataset, heart disease, statlog,
and hepatitis datasets. The overall accuracy for all models
exceeded 80%. Though Shapley values are considered to be
important in understanding feature importance in models,
their implementation in healthcare datasets like breast cancer
datasets along with FL is not thoroughly explored. This is
due to the following reasons:
1) Shapley values can be computationally expensive to
compute, particularly for large datasets.
2) The interpretation of Shapley values can be complex,
especially for non-linear models.
3) There is a lack of standardized methods for implement-
ing Shapley values in FL.

D. GAME THEORY

Osborne and Rubinstein (1994) introduced the concept of
game theory, which analyzes strategic interactions among
multiple agents or players. It provides a mathematical frame-
work to model and understand decision-making in competi-
tive scenarios [54]-[56]. Table 2 is the comparative analysis
of studies in sections 2.2, 2.3, and 2.4.

The authors in [38] focus on the application of game theory
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to address the problem of cyber-threat information sharing
in cloud computing technology. The main contribution of the
article is the development of a game-theoretic method that
incentivizes information sharing by aligning the interests of
the entities involved. The authors discuss the formulation
of the game model, including the definition of strategies,
payoffs, and the decision-making process for each entity.
The authors in [57] introduced a game-theoretical setup
where multiple stakeholders are optimized for their interests
while privacy is ensured using FL. The approach called a
non-interactive verifiable privacy-preserving FL aggregation
scheme is explained in the work. The approach is tested on
the COVID dataset and achieves good accuracy results of
more than 90%. The implementation of game theory in cloud
computing and other sectors is evident, but its application
and implementation to healthcare models, especially in breast
cancer prediction are less explored.

E. FEDERATED LEARNING WITH SHAPLEY VALUES
AND GAME THEORY

The authors in [58] proposed a federated Shapley value
that encapsulates the favorable properties of Shapley value
without incurring extra communication cost and is also able
to capture the effect of participation order on data value.

The authors in [39] resolved the problems about the Fed-
erated Relevant Client Selection (FRCS) like selecting the
appropriate client and detecting the client that has the relevant
data. A principled approach is developed when FL, Shapley
value, and cooperative game theory are used together.

The authors in [59] proposed a contribution index, a new
Shapley value-based metric for evaluating the contribution
of each data provider for the joint model trained by FL. Di-
rectly calculating the contribution index takes time, though,
because several joint models with various combinations of
data sets must be trained and assessed. Two gradient-based
approaches are suggested to address this issue.
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TABLE 3: Synthesis of the Literature Review

Section Key Findings

Relevance to Current Work

Breast Cancer Prediction
used.

Several ML algorithms applied. Different data sets were

Concentrated on evaluation metrics but the need for
decentralized data and interpretability was noted.

Federated Learning

Introduction due to IoT and privacy. Principles, algo-

Preservation of data privacy, especially in healthcare.

rithms, applications, challenges, and privacy mecha-

nisms of FL are discussed.

Shapley Values Measures contribution of features.

Provides interpretability and fairness in ML.

Game Theory

Addresses decision-making in competitive scenarios.

Application in optimizing processes, such as in cloud
computing.

FL with Shapley Values and Game

Theory in FL and client selection.

Combination for evaluating data provider contributions

Achieving data privacy, interpretability, fairness, and
accurate predictions.

The authors in [60] propose an energy-efficient FL scheme
based on two-stage game theories. The payoff function incor-
porates both the energy expenditure and the individual vehi-
cle’s contribution ensuring equal remuneration using Shapley
value through a collaborative game. Later, for optimized
federated worker selection, a hedonic game is used. The
results show that the scheme improves energy efficiency by
68.8%.

F. RESEARCH GAP

The current literature on breast cancer prediction has not
explored the integration of decentralized data sources, which
highlights the need for leveraging FL in order to ensure
data privacy in healthcare. Though the potential of Shapley
values in understanding model features is identified, their
application with FL remains less explored. Similarly, the use
of game theory in healthcare models, particularly in breast
cancer prediction, is much limited. A significant gap exists
in the convergence of FL, Shapley values, and game theory
for enhancing accuracy, fairness, interpretability, and data
privacy in the domain of breast cancer prediction.

. METHODOLOGY

In this section, we outline the methodology of our research,
which focuses on the integration of Shapley, game theory, and
FL for breast cancer classification. We describe the dataset
used, use of shapley in feature selection, and the game-
theoretic FL framework.

A. DATASET

Breast Cancer dataset which is used in the proposed work is
available publicly for breast cancer classification tasks [61].
It contains 30 features that are extracted from the digital
images of breast mass, such as texture, radius, and area using
the Fine Needle Aspiration (FNA) method. Table 4 describes
the features and their data types. The dataset also contains
the corresponding binary label that indicates the presence of
malignant or benign tumors [62].

The FNA method is used as a diagnostic procedure in which
a small sample of cells is collected from a breast mass using
a thin needle. The sample is then examined under a micro-
scope to detect any abnormalities or signs of cancer [63]. To
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TABLE 4: Description of features in the dataset

S.No. Column Name Datatype

1 radius(mean) float64
2 texture(mean) float64
3 texture(worst) float64
4 texture(error) float64
5 perimeter(mean) float64
6 perimeter(worst) float64
7 perimeter(error) float64
8 area(mean) float64
9 area(worst) float64
10 area(error) float64
11 smoothness(mean) float64
12 smoothness(worst) float64
13 smoothness(error) float64
14 compactness(mean) float64
15 compactness(worst) float64
16 compactness(error) float64
17 concavity(mean) float64
18 concavity(worst) float64
19 concavity(error) float64
20 concave points(mean) float64
21 concave points(worst) float64
22 concave points(error) float64
23 symmetry(mean) float64
24 symmetry(worst) float64
25 symmetry(error) float64
26 fractal dimension(mean) float64
27 fractal dimension(worst) float64
28 fractal dimension(error) float64
29 radius(worst) float64
30 radius(error) float64
31 target int64

analyze the sample, features are computed from a digitized
image of FNA. These features describe the characteristics of
the cell nuclei present in the image.

There are about 569 samples of which 212 samples belong
to the Malignant class and the remaining 357 belong to the
Benign class.

Mean, standard error and worst values were computed for
each image. Table 5 explains the basic details of the dataset.
There are 10 features for each of these categories, and a total
of 30 features were computed for each image [64].

B. SHAPLEY VALUES FOR FEATURE SELECTION
The proposed framework uses Shapely values for feature
selection. In this study, we used the SHAP library to com-
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pute the SHAP values for each feature in our dataset. The
objective is to extract these SHAP values and analyze if they
accurately reflect the relationships and contributions of each
feature to the model’s predictions. SHAP values are designed
to distribute the contribution of each feature fairly to the
overall prediction.

Data and Model: We used the breast cancer dataset provided
by the load_breast_cancer function from sklearn.datasets.
We choose the gradient boosting framework, XGBoost,
which has been shown to be effective in both classification
and regression tasks. The XGBoost model is trained on the
entire dataset.

Computing SHAP values: On training the model, we initial-
ized an explainer object using the shap.Explainer() method
and then computed the SHAP values for our dataset. The
output, shap_values, gives the contribution of each feature
to every prediction in comparison to the mean prediction for
the dataset. The Shapley value for each feature is computed
using the Equation (1).

A S|'(p —|S] —1)!
sh= 3 K p\! 1)
SC{1,....p\{5}
1)
Where:
o &5 f ) is the Shapley value of the j-th feature.
« Sis a subset of the features used in the model.
o pis the number of features.
o val(S) is the prediction for feature values in set S that
are marginalized over features that are not included in
set S.

Analysis of Feature Importance: To understand the overall
importance of each feature, we averaged the absolute SHAP
values over all samples. Features with higher mean absolute
SHAP values have a greater impact on model output. We then
ranked the features based on their importance and selected
the top 10. For each feature, the mean absolute Shapley
values are calculated using Equation (2).

1 n
h 1 = — h 1 ) 2
mean_shap_values - ;|S ap_values][d]| 2)

Equation (2) is detailed as follows:

« mean_shap_values: This represents the mean or aver-
age SHAP values for a given set of features.

« n: This denotes the number of instances in your dataset.

« shap_values[i]: This refers to the SHAP values for the
i-th observation or instance.

« |shap_values[i]|: The absolute value is taken for each
individual SHAP value.

o > ,|shap_values|i]|: This part of the equation calcu-

lates the sum of the absolute SHAP values across all

observations.

L3"" | |shap_values[i]|: Finally, the sum is divided by

the number of observations (n), obtaining the mean

SHAP value.
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[val(SU{j})—val(:5)]

Feature Selection: Based on the ranked features, we selected
the top 10 features for further analysis. By focusing on the
most influential features, we aim to build more interpretable
models.

The top 10 features with the highest Shapley values are
selected using Equation (3). The top 10 features with the
highest Shapley values are identified and listed in Table 6.
Table 6 gives names and the Shapley values of the top ten
features.

top_features = feature_importance[ feature’].head(10).tolist()
3
Equation (3) can be explained as follows:
o top_features: This represents a list of the top 10 fea-
tures based on their importance.
« feature_importance[’feature’]: This refers to the fea-
ture importance values for each feature in a dataset.
« .head(10): The head(10) method is applied to select the
top 10 features based on their importance.
« .tolist(): The tolist() method converts the selected top
10 features into a list.

TABLE 5: Dataset Details

Aspect Details —
Value Description
Classes 2 Malignant and Be-
nign
Samples per class 212-Malignant, 569 total samples
357-Benign
Feature 30 mean, standard er-

ror, and worst val-
ues of features

dimensionality

Algorithm 1: Shapley feature selection using XG-
Boost
1: Import necessary libraries: pandas, numpy, xgboost,
shap, matplotlib
2: Load the breast cancer dataset into a pandas DataFrame
(data) with features and target variable
Split the dataset into features (X) and target variable (y)
Train an XGBoost model (model) on the dataset
Use SHAP values to determine feature importance
Generate a summary plot of SHAP values
Save the summary plot to a PDF file
Extract mean SHAP values for each feature
Create a DataFrame with feature names and their mean
SHAP values
10: Sort features by SHAP values in descending order
11: Print the top 10 features by SHAP values
12: Select the top 10 features and create a new DataFrame
with only those features
13: Split the dataset into training and testing sets

B A A

A new data frame is now created with only the top 10 features
that are selected based on the Shapley values. Figure 3 is
the pictorial representation of the feature importance that is
calculated using Shapley values.
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TABLE 6: Shapley values of top 10 features

Feature Name Shapley Values
area error 1.034378
worst concave points 0.978121
worst area 0.964640
mean concave points 0.914735
worst concavity 0.819696
worst perimeter 0.772261
worst texture 0.767155
worst radius 0.585028
mean texture 0.494641
compactness error 0.409219

High

area error

worst concave points
worst area

mean concave points
worst concavity
worst perimeter
worst texture

worst radius

mean texture
compactness error

worst smoothness

Feature value

worst symmetry
symmetry error “’.'
mean smoothness
mean area

mean compactness
mean symmetry
concave points error
mean concavity

concavity error

Low
-4 -3 -2 -1 0 1 2

SHAP value (impact on model output)

FIGURE 3: Feature selection using Shapley values

1) Computational Complexity Analysis

Equation (1) demonstrates that computing the SHAP value
for a given feature involves considering all possible subsets of
features. This inherently suggests an exponential time com-
plexity, as the number of subsets grows exponentially with
the number of features. Consequently, the feature selection
method employed in our approach can become computa-
tionally impractical when dealing with a large number of
features.

To address this issue, it is crucial to explore and implement
optimization strategies. These may include approximation
techniques such as sampling methods that estimate SHAP
values without evaluating all subsets or leveraging parallel
computation to distribute the computational load. Future
work could focus on developing more efficient algorithms
that retain the accuracy of SHAP values while reducing

8
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computational overhead.

2) Justification for Using SHAP Values

Despite the computational inefficiency of SHAP values, we
chose them for feature selection due to their interpretability
and transparency, consistent measure of feature importance,
ability to handle feature interactions, robustness in FL en-
vironments, superior empirical performance, and feasibility
with optimization techniques. These benefits outweigh the
computational cost, leading to a more effective and trustwor-
thy breast cancer prediction model.

C. DATASET PARTITIONING

The dataset is split into training and testing sets using the
train_test_split() function. Initially, the dataset is divided into
a temporary training set and a testing set. By specifying
a test_size parameter of 0.2 and setting a consistent ran-
dom_state of 42, we ensured the following distribution:

o Testing Set: Approximately 20% of the total dataset,
amounting to 114 samples.

e Temporary Training Set: The remaining 80%, consisting
of 455 samples.

To fine-tune our model parameters and prevent overfitting,
we further partitioned the temporary training set into a final
training set and a validation set:

o Validation Set: This constituted 25% of the temporary
training set, which is approximately 114 samples.

« Final Training Set: The residual 75% of the temporary
set, resulting in around 341 samples.

In summary, the dataset is partitioned as follows:

o Training set: 60% ( 341 samples)
o Validation set: 20% ( 114 samples)
o Testing set: 20% ( 114 samples)

D. MULTI-LAYER PERCEPTRON
An MLP classifier is a type of feedforward ANN used for
classification tasks. Figure 5 discusses the architecture of
the neural network model. The "multi-layer" refers to the
network that consists of multiple layers of neurons between
the input and the output layers [65]. In our experiment, two
hidden layer MLP is used. Table 7 shows the layers of the
MLP model. The following are the layers of MLP:

1) Input layer

2) Dense layer with 64 neurons and ReL.U activation.

3) Dense layer with 32 neurons and ReLU activation.

4) Dense layer with 1 neuron and sigmoid activation.

E. GAME-THEORETIC FEDERATED LEARNING
FRAMEWORK

Our research leverages the principles of game theory to en-
hance the performance and convergence of FL. models. In the
proposed framework, we consider a scenario where multiple
clients possess breast cancer data and aim to collaboratively
train a model while preserving data privacy [66], [67]. Each
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FIGURE 4: Block diagram of the proposed model
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FIGURE 5: Model architecture

TABLE 7: Configuration of the Multilayer Perceptron (MLP)

Layer Configuration
Input Layer Input Nodes
Hidden Layer 1 | 64 nodes with ReLU activation
Hidden Layer 2 | 32 nodes with ReLU activation
Output Layer 1 node with Sigmoid activation

client acts as a strategic player and makes decisions regarding
their participation during the training process [68], [69]. By
introducing payoff functions, we incentivize the clients to
optimize their local models. Figure 6 refers to the outline of
the game theoretic FL approach.

1) Client Training

The following steps are followed for client training.
Initialization

Every client is initialized with the global model which is an
MLP model in our experiment.

Local Training

In the experiment, each client model is trained on its respec-
tive data subset for a fixed number of epochs.

Evaluation

The models are evaluated using the test set to calculate their
accuracy. The accuracy values are then used to calculate
client payoffs. The payoff for each client in game-theoretic
FL is calculated as the difference between their accuracy and
the mean accuracy of all clients. The payoff calculation is as
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in Equation (4).

payoff = client_accuracies|i]

1 num_clients

num_clients 21
i=

client_accuracies|[j]

“
Equation (4) can be explained as follows:
o payoff: This represents a variable that will store the
calculated payoff.
« client_accuracies[i]: This term represents the accuracy
of a specific client, indexed by <.
* e Z?f{l—dlents client_accuracies|j]: This part
calculates the average accuracy across all clients.
In Equation (4), client accuracy is the accuracy of a single
client model on the test set. The mean accuracy of all the
clients on the test set is calculated. The difference between
the accuracy of a client model and the mean accuracy of
all clients is calculated to find out the payoff values. The
resulting values which are the payoff of the client model, can
be positive, negative, or zero.

2) Model Aggregation Strategy

The following steps are followed for model aggregation.
Client Selection

After the calculation of the client payoff, the clients are
selected based on the payoff of each client. Clients with

9
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FIGURE 6: Game theoretic Federated Learning approach

higher payoffs are selected for the global model update.
The number of clients to select is a hyperparameter that is
determined in advance. Here we are selecting 10 clients.
Equation (5) explains the client selection criteria.

S = {i : Payoff; > Payoff,, Vj # i} (5)

Equation (5) can be described as follows:

» S: This represents a set that will be defined based on the
condition specified.

o {i : Payoff, > Payoff,,Vj # i}: This set comprehen-
sion notation implies that the set S contains all elements
1 for which the payoff (Payoff;) is greater than or equal
to the payoff of every other element j in the set, where
J is not equal to <.

« Payoff,: This represents the payoff associated with the
element ;.

« Payoff;: This represents the payoff associated with the
element j.

Here, S represents the set of selected clients, Payoff_s is the
payoff of the client i, and j represents all other clients. This
Equation (5) implies that a client i is selected (i is included in
the set S) if its payoff is greater than or equal to the payoff of
every other client j.

Weight Calculation

In the experiment, the payoff values are applied in adjusting
the weights of each client model in the weight update step.
By applying the payoff in weight calculation, the proposed
work aims to give more weight to the models of clients that
are selected.

The weights are calculated using the payoff values obtained
from Equation (4). Each client’s weight is determined based
on its payoff, which reflects its performance in the game. The
higher the payoff, the greater the role of the client’s model
during aggregation. The update of the weights in each layer
of the local model is calculated using Equation (6).

Wupdated - Wcurrent +1Ir x Pay()ffi (6)
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Here, W_updated represents the updated layer weights.
W_current represents the current layer weights, Ir is a hyper-
parameter that controls the step size for updating the weights,
Payoff_i is the payoff of the client i. The Ir x Payoff, term
provides the direction and magnitude for the weight updates.
Higher payoff results in larger updates to the weights. The
weights are normalized to sum up to 1.

Global Model Aggregation

The central server aggregates the models from selected
clients to create a new global model. The aggregation process
uses weighted averaging method. Equation (7) is to calculate
the updated weights for the global model are as follows:

k
Global Weights = ZWeighti x Local Model Weights,

i=1

(N
Where k is the number of selected clients Weight, is the
normalized payoff of the client ¢, and Local Model Weights,
represents the weights of the local model for client :.
Client Model Update
The global model is updated and the new global model is
distributed to the clients and this process is repeated till the
best global model is achieved.
Every client in this game-theoretic FL setting plays a game
where the objective is to maximize their own payoff. The
"game" here is the learning process, and the "players"
(clients) update their strategies (models) based on their pay-
offs (reward function). This process aligns most closely
with concepts from cooperative game theory where players
(clients) receive payoffs (based on their model’s perfor-
mance), and the best-performing players are selected to con-
tribute to the collective goal (improving the global model).
In standard FL, the weights are typically calculated based
on a simple averaging scheme. Each client’s weight is equal,
and the model updates from all clients are averaged equally
during the aggregation process [70]. This equal weighting
assumes that all clients are equally reliable and contribute
equally to the learning process.
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Algorithm 2: proposed framework algorithm

Input: Training data X¢rqin, Ytrain, lest data Xiest, Ytest,
Validation data X 47, Yvqi, Number of clients num j;ents,
Number of epochs num.pochs, Batch size batchs;ze,
Learning rate Ir
Output: Global model G
1 Initialize global model Go;
2 fort =1 to numepochs do

3 for i = 1 to numejjents do
4 Initialize client model G; with G¢_1;
5 Select subset of data DT; C X¢rain, Ytrains
6 Train client model G'; on DT for numepocns epochs;
7 Evaluate client model G; on test set Xtest, Ytest,
compute metrics;
8 Compute payoff 7; = accuracy of model; - mean
accuracy of all models;
9 Update client model G; based on 7;;
10 end
11 select top performing clients;
12 Calculate weights for aggregation based on payoffs and
normalize to 1;
13 Aggregate client models using computed weights to form a
new global model G¢;
14 for i = 1 to numej;jents do
15 Update G;’s weights based on their respective 7;;
16 Update the global model G with the updated G;’s
weights;
17 end
18 Evaluate new global model Gt on X¢est, Ytest;
19 end

Game-theoretic FL considers the strategic interactions which
is to assign weights to clients in the aggregation phase based
on their relative contribution or utility, thus optimizing the
global model and encouraging individual clients to provide
high-quality data and models [71]. On the other hand, stan-
dard FL focuses on collaborative learning and assumes equal
contributions from all clients. The complete process of the
proposed framework is explained step by step in Algorithm 2.
This approach can improve the overall performance of the
global model by giving more importance to the contributions
of the clients with better performance. Also, the impact of
poor-performing clients is reduced. This can lead to better
convergence and more accurate global models in FL scenar-
ios. Figure 4 is the block diagram of the proposed model.

IV. RESULTS AND DISCUSSION
This section discusses the experimental results and key find-
ings of the proposed framework.

A. EXPERIMENTAL SETUP

The experiments were carried out on a laptop with an In-
tel(R) Core(TM) 15-6200U CPU, 250 GB memory, and two
NVIDIA GeForce RTX 2070 Super GPUs with 4 GB DRAM
each. We used Keras version 2.4.3 and TensorFlow version
2.3.0 for simulating the FL. The proposed work enhances the
communication performance of FL.

B. PERFORMANCE OF THE PROPOSED APPROACH
In our work, we implemented a game-theoretic FL algo-
rithm that uses a neural network model. The experiments
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TABLE 8: Constants in the experiment

Constant Value
Number of Clients 10
Number of Epochs 10

Client Epochs 10
Learning Rates 0.1
Batch Sizes 32

are conducted with a dataset that contains test, train, and
validation samples. The algorithm selected 10 clients out
of 20 clients and each client has its own local model. The
models were trained for 10 epochs and a batch size of 32. The
learning rate (Ir) was set to 0.1. We evaluated the performance
of the algorithm by calculating the global accuracy of the
aggregated models. Table 8 refers to the constants used in
the experiment.

Global Accuracy over Epochs Global Loss over Epochs

FIGURE 7: Accuracy and Loss results of the proposed ap-
proach

TABLE 9: Accuracy and Loss values of the proposed ap-
proach

Epoch  Accuracy Loss
1 0.37719 0.85154
2 0.62281 0.69543
3 0.92105 0.61870
4 0.84211 0.57491
5 0.93860 0.53743
6 0.93860 0.49807
7 0.92105 0.45558
8 0.92105 0.42724
9 0.92982 0.39677
10 0.94737 0.31034

TABLE 10: Other Evaluation Metrics of the Proposed Ap-
proach

Epoch Precision  Recall F1-Score ROC-AUC
1 0.39434 039032 0.39189 0.67491
2 0.63964  0.64100  0.64032 0.75438
3 0.93421 093156  0.93281 0.85431
4 0.85977  0.86123  0.86050 0.87891
5 0.95455  0.95161  0.95308 0.92037
6 0.95283  0.95423  0.95353 0.94211
7 0.93182  0.93281  0.93231 0.96154
8 0.93182  0.93281  0.93231 0.97031
9 0.93976  0.94323  0.94149 0.98127
10 0.95283  0.95423  0.95353 0.98974
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Through the analysis of the results, the model demon-
strated significant progress in its learning capability. Starting
from an accuracy of 0.37719 in the first epoch, it reached
an accuracy close to 0.947 by the tenth epoch. Similarly, the
global loss observed a consistent decline over the ten epochs,
indicating the model’s efficient learning and adaptability to
the data. The process suggests that the model effectively
captured the underlying patterns in the dataset, leading to
improved accuracy and reduced loss with each epoch.

In addition to the loss and accuracy values, we evaluated
other performance metrics such as precision, recall, F1-score,
and ROC-AUC curve. Table 10 gives the values of the other
performance metrics. The equations for other evaluation
metrics like precision, recall, Fl-score are represented in
equations (8), (9), (10). The ROC-AUC curve is shown in
the Figure 8
Precision:
Precision measures the proportion of correctly predicted
positive instances out of the total predicted positive instances.
Equation (8) is used to calculate the precision values.

True Positives

Procision — x 100 (8
recision True Positives + False Positives ®)

Recall:
Recall measures the proportion of correctly predicted pos-
itive instances out of the total actual positive instances.
Equation (9) is used to calculate the recall values.

True Positives

Recall = — - x 100  (9)
True Positives + False Negatives

F1 Score:

The F1 score is the harmonic mean of precision and recall.
It provides a single metric to balance between precision and
recall. Equation (10) represents the calculation of the F1

score. 9 % Precisi Recall
x Precision x Reca

F1S = 10

core Precision + Recall (10)

We also tracked the payoff values for every client throughout

ROC-AUC Over Epochs

ROC-AUC
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3

FIGURE 8: ROC-AUC curve Analysis

the process. Figure 9 gives the graphical representation of the
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payoff values of each client. Once the training is completed,
the accuracy of each client on the test set is calculated and
then the payoff is computed for each client. This payoff
calculation is based on the individual accuracy and the mean
accuracy of all the clients. If a client’s model has higher
accuracy than the average accuracy of all client models, then
its payoff will be positive, which indicates that the client has
made a positive contribution to the global model. If a client’s

Payoffs of Selected Clients

o,
o,
7,
’9,)(7
7%y
R
"o,
g
7%,
%

FIGURE 9: Payoff values of each client

model has lower accuracy than the average accuracy, then its
payoff will be negative, indicating that the client has made a
negative contribution to the global model. Figure 9 indicates
the payoff values.

Figure 7 discusses the accuracy and loss results of the
proposed approach. The proposed approach shows a higher
accuracy of 94.47%. Table 9 gives accuracy, loss values in
each epoch of the experiment.

C. PERFORMANCE ACROSS DATASETS AND
HYPERPARAMETER SETTINGS

In an effort to validate the robustness of our proposed
methodology, game-theoretic FL, we have conducted addi-
tional experiments using three more diverse datasets namely:

1) Ship-detection dataset-
https://www.kaggle.com/datasets/andrewmvd/ship-detection
2) Sonar dataset-
https://archive.ics.uci.edu/dataset/151/connectionist+bench+
sonar+mines+vs+rocks
3) Forest Fire dataset-
https://www.kaggle.com/datasets/alikO5/forest-fire-dataset
For the Ship-detection dataset, the model demonstrated an
upward trend in accuracy, initiating from 80.47% in the first
round and reaching a peak of 93.13% by the eighth round.
The corresponding loss exhibited a general decline, implying
model optimization with consecutive rounds.
In the case of the Sonar dataset, a more pronounced im-
provement was evident. The model accuracy leaped from an
initial 38.09% to an impressive 88.09% by the tenth round.
This continual improvement resonates with the decrement in
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TABLE 11: Performance metrics across different datasets over ten rounds.

Dataset Round

1 2 3 4 5 6 7 8 9 10
Accuracy(%)
Ship-detection 80.47 88.88 89.05 91.12 87.12 92.06 89.27 93.13 89.48 91.63
Sonar 38.09 61.90 66.66 69.04 73.80 73.80 78.51 80.95 85.71 88.09
Forest Fire 82.44 88.82 90.69 91.22 91.75 93.61 94.41 94.68 95.21 96.01
Loss
Ship-detection 1.16 0.38 0.47 0.39 0.54 0.32 0.44 0.30 0.43 0.20
Sonar 0.69 0.69 0.61 0.59 0.57 0.55 0.53 0.50 0.48 0.46
Forest Fire 1.37 0.36 0.50 0.42 0.38 0.18 0.23 0.32 0.30 0.26

loss values, signifying the model’s adeptness in adapting and
learning from this dataset.

Lastly, the Forest Fire dataset displayed consistent enhance-
ment in model accuracy throughout the rounds, starting from
82.44% and culminating at 96.01% in the final round. The
loss values corroborate this observation, revealing a down-
ward trend with few fluctuations.

These results show the model’s versatility and efficacy across
diverse datasets. The consistent improvement in accuracy,
along with diminishing loss values, reveals the model’s po-
tential for broader applications. In Figure 10 we visualized
the performance of our model across different training sce-
narios. The scenarios are differentiated based on two pa-
rameters: batch size (BS) and learning rate (Lr). The sce-
narios under consideration were "BS=32, Lr=0.01", "BS=32,
Lr=0.001", "BS=16, Lr=0.01", and "BS=16, Lr=0.001",
"BS=16, Lr=0.1". We considered the number of epochs as
10.

In addition to the above results we also evaluated the total
communication cost and total time consumed for both the
approaches namely game theoretic FL and FL. The values
are depicted in Table 12. The total communication cost of
the game theoretic FL approach is 77.34375 Kilo Bytes(KB)
while 100 KB for the FL approach. Similarly, the time con-
sumed for the game-theoretic FL approach is 27.940 seconds
while it is 40.467 seconds.

TABLE 12: Communication cost and Time

Game theoretic FL. | FL
Communication
Cost (Kilo Bytes) 71.34375 KB 100 KB
Time  consumed 27 940294027328495 | 40.467354536056525
(seconds)

D. PERFORMANCE COMPARISON WITH OTHER
MODELS

As a part of our experiment, we also implemented a few test
cases where we implemented both FL and game-theoretic FL
with and without Shapley feature selection. Figure 11 gives
the accuracy and loss values when using FL without game
theory for the same feature-selected dataset using Shapley
values.

Figure 12 represents the graph for the accuracy and loss
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values of the both FL and game theoretic FL without the
Shapley feature selection. This is evaluated with all the 30
features of the original dataset. Graph (a) in Figure 12 shows
the accuracy values for game theoretic FL without feature
selection. Graph (b) in Figure 12 shows the loss values for
game theoretic FL without feature selection. Graph (c) in
Figure 12 shows the accuracy values for FL without feature
selection. Graph (d) in Figure 12 shows the loss values for
FL without feature selection.

E. PERFORMANCE COMPARISON WITH OTHER
PREVIOUS WORKS

This section presents the comparative analysis of the perfor-
mance of the suggested method on the breast cancer dataset
with other models. A convolutional neural networks (CNN)-
based approach for the detection of breast cancer in invasive
ductal carcinoma tissue regions using whole slide images
(WSD) in [72] showed an accuracy of 83%. In [73], the
regular ML methods like NB and KNN showed accuracy re-
sults of 81.84% and 89.85% respectively. An FL experiment
based on breast cancer histopathological dataset (BreakHis)
in [74] achieved an accuracy of 86.48%. In [75] a new
technique called TL was experimented on a dataset from
Mammographic Image Analysis-Society which achieved an
accuracy of 86.48% using the Ensemble methods. Accord-
ing to authors in [76], the DenseNet method showed an
accuracy of 89.56%. Similarly, the PSO-FL+E-RNN (Par-
ticle Swarm Optimization, FL, Efficient Recurrent Neural
Network), DHOA-FL+E-RNN(Deer Hunting Optimization
Algorithm,FL,Efficient Recurrent Neural Network), and DA-
FL+E-RNN( Dragonfly Algorithm,FL, Efficient Recurrent
Neural Network) in [75] showed an accuracy of 89.93%,
89.91%, and 91.95% respectively. In comparison to all the
previous works, the proposed work achieved a higher ac-
curacy of 92.98%. Table 13 refers to the comparison of
accuracies of different algorithms in detecting Breast cancer.

F. DISCUSSION

In this section, we dive into a comprehensive discussion of
the results obtained from our breast cancer prediction model
using Shapley values and game theory within the FL environ-
ment. The results obtained from the experiments demonstrate
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FIGURE 10: Performance of our model across different
training scenarios

the effectiveness of our approach. The algorithm successfully
used the distributed nature of the clients to improve the
overall accuracy of the global model.

The proposed model combines the concepts of Shapley val-
ues, FL, and game theory. While the Shapley values are used
for feature selection, game theory is used to optimize the FL
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theoretic FL. without Shapley feature selection.

TABLE 13: Accuracies of different algorithms in detecting
Breast cancer

Algorithm Accuracy(%)
CNN [72] 83.00
Ensemble [75], [77] 86.48
NB [73] 81.84
KNN [73] 89.85
DenseNet [76] 89.56
PSO-FL+E-RNN [75] 89.93
DHOA-FL+E-RNN [75] 89.91
DA-FL+E-RNN [75] 91.95
Proposed work 92.98

process. Since breast cancer prediction deals with sensitive
data and needs to be predicted as early as possible with
less computational and communication overhead, we used a
combination of the three concepts. Shapley values will help
in showing the relative impact of every feature on the overall
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output. In healthcare data where privacy plays a major role
FL is a good option to be adopted and game theory plays an
important role in optimizing the performance of FL.

1) Assumptions and prerequisites for applying Shapely and
Game theory to breast cancer prediction:

In discussing the assumptions and prerequisites of our breast
cancer prediction model, we assume homogeneous distri-
bution of breast cancer data among participating clients.
This assumption is pivotal in collaborative learning envi-
ronment, where a balanced representation of various types
and stages of breast cancer across decentralized datasets
facilitates effective model generalization. The success of our
game-theoretic FL approach relies on the prerequisite of
a collaborative and trustworthy environment. Trust among
participants is much needed for encouraging active partic-
ipation, as clients must willingly share model updates and
engage in the reward-based mechanism introduced by game
theory. Additionally, we assume feature independence, as a
key consideration for Shapley values. While this assumption
simplifies the interpretability of feature contributions, we
acknowledge the potential existence of dependencies among
features.

2) Key findings

The key findings and contributions of our work can be
summarized as follows:

Accuracy Improvement: The global accuracy achieved by
the algorithm indicates that the collaborative training process
led to better generalization compared to a single model
trained on the entire dataset. The iterative nature of the
algorithm, with clients updating their models based on their
individual payoffs, resulted in the aggregation of diverse
models, which helped in capturing a broader range of patterns
and achieving higher accuracy.

Payoff-based Model Updates: The use of payoffs to up-
date the weights of each client’s model introduced a game-
theoretic aspect to the FL process. Clients with higher ac-
curacy relative to the mean accuracy were rewarded with
larger weight updates, allowing their models to contribute
more significantly to the global model. This incentivized
clients to strive for higher accuracy and promote the overall
improvement of the global model.

Convergence and Communication Efficiency: Using local
models and selective weight updates based on payoffs re-
duced the amount of communication required between the
clients and the server. This resulted in improved communica-
tion efficiency and faster convergence compared to traditional
FL approaches where all client models are updated uniformly
at each iteration. The game-theoretic approach ensured that
models converged towards a better global model while mini-
mizing communication costs.

3) Limitations
Firstly, the integration of game theory and Shapley values
introduces computational overhead, posing scalability chal-
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lenges for larger datasets and real-time applications. Privacy
concerns arise despite the use of FL, as the incorporation
of game theory and Shapley values may introduce new vul-
nerabilities. Additionally, our proposed model is static and
does not capture dynamic changes in feature importance,
limiting its adaptability to evolving breast cancer research.
The feature selection process using Shapley values may
not generalize well to broader datasets and diverse patient
populations. To address this, employing more diverse and
comprehensive datasets, covering different subtypes, stages,
imaging modalities, and data quality, alongside methods like
bootstrapping and cross-validation, could enhance model ro-
bustness. The complexity of DL models in the FL framework
can pose several challenges for clinicians, such as lack of
interpretability, vulnerability to adversarial attacks, and data
poisoning. Furthermore, fairness issues in client selection
during FL pose a significant challenge, affecting incentives
for contributing clients. Unfairness can manifest at various
stages, including client selection, model optimization, and
incentive distribution. Effectively addressing these fairness-
related concerns is crucial to maintain client engagement
and overall success in FL training. Various Fairness-Aware
Federated Learning (FAFL) approaches have been proposed
to tackle these challenges and promote fairness in FL [78].

V. IMPLEMENTATION CHALLENGES AND STRATEGIES
IN REAL-WORLD CLINICAL SETTINGS

This section describes the implementation challenges of our
model and strategies for implementing the model when ap-
plied to real-world clinical settings.

A. CHALLENGES

1) Scalability

The scalability of a model is dependent on the volume and
variety of healthcare data used by various organizations. To
build a universally scaled model, variations in disease sub-
types, treatment procedures, and patient demographics may
provide obstacles [79]. Network capacity problems may arise
when clients and the central server transfer large amounts of
data. This is especially important when working with large
datasets, and optimizing the efficiency of data transfer should
be considered.

2) Computational Requirements

FL demands substantial computational resources due to the
iterative nature of model training and the need for data
processing and aggregation across distributed clients, par-
ticularly in healthcare settings where data privacy and reg-
ulatory compliance are critical [80]. Scalability relies on
robust computational infrastructure to handle large volumes
of heterogeneous healthcare data efficiently, from processing
gradients locally to aggregating model updates centrally. Ap-
proaches that aim to minimize computation costs, facilitate
local processing, and reduce the computational footprint of
FL models are needed to address this challenge.
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3) Data heterogeneity

Data heterogeneity in FL, particularly in healthcare settings,
can lead to several challenges. These include performance
degradation of FL algorithms, statistical and model het-
erogeneity, and impacts on the prediction performance of
federated models [81]. Strategies like weighted average for
data quantity skew, weighted loss, and batch normalization
averaging for label distribution skew have been proposed
to address these issues. However, these may not completely
resolve the challenges, indicating a need for further research
in handling data heterogeneity in FL within healthcare.

4) Communication overhead

Communication overhead is one of the major bottlenecks for
FL. Since the communication cost is much greater than the
computation cost when several edge devices are sending their
model parameters to the central server [82]. The communica-
tion cost is very high in the training process, which results
in low training efficiency for FL and makes it ineffective in
the application of FL in the practical medical field. Therefore,
proper FL optimization algorithms are needed to reduce com-
munication costs by optimizing client selection and model
compression.

5) Security and Privacy threats

Security and privacy threats are counted as major chal-
lenges related to FL. In comparison with traditional privacy-
protecting computing technologies, FL is characterized by
revealing certain parameters and assuming that these data
do not reveal sensitive information [83]. In FL, there are
still some hidden threats, like parameter leaks and attacks by
malicious operations. It is therefore crucial that this commu-
nication be encrypted to ensure its privacy and security. In
addition, Differential Privacy or Homomorphic Encryption
techniques can also be applied to ensure privacy. Differential
Privacy ensures that the inclusion or exclusion of a single data
point does not significantly affect the outcome of the analysis,
thereby protecting individual privacy. Homomorphic Encryp-
tion allows computations to be performed on encrypted data
without needing to decrypt it first, thus maintaining data
confidentiality throughout the computation process [84].

6) Computational Efficiency

The FL model’s computing efficiency in the DL models is
complex. The model’s inference speed, especially in real-
time applications is affected by the model’s complexity.
Some clients can also have restrictions related to memory
and computing capacity [85]. To address this challenge,
computer engineers need to monitor and optimize resource
management using different strategies and tools, like load
balancing, fault tolerance, caching, and edge computing.

7) Trade-off between efficiency and privacy

Using Secure Multi-Computation (SMPC) and Differential
Privacy boosts the privacy protection capability in FL, how-
ever, such protection comes with a trade-off between cost and

16

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4

efficiency. Using SMPC, clients are to encrypt the parameters
of the models before sending them back to the central server,
therefore additional computational resources are required for
encryption which will compromise the efficiency of training
the model. With Differential Privacy, noise is added to the
model and data, hence some accuracy is lost. Therefore
finding a suitable trade-off between SMPC and Differential
Privacy is an open challenge in FL.

8) Systems Heterogeneity

Federated network involves different and a variety of devices
that have different storage, computational, and communica-
tion capabilities. These devices have variations in hardware,
network connectivity, and power supply and these lead to
differences. In a federated network, each device may be
unreliable and it is common for an edge device to drop out
from the network due to connectivity or energy constraints
[86]. So, fault tolerance is very important as the devices in
the network may drop even before the training is completed.
Therefore, FL. methods need to be developed in such a
way that they anticipate a low amount of participation, they
tolerate the heterogeneous hardware. Asynchronous commu-
nication, active device sampling, and fault tolerance are some
of the techniques that are needed to handle the heterogeneous
systems in FL environment.

9) Ethical and Societal Considerations

A significant volume of high-quality medical data is the most
important requirement for improving FL applications in the
healthcare domain. However, given the sensitive nature of
health information, security and privacy issues about health-
care data have recently given rise to widespread ethical and
legal concerns. To preserve patient privacy, it is morally and
legally necessary to assemble and transmit this sensitive data.
New regulations that regulate data exchange while protecting
user security and privacy have been passed by the majority of
healthcare facilities, national laws, and regulatory agencies,
such as the Health Insurance Portability and Accountability
Act (HIPAA) and the General Data Protection Regulation
(GDPR) [87]. Owing to data protection and ethical issues
involved with data sharing in healthcare, this overhead will
easily become a technical problem and typically necessitates
a time-consuming approval process.

B. STRATEGIES FOR REAL-WORLD IMPLEMENTATION

The implementation challenges in real-world clinical settings
for FL encompass various aspects, including scalability,
data heterogeneity, communication overhead, security and
privacy threats, computational efficiency, trade-offs between
efficiency and privacy, systems heterogeneity, and ethical and
societal considerations. Strategies to address these challenges
and implement in real world clinical settings are as follows:

o Scalability: Implement data preprocessing techniques
and utilize data compression and optimization algo-
rithms.
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o Computational Requirements: Optimization strategies
like federated optimization algorithms, edge computing,
and model compression techniques can be implemented
to solve the problems with computational requirements.

« Data Heterogeneity: Develop adaptive FL algorithms
and explore advanced techniques like weighted averag-
ing and batch normalization.

o Communication Overhead: Design efficient FL opti-
mization algorithms and prioritize client selection and
model compression.

o Security and Privacy Threats: Ensure robust encryption
methods and implement secure communication proto-
cols.

o Computational Efficiency: Employ resource manage-
ment strategies and utilize edge computing.

o Trade-off Between Efficiency and Privacy: Explore
adaptive mechanisms and investigate trade-offs between
privacy protection and computational efficiency.

« Systems Heterogeneity: Develop FL methods to accom-
modate diverse hardware and network configurations.

« Ethical and Societal Considerations: Adhere to regu-
latory frameworks and implement transparent data ex-
change processes.

VI. THEORETICAL AND BUSINESS IMPLICATIONS
This section gives a clear and distinct emphasis on the
significance and implications of our research.

A. CONTRIBUTIONS TO THEORIES

Bridge between Cooperative Game Theory and FL:

By integrating Shapley values with game theory in an FL
environment, our research establishes a theoretical bridge
between cooperative game theory principles and the decen-
tralized nature of FL. Cooperative game theory traditionally
focuses on the cooperative behavior of agents, while FL
operates in a decentralized manner. Our work demonstrates
how cooperative behavior can be incentivized and quantified
in an FL setting, thus enriching the theoretical understanding
of both fields.

Quantification of Individual Client Contributions:
Theoretical contributions extend to understanding how indi-
vidual client contributions can be quantified and optimized
within a decentralized FL system. Game theory provides
a rigorous framework for attributing contributions to each
client, enabling a deeper understanding of their impact on
model training and performance. This quantification en-
hances the theoretical foundation of FL by elucidating the
dynamics of decentralized collaboration.

Importance of Features in a Collaborative Environment:
Our research sheds light on the importance of features within
a collaborative environment. By leveraging Shapley values,
we explore how features influence the collaborative learning
process in FL. This theoretical exploration contributes to a
deeper understanding of feature importance in decentralized
settings, thereby advancing the theoretical underpinnings of
FL methodologies.
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1) Theoretical Limitations or Challenges:

While our theoretical framework offers significant advance-
ments, there are potential limitations and challenges to con-
sider:

Complexity of Shapley Value Calculations:

One challenge lies in the computational complexity associ-
ated with calculating Shapley values, particularly in large-
scale FL systems with numerous clients and features. Ad-
dressing this challenge may require the development of ef-
ficient algorithms or approximation techniques to compute
Shapley values within practical time constraints.
Assumptions of Cooperative Behavior:

Another theoretical limitation pertains to the assumptions
of cooperative behavior inherent in game theory models. In
real-world FL scenarios, clients may exhibit varying levels
of cooperation or conflicting interests, which can impact
the efficacy of collaborative learning. Future research could
explore more nuanced game-theoretic models that account
for such complexities.

2) Addressing Theoretical Challenges:

To address these theoretical challenges, future research en-
deavors could focus on:

Algorithmic Optimization:

Developing efficient algorithms for computing Shapley val-
ues in FL settings to mitigate computational complexity
while ensuring accurate attribution of contributions.
Behavioral Modeling:

Integrating behavioral economics principles to model client
behavior more realistically, accounting for factors such as
incentives, trust, and strategic interactions among clients.

B. CONTRIBUTIONS TO BUSINESS

From a commercial perspective, this work holds great
promise for healthcare and its associated industries. This
work can change the method of sharing and analyzing med-
ical data reduce privacy concerns and enable collaborative
research through multiple institutions. In addition, the use
of game theory and Shapley values ensures that clients or
institutions are motivated in a manner consistent with a com-
mon goal that encourages active and beneficial participation.
This leads to faster and more efficient model training and can
make patient outcomes more better. Such a model can serve
as a blueprint for companies outside of healthcare, showing
how data can be used collaboratively without centralization
and suggesting new business models that focus on decentral-
ized data sharing and analysis.

VIl. CONCLUSION

The proposed methodology implements a game-theoretic ap-
proach to FL, where multiple clients train their local models
on their own data and update them based on a payoff scheme.
The breast cancer dataset is used for feature selection, and the
top 10 features are selected for training the client models. A
simple neural network architecture is used as the base model
for each client, and their performance on a validation set is
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evaluated. The accuracy of each client’s model on the test
set is used to calculate their payoff, which is then used to
update their local models. The performance of the overall FL
approach is evaluated based on the accuracy achieved on the
test set.

A. FUTURE DIRECTIONS

This subsection explains the possible recommendations for
future research.

Optimization Techniques: As a part of future work, more
sophisticated payoff schemes and optimization techniques
to improve the efficiency and scalability of the proposed
methodology can be explored. Several other nature or bio-
inspired algorithms can also be explored to optimize FL
performance.

Dataset and Hyperparameter Exploration: The proposed
model performed experiment using different dataset and
hyperparameter settings. The methodology can be further
extended to other datasets and different hyperparameter set-
tings, to assess the generalizability of the proposed approach.
Privacy Preservation: The concept of FL provides a ba-
sic framework for privacy-preserving model learning, which
allows participants to collaboratively train a global model
using their respective datasets. However, there is no privacy
guarantee in the basic framework. To protect data privacy,
privacy-preserving mechanisms like differential privacy and
blockchain can be incorporated to strengthen data protection
[88].

Increase in the participant numbers: The proposed model
is implemented using 10 clients. The experiment can be
conducted with a larger number of participants to validate
the findings across broader contexts and larger populations.
Integrating advanced techniques: We plan to explore the
integration of deep learning architectures, such as CNNs
or RNNs, within the FL framework. Additionally, ensemble
methods, which combine predictions from multiple models,
could be used to enhance the robustness and generalization
of FL models.

Applications to Diverse Healthcare Prediction tasks: We
can extend the application of our framework to address
a wide range of healthcare prediction tasks, including but
not limited to cardiovascular disease risk assessment, dia-
betic complications prediction, and infectious disease out-
break forecasting. These tasks often involve heterogeneous
datasets, stringent privacy requirements, and complex data
distributions, posing significant challenges for traditional
centralized approaches.
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