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ABSTRACT Privacy is a complex balancing problem between risks and the utility of data. K-anonymity, a 

fundamental model for preserving privacy, guarantees that an item cannot be differentiated from at least k-1 

other items. Due to the k-anonymity is a hard problem, which means obtaining an optimal solution within a 

reasonable time is not possible, researchers endeavor to create near-optimal solutions. There are some 

researches in literature demonstrate the NP-Hardness of achieving k-anonymity. The problems of k-

dimensional perfect matching, edge partition into triangles, minimum vertex covering, and maximum k-

dimensional matching with k-occurrences are some examples of NP-Complete problems commonly used for 

reduction to prove the NP-Hardness of k-anonymity. This study presents a significant contribution by 

providing a new proof for the NP-Hardness of k-anonymity. The proof is achieved using a reduction from 

the graph coloring problem, which is being provided for the first time. The proof enabled us to enhance both 

the alphabet size and the number of suppressed cells.   

INDEX TERMS graph coloring, k-anonymity, np-hardness, proof 

I. INTRODUCTION 

The digitalization of society enables the handling of an 

increasing amount of data pertaining to the real world, 

machines, individuals, and so on. Currently, numerous 

institutions or parties, referred as data curators, gather and 

retain data from various individuals and entities such as 

clients, patients, users, firms, and institutions. The primary 

objectives of these acts include fulfilling their goals, 

enhancing services such as customer modeling, identifying 

behavioral patterns, diagnosing diseases, formulating plans, 

establishing regulations, and constructing decision-making 

procedures, etc. In some cases, it is necessary to publish or 

share the data in order to maximize the benefits. Through this 

approach, one can achieve outcomes that have a direct and 

positive impact on respondents at all levels, ranging from the 

individual to the country as a whole [1-3]. On the other hand, 

one of the most crucial concerns with data publishing is 

privacy.    

The concept of privacy was initially presented by Warren 

and Brandeis in 1890 [4] and defined as the "right to be let 

alone". Today, the protection of this right is ensured by legal 

measures, as it is considered both essential and hot topic. The 

preservation of privacy of individuals, who may be encounter 

with numerous cyber-attacks, can be defined as the right to 

maintain one's individuality in both physical and digital 

domains, wherein individuals establish their personal 

boundaries. The limits exhibit variability throughout different 

cultures, countries, religions, and even among individuals [5]. 

In addition to the definitions of personal privacy, it may be 

helpful to consider certain definitions of data privacy in order 

to better grasp the concept of privacy in the context of data. 

In the literature, some works provide definitions for data 

privacy, such as the concept of "informational self-

determination" [6] and “the appropriate use of responders’ 

information and the ability to decide what information of a 

responder goes where” [7]. Impressive definitions can be 

provided such as, the ability of the data owner to selective 

control the borders of data sharing, including with whom, for 

what purpose, and to what extent. Another meaning can be 

given as "the right to be data". In the light of the growing 

accumulation of personalized data, protecting data privacy 

has emerged as a critical necessity and an essential 

prerequisite for conducting privacy-preserving data analysis 

[8, 9]. Any attempt to direct publishing of raw data may 

violate the privacy of responders. Hence, it is vital to employ 

strategies that eradicate breaches of privacy. 

Anonymization and cryptography are the primary methods 

used for protecting the privacy of data [5]. Cryptography 

employs cryptographic keys to encrypt data, whereas 

anonymization masks the identity of respondents. Due to the 

lack of usefulness of encrypted data, encryption is not a 

recommended method for publishing of data. Anonymization 

is the method of grouping data records in such a way that each 

member of a group cannot be differentiated from others based 

on certain features. This strategy is often favored for 

maintaining data privacy while yet ensuring the data with 

utility [10].       
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Several privacy-preserving approaches have been 

established to resist privacy-focused disclosure attacks, such 

as record linkage attack, attribute linkage attack and 

probability attack. k-anonymity, l-diversity and t-closeness are 

well-known and important models for protecting privacy. k-

anonymity is a method that addresses the issue of record 

linkage attack by guaranteeing that a record or tuple is can not 

be discriminated from at least k-1 other records [11]. l-

diversity ensures the presence of diverse sensitive information 

within equivalence classes, effectively mitigating record 

linkage attack and attribute linkage attack [12]. t-closeness is 

a method that addresses the issues of attribute linkage attack 

and probability attack. It ensures a balance between the 

distribution of sensitive data both inside each equivalence 

class and over the entire table [13]. A comprehensive list and 

their explanations can be find in [14]. While previous studies 

related to this topic acknowledge that each record is associated 

with a distinct individual, subsequent researches have begun 

to acknowledge the possibility that one human may have many 

records [15-17].  

While k-anonymity offers a solution to privacy concerns, 

the complexity of k-anonymity is an additional matter that 

needs to be handled. Previous researches have shown that 

brute force methods for achieving k-anonymity exhibit an 

exponential relationship between input size and the number of 

possible solutions. Hence, the literature emphasizes that 

achieving k-anonymity is a computationally challenging task 

classified as NP-Hard, necessitating the use of near-optimal 

methods [18, 19].  

This work proofs the NP-Hardness of k-anonymity by 

demonstrating a reduction from the graph coloring problem. 

The paper is organized as follows. Section 2 provides some 

briefs about previous proofs. In Section 3, a novel proof 

utilizing graph coloring was introduced to establish the NP-

Hardness of k-anonymity. The conclusion and discussions 

were provided in Section 4.  

II. PREVIOUS PROOFS ON THE HARDNESS OF K-
ANONYMITY 

Several studies in the literature specifically address the NP-

Hardness of k-anonymity.  

Meyerson and Williams [18] employed a reduction from k-

dimensional perfect matching problem to examine the 

complexity of k-anonymity. They stated that if there is no 

limitation on the size of the alphabet, achieving k-anonymity 

becomes computationally difficult and falls under the category 

of NP-Hard problem for 3k  . Additionally, they mentioned 

that the maximum number of suppressed cells is also 

( 1)n m− .  

However, Aggarwal et al. [19, 20] decreased the size of the 

alphabet to 2, while the number of suppressed cells were 

remained as 2( 1) log ( ( 1) 3)n m n m− −    (in [19], the 

number of suppressed cells is determined as 9m  where m 

indicates the number of triangles. Nevertheless, in order to do 

a comparison between the number of suppressed cells in all 

proofs, we generalized and assumed 9m  as ( 1)n m− , 

where n  represents the  number of rows and m  indicates the 

number of columns for ( 1)n m− . Therefore we accepted that 

9mt  equals to 
2( 1) log ( ( 1) 3)n m n m− −   ). They 

employed a reduction technique to transform the edge 

partition problem into triangles problem.  

In a similar manner, Sun et al. [21] reported an alphabet size 

of 2, while the number of repressed cells was determined as

nm  (in [21], the number of suppressed cell is presented as 

48m . However, in order to do a comparision between the 

number of suppressed cells in all proofs, we generalized and 

assumed 48m  as nm , where n  indicates the  number of 

rows and m  indicates the number of columns. Consequently, 

we accepted that 48m  equals to nm ). In their proof, they 

utilized edge partitioning into 4-cliques and claimed that 

( , )p  -sensitive k-anonymity is NP-Hard.  

In addition,  Bonizzoni et al. [22], specifically examined 

two restricted instances of the k-anonymity problem. The 

researchers demonstrated that achieving 3-anonymity is APX-

Hard under the constraint of a binary alphabet. Furthermore, 

they established that achieving 4-anonymity remains APX-

Hard even when the number of rows has a length of 8. The 

problem of minimum vertex cover on a cubic graph was also 

employed.  

In a different study, Blocki and Williams [23] presented 

proof that utilizes a reduction from the problem of maximum 

3-dimensional matching with 3 occurrences. The number of 

attributes in each record was limited to 27, and it was 

demonstrated that with this constraint, achieving 3-anonymity 

is a computationally hard problem known as Max SNP-Hard.  

Further, the proof provided by Scott et al. [24] indicates that 

the process of anonymizing k-attribute is also NP-Hard, for 

2k  . They employed a reduction from c-Hitting Set 

problem.  

Finally, LeFevre et al. [25] employed a reduction from 

partition to demonstrate the NP-Hardness of optimal k-

anonymous multidimensional partitioning. They used 

discernibility metric to approximate optimal solution.   

Based on the aforementioned proofs, we conducted a 

thorough review of two studies considering the hardness of k-

anonymity. The reviews are provided below. 

A. PROOF USING A REDUCTION FROM K-DIMENSIONAL 
PERFECT MATCHING  

In [18], the authors employed a reduction from k-dimensional 

perfect matching to prove that k-anonymity is NP-Hard for  

3k  . To understand the proof better, some notations used in 

the related paper were given and described in Table 1. 

suppressor function: let t  be a map from V  to ( {*})m
. For all v V  and 1,...,j m= ; if ( )[ ] { [ ],*}t v j v j  

then t  is a suppressor function.  

k-anonymizer: let t  be a suppressor function on 

1{ ,..., } m

nV v v=   . ( )t V  is k-anonymous if for all 

iv V , there exists 1k −  indices 1 2 1, ,..., {1,..., }ki i i n−   
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ensuring that 
1 2 1

( ) ( ) ... ( ) ( )
ki i i it v t v t v t v
−

= = = = . 

Therefore, t  is called as a k-anonymizer on V .  
 

TABLE I 

A DESCRIPTIVE REPRESENTATION OF THE NOTATIONS USED 

IN [18] 

Notation Description 

m  dimension 

  alphabet of attribute values 

V  table, 
mV    

t  suppressor function 

v  record in 1{v ,..., v }nV =  

'v  suppressed data record in 1' {v' ,..., v' }nV =  

'V  anonymized table 

i  row indices 1{i ,...,i }n  

j  column indices 1{j ,..., j }m  

n  number of records 

k  minimum cardinality in an equivalence class 

*  symbol used in suppression 

l  
maximum number of suppressed vector coordinate in 

'V  

H  hypergraph 

U  set of vertices 

E  set of edges 

S  subset of edge set 

u  each vertex in 1{u ,...,u }nU =  

e  each edges in 1{e ,...,e }nE =  

(i)j  indices of unique hyper edge containing iu  

 

k-anonymity as a decision problem: for a given table V  and 

an integer number l N , is there a suppressor t  which 

makes V  k-anonymous and suppresses maximum l  

coordinates?  

It is claimed that if the alphabet size is unlimited, optimal k-

anonymity is a hard problem for 3k  .  

Theorem: k-anonymity is NP-Hard for 3k   even V   

A reduction from k-dimensional perfect matching: let 

( , )H U E=  be a k-hypergraph, n  and m  be the number 

of vertices and the number of edges, respectively. In this 

case, in /n k  hyperedges, is there a subset S E ,  such 

that each vertex of U  is covered by one hyperedge of S ? 

Assume H  is a k-dimensional simple hypergraph, 

1{ ,..., }nU u u=  and 1{ ,..., }mE e e= are vertices and 

edges of H , respectively and finally {0,1,..., }n =  is the 

alphabet. Table V  can be constructed as below and for each 

iu ; m dimensional vector 
m

iv   can be defined as; 

 

 
 

 

 

 

Suppose V  includes the series of iv  such as 

1: { ,..., }nV v v= . Assume that t  suppresses minimum 

number of vector coordinates and ensures k-anonymity. It was 

claimed that the number of coordinates suppressed by t  is 

maximum ( 1)n m−  if there exists a k-dimensional perfect 

matching in H .  

This claim is proved for 3k = . Firstly, it was accepted that 

there exists a perfect 3-dimensional matching M  in H . For 

1,...,i n= , let ( )j i  be the indices of ( )j ie  which is the 

unique hyperedge in M  containing vertex iu . 

Suppressor t  is defined as follows;   

0   if ' ( ),
( )[ '] :

*   otherwise.
i

j j i
t v j

=
= 


 

Because of iu  is on the hyperedge ( )j ie , the following 

states occur by definition, [ ( )] 0iv j i =  and all other 

coordinates are * . Therefore, t  is a suppressor on V .   

Consider any three nodes ' '', ,i i iu u u  on ( )j ie  and each 

node has identical anonymized vectors such as 

' ''( ) ( ) ( )i i it v t v t v= = . Therefore, ( )t V  has three identical 

vectors, which shows that ( )t V  is 3-anonymous.  

Since every ( ) ( )t v t V  has at most one non-*  

coordinate, the value of the solution is ( 1)n m− .  Therefore, 

the optimum solution of 3-anonymity includes at most 

( 1)n m−  number of * ’s in these vectors.  

 
B. PROOF VIA EDGE PARTITION INTO TRIANGLES 

In [19, 20], it was shown that k-anonymity is NP-Hard for 

3k   edge partition into triangles reduction. To understand 

the proof in detail, some notations used in the paper were 

presented in Table 2. 

TABLE II 

A DESCRIPTIVE REPRESENTATION OF THE NOTATIONS USED 

IN [19, 20] 

Notation Description 

m  number of disjoint triangles 

  alphabet of attribute values 

T  preliminary table for vertex-edge relationship 

'T  replication of T for 4-stars 

,a br  the row corresponding to edge ( ,a b ) 

, ,a b c  vertices of triangles 

d  central vertices 

*  symbol used in suppression 

t  number of blocks 

n  number of columns 

G  complete graph 

V  set of vertexes 

E  set of edges 

v  common vertex 

e  edges in 1{e ,...,e }nE =  

iconf  configuration {0,1}i =  

i  indices of blocks 

k  minimum number of cardinality in an equivalence class 
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Theorem: k-anonymity is NP-Hard even for {0,1,2} = .  

Edge partition into triangles reduction: for a given graph 

( , )G V E=  with  3E m=  for any integer  m ,  can the 

edges of G  be partitioned into m  triangle whose edges are 

disjoint?  

The proof starts with the reduction of edge partition into 

triangles and 4-stars before explaining the reduction of edge 

partition into triangles.  

The proof has two phases. In the first phase, it will be 

showed that for a graph ( , )G V E= with 3E m= , if and 

only if G can be partitioned into triangle and 4-stars, the 

optimal 3-anonymity solution for T  is  9m . In the second 

phase, again it will be showed that if and only if G  can be 

partitioned into m  disjoint-triangles, the 3-anonymity 

solution is maximum 
29 log (3m)m     for table 'T . 

Edge partition into triangles and 4-stars: for a given graph 

( , )G V E=  with 3E m=  and V n= , a table T  with 

3m  row and n  attribute is created. The row ,a br  

corresponding to edge ( , )a b  has 1 in positions 

corresponding to attributes a  and b , and 0 otherwise. 

Assume that graph G can be partitioned into m  disjoint-

triangles and 4-stars. Let ,a b  and c  be the vertices of 

triangle. In the rows ,a br , ,b cr  and ,car , by suppressing the 

positions of ,a b  and c , three identical rows, each 

containing 3 *s and 0, are obtained. Now consider a 4-star 

has the vertices , , ,a b c d  and edges ( , )a d , ( , )b d , ( , )c d
. In the rows ,dar , ,dbr , c,dr , by suppressing corresponding 

positions of ,a b  and c , three identical rows each 

containing 3 *s, with a single 1 and 0 anywhere else. Hence, 

for every triangle and 4-stars, 3 identical generalized records 

are obtained by suppressing 9 cells. In conclusion, table T  

is 3-anonym with cost 9m .  Figure 1 shows an illustration 

about this phase. 

Edge partition into triangles: Assume 

21 log (3m)t = +    . Let 'T is a table whose each row has 

t  blocks and n  columns. For an arbitrary order of edges in 

E , the rank of an edge  ( , )e a b=  can be expressed in a 

binary form such as 1,...,btb . In tuples corresponding to 

edge e , each block is 0 except a  and b . Any block can be 

in two configurations based on the values of a  and b . 

0conf : 1 in position a  and 2 in position b , 1conf : 2 in 

position a  and 1 in position b . i th block in corresponding 

row of  e , has 
ibconf .  For example, the edges in Figure 1 

is ranked from 1 to 6 and 'T  is presented in Figure 2. It can 

be understand that if and only if E  is partitioned into m  

disjoint-triangles, optimal 3-anonymity cost is at most 9mt  

for 'T .  

 

 

FIGURE 1. Anonymizing of triangle and 4-stars obtained from graph 

 
FIGURE 2. Anonymized table obtained from graph in Figure 1. 

III. A NEW PROOF BASED ON GRAPH COLORING  

A new proof based on graph coloring was presented in this 

section. In the literature, there are some studies using 

different types of NP-Complete problems for reductions. We 

preferred to use graph 3-coloring problem for the reduction 

in our work. Our aim is to examine whether graph coloring 

problem can be used for a reduction to prove the NP-

Hardness of k-anonymity and whether it enables us to 

improve both alphabet size and number of suppressed cells. 

In addition, graph coloring based representation also 

presents simplicity for a better understanding.  

Garey and Johnson [26, 27] proved that graph 3-colorability 

with no vertex degree exceeding 4 is NP-Complete. In our 

study, we borrowed and adopted this idea and then 

investigated the availability of graph 3-coloring problem to 

prove the NP-Hardness of k-anonymity 
 
A. REVISIT OF THE PROOF OF GAREY AND JOHNSON 

Garey and Johnson [26, 27] proposed to restrict the 

maximum vertex degree of graph will be colored. If the 

maximum vertex degree is restricted with a small enough 

degree, many graph coloring problem is solved in 

polynomial time. Hence, finding the most powerful 

constraint of vertex degree that will keep the problem in NP-

Complete is very important. Table 3 presents the complexity 

classes of problems that a sub problem can be belong to any 

of them with a degree constraint.  

 
  TABLE III 

CLASSIFICATION OF SUBPROBLEMS BASED ON COMPLEXITY 

CLASSES THAT ANY D  VERTEX DEGREE LIMITED GRAPH CAN 

BE BELONG 
Problem 

P ( D  ) NP-Complete ( D  ) 

Exact Cover 2 3 

Hamilton Cycle 2 3 

Graph 3-colorability 3 4 

Feedback vertex set 2 3 

 

In this context, the maximum vertex degree in graph 3-

colorability problem is presented as 4. This implies that, 

subproblem is still in NP-Complete class even the constraint 

of vertex degree of graph 3-colorability problem is determined 

as 4. Hence, in the proof, maximum vertex degree is limited 

with 4.  
 

b

α

c

d

 

 a b c d 

(a,b) 1 1 0 0 

(a,c) 1 0 1 0 

(b,c) 0 1 1 0 

     

(a,d) 1 0 0 1 

(b,d) 0 1 0 1 

(c,d) 0 0 1 1 

T 

 a b c d 

(a,b) * * * 0 

(a,c) * * * 0 

(b,c) * * * 0 

     

(a,d) * * * 1 

(b,d) * * * 1 

(c,d) * * * 1 

TA 

 

  a b c d  a b c d  a b c d 

001 (a,b) 1 2 0 0  1 2 0 0  2 1 0 0 

010 (a,c) 1 0 2 0  2 0 1 0  1 0 2 0 

011 (b,c) 0 1 2 0  0 2 1 0  0 2 1 0 

                

100 (a,d) 2 0 0 1  1 0 0 2  1 0 0 2 

101 (b,d) 0 2 0 1  0 1 0 2  0 2 0 1 

110 (c,d) 0 0 2 1  0 0 2 1  0 0 1 2 
 

  a b c d  a b c d  a b c d 

001 (a,b) * * * 0  * * * 0  * * * 0 

010 (a,c) * * * 0  * * * 0  * * * 0 

011 (b,c) * * * 0  * * * 0  * * * 0 

                

100 (a,d) * * * 1  * * * *  * * * * 

101 (b,d) * * * 1  * * * *  * * * * 

110 (c,d) * * * 1  * * * *  * * * * 
 

 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3424399

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



 

8 VOLUME XX, 2017 

In order to prove the results of degree limited NP-

Completeness, vertex substitute approach is used. Vertex 

substitution is defined as substituting a vertex with a subgraph 

that meets some certain criteria.   

Theorem: Graph 3-colorability with no vertex degree 

exceeding 4 is an NP-Complete problem.    

Proof: Assume ( , )G V E= is an arbitrary graph of a 

general problem, ' ( ', ')G V E=  is a restricted instance of 

G that no vertex of 'G  have the degree exceeding 4. If and 

only if G  is 3-colorable, 'G  is also 3-colorable.  

In this vertex substitution approach, a graph with eight 

vertex is considered. In Figure 1.a, graph 
3H  has three outlets 

with labels 1, 2 and 3. x  is the number of outlets, for 4x  , 

xH  which is a vertex substitution with x  number of outlets 

is formed with adjoining a copy of 
3H  to substitution 

1xH −
. 

In 
5H , which is used to prove NP-Completeness of graph 3-

colorability with degree restriction, is presented in Figure 1.b. 

In these graphs, all outlets have the same color.   

 

FIGURE 3. Graph 3H
 (a) and  vertex substitution 5H

(b) 

 

As indicated in Figure 3, for 3x  , the following situations 

appear; 

1. 
xH  has 7( 2) 1x − +  number of outlets, including x  

number of labelled outlets.  

2. 
xH  has no vertex whose degree exceed 4.  

3. The degree of each outlets of 
xH  is 2.  

4. 
xH  is 3-colorable, but not 2-colorable. In every 

different 3-coloring way, outlets of 
xH  have the same 

color.   

Assume an arbitrary graph G , composing from s  number 

of vertices 
1 2, ,..., sv v v and containing vertexes with degree 

exceeding 4, composed from graph array as shown below; 

0 1, ,..., 'sG G G G G= =  

Each 
lG , 1 l s  , is constructed from 

1lG −
. Let d  be 

the degree of 
lv  in 

1lG −
 and 

1 2 3{ , },{ , },...,{ , }l l lv v v v v v  

be the edges containing 
lv . To form 

lG , 
lv  is deleted from 

1lG −
 and is replaced with a copy of 

dH . Each edge { , }m lv v  

is replaced with an edge joining outlet m  and 
mv . In the new 

construction, for 0 x s  , the number of vertex of 
xG

exceeding 4 is s x− , if and only if graph G  is 3-colorable, 

then 
xG  is 3-colorable. Therefore, ' sG G=  is obtained.   

The overall approach is illustrated in Figure 4. In graph G
, if there exist any vertex whose degree exist 4, by replacing 

those vertices with vertices in 'G , G  becomes 3-colorable. 

Because of the graph, which belongs to a general problem and 

was showed in Figure 4.a, has vertexes with degree exceeding 

4, it is replaced with the substitution in Figure 4.b. Thus, graph 

G  becomes 3-colorable. As a result, graph 3-colorability 

problem with 4- degree restriction is NP-Complete problem.   

FIGURE 4. An example of vertex with degree exceeding 4 (a) and 
structure of vertex substitution (b) 

 
B. THE PROPOSED PROOF BASED ON GRAPH 
COLORING 

The NP-Hardness of k-anonymity for 3k   was proved 

using a reduction from degree-limited graph 3-coloring. 

Some notations used in the proof was presented in Table 4. 

 
TABLE IV 

A DESCRIPTIVE REPRESENTATION OF NOTATIONS USED IN 

OUR PROOF 

Notation Definition 

m  dimension 

  alphabet of attribute values 

R  table (adjacency matrix), 
mR    

t  suppressor function 

r  record in 
1{ ,..., }nR r r=  

'r  suppressed data record in 
1' { ' ,..., ' }nR r r=  

'R  anonymized version of R  

i  row indices 
1{ ,..., }ni i  

j  column indices 
1{ ,..., }mj j  

n  number of records 

k  minimum cardinality in an equivalence class 

*  symbol used in suppression 

l  
maximum number of suppressed vector coordinates in 

'R  

G  graph 

V  set of vertices 

E  set of edges 

C  set of colors 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3424399

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



 

8 VOLUME XX, 2017 

iv  vertices in 
1{ ,..., }nV v v=  

,i je  edges in 1,2 ,{e ,...,e }q zE =  

, ,x y zM  
candidate matrix of corresponding coordinates of 

, ,x y z  

, ,x y z  some indices 

P  color sharing table 

'P  anonymized version of P  

ic  colors in 1{ ,..., }rC c c=  

 

Definition: Let t  be a map from R  to ( {*})m . For all 

r R  and 1,...,j m= ; if ( )[ ] { [ ],*}t r j r j  then t  is 

a suppressor function.   

Each vector r R  has corresponding ( ) 't r r=  in 

anonymized table ' ( {*})mR   . In addition, the 

coordinates of 'r  are the same as with the coordinates of r .   

In order to work on vector sets in R , t  can be extended as 

follows. ( )t R  is accepted as a multiple set when one or more 

vectors in r  is mapped to the same suppressed vectors. For 

instance,
1 2 3r r r R    but when t  is applied, 

1 2 3( ) ( ) ( )t r t r t r= = is obtained.  

Definition: Let t  be a suppressor on 1{ ,..., } m

nR r r=  
.  ( )t R  is k-anonymous if for all 

ir R , there exist 1k −  

number of indices 
1 2 1, ,..., {1,..., }ki i i n−   providing 

1 2 1
( ) ( ) ... ( ) ( )

ki i i it r t r t r t r
−

= = = = . Therefore, t  can be 

called as a k-anonymizer on R .   

k-anonymity: for a given table R  and an integer l N , is 

there a suppressor t  which makes table R  k-anonymous 

and suppresses maximum l  number of coordinates?  

Theorem: k-anonymity is NP-Hard for 3k   even 

{0,1} = .  

A reduction from degree-limited graph 3-coloring: given a 

graph ( , )G V E= , is G  3-colorable such that for every 

edge ,i je E , the color 
ic  of 

iv  is different from the color 

jc  of jv  and there exist no vertex degree exceeding 4.  

We investigated this situation for 6V w= , for any 

integer w . Assume G  is a simple graph, 
1{ ,..., }nV v v=  

and 1,2 ,{ ,..., }q zE e e=  are vertices and edges of G , 

respectively and {0,1} =  is the alphabet. A table R  can 

be created as follows.  For every ,i je , m-dimensional 
m

ir   vector can be defined as;  

,1   if  , 
[ ] :

0   otherwise.

i j

i

e E
r j


= 


 

Set 
1: { ,..., }nR r r= . The relations between each vertices 

can be obtained through R . A color sharing table P  can be 

created as follows. Firstly, one-complement of R  is taken and 

then principal diagonal elements are assigned to zeros. 

Hereby, P  facilitates us to determine which vertices cannot 

share the same color with 
iv . P  can be obtained as follows;  

( )zerosP diag R=  

Assume that t  suppresses minimum number of vector 

coordinates and provides k-anonymity. In our proof, it is 

claimed that if and only if G  is 3-colorable, the number of 

suppressed vector coordinates by t  is at most ( 3)n m − . 

This claim was proved for 3k = . Firstly it is assumed that 

G  is 3-colorable and has 6w  number of vertices for any 

integer w , and V  can be partitioned into some disjoint 

groups each containing triple vertices with colors 
1 2 3, ,c c c

.  

For 0 , ,x y z n  , if any , ,x y z  coordinates of any 3 

vertices are zeros, then these parts are left as they are, 

otherwise they are replaced with *s. In other words, if , ,x y zM  

is a non-overlapping zeros matrix it saves the original form, 

but if it is not then it is suppressed with *s. In this case, 

candidate matrix , ,x y zM  and suppressor t  on , ,x y zM  can be 

defined as;  

, , ,

, , , , , , ,

, , ,

x x x y x z

x y z x y z y x y y y z

z x z y z z

r r r

M P r r r

r r r

 
 

=  
 
 

 

 
, ,

, ,

0   if  0,
( ) :

*   otherwise.

x y z

x y z

M
t M

=
= 


 

Because of each 
iv  meets the condition of 3-colorability, the 

following states occur by definition, each candidate matrix 

, , 0x y zM =  and all other coordinates is *s. Hence, t  is a 

suppressor on P .   

Consider graph G  given in Figure 5. Assume three vertices 

1 2 3, ,v v v  of graph G  is colored with three different colors 

1 2 3, ,c c c . If P  is anonymized, we have the same 

anonymized vectors 1 2 3( ) ( ) ( )t r t r t r= = . Therefore, ( )t P  

contains three identical vectors with respect to 1 2 3, ,v v v , and 

this situation shows that ( )t P  is 3-anonymous. ( )t P  

includes 9 non-* s in each triple anonymized vectors. 

Therefore, an optimal 3-anonymous solution has at most 

( 3)n m −  number of  *s.   

 

 

 

 

 

 

 

 

 

 

 

FIGURE 5. A sample graph G  

 

With regard to Figure 5, Table R  can be created as follows; 
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TABLE V 

TABLE  R  (OR ADJACENCY MATRIX) 

 

 1 2 3 4 5 6 

1 0 1 1 1 0 1 

2 1 0 1 0 1 1 

3 1 1 0 1 1 0 

4 1 0 1 0 1 0 

5 0 1 1 1 0 1 

6 1 1 0 0 1 1 

 

If we take one complement of R  and then change the 

values of principal diagonal elements with zeros, we obtain 

color sharing table P  as presented in Table 6. 

Table 6 guides us to obtain the following statements. In 

Figure 5, 3 4,v v  and 5v  cannot share the same color and each 

of these vertices is colored with one out of three different 

colors. Similarly, 1 2,v v  and 6v  have the same condition, and 

also there may be many other different selections. Table 6 

shows that G  can be divided into two groups and each group 

includes exactly three elements with three different colors. For 

this example, group one contains 1, 2 and 6 while group two 

includes 3, 4 and 5. A possible 3-coloring of G  was presented 

in Figure 6.  

 

TABLE VI 

COLOR SHARING TABLE P  

 

 1 2 3 4 5 6 

1 0 0 0 0 1 0 

2 0 0 0 1 0 0 

3 0 0 0 0 0 1 

4 0 1 0 0 0 1 

5 1 0 0 0 0 0 

6 0 0 1 1 0 0 

 

FIGURE 6. A possible 3-coloring of G  

 

Table 7 indicates the anonymized version of P . Therefore, 

as it was stated in the proof, maximum number of * s is 

( 3)n m − .  

 

 

TABLE VII 

ANONYM TABLE 'P  

 

 1 2 3 4 5 6 

1 0 0 * * * 0 

2 0 0 * * * 0 

3 * * 0 0 0 * 

4 * * 0 0 0 * 

5 * * 0 0 0 * 

6 0 0 * * * 0 

 

Within the context of existing assumptions, the number of 

suppressed cells of 3-anonymization of G  is at most 

( 3)n m − . Since the previous proofs present ( 1)n m− , 

2( 1) log ( ( 1) 3)n m n m− −    and nm number of 

suppressed cells, respectively, our proof reduces it to 

( 3)n m − . Hence, the average information losses for each 

result is obtained as follows;  

 

It can be clearly seen that our proof presents a lower average 

information loss and alphabet size in comparison with other 

previous proofs and this result may be a good reason for 

employing graph coloring approach for reductions.   

In Table 8, we listed a number of studies available in the 

literature for the hardness of k-anonymity. We tabularized 

these studies based on some criteria such as reduction 

methods, alphabet sizes and average information loss. The 

results show that our proof provides acceptable outcomes 

and better results.    
TABLE VIII 

COMPARISON TABLE FOR THE PROPOSED PROOF AND THE 

PREVIOUS STUDIES (N/A* = A CERTAIN VALUE IS NOT 

DEFINED) 

 

Paper 
Reduction 

Method 

Alphabet 

Size 

Average Information 

Loss 

Meyerso

n and 

Williams 

[18] 

k-

dimensiona

l perfect 

matching 

n  
( 1)n m

nm

−
 

Aggarwal 

et al. [19, 

20] 

edge 

partition 

into 

triangles 

3 
2( 1) log ( ( 1) 3)n m n m

nm

− −    

Bonizzon

i et al. 

[22] 

minimum 

vertex 

cover on 

cubic graph 

2 N/A* 

Scott et 

al. [24] 

maximum 

3-
N/A* N/A* 
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dimensiona

l matching 

with 3 

occurrence

s 

Sun et al. 

[21] 

edge 

partition 

into 4-

cliques 

2 
nm

nm
 

Chen et 

al. [28] 

vertex 

cover 
N/A* N/A* 

Our 

proof 

graph 3-

coloring 
2 

( 3)n m

nm

−
 

IV. CONCLUSION AND DISCUSSION 

As introduced earlier, this paper focuses on the 

computational complexity of k-anonymity and introduces a 

new approximation approach. Since k-anonymity is an NP-

Hard problem and optimal solutions cannot be achieved in a 

reasonable time, near-optimal solutions are always required. 

To prove the NP-Hardness of k-anonymity, especially graph 

problems are employed for reduction frequently.  

To the best of our knowledge, this article proved the NP-

Hardness of k-anonymity using a reduction from degree-

limited graph 3-coloring for the first time. We also improved 

both alphabet size and average information loss in comparison 

with some previous proofs which were listed in Table 8. The 

results showed that reductions utilize graph coloring presents 

better results than others. However, in the future, other NP-

Complete problems can be examined in terms of whether they 

present better results. 
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