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ABSTRACT The transformer architecture has been focused on many tasks like natural language processes,
vision tasks and etc. The most important and general requirement of using the transformer-based architecture
is that the model must be trained on a large-scale dataset before it can be fine-tuned for a specific task like
classification, object detection and etc. However, in this paper, we find that the transformer architecture has
better generalization capability to capture the features from data samples for sleep stage classification than
CNN-based architectures, despite using a small-scale dataset without pretraining on large-scale dataset.
This outcome contradicts the widely-held belief that a transformer architecture is more effective when
trained on large datasets. In this paper, we investigate the attention behavior of a transformer model and
demonstrate how global and local attentions influence an attention map in a transformer architecture. Finally,
through experiments, we show that restricting global attention using ‘Masked Multi-Head Self-Attention
(M-MHSA)’ can lead to improved model generalization in sleep stage classification compared with the
previous methodologies and original transformer-based architecture on three different datasets.

INDEX TERMS Sleep Stage Classification, Deep Learning, Transformer

I. INTRODUCTION

RECENTLY deep learning approaches have been fo-
cused on many tasks such as vision tasks, medical

fields, natural language processing (NLP) and etc. In par-
ticular, convolutional neural networks (CNNs) have been
proven highly effective for many computer vision tasks such
as classification, object detection and segmentation tasks.
Contrary to CNNs, recurrent neural networks (RNNs) have
shown meaningful performance on NLP tasks. More recently,
a transformer architecture has gained popularity in various
tasks, particularly in NLP tasks. Transformer-based archi-
tectures, such as the transformer [1] and BERT [2] models,
have been used successfully in these tasks due to their ability
to capture both of local and global features through the use
of multi-head self-attention (MHSA) which enables them to
understand the relationships among the words in a sentence,
unlike conventional CNNs and RNNs. Similarly, in computer

vision tasks, the transformer-based architectures such as the
Vision Transformer (ViT) [3] have been used for image clas-
sification tasks by using the attention mechanism to capture
image features among the different patches of an image.

Many studies in sleep stage classification have used a
CNN-based model architecture to predict sleep stages from
an epoch1 of polysomnography (PSG) using mainly sig-
nal channels such as Electroencephalogram (EEG), Elec-
trooculography (EOG) and Electromyography (EMG) [4],
[5]. Although some recent studies have used transformer-
based architectures, they have received less attention than
conventional CNN-based architectures [6], [7].

1A 30-second interval of PSG data is referred to as an ‘epoch’, and sleep
stage classifications are made for each epoch. It should not be confused with
a ‘train epoch’, which refers to the process of using all the data to train a
model.
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In general, transformer-based architectures require a large-
scale dataset for pre-training before fine-tuning specific
downstream tasks to achieve meaningful performance com-
pared to conventional CNN-based architectures [8]. There-
fore, we expect that transformer-based architectures will
achieve lower performance compared to conventional CNN-
based architectures when using small-scale training PSG
records due to a lack of inductive bias [9]. However, the
transformer-based architectures present higher performance
compared to the CNN-based architectures even with small-
scale training PSG records in sleep stage classification. This
result contradicts the commonly accepted knowledge that
transformer-based architectures require a large-scale training
dataset for pre-training to perform better on specific tasks [8].

In this paper, first, we analyze the reason why transformer-
based architecture can obtain the generalization capability
compared to CNN-based architecture. Second, to have a
deeper understanding of the attention behavior of a trans-
former model, we develop a novel approach to restrict the
global attention in MHSA using a masking strategy applied to
the attention map. Through comprehensive experimentation,
we figure out that this restriction strategy can effectively
enhance the model’s generalization ability in sleep stage
classification tasks, leading to performance improvements.

Our contributions can be summarized as follows:

1. In contrast to the well-accepted training guideline for a
transformer architecture, we show that the transformer
model performs better in sleep stage classification com-
pared to conventional CNN-based architectures, even
when using a small dataset without pre-training with an
extra large-scale dataset.

2. We investigate the reason for the robustness of a
transformer-based architecture and we evaluate the im-
pact of local and global information by limiting the
locality in the MHSA mechanism using an attention
mask.

3. To enhance the generalization ability, we propose a
novel approach to focus on the local information using
Masked Multi-Head Self-Attention (M-MHSA). When
applying the M-MHSA in transformer-based architec-
ture, the model can improve performance.

II. RELATED WORKS
A. SLEEP STAGE CLASSIFICATION
In sleep stage classification, sleep experts determine the
class of a sleep stage for a given epoch according to the
Rechtschaffen and Kales (R&K) [10] or American Academy
of Sleep Medicine (AASM) [11] criteria. In AASM criterion,
the sleep stage was classified into 5 classes such as Wake,
Non-REM1 (N1), Non-REM2 (N2), Non-REM3 (N3), and
Rapid Eye Movement (REM). The sleep stage classification
uses PSG data that consists of various biosensors information
including EEG, EOG, EMG and etc. According to the AASM
sleep standard, PSG records are usually segmented into 30
seconds to determine the specific sleep stages by sleep ex-

perts. To classify the sleep stage into 5 classes, sleep experts
mainly utilize EEG, EOG and EMG channels.

B. CNN-BASED MODEL ARCHITECTURE
In numerous studies [12]–[15], researchers frequently em-
ploy CNN-based models to extract time-invariant features
from an epoch data. In general, a CNN-based architecture is
adopted well in capturing the ‘temporal’ information from
the time-varying signal data. In DeepSleepNet [12], the
authors utilize two convolutional layers of different sizes
to extract distinct features. Typically, the larger CNN layer
captures ‘frequency’ information from the signal (i.e., fre-
quency components), while the smaller CNN layer focuses
on capturing ‘temporal’ information (i.e., when certain of
EEG patterns appear such as k-complex) [16]. Similarly,
SleepEEGNet [13] utilizes the same CNN architecture as
DeepSleepNet. However, they adopt an encoder-decoder ar-
chitecture instead of employing an RNN. ResNet+LSTM
[14] utilizes a ResNet architecture to extract features from
the epochs of EEG signals. AttnSleep [15] employs attention
mechanisms, including adaptive feature recalibration and
causal convolutional multi-head attention, to extract mean-
ingful features from epoch samples.

Typically, in order to achieve the generalized prediction
performance with a small-scale training set, most of the
approaches utilize CNN-based architectures, which have an
inductive bias, instead of using transformer-based models [9].

C. TRANSFORMER-BASED MODEL ARCHITECTURE
The transformer is a widely-used deep learning model ar-
chitecture designed specifically for processing sequential
data such as NLP and time series analysis. It utilizes “self-
attention” mechanisms, allowing the model to learn relation-
ships between elements in the sequence without relying on
recurrence or convolutions [1]. In recent years, in addition to
sequential data processing, the transformer architecture has
seen success in a variety of vision tasks.

It is worth noting that in general, transformer architectures
are known to require a larger amount of data samples than
CNN models in order to achieve comparable performance
[1]–[3], [17]. This is because transformer-based models lack
the inductive bias which is presented in the CNNs but the
inductive bias can limit their ability to generalize to new data
with fewer training samples [3], [8].

Sleep stage classification tasks, like vision tasks, also make
use of attention mechanisms in transformer-based architec-
tures. To extract inner and inter features from raw signals,
two transformer-based encoder blocks are employed [6].
SleepTransformer [7] utilizes a transformer-based architec-
ture to extract features using spectrogram images which are
obtained from epoch samples by applying Fourier transform,
and further it employs an entropy-based method to quantify
uncertainty.
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TABLE 1. Class distributions of SHHS public PSG dataset.

Dataset # of # of epochs (samples)
PSG Wake N1 N2 N3 REM

Train

50 15221 1929 21569 5409 6713
(29.93%) (3.79%) (42.42%) (10.63%) (13.20%)

100 28858 3862 42475 12065 14024
(28.49%) (3.81%) (41.93%) (11.91%) (13.84%)

150 43664 5669 61714 20029 20762
(28.75%) (3.73%) (40.64%) (13.19%) (13.67%)

200 58453 7442 82113 25909 27281
(29.05%) (3.69%) (40.81%) (12.87%) (13.55%)

250 74942 9367 102566 31652 34327
(29.38%) (3.71%) (40.70%) (12.56%) (13.62%)

300 90251 11426 122331 38224 40923
(29.77%) (3.76%) (40.35%) (12.6%) (13.49%)

350 104151 13103 142490 45352 48177
(29.48%) (3.70%) (40.33%) (12.83%) (13.63%)

400 118275 14965 165131 50500 54554
(29.31%) (3.70%) (40.93%) (12.51%) (13.52%)

Validation 832 244386 30021 342148 109206 117773
(29.0%) (3.6%) (40.6%) (12.9%) (13.9%)

Test 832 243759 32696 341805 102379 118150
(29.1%) (3.9%) (40.7%) (12.2%) (14.1%)

TABLE 2. Class distributions of Institution-A PSG dataset.

Dataset # of # of epochs (samples)
PSG Wake N1 N2 N3 REM

Train

50 10930 7652 12118 1511 3965
(30.2%) (21.2%) (33.4%) (4.2%) (11.0%)

100 21652 15019 24908 3172 7741
(30.0%) (20.7%) (34.3%) (4.4%) (10.7%)

150 31531 22187 37937 4828 12108
(29.0%) (20.4%) (34.9%) (4.5%) (11.2%)

200 43187 29854 50248 5781 15713
(29.8%) (20.6%) (34.7%) (4.0%) (10.9%)

250 53094 37517 62665 7209 19505
(29.5%) (20.9%) (34.8%) (4.0%) (10.8%)

300 63573 44659 76071 8929 23665
(29.3%) (20.6%) (35.1%) (4.1%) (10.9%)

350 72610 51085 90216 10465 27210
(28.9%) (20.3%) (35.8%) (4.2%) (10.8%)

400 86707 58189 101771 11742 30520
(30.0%) (20.1%) (35.2%) (4.1%) (10.6%)

Validation 91 19191 14507 23020 2690 7830
(28.6%) (21.6%) (34.2%) (4.0%) (11.6%)

Test 91 19160 12779 22542 2624 6720
(30.0%) (20.0%) (35.3%) (4.1%) (10.6%)

III. SLEEP STAGE CLASSIFICATION: DATASETS AND
MODEL
A. DATASETS
We use three datasets for our analysis: the SHHS [18], [19]
public dataset, Institution-A dataset and Institution-B dataset.
Institution-A and Institution-B datasets are collected from
different hospitals using a Noxturnal software system. There-
fore, the sleep experts of each institution are different. The
sampling rates of the signals in the SHHS, Institution-A and
Institution-B are 125 Hz, 200 Hz and 200 Hz, respectively.

Table 1, 2 and 3 present the distribution of sleep stages on
the datasets used in this experimental study. The number of
PSG records in SHHS, Institution-A and Institution-B dataset
are 5,550, 582 and 2,266, respectively. The Institution-A
dataset includes various patient records with obstructive sleep

TABLE 3. Class distributions of Institution-B PSG dataset.

Dataset # of # of epochs (samples)
PSG Wake N1 N2 N3 REM

Train
50 8452 4756 11913 5098 5207

(23.9%) (13.4%) (33.6%) (14.4%) (14.7%)

400 64946 37079 92168 48117 39741
(23.0%) (13.1%) (32.7%) (17.1%) (14.1%)

Validation 340 57112 32406 77360 39197 34688
(23.7%) (13.5%) (32.1%) (16.3%) (14.4%)

Test 340 53837 30935 79638 40347 36143
(22.3%) (12.8%) (33.1%) (16.8%) (15.0%)

apnea (OSA), encompassing normal, mild, moderate, and
severe cases.

The ratios of men and women in the Institution-A dataset
are 78.01% (454 records) and 21.99% (128 records), respec-
tively. In addition, the mean and standard deviation of age
in Institution-A dataset are 48.74 and 15.47, respectively.
The statistical characteristic (mean and standard deviation) of
the AHI-index in the Institution-A dataset is 47.07 ± 30.09.
The individual statistical characteristic of the AHI-indices for
normal, mild, moderate and severe cases are 1.71± 1.03 (21
records), 9.58±3.10 (66 records), 22.65±4.46 (113 records)
and 63.26± 24.02 (382 records), respectively.

The demographic information for the “Institution-B”
dataset is not available due to the strict data protection rules
of the Institution-B. The dataset is divided into training,
validation, and test sets with a 70:15:15 ratio on SHHS,
Institution-A and Institution-B datasets. Therefore, the num-
bers of PSG records for a test set in SHHS, Institution-A and
Institution-B are 832, 91 and 340, respectively. In addition, to
verify the generalization ability, we utilize various numbers
of PSG records for training the model (50, 100, ..., 400).

The distribution of sleep stages for the patients with severe
OSA differs from that of the patients with normal OSA, as
seen in the SHHS. In particular, the institution-A dataset
consists of a relatively large distribution of N1. On the con-
trary, the distribution of N3 is smaller than SHHS dataset. We
mainly use the “C3-A2” and “C3-M2” single EEG channels
to classify sleep stages for SHHS and Institution datasets,
respectively. Finally, two preprocessing approaches are ap-
plied to PSG record data. First, the band-pass filter is used to
extract signal information within 0.5-35 Hz range, following
the AASM criterion. Second, the z-score normalization is
used to rescale the values to improve robustness and conver-
gence speed.

B. MODEL ARCHITECTURE
To investigate the effect of deep learning models on the
accuracy and the sensitivity with regard to the size of train-
ing dataset, we employ various backbone model architec-
tures: DeepSleepNet, ResNet-based model and a transformer
model. Through the experiments with those backbone mod-
els, we attempt to search the robust architecture when train-
ing the model with a limited number of samples.

Figures 1 and 2 present the detailed structures of the mod-
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FIGURE 1. CNN-based model architectures: (a) a DeepSleepNet architecture
and (b) a ResNet-based architecture.

els employed for sleep stage classification. In the CNN-based
model architecture, we use DeepSleepNet architecture shown
in Fig. 1(a) and ResNet-based CNN architecture shown in
Fig. 1(b).

For the transformer-based model architecture shown in
Fig. 2, we only utilize encoder blocks for extracting features
from an epoch such as ViT [3]. Before inputting the signal
into the encoder block in the transformer architecture, the
signal is divided into sub-patches and then passed through
an embedding layer. For dividing patches from an epoch,
we use sliding window algorithm [20]. We use window size
(W = 200(sampling rate) × 4(sec)) and stride (S =
200(sampling rate) × 2(sec)) to divide the patches from
an epoch. According to the sliding window method, each
patch has 4-second information with 2-second overlapping
between adjacent patches [21].

Therefore, the number of patches (P ) can be calculated as
follows:

P =
200(sampling rate)× 30(sec)−W

S
+ 1 (1)

From Eq. 1, we know that 14 patches (i.e., (200 × 30 −
800)/400 + 1) are generated from an epoch sample. Then,
the generated 14 patches pass through an embedding layer
and corresponding embedding latent vectors are used as an
input for a transformer model. For the embedding, we aim
to incorporate the inductive biases formed by a CNN into
the transformer model through the use of a CNN-based
embedding layer instead of a linear projection such as the
architecture used in [22].

As shown in Fig. 2, the CNN-based embedding layer block
consists of 5 small-sized stacked convolution layers, each
with a Rectified Linear Unit(ReLU) and batch normalization.
In the transformer block, we employ three encoder blocks
that consist of an MHSA and an FFN. In this work, 8 heads
are used in the MHSA to extract various attention scores
using queries, keys, and values.

C. MODEL TRAINING
In this paper, we not only focus on identifying a suitable
model for extracting important features from an epoch sam-
ple, but also aim to achieve generalized performance with
limited amounts of data. The limited number of data samples
is a common problem in medical applications. As a result,
it’s crucial to build a model with high accuracy and strong
generalization capabilities using only a small number of
samples.

To assess the generalization abilities of different model
architectures, we train the three different model architectures
while keeping the hyperparameters constant. The Adam op-
timizer is used for training with a learning rate of 0.0001,
and a batch size of 512. No data augmentation techniques
are applied during training as it was observed that the model
performance decreases when techniques such as flipping,
jittering, scaling, and shifting are used. A cosine schedule
is employed to regulate the learning rate over the training
epochs.

D. NEW MASK DESIGN FOR CONTROLLING
ATTENTION RANGE
The equations for an original MHSA can be expressed as
follows [1]:

MHSA = concatenate(H1, H2, ...,HN )WO (2)

Hi = SelfAttention(Qi,Ki, Vi) (3)

SelfAttention(Qi,Ki, Vi) = softmax(
QiK

T
i√

dk
)Vi (4)

In the equations, Qi, Ki and Vi are the query, key and value
embedding vectors, respectively, to utilize self-attention (Hi)
for the i-th head in an MHSA and those embedding vectors
are derived from input patches. dk is the dimension of the
keys. WO is a weight matrix for a fully connected layer
in MHSA. The original MHSA inside encoder layers does
not use a mask filter to restrict the use of specific patches.
Therefore, the original MHSA can utilize all the patch in-
formation without any constraint on the local and global
relations between the patches.

In this paper, we observe that a transformer-based architec-
ture attains generalized performance even though using the
small-scale dataset for sleep stage classification. The obser-
vation goes against the commonly held notion that a trans-
former requires large amounts of data for achieving good
accuracy due to its lack of inductive bias. To investigate the
reason behind a transformer-based architecture outperforms a
CNN-based architecture in our sleep stage classification, we
propose ‘Masked MHSA’ (M-MHSA) which can control the
range of the global information considered within the MHSA.

The masked attention mechanism used previously in
transformer-based language models is typically implemented
by adding a mask to the dot-product attention calculation.
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FIGURE 2. Overall of the transformer-based architecture. The transformer-based model consists of 3 modules embedding layer, MHSA and FFN.

FIGURE 3. Adding an attention mask Mv to constraint the range of attention between patches in the masked self attention map.

The mask is applied to the attention scores, which are used
to weight the representation of different elements in the
sequence. The mask is usually implemented as a matrix
with large negative numbers (-∞) in the positions where
attention should be prohibited, and zeros in the positions
where attention is allowed. The mask is added to the attention
scores before they are passed through a softmax function
to produce the attention weights. In conventional masked
attention in decoder layers, the upper diagonal of the mask is
set to large negative values to remove the attention scores for
masked elements. This makes the attention weights for these
elements close to zero after the softmax function, effectively
removing their impact on the final attention output.

In this work, unlike the previous mask configuration, in or-
der to constrain and control the range of attentions over near
or far patches, a newly devised masked attention approach is
proposed, where zeros are placed in the main diagonal and
additional neighbor diagonals. The rest of the non-diagonal
part is filled with large negative values. The resulting mask
has a “band (or banded) matrix" shape, which is a well-
known structure in matrix theory [23] but with a different

value arrangement.
A mask, Mv , for attention can be defined as an n × n

matrix with view width v, where v is a positive integer, then
the i-th row and j-th column element, Mv

i,j (1 ≤ i, j ≤ n),
in the matrix satisfy the following conditions.

Mv =

{
Mv

i,j = −∞, if |i− j| > v
Mv

i,j = 0, else
(5)

In other words, the elements of the matrix outside of the
main diagonal and the diagonals v steps away from it are
set to zero. The main diagonal is represented by the index
difference, |i− j| = 0.

With the definition of the proposed mask, the masked
self-attention (MaskedSA) can be calculated with Eq. 6 as
follows:

MaskedSA(Qi,Ki, Vi) = softmax(
QiK

T
i√

dk
+Mv)Vi

(6)
Mv is an attention mask used to limit the scope of the

attention map, as demonstrated in Fig. 3. When v is equal
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to 0, the transformer-based model can only utilize self-
patch information. On the other hand, if v is greater than 0,
the model can access much information from more distant
patches (2v+1 patches), including the self-patch.

A small value of v results in the early transformer block
only being able to consider information from nearby patches,
as opposed to using a larger v of a mask. If v is not 0,
however, the deeper transformer block can capture much
more global information than the early transformer block, as
the receptive field is larger in later layers compared to the
early layers in CNNs. The v can be considered like as the
size of a CNN filter in some sense. In our MHSA model,
the proposed attention mask, Mv , is added to the calculated
original attention map, as shown in Eq. 6.

Our hypothesis is that the enhanced performance of the
transformer-based architecture is contributed from its capa-
bility of effectively regulating the extraction of both local
and global features based on input features from an epoch
data sample, leading to better generalization compared to
a conventional CNN-based architecture. Therefore, when
applying strict local regulation in MHSA, the performance of
the model will decline, while the performance of the model
will increase when applying less regulation in the attention
mask.

E. METHODOLOGY TO MEASURE DISTANCE BETWEEN
DIFFERENT PATCHES (MEAN DISTANCE)
According to Fig. 4, a transformer-based architecture is
shown to have more generalized model performance com-
pared to conventional CNN-based architectures in sleep stage
classification tasks without any pre-training step on a large-
scale dataset. To prove our hypothesis that a transformer-
based architecture can utilize global features well in addition
to local features, we use a metric of “mean attention dis-
tance” to investigate how far a patch attends to other patches
in an MHSA for the given input data, on average.

The mean attention distance is evaluated as the weighted
average of the euclidean distances between the query patch
and the other patches in the sequence, where the weights
are given by the attention scores. The intuition behind this
calculation is that the mean attention distance captures “how
far away (globally related) the important patches are from the
query patch, taking into account their relative importance as
determined by the attention mechanism".

The mean attention distance (MDi) for the i-th head of an
MHSA can be calculated with Eq. 10 as follows:

AS(Qi,Ki) = Softmax(
QiK

T
i√

dk
) (7)

Dist(Qi,Ki) ∈ RS×S (8)
Dist(Qi,Ki)j,z = |j − z|1 (9)

MDi =

∑S
j

∑S
z AS(Qi,Ki)j,z ·Dist(Qi,Ki)j,z

S
(10)

FIGURE 4. Performance of various model architectures in sleep stage
classification into 5 classes (Wake, N1, N2, N3 and REM) when using a C3-A2
and C3-M2 signal channel for SHHS and Institution-A dataset, respectively.

AS(Qi,Ki) and Dist(Qi,Ki) are the matrices for the
attention score of the i-th head and euclidean distance, re-
spectively. The elements at the j-th row and z-th column of
the matrices, AS(Qi,Ki) and Dist(Qi,Ki), are denoted by
AS(Qi,Ki)j,z and Dist(Qi,Ki)j,z , respectively.

IV. RESULTS
A. BASIC OBSERVATIONS
When only relying on epoch data, the choice of a model ar-
chitecture used to extract the features can result in significant
performance differences, as shown in Fig. 4. In this paper, we
attempt to figure out what is the best backbone architecture
for extracting features from an epoch signal in sleep stage
classification, especially when the amount of data is limited.
Our results show that the transformer-based architecture has
more generalization capability than the conventional CNN-
based architecture even when only a small-scale dataset is
utilized. This result contradicts common expectations regard-
ing transformers. Thus, we aim to investigate the reason for
this phenomenon through further experiments.

B. GENERALIZATION CAPABILITY OF A
TRANSFORMER-BASED MODEL
To analyze and assess the generalization capability of a
transformer-based model while comparing with other deep
neural network architectures, we train multiple models using
a limited amount of patient PSG data. The models are eval-
uated in this experiment include DeepSleepNet, a ResNet-
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FIGURE 5. Mean attention distance of the eight heads in MHSAs at different
encoder block layers. The result is obtained from the use of 400 PSG records.

FIGURE 6. The average of mean attention distances in the heads of an
MHSA for varying amounts of dataset in training.

based model and a transformer-based model. Typically, re-
searchers extract meaningful latent features from an epoch
sample using 1D-CNNs, which are well-suited for capturing
time-invariant information.

Figure 4 shows the performance of the models using differ-
ent amounts of training data. Interestingly, the transformer-
based architecture has better generalized performance com-
pared to CNN-based models, even with a small number of
data samples and without pre-training processing about a
large-scale dataset.

From the results of Fig. 4, we hypothesize that the gen-
eralized performance of the transformer-based architecture
is due to its ability to effectively manage the extraction of
well-balanced local and global features according to input
features from an epoch data sample, resulting in improved
generalization capability compared to a conventional CNN-
based architecture. To validate the hypothesis, in the next
subsection, we conduct multiple experiments to investigate
the attention behavior of the MHSA in a transformer archi-
tecture in depth.

C. MEAN ATTENTION DISTANCE TO CONFIRM
GLOBALITY IN MHSA
In this section, we analyze the MHSA to verify the globality
based on mean distance. According to Eq. 10 in Sec. III-E,
when the mean attention distance is low, a self-attention head

FIGURE 7. The standard deviation of mean attention distances in the heads
of an MHSA for varying amounts of dataset in training.

focuses on local information more than global information.
On the other hand, when the mean attention distance is
high, the head focuses on global information more than local
information. As you can see in Fig. 5, in the encoder block
(Block1) at a shallow layer, there are cases where certain
heads (i.e., Head 4 and Head 6) in the MHSA utilize local
information more than global information, while in the other
cases, different heads utilize global information more than
local information.

This result implies that the MHSA (Block1) at the shallow
encoder layer considers both local and global information.
On the other hand, when the encoder layer becomes deeply
located (i.e., Block2 and Block3), it can be seen that the mean
attention distances of all heads become high, which means
that all the heads are focusing on utilizing global features
rather than local features. In other words, both local and
global information are utilized in the MHSA (Block1) of
the shallow layers while global information is more strongly
utilized in the MHSA (Block2 and Block3) of the deeper
layers. Compared to CNN architectures, the MHSAs of a
transformer architecture can exploit the more globally cor-
related information between the patches of epoch data. From
Fig. 5, we guess that the more globally attended information
obtained through the transformer makes it possible to achieve
higher prediction accuracy even with a small size dataset in
our sleep stage classification.

Figures 6 and 7 show how the “averaged mean attention
distance” and the “standard deviation of the mean attention
distances” vary according to the size of training dataset. The
averaged mean attention distance is the average value of all
mean attention distance (MDi) over all eight heads at a
certain block layer. For an example, in Fig. 6, “B1-MD” is
the average value of all the mean attention distance for all the
heads in the Block1. On the other hand, in Fig. 7, “B2-Std”
is a standard deviation of mean attention distances of all the
heads in the MHSA of the Block2.

In general classification tasks, the layer that has the great-
est influence is usually the layer closest to the output. So,
the attention behavior in the MHSA of the output layer
was investigated, and it was observed that the MHSA of
the last encoder layer utilized global information primarily
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regardless of the amount of training data. As presented in
Fig. 5, the mean attention distances of all the heads in Block3
(the block closest to output) are evaluated as high and it
means that the MHSA in the block near an output layer
has an attention pattern of more globally correlated among
patches. Accordingly, the average mean attention distance of
the Block3 (B3-MD) is always evaluated as high between 1.7
and 1.8 regardless of the amount of training data in Fig. 6.

Unlike B3-MD, B1-MD (the averaged mean attention
distance of the Block1 which is the block closest to input)
is reduced as the size of a dataset increases as shown in
Fig. 6. The result implies that the MHSA near an input side
has the attention behavior of decreasing global attention
and increasing local attention as the number of train data
sample increases. It is note worthy that the globally activated
attentions are observed in the MHSA of the encoder block
near an input side when the size of data sample is small.

In the case of the CNN, unlike the attention behavior of a
transformer architecture, the convolution layer near an input
size has a small and limited receptive field, which means that
it uses only local information regardless of a dataset size. We
believe that this is a key difference between our transformer
architecture and a CNN architecture and the performance
difference between the two architectures is derived from the
difference particularly in the case of employing small-sized
dataset.

From the experimental result of the sleep stage classifi-
cation showing that a transformer architecture shows better
performance than a CNN architecture when a small size
dataset is available, we guess that the global information
works as a much critical feature for classifying a sleep stage
when the dataset size is small and such a property of the
sleep stage classification is well exploited in the MHSA of a
transformer architecture which has a capability of exploiting
much global information extracted from the epoch sample
than a CNN architecture.

D. BALACING BETWEEN GLOBAL AND LOCAL
FEATURES USING MASKED MHSA BY CONTROLLING
THE RANGE OF ATTENTION IN AN MHSA
It is shown that a transformer-based model can achieve more
robust performance even when using a small-scale dataset,
compared to other CNN-based models in our application
domain. In the previous section, with the mean attention
distance derived from the three different MHSAs at the
different layers of a transformer model, we analyzed the
attention behavior of the results and we infer the possible
interpretation for the results.

To analyze the more detailed working mechanism of an
MHSA in a transformer-based model, we investigate the
patterns of patch interactions using the attention score matrix.
After then, we use M-MHSA presented in Section III-D to
constrain the degree of global attention in the M-MHSA by
changing the value of view width, v, of the M-MHSA.

Figure 8 shows the reconstructed attention map utilizing
the attention mask as given in Eq. 6. Adding an attention

FIGURE 8. The observed patterns of attentions in an MHSA of the Block3
according to the various v of an attention mask. 50 PSG records are used for
the training.

mask with a larger v (e.g., the attention map given at the right
bottom with v = 13 in Fig. 8) to the original attention score
results in the masked attention map that utilizes more global
correlations between patches. On the other hand, adding a
mask with a smaller v (e.g., the attention map given at the left
top with v = 0 in Fig. 8) to the original attention score results
in the masked attention map that focuses on more local patch
interaction. In consequence, by changing the value of v, we
can control the range of attention so that we can limit the
globality of the attention in an M-MHSA. Then, the final
masked self attention map can be adjusted to incorporate “the
desired locality or globality level of the attentions between
patches” into the M-MHSA as presented in detail in Fig. 3.

We investigate the impact of the attention range that can be
controlled by the attention mask, Mv , on the performance of
a transformer architecture by conducting several experiments
while varying the value of v in the attention mask of the M-
MHSA. The experiments aim to figure out the performance
impact of constraining the range of attentions of an M-MHSA
in our sleep stage classification.

From Fig. 8, we observe that a transformer model tries
to obtain global information as much as possible under a
given constraint. When the attention range is limited by v,
the attentions between the most distant patches are gener-
ally higher than the attention between the locally correlated
patches (near diagonal in the figure). We think that we can
find the best value of v of an M-MHSA in order to achieve
an optimal performance.

In order to evaluate the importance of the attention range
for the performance of a transformer architecture, we utilize
an attention mask to control the attention range. Table 4
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shows the accuracy performances of a sleep stage classifi-
cation with a transformer architecture while using various v
(from 0 to 13) of attention masks and various numbers of
PSG records (from 50 to 400). Note that we use only single
“C3-M2 channel” data from the PSG records.

When a view width, v, is set to zero to totally elim-
inate the attentions between two different patches in an
epoch sample and to consider the case of utilizing only the
inner-patch information (the attention map is presented with
v = 0 in Fig. 8), as presented in Table 4, the performance
of the transformer-based model is lower than that of the
transformer-based model with other larger v trivially since
no information between patches is utilized.

On the other hand, when v becomes larger than 0, the
performance increases and the increase stops at a certain v
(this is an optimal v in terms of performance) between 0 and
13. It is noteworthy that when v is more than 2, the model
can achieve the performance similar to that obtained without
an attention mask (i.e., v = 13 and this is the case of fully
utilizing all the attention information between patches so all
possible local and global information are used).

Even though v is less than 13, limiting the attention range,
the M-MHSA at deeper encoder layers can obtain more
global attention information compared to the M-MHSA at the
earliest layer near the input side. This is similar to the larger
receptive field at deeper layers of a CNN-based architecture.
It is also interesting to see that the model achieves higher
performance with smaller v than that of using larger v for at-
tention masks. We guess this happens because the restriction
on the attention range of an M-MHSA prevents overfitting
caused by too much global information and it also injects a
local inductive bias into the encoder blocks of a transformer
model [24].

From the results presented in Fig. 5, 6 and 7, the
transformer-based architecture has attention to various ranges
of attention information inside the early encoder block (i.e.,
Block1) while it has attention to global information inside the
deep encoder block (i.e., Block3) when the model utilizes a
sufficient amount of the dataset (i.e., 400 PSG records).

A moderately M-MHSA is shown to make a transformer
model well-suited for the inherent range of inter-patch cor-
relation in the input data samples for a specific application,
i.e., sleep stage classification. Such a moderately constraint
M-MHSA can make earlier layers to focus on local inter-
patch interactions while the global attention between long
distant patches is exploited well at deeper layers with more
emphasis. Finally, the model can achieve higher performance
than that without M-MHSA by controlling v properly in the
M-MHSA.

Since the multi-channel sleep stage classification using
multiple bio-signal channel data is also an important problem
in addition to single channel sleep stage classification, we
conduct another experiment with the multi-channel input
signals which are available from PSG records. Table 5 shows
the performances for the cases of using various v (from 0
to 13) of attention masks while increasing channels. Note

TABLE 4. Model performance when using various v (0 to 13) for the attention
masks in M-MHSA and different numbers (50 to 400) of PSG records including
C3-M2 channel data. Red and blue colors mean first highest performance and
second highest performance compared to different v with the same number of
training PSG records, respectively.

v
# of PSG records

50 100 150 200 250 300 350 400
0 72.95% 73.23% 73.00% 74.89% 75.23% 74.77% 75.52% 75.36%
1 73.14% 74.38% 74.80% 76.57% 76.88% 76.29% 77.20% 77.32%
2 74.00% 75.55% 76.08% 76.68% 77.23% 77.18% 77.82% 77.90%
3 74.40% 75.75% 76.09% 77.32% 77.45% 77.56% 77.06% 77.78%
4 74.37% 75.99% 76.29% 76.63% 77.23% 77.21% 77.54% 77.91%
5 74.62% 75.83% 76.33% 77.23% 77.38% 77.32% 77.74% 77.97%
6 74.44% 75.81% 76.29% 77.23% 77.52% 77.34% 77.48% 77.91%
7 74.57% 75.74% 75.40% 77.07% 77.51% 77.60% 77.92% 78.05%
8 74.45% 75.91% 75.75% 76.61% 77.09% 77.47% 77.53% 77.99%
9 74.34% 75.69% 75.48% 76.44% 77.01% 77.71% 77.35% 77.82%
10 74.39% 75.90% 75.76% 77.03% 77.41% 77.70% 77.29% 77.73%
11 74.23% 75.73% 75.77% 77.01% 77.16% 77.43% 77.49% 77.87%
12 74.17% 75.73% 75.77% 77.09% 77.22% 77.40% 77.40% 77.86%
13 74.11% 75.78% 75.28% 77.04% 77.17% 77.29% 77.29% 77.92%

TABLE 5. Model performance when using various v for the attention masks in
M-MHSA with multi-channel signal data. For the experiment, 50 PSG records
are used for training. Red and blue colors mean first highest performance and
second highest performance compared to different v with the same channels,
respectively.

v
Channel

C3-M2 + C4-M1 + E1-M2 + E2-M1 + Chin
0 72.95% 72.88% 72.03% 73.33% 74.19%
1 73.14% 73.50% 73.18% 73.64% 74.24%
2 74.00% 73.89% 74.53% 74.62% 74.71%
3 74.40% 74.70% 74.48% 74.81% 75.13%
4 74.37% 74.80% 74.95% 75.15% 74.67%
5 74.62% 74.52% 74.44% 75.41% 74.72%
6 74.44% 74.75% 74.42% 75.00% 75.30%
7 74.57% 74.20% 74.72% 75.03% 74.73%
8 74.45% 74.31% 74.29% 74.92% 74.77%
9 74.34% 74.27% 74.43% 74.83% 75.18%

10 74.39% 74.35% 74.32% 74.66% 74.78%
11 74.23% 74.12% 74.66% 75.10% 74.64%
12 74.17% 74.28% 74.79% 74.82% 74.92%
13 74.11% 74.26% 74.84% 74.48% 74.95%

that “+ Channel-Name” in Table 5 means that the channel
is added additionally. So, the results in the second column,
“C3-M2” implies the case of using the single C3-M2 channel.
On the other hand, the third column, “+C4-M1”, include
the results of using two channels, C3-M2 and C4-M1. With
continuous additions, the results in the last column, “+Chin”
implies the case of using all the channels, C3-M2, C4-M1,
E1-M2, E2-M1 and Chin.

The experimental results in Table 5 is obtained from a
model trained with 50 PSG records. The result of Table 5
is similar to Table 4 from the perspective that there exists
an optimal value of v between 0 and 13. Lastly, we find out
that the capability of utilizing proper range of attention in
an M-MHSA of a transformer architecture helps to improve
its performance and the use of an appropriate v of masked
attention in the M-MHSA can enhance the generalizability
of the model in sleep stage classification tasks.
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TABLE 6. Model performance when using various model architectures when using 50 and 400 PSG records. The C3-A2 and C3-M2 channels are used for training
SHHS and Institution-A/Institution-B, respectively. Red and blue colors mean first highest performance and second highest performance compared to different
model architectures, respectively.

# of
Dataset (Used Channel) Model Architecture

Performance
PSG F1-score W-Acc. Acc.records Wake N1 N2 N3 REM

50

SHHS (C3-A2)

DeepSleepNet 0.813 0.002 0.718 0.672 0.531 57.385 68.214(−7.510)
ResNet-18 0.852 0.018 0.772 0.669 0.576 57.620 74.320(−1.404)
ResNet-50 0.851 0.076 0.766 0.674 0.547 57.603 73.703(−2.021)

Transformer 0.866 0.070 0.774 0.703 0.636 61.829 75.611(−0.113)
Ours (M-MHSA, v = 2) 0.866 0.162 0.783 0.700 0.625 62.143 75.724(−0.000)

Institution-A (C3-M2)

DeepSleepNet 0.753 0.449 0.750 0.578 0.498 61.196 64.547(−10.073)
ResNet-18 0.789 0.468 0.771 0.689 0.463 63.319 67.768(−6.852)
ResNet-50 0.801 0.354 0.779 0.624 0.549 61.544 69.277(−5.343)

Transformer 0.829 0.572 0.799 0.707 0.644 71.115 74.109(−0.511)
Ours (M-MHSA, v = 5) 0.833 0.573 0.803 0.747 0.628 71.457 74.620(−0.000)

Institution-B (C3-M2)

DeepSleepNet 0.764 0.202 0.649 0.742 0.559 62.434 63.283(−8.517)
ResNet-18 0.777 0.384 0.663 0.741 0.650 65.923 66.775(−5.025)
ResNet-50 0.773 0.283 0.705 0.756 0.621 62.667 67.790(−4.010)

Transformer 0.795 0.409 0.734 0.767 0.692 67.817 71.178(−0.622)
Ours (M-MHSA, v = 6) 0.799 0.444 0.739 0.776 0.695 68.968 71.800(−0.000)

400

SHHS (C3-A2)

DeepSleepNet 0.891 0.180 0.787 0.686 0.683 64.534 76.202(−3.979)
ResNet-18 0.886 0.185 0.810 0.736 0.721 66.514 79.353(−0.828)
ResNet-50 0.881 0.138 0.810 0.724 0.714 65.108 79.074(−1.107)

Transformer 0.891 0.189 0.813 0.731 0.747 67.268 79.982(−0.199)
Ours (M-MHSA v = 3) 0.891 0.202 0.815 0.735 0.750 67.498 80.181(−0.000)

Institution-A (C3-M2)

DeepSleepNet 0.835 0.506 0.617 0.701 0.614 66.818 65.258(−12.712)
ResNet-18 0.834 0.595 0.817 0.662 0.593 67.583 74.845(−3.125)
ResNet-50 0.842 0.585 0.821 0.726 0.646 71.080 76.125(−1.845)

Transformer 0.855 0.610 0.833 0.751 0.693 74.546 77.916(−0.054)
Ours (M-MHSA, v = 6) 0.859 0.619 0.829 0.745 0.700 76.018 77.970(−0.000)

Institution-B (C3-M2)

DeepSleepNet 0.812 0.499 0.704 0.779 0.734 72.366 72.196(−3.444)
ResNet-18 0.817 0.515 0.748 0.786 0.747 72.206 73.722(−1.918)
ResNet-50 0.813 0.450 0.758 0.795 0.717 69.308 73.631(−2.009)

Transformer 0.833 0.509 0.763 0.798 0.768 73.270 75.599(−0.041)
Ours (M-MHSA, v = 11) 0.832 0.508 0.765 0.799 0.770 73.182 75.640(−0.000)

E. VALIDATION IN OTHER DATASETS
In addition to two datasets (SHHS and Institution-A), we use
another dataset (Institution-B) that is collected from a dif-
ferent medical institution in order to show the experimental
reliability and consistency on the performance superiority of
a transformer architecture particularly for a sleep stage classi-
fication task. To evaluate the performance on the Institution-
B dataset, the models are trained on the Institution-B training
dataset using 50 and 400 PSG records and then evaluated on
the test dataset from the Institution-B dataset.

Table 6 shows the performance obtained through evaluat-
ing the various model architectures with SHHS and our two
datasets (Institution-A and Institution-B). The transformer-
based architecture achieves higher performance compared to
traditional CNN-based architectures when using both of 50
and 400 PSG records to train the model.

Specifically, even when using a small number of
PSG records (50 PSG records) to train the models, the
transformer-based architecture with our M-MHSA attains
1.404%, 5.343% and 4.010% higher accuracy than dif-
ferent CNN-based architecture on SHHS, Institution-A and
institution-B datasets, respectively. When we use a large
number of PSG records to train the model, transformer-based
architecture also achieves 0.828%, 1.845% and 1.918%
higher accuracy on SHHS, Institution-A and Institution-B
datasets, respectively. The proposed method achieves better

weighted accuracy excluding Institution-B dataset with 400
PSG records compared to the original transformer method
which does not include M-MHSA. Transformer-based archi-
tecture already obtains better overall performance compared
to conventional CNN-based architecture. Specifically, one of
the main goals is to improve the generalization ability utiliz-
ing a M-MHSA to reflect globality restriction in MHSA. Ac-
cording to Table 6, the proposed method outperforms differ-
ent model architectures including original transformer-based
architecture even with small-scale training PSG records in
which case the probability of falling into overfitting is high.

V. CONCLUSION
In this paper, we analyzed three representative deep learning
model architectures for sleep stage classification tasks and
we aimed to determine a suitable backbone model architec-
ture for extracting meaningful features from a PSG dataset,
particularly under the limited data availability. Traditionally,
the most prevalent backbone architectures utilized in sleep
stage classification have been CNN-based architectures. Re-
cently, transformer-based architectures have been introduced
by some researchers. However, they have not received as
much attention as CNN-based architectures. In our experi-
ments, we observed that a transformer-based architecture out-
performs conventional CNN-based architectures, even when
using a small amount of data. This result is intriguing, as
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typically transformer architectures require a large dataset for
pre-training before fine-tuning in a specific task. However,
in our experiments on the sleep stage classification task,
the transformer-based architecture achieved the highest per-
formance without any pre-training step on the well-known
public dataset (SHHS) and two our own datasets (Institution-
A and Institution-B datasets).

To understand the reason for these uncommon results
obtained from the performance evaluations, we conducted
additional experiments and analyzed the detailed behavior of
the transformer architecture. For the analysis, we particularly
investigated patterns of attentions in the MHSA of the trans-
former architecture and we found that the MHSA mechanism
in the transformer allows the model to extract more useful
latent features from an epoch sample data depending on the
number of train samples, i.e., the size of a dataset. In addition,
by introducing an attention mask utilizing the shape of a band
matrix for controlling the range of attention between patches,
we can improve the classification performance further by
assigning an optimal value to a view width, v, of an attention
mask.
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