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ABSTRACT The accurate and rapid identification of safflower filaments is a prerequisite for automating 

harvesting. This paper proposes a lightweight, high-precision detection model for safflower filaments based 

on YOLOv5s, named YOLOv5s-MCD, to address the issues of large existing network model sizes and low 

detection accuracy in complex natural environments. The Backbone of the YOLOv5s-MCD model was 

optimized into a lightweight improved network MobileNetv2 with DSC and CA modules, and the neck part 

incorporated the CA attention mechanism. The loss function is improved from DIoU's non-maximum 

suppression method to CIoU to reduce the model size and improve the detection accuracy and speed. The 

experimental results show that the size of the YOLOv5s-MCD model is its size by 7.69 MB compared to 

the original YOLOv5s model, with a mean Average Precision (mAP) of 95.6% and an average detection 

time of only 3.2ms per image. When tested under unobstructed, obstructed, backlighting, shaking, and 

wide-angle natural environments, the improved YOLOv5s-MCD model increased the mAP value by 4.4, 

0.7, 3.3, 3.4, and 1.0 percentage, respectively, compared with the YOLOv5s model, with improved F1 

scores and confidence levels. This indicates that the improved lightweight model can achieve fast, real-time, 

and accurate detection of the safflower filaments in complex environments. The research results can 

provide a technical reference for the development of field safflower filament-harvesting robots. 

INDEX TERMS Safflower filament, Natural environment, Target detection, YOLOv5s, Lightweight. 

I. INTRODUCTION 

Safflower (Carthamus tinctorius L.), also known as red 

bluebottle or thistle safflower, promotes blood circulation 

to remove blood stasis, regulates menstruation, relieves 

pain, and lowers blood lipid and blood pressure [1]. With 

the continuous increase in market demand for safflower, 

the safflower market is rapidly developing towards 

industrialization and commercialization, playing an 

immeasurable role in regional economic development. 

However, in the entire safflower industry chain, the 

harvesting of safflower filaments has not yet been 

mechanized and mainly relies on manual labor, leading to 

significant waste due to untimely harvesting, which 

severely restricts the large-scale development of the 

industry [2-4]. With the development of artificial 

intelligence and deep learning technology, automation of 

safflower filament harvesting has become possible. 

However, safflower unstructured field planting presents a 

variety of growth postures and different flowering periods, 

and the characteristics of the filaments, such as shape, size, 

and color, also change with time and light conditions. 

These factors inevitably lead to mutual shading among 

safflowers and overlapping of targets, posing a pressing 

issue for the development of intelligent safflower filament 

picking robots: how to quickly and accurately identify 

small safflower filament targets in such complex natural 

environments. 

Currently, the recognition of safflower filaments has 

attracted the attention of researchers. For instance, Zhang 

Zhenguo et al. [5-6] conducted recognition studies on 

safflower filaments in natural environments based on 

improved YOLOv3 and Faster R-CNN, showing that the 

average precision mean of YOLOv3 reached 91.89%, with 

an average detection speed of 51.1 frames /s, and the 

average precision mean of Faster R-CNN reached 91.49%. 

Wang Xiaorong et al. [7] identified safflower filaments in 
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complex environments based on YOLOv7 by adding a 

Swin Transformer attention mechanism and improving the 

Focal Loss function; the test results indicated an average 

detection precision of 88.5%, without mentioning the 

detection speed per single image. Scholars have also 

studied the identification of safflower filaments through 

image segmentation methods; for example, Dong Funan et 

al. [8] used the Otsu method to establish a target 

segmentation method for safflower filaments, completing 

the target segmentation quickly and professionally 

through color space conversion, bilateral filtering, and the 

least squares principle, achieving an accuracy rate of 90%. 

Although rapid and accurate recognition technologies 

for safflower filaments are still at an early stage of 

research, the identification of various flowers and small 

fruit targets has already been widely applied. For example, 

Fan Xiangpeng et al. [9] proposed an improved Faster R-

CNN and data augmentation recognition method to 

address the low recognition rate and poor robustness of 

existing models for weed accompanying cotton seedlings, 

achieving an average recognition time of 0.261s for single 

images in natural environments and an average precision 

of 94.21%, which shows a clear advantage over other 

algorithms. Shang Yuying et al. [10] detected apple 

blossoms in natural scenes based on YOLOv5s, with test 

results showing an average precision of 97.2%, a detection 

speed of 60.17 frames/s, and a model size of 14.09 MB, 

demonstrating high robustness. Similarly, Wu Dihua et al. 

[11], based on an improved channel-pruned YOLOv4 

model for real-time recognition of apple blossoms, 

showed that the average precision reached 97.31%, with a 

detection speed of 72.33 frames /s, and a model size of 

12.46 MB. Chen Chunlin et al. [12] designed a computer 

vision system for identifying tea leaf picking points based 

on YOLOv3, using the Mobilenetv2 algorithm for 

classification and combining deep learning with 

traditional image processing algorithms, achieving a 

picking point location accuracy of 83%; Li Jie [13] also 

addressed the problem of difficult precise identification in 

complex tea leaf environments, proposing a high-precision 

lightweight detection model based on an improved 

YOLOv4, replacing the backbone of YOLOv4 with 

GhostNet and introducing the CBAM attention 

mechanism to enhance the model's feature extraction 

capability, with test results showing an accuracy rate of 

85.15% and a parameter reduction of 82.36%, providing a 

foundation for precise tea leaf picking. Miao Ronghui et al. 

[14] improved the detection speed by changing the 

backbone network of YOLOv7 without reducing the 

accuracy of cherry tomato detection, and the results 

indicated an average detection time of 82ms per single 

image, a model size of 66.5 MB, and an average precision 

of 98.2%. In summary, although deep learning technology 

has been successfully applied in fields such as cotton, tea 

leaves, and apple blossoms [15-17], there are few 

deployments and applications of recognition systems for 

safflower filament harvesting. The main reasons are the 

strong dependence of deep learning models on high-

performance computing platforms and the impact of non-

structured planting patterns of safflower filaments in 

natural environments, including filament shading, multi-

target overlap, and changes in illumination, which result 

in existing target detection models having low accuracy, 

large parameter computation, and high memory 

occupation of model weights. Therefore, it is necessary to 

study strategies to significantly reduce the model size 

while ensuring unchanged or slightly changed detection 

accuracy, preparing for the deployment of the model on 

low-computing power mobile platforms in the field. 

Based on this, this study focuses on the issues of low 

target detection accuracy and large model size of existing 

models for safflower filaments in natural scenes, and 

conducts research on a lightweight model for safflower 

filament target detection based on the YOLOv5s network 

architecture. By introducing the lightweight network 

structure Mobilenetv2 into the Backbone network for 

improvement, this study achieves model lightweighting by 

adding the lightweight attention mechanism CA in the 

Neck network and using DIoU's non-maximum 

suppression method in the CIoU loss function, which 

improves the model's detection accuracy and convergence 

speed. In addition, this study also compares different 

backbone network structures, attention mechanisms, and 

loss functions of YOLOv5s variant models to evaluate the 

performance of the improved model. The research results 

can provide important technical support for the 

development of automatic safflower filament harvesting 

robots. 
II. Materials and Methods 

A. COLLECTION OF SAFFLOWER FILAMENT IMAGE 
DATA 

This paper focuses on the precious medicinal herb "Yumin 

Thornless Safflower" which is extensively cultivated in 

Xinjiang, China. The safflower filament images used were 

obtained from the Labor Education Practice Base of Xinjiang 

University of Technology in the Aksu region, Xinjiang. The 

image capturing device was a Huawei Nova 7 Pro with a 

resolution of 4608×3456 pixels. Based on the flowering 

growth characteristics of the safflower filaments, the image 

collection period was from July 10 to August 1, 2023. The 

camera angles combined 90-degree horizontal shots and 135-

degree overhead shots. Data were collected under different 

natural conditions such as sunny, cloudy, and overcast 

weather, during the time periods of 9:00-10:00 AM, 3:00-

4:00 PM, and 9:30-10:30 PM. The dataset included safflower 

filament images with different lighting, varying obstructions 

of leaves and filaments, varying obstructions of fruits and 

filaments, and varying obstructions of filaments and 

filaments. Figure 1 shows examples of safflower filament 
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images collected under different natural conditions. A total of 

3000 safflower filament images were collected and stored in 

the JPEG format. 

   
Sunny Cloudy Overcast 

   
Direct light Backlight Obstruction 

FIGURE 1.Images of safflower filaments in different natural 
environments. 

B. SAFFLOWER FILAMENTS IMAGE DATASET CONST-
RUCTION AND ANALYSIS 

To enhance the robustness and generalizability of the 

safflower filament recognition model for more accurate 

feature extraction under various environmental conditions, 

this study applied two data augmentation strategies 

brightness adjustment and blur processing to the original 

image dataset after comprehensive analysis of field operation 

environments. Brightness adjustment simulates the effects of 

changing light conditions due to different weather conditions, 

whereas blur processing aims to mimic the blurring effect 

caused by the movement of harvesting machinery, as 

exemplified in Figure 2. Using these methods, the number of 

image samples was increased to 4500, which were then 

divided into training (3150 images), validation (900 images), 

and test sets (450 images) at a ratio of 7:2:1 for model 

training and evaluation. Furthermore, the dataset adhered to 

the PASCAL VOC formatting standards, and the safflower 

filaments within the images were precisely annotated using 

LabelImg software. During the annotation process, 

operations were performed only on the minimum bounding 

rectangles of each filament, excluding instances that were too 

obscured, blurry, or distant to be recognized. After 

annotation, the information was saved in an XML file. 

Considering the specific conditions encountered by safflower 

harvesting robots during field operations, this study 

categorized the safflower filament targets into two classes: 

"Safflower-B" and "Safflower-D," based on which the data 

were classified and annotated. 

   
Random Blur Original Image Random Brightness 

FIGURE 2.Example of safflower filaments image enhancement. 

C. IMPROVED YOLOV5S DETECTION MODEL 

1) YOLOV5S NETWORK MODEL 

YOLOv5 is a single-stage object detection algorithm that 

offers five different network model variants of varying sizes 

[18-19]: YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, and 

YOLOv5x. These models are designed to optimize the 

balance between computational efficiency and detection 

performance and have introduced the focus module and 

Spatial Pyramid Pooling (SPP) [20] structure into the 

network architecture to further enhance feature extraction 

capabilities compared to their predecessor, YOLOv4. As the 

number and depth of the network layers increase, the number 

of parameters correspondingly increases. Considering the 

specific requirements for the field harvesting of safflower 

filaments, this study selected the YOLOv5s model. This 

model strikes an optimal balance between model size and 

detection speed while maintaining the necessary detection 

accuracy. The architecture of the YOLOv5s model primarily 

consists of Backbone and Neck components. 

The Backbone part is mainly used for feature extraction of 

safflower filament images, using CSPDarknet53 as the 

backbone network. The input size of the safflower filament 

image is 640×640×3. Through the Focus layer, the input 

image is divided into four 320×320×3 slices, and then the 

Concat operation outputs a feature map of 320×320×12. 

After a convolution operation with 32 kernels, it becomes a 

feature map of 320×320×32, thereby achieving the effect of 

reducing computation and accelerating training speed; layers 

1, 3, 5, and 7 are convolutional layers; layers 2, 4, 6, and 8 

are CSP layers. This module refers to the skip connection 

idea of the ResNet model to obtain richer semantic 

information [21], the SPPF module is designed by referring 

to the spatial pyramid pooling module (SPP), realizing multi-

scale information fusion to improve model performance 

while speeding up model processing. The Neck part uses the 

feature fusion method of Path Aggregation Network (PANet), 

including the top-down FPN module and the bottom-up PAN 

module, which better integrates features of different scales 

and enhances the detection accuracy of the model. It has 15 

sub-layers, and the outputs from the 4th and 6th layers of the 

backbone module are concatenated and fused with the 15th 

and 11th layers of the Neck module to output richer feature 

information. 

2) COORDINATE ATTENTION MODULE 

To enhance the fusion processing performance of the Neck 

module in extracting features from different levels of the 

backbone network and to improve the recognition accuracy 

and speed of the entire network model, an attention 

mechanism was embedded in the network for optimization 

and improvement. The currently prevalent lightweight 

attention mechanisms include SE (Squeeze and Excitation) 

[22], CBAM (Convolutional Block Attention Module) [23], 

ECA (Efficient Channel Attention) [24], and CA (Coordinate 

Attention) [25]. The SE attention mechanism considers only 

inter-channel information and enhances the feature selection 

capability while neglecting the importance of spatial 

information. CBAM combines channel and spatial attention 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3422235

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



 

VOLUME XX, 2017 7 

mechanisms by reducing the input tensor and introducing 

large-scale convolutional kernels to extract spatial features, 

thus ignoring long-range dependencies and the increasing 

computational complexity. ECA, proposed by Wang et al. in 

2020, primarily aims to simplify the channel attention 

mechanism and reduce parameter count and computational 

complexity, but does not integrate spatial information, 

limiting its effectiveness in capturing global context and 

channel-spatial relationships. The CA attention mechanism, 

introduced by Hou et al. in 2021, enhances feature 

representation by innovatively combining channel attention 

and spatial coordinate information, thereby improving the 

model's ability to capture both global and local features with 

high computational efficiency. It effectively retained the 

spatial location information of the safflower filament, 

significantly enhancing the recognition capability of the 

network model. Based on this analysis, this optimization 

employs a lightweight CA attention mechanism module, the 

structure of which is illustrated in Figure 3. 

 

FIGURE 3.CA attention mechanism network structure. 

As shown in Figure 3, the CA mechanism enhances the 

ability of mobile networks to learn feature representations by 

embedding coordinate information and generating coordinate 

attention in two steps: encoding precise positional 

information for channel relationships and long-range 

dependencies. Coordinate information embedding performs 

channel-wise average pooling along the X and Y directions 

on the input feature map of size C×H×W, generating feature 

maps of sizes C×H×1 and C×1×W respectively. This helps 

the attention module capture long-range dependencies with 

precise positional information, allowing the network to locate 

objects of interest more accurately. The operations are 

expressed in equations (1) and (2): 

0

1
( ) ( , )h

c c

i W

z h x h i
W  

                           (1) 

0

1
( ) ( , )w

c c

j H

z w x j w
H  

                        (2) 

Where ( )h

cz h  is the output of the c-th channel at height h, 

and ( )w

cz w  is the output of the c-th channel at width w. 

To better capture the global receptive field and encode 

precise positional information, coordinate attention was 

generated using representations produced by embedding 

coordinate information. By spatially concatenating Equations 

(1) and (2), and then applying a 1×1 convolutional 

transformation function F1 and a nonlinear activation 

function to obtain an intermediate feature map [25-26], 

1f ( ([ , ]))h wF z z                           (3) 

where, f represents the intermediate feature map encoding 

spatial information in both the horizontal and vertical 

directions, and / ( )f RC r H W  , where r controls the 

reduction ratio of the block size.  is a nonlinear activation 

function, and [ , ]h wz z is the spatial dimension concatenation. 

Subsequently, along the spatial dimension, f is split into two 

separate tensors /f Rh C r H  and /f Rw C r W . Two 1×1 

convolutional transformation functions 
hF  and 

wF  are used 

to transform f h
 and f w

 into tensors with the same channels 

as  input feature X, resulting in 

g ( (f ))h h

hF                            (4) 

g ( (f ))w w

wF                           (5) 

In this formula,  is a sigmoid activation function. Finally, 

gh
and gw

 are expanded and used as attention weights to 

obtain the output Y of the CA attention module. 

( , ) ( , ) ( ) ( )h w

c c c cy i j x i j g i g j           (6) 

3) IMPROVED MOBILENETV2 MODULE 

To ensure a significant reduction in the model parameters 

and size while maintaining high accuracy in detecting 

safflower filaments, we conducted a comparative analysis of 

four lightweight networks: GhostNet[27], ShuffleNetV2[28], 

MobileNetV2[29], and MobileNetV3[30]. The GhostNet 

module, despite utilizing channel-wise grouped convolution 

under resource-constrained conditions, increases 

computational complexity. ShuffleNetV2's deeper network 

architecture increases computational costs without markedly 

improving small object feature detection. Both MobileNetV2 

and MobileNetV3 leverage depthwise separable convolutions 

and residual modules. However, MobileNetV3, which 

incorporates the SE attention mechanism, fails to account for 

the spatial information of overlapping safflower filaments, 

and is larger MobileNetV2. Consequently, the MobileNetV2 

module is adopted in this study. The improved MobileNetV2 

network architecture is illustrated in Figure 4. The expansion 

factor of the input size is denoted by t, c represents the 

number of channels in the output feature map, and s stands 

for stride (applied only to the first layer; all others are set to 

1). The improved MobileNetv2 network model incorporates 

the CA attention mechanism and continues the design 

philosophy of Depthwise Separable Convolution (DSC) [31], 

Linear Bottleneck, and Inverted Residual modules in the 

network structure. 
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FIGURE 4.Improved MobileNetV2 Network Structure. 

 

FIGURE 5.Depthwise Separable Convolution. 

Depthwise separable convolution consists of depthwise 

and pointwise convolutions. It first uses depthwise 

convolution to gather information on the feature channels 

and then uses pointwise convolution to complete the output 

of the feature information, as shown in Figure 5. Unlike 

standard convolutions (SC), the kernels in depthwise 

convolution are single-channel, meaning a single kernel is 

applied to each channel to perform operations, resulting in 

the same number of input and output feature map channels, 

which greatly reduces the computational load and number of 

parameters. Pointwise convolution uses 1×1 kernels to 

perform dimension-raising operations, constructing new 

features through linear combinations of input channels with 

N 1×1 kernels, thus addressing the issue of having too few 

feature maps. In a depthwise separable convolution network, 

assuming that the size of the depthwise convolution kernel is 

DK×DK, M is the number of input channels, N is the number 

of output channels, and DF×DF is the output feature map size, 

the computational cost of depthwise separable convolution 

and standard convolution can be represented by equations (7) 

and (8), respectively. The reduction in the computational cost 

for depthwise separable convolution is shown in equation (9). 

In MobileNetv2, DK = 3; therefore, the computational cost is 

eight to nine times lower than that of standard convolution, 

with only a slight decrease in accuracy. 

K K F F F FD D M D D M N D D            (7) 

K K F FD D M N D D                     (8) 

2

1 1K K F F F F

K K F F K

D D M D D M N D D

D D M N D D N D

       
 

    

 

(9) 

In the classic residual structure, a pattern of reducing the 

dimensions before increasing them is adopted. However, 

MobileNetV2 optimizes this into an inverted residual 

structure that first increases and then reduces the dimensions, 

as shown in Figure 6. The inverted residual structure not only 

ensures the extraction of high-dimensional feature 

information but also reduces the number of parameters and 

computational cost. To address the issue of feature loss 

caused by the use of the nonlinear activation function ReLU 

in the last 1×1 convolutional layer of the inverted residual 

structure, the ReLU activation function is improved to a 

linear activation function, which significantly reduces the 

loss of information when passing through narrow layers, 

hence it is called linear bottleneck convolution, as shown in 

Figure 7. It should be noted that shortcut connections are 

present only when s=1, and the input and output feature maps 

have the same shape. 

 
(a) Residual block 

 
(b) Inverted residual block 

FIGURE 6.Depthwise Separable Convolution. 

  

FIGURE 7.Inverted Residual Linear Bottleneck Structure. 

4) LOSS FUNCTION IMPROVEMENT 

In the natural environment, safflower filaments are 

harvested predominantly through unstructured planting. 

During the harvesting process, some filaments are obscured 

by leaves, capsules, and stems. The default Complete 

Intersection over Union (CIoU) in YOLOv5s loses 

effectiveness in handling overlapping objects because of the 

limited adjustment space for the position and shape of the 

bounding boxes. This limitation hinders the optimization of 

the loss function, which poses significant challenges for the 

recognition of safflower filaments. DIoU-NMS[32] can filter 

multiple detection boxes to reduce overlapping bounding 

boxes for targets of different scales and aspect ratios. Based 

on this, our study aimed to adopt the DIoU non-maximum 
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suppression method within the default CIoU loss function of 

YOLOv5s, effectively enhancing the detection performance 

of filaments in occluded environments. The optimized total 

loss function is given by Equation (10). 

( )CIoU D NMS CIoU iL L S                   (10) 

2

2

(b,b )
1

gt

CIoUL IoU v
c


           (11) 

,  ( , )

0,   ( , )

i DIoU i

i

DIoU i

S IoU R M B
S

IoU R M B





 
 

 
        (12) 

2

2

(b,b )gt

DIoUR
c


                     (13) 

where: IoU - traditional regression loss,  - Euclidean 

distance, b,bgt
- center points of predicted box A and target 

box B, c- the diagonal length of the smallest enclosing box 

covering both boxes,  - balance parameter, v - aspect ratio 

correction factor, M - the bounding box with the maximum 

confidence, 
iB - other bounding boxes,  - NMS threshold. 

5) IMPROVED SAFFLOWER FILAMENT DETECTION MO-
DEL FRAMEWORK BASED ON YOLOV5S 

In the natural environment, intelligent picking of safflower 

filaments inevitably suffers from mis-detection and missed 

picking owing to factors such as filament occlusion, multiple 

target overlap, changes in illumination, and equipment 

performance. To address this issue, this study proposes an 

improved lightweight detection model for safflower 

filaments, YOLOv5s-MCD. It mainly replaces the backbone 

part of YOLOv5s with an improved MobileNetv2 

lightweight network structure, embeds the CA module into 

the neck network layer to enhance the model's feature 

extraction capability, and uses the DIoU non-maximum 

suppression method to improve the default CIoU loss 

function of YOLOv5s. The overall network structure is 

shown in Figure 8. 

 

FIGURE 8.Overall framework of YOLOv5s-MCD safflower filament 
detection model. 

D. EXPERIMENTAL PARAMETERS EVALUATION METR-
ICS  

1) EXPERIMENTAL PARAMETERS 

The entire model training was conducted on a Windows 11 

system, with computer hardware configured with 384 GB of 

memory and an AMD Ryzen Threadripper PRO 3975WX 

32-Cores processor. The libraries required for the model 

configuration included Anaconda 3.8, Python 3.8, OpenCV, 

CUDA 11.6, and Pytorch 1.12 deep learning framework. A 

mosaic data augmentation method was employed during the 

model training process. A batch size of 16 was utilized for 

each processing unit, with Batch Normalization (BN) layers 

applied for regularization at each weight update. The initial 

learning rate was set as 0.01. The optimizer used was a 

Stochastic Gradient Descent (SGD) with a momentum factor 

of 0.937. Training spanned 300 epochs. After the completion 

of training, the weights with the best accuracy and the final 

training weights were saved. Optimal weights were used to 

evaluate the safflower filament test dataset and obtain the 

detection results. 

2) EVALUATION METRICS 

Multiple models were applied to the same test dataset in 

order to assess the performance of the improved model. 

When evaluating the performance of each model, six key 

metrics were considered [33-34]: Precision (P), Recall (R), 

Mean Average Precision (mAP), F1 Score, model size and 

detection response time. Among these metrics, the mAP and 

detection speed are particularly important for the model 

because they jointly determine the model's performance in 

terms of accuracy and speed. The formulas for calculating 

the precision, recall, F1, and mean average precision are as 

follows: 

TP
100%

TP+FP
P                 (14) 

TP
100%

TP+FN
R                 (15) 

2
1 100%

P R
F

P R

 
 


            (16) 

1

0
i 1

( )d

mAP 100%

N

P R R

N
 


          (17) 

where, TP stands for true positive, FP stands for false 

positive, FN stands for false negative. TP represents the 

number of samples that the model predicts as positive and is 

actually positive, FP represents the number of samples that 

the model predicts as positive but is actually negative, FN 

represents the number of samples that the model predicts as 

negative but is actually positive, AP represents the average 

precision for a single category, and N is the number of 

categories to be detected. In this study, only blooming and 

withered stamens were detected; therefore, N=2. 
III. Results and Discussion 

A. MODEL TRAINING 
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(a) Loss curve 

 
(b) mAP curve 

FIGURE 9.Loss and mAP curves during the training process. 

This study is based on the YOLOv5s model with different 

lightweight backbone networks to train on the safflower 

filament image dataset, as shown in Figure 9. Compared to 

other network models, the improved model YOLOv5s-MCD 

has the fastest convergence speed of the loss curve, the 

largest increase in the mean average precision (mAP), and 

when trained for up to 300 epochs, the loss value tends to be 

stable, fluctuating around 0.02, with an mAP value reaching 

95.6%, and the model size is only 6.01MB. All performance 

parameters are better than those of the other models and are 

more suitable for deployment applications on low-computing 

power platforms in safflower filament fields. Therefore, this 

study used the best model output after 300 rounds of training 

as the recognition model for intelligent safflower filament 

harvesting. 

B. ABLATION STUDY RESULTS ANALYSIS OF THE IMP-
ROVED YOLOV5S-MCD MODEL 

1) COMPARATIVE RESULTS OF EXPERIMENTS BASED 
ON DIFFERENT NETWORK STRUCTURES OF YOLOV5S  

To evaluate the detection efficiency of the safflower 

filament based on the YOLOv5s model, we trained different 

backbone network structures: MobileNetV2, MobileNetV3, 

ShuffleNetV2, and GhostNet using the same improvement 

methods on a unified test dataset. The test results are listed in 

Table 1. According to the training results, the model obtained 

by improving MobileNetV2 to replace the original backbone 

network performed better than the other three backbone 

network variants. Specifically, although YOLOv5s-M 

(YOLOv5s-MobileNetV2) is slightly lower than the original 

YOLOv5s model in terms of Precision (P), Recall (R), F1 

Score, and mean Average Precision (mAP), the model size 

has been reduced from 13.7 MB to 5.98 MB, a reduction of 

56.4%, which is more advantageous for deployment on low-

computing platforms for detecting Safflower filaments. 

Compared with the other three models, the improved 

YOLOv5s-M model not only has an advantage in size but 

also slightly outperforms it in over 90% of the indicators. In 

summary, the proposed YOLOv5s-M improved model 

significantly achieves a lightweight model while ensuring 

detection speed and accuracy. This indicates that the model 

has outstanding comprehensive performance and is 

particularly suitable for the rapid and accurate detection of 

small targets, such as safflower filaments. 

TABLE 1 

PERFORMANCE COMPARISON OF DIFFERENT MODELS BASED ON YOLOV5S 

Model P/% R/% F1/% mAP@.5/% Model Size/MB 

YOLOv5s 93.8% 91.8% 92.8% 95.6% 13.7 

YOLOv5s+ghost 92.3% 91.0% 91.6% 95.1 7.44 

YOLOv5s+mobilenetv3 93.0% 89.7% 91.3% 94.5% 7.11 

YOLOv5s+shufflenetv2 91.9% 90.1% 91.0% 94.7% 7.63 

YOLOv5s+mobilenetv2 92.4% 91.5% 91.9% 95.5% 5.98 

2) COMPARISON OF EXPERIMENTAL RESULTS OF DIF-
FERENT ATTENTION MECHANISMS ON YOLOV5S-M M-
ODEL  

To evaluate the effect of different attention mechanisms on 

the performance of the improved YOLOv5s-M model, 

performance tests were conducted on the improved 

YOLOv5s-M model using four types of attention 

mechanisms: CBAM, SE, CA, and ECA. Each enhanced 

model was trained under the same conditions for 300 epochs 

and was evaluated using the same test dataset. The 

performance test results for the four attention mechanisms 

are presented in Table 2. By comparing the experimental 

results, it can be found that the model with the CA attention 

mechanism has an accuracy of 95.2% and 92.7% for the 

Safflower-B and Safflower-D classes, respectively, which is 

an increase of 1.1 and 1.9 percentage points compared with 

the original YOLOv5s-M model without any attention 

mechanism. It is also an increase of 2.3 and 2.0 percentage 

points compared to the model with the CBAM attention 

mechanism, an increase of 1.2 and 1.4 percentage points 

compared to the model with the SE attention mechanism, and 

an increase of 1.5 and 1.2 percentage points compared to the 

model with the ECA attention mechanism. Moreover, the 

detection time for a single image is the shortest among the 

five models, at only 3.2 ms. The recognition of safflower 

filaments mainly occurs on a fast-moving platform in the 
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field, which requires high accuracy and speed. Based on the 

analysis of the experimental results, the improved YOLOv5s-

MC (YOLOv5s-MobileNetV2-CA) model has incomparable 

advantages. 
TABLE 2 

PERFORMANCE COMPARISON OF YOLOV5S-M WITH DIFFERENT ATTENTION MECHANISMS ADDED 

Model Category P/% R/% F1/% mAP@.5/% Detection time /ms 

YOLOv5s-M 

all 92.4% 91.5% 91.9% 95.5% 

3.4 Safflower-B 94.1% 93.6% 93.8% 97.2% 

Safflower-D 90.8% 89.4% 90.1% 93.8% 

YOLOv5s-M-CBAM 

all 91.8% 91.4% 91.6% 95.6% 

3.3 Safflower-B 92.9% 93.8% 93.3% 97.2% 

Safflower-D 90.7% 88.9% 89.8% 93.9% 

YOLOv5s-M-SE 

all 92.6% 90.3% 91.4% 95.4% 

3.3 Safflower-B 94.0% 92.8% 93.4% 97.3% 

Safflower-D 91.3% 87.8% 89.5% 93.5% 

YOLOv5s-M-CA 

all 93.9% 90.1% 92.0% 95.5% 

3.2 Safflower-B 95.2% 91.6% 93.4% 97.2% 

Safflower-D 92.7% 88.6% 90.6% 93.8% 

YOLOv5s-M-ECA 

all 92.6% 90.7% 91.6% 95.2% 

3.4 Safflower-B 93.7% 93.4% 93.5% 97.2% 

Safflower-D 91.5% 87.9% 89.7% 93.2% 

3) COMPARISON OF EXPERIMENTAL RESULTS OF DIF-
FERENT LOSS FUNCTION ON YOLOV5S-MC MODEL  

To further improve the overall comprehensive recognition 

performance of the final improved model, ablation 

experiments were conducted on the loss function of 

YOLOv5s-MC. The comparative experimental results are 

shown in Table 3. The analysis showed that the CIoU loss 

function with the DIoU non-maximum suppression method 

proposed in this study achieved a comprehensive mAP of 

95.6% for the recognition of safflower filaments, 97.4% for 

recognizing blooming filaments, and 93.8% for recognizing 

wilting filaments. Compared to the other loss functions of 

YOLOv5s-MC, CIoU(D) demonstrated a better 

comprehensive recognition performance for safflower 

filaments. Although the mAP value for Safflower-D is 

slightly lower by 0.1% compared to the original YOLOv5s 

model, the model size has been reduced from 13.7 MB to 

6.01 MB and other mAP values remain balanced. This 

indicates that the YOLOv5s-MCD (YOLOv5s-

MobileNetV2-CA-CIoU(D)) model proposed in this study is 

more suitable for applications in intelligent safflower 

filament harvesting systems in the field.
TABLE 3 

PERFORMANCE COMPARISON OF DIFFERENT LOSS FUNCTIONS 

Model Model Size/MB Loss Function Category mAP@.5/% 

YOLOv5s 13.7 CIoU 

all 95.6% 

Safflower-B 97.4% 

Safflower-D 93.9% 

YOLOv5s-MC 6.01 

CIoU 

all 95.5% 

Safflower-B 97.2% 

Safflower-D 93.8% 

CIoU(D) 

all 95.6% 

Safflower-B 97.4% 

Safflower-D 93.8% 

GIoU 

all 95.2% 

Safflower-B 97.1% 

Safflower-D 93.3% 

SIoU 

all 95.3% 

Safflower-B 97.2% 

Safflower-D 93.3% 

EIoU 

all 95.3% 

Safflower-B 97.4% 

Safflower-D 93.2% 

4) THE EXPERIMENT RESULTS COMPARING YOLOV5S-MCD MODEL WITH THE BASELINE MODEL  

To ascertain the superior processing performance of the 

proposed YOLOv5s-MCD model in safflower filament 

recognition, it was juxtaposed against the base models 

YOLOV5s, YOLOv8s, and YOLOv9 in terms of the 

detection average precision, model size, and detection time. 

The experimental results are presented in Table 4. As shown 

in Table 4, the YOLOv5s-MCD model, an enhancement of 

YOLOv5s, exhibits a smaller model size and detection time, 

showing heightened sensitivity in recognizing the safflower 

filaments dataset, with an average precision on par with 

YOLOv5s. Conversely, YOLOv8s and YOLOv9, despite 

being the latest algorithmic models, demonstrate slightly 

lower average detection precision than YOLOv5s-MCD and 

possess larger model volumes, making them less deployable 

on low-computing power mobile platforms. Consequently, 

the improved YOLOv5s-MCD model presents a more 
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reliable value proposition for deployment in safflower filament field automation harvesting equipment.
TABLE 4 

COMPARISON OF PERFORMANCE BETWEEN YOLOV5S-MCD AND VARIOUS BASELINE MODELS 

Model Category  mAP@.5/% Model Size/MB Detection time /ms 

YOLOv5s 
Safflower-B 97.4% 

13.7 3.2 
Safflower-D 93.9% 

YOLOv8s 
Safflower-B 96.6% 

21.4 3.4 
Safflower-D 92.9% 

YOLOv9 
Safflower-B 96.9% 

135.0 14.5 
Safflower-D 93.1% 

YOLOv5s-MCD 
Safflower-B 97.4% 

6.01 3.2 
Safflower-D 93.8% 

C. CONFIDENCE COMPARISON 

Three randomly selected images (A1, A2, A3) were tested 

using the YOLOv5s and YOLOv5s-MCD models, and the 

results are shown in Figure 10, with the confidence levels of 

safflower filament detection presented in Table 5. The 

YOLOv5s-MCD model detected 5, 2, and 3 safflower 

filaments in these three images, respectively, whereas the 

YOLOv5s model detected 5, 2, and 2 filaments, with missed 

detections occurring in backlit conditions. Compared with 

the YOLOv5s model, the YOLOv5s-MCD model occupies 

less memory and has increased confidence in detecting 

safflower filaments, resulting in better detection outcomes. 

 
(a) 

 
(b) 

FIGURE 10.Comparison of Detection Results between YOLOv5s and YOLOv5s-MCD Models. (a) YOLOv5s; (b) YOLOv5s-MCD. 

TABLE 5 

CONFIDENCE COMPARISON RESULTS 

Model 
Model 

Size/MB 

Image 

Number 

Number of 

filaments 
Confidence 

YOLOv5s 13.7 

A1 5 0.95、0.94、0.93、0.90、0.93 

A2 2 0.83、0.91 

A3 2 0.93、0.91 

YOLOv5s-MCD 6.01 

A1 5 0.95、0.93、0.93、0.92、0.94 

A2 2 0.89、0.91 

A3 3 0.92、0.92 

D. HEATMAP VISUALIZATION ANALYSIS 

Heatmap visualization analysis is a powerful visual aid 

that can intuitively reveal key areas in images and reflect the 

focus of the attention of models during object detection tasks. 

Grad-CAM is a widely used gradient-based visualization 

technique [35] that generates heatmaps that can be overlaid 

with original images to highlight the areas considered most 

critical by the model during prediction. The heatmap 

visualization results of YOLOv5s and YOLOv5s-MCD on 

the target of safflower filaments in natural scenes are 

presented in Figure 11. Through a comparative analysis, it 

can be observed that the heatmap generated by the 

YOLOv5s-MCD model is more concentrated and complete, 

showing a higher degree of attention to the safflower 

filament target area. Compared with the original YOLOv5s 

model, the improved model has a better detection 

performance for safflower filaments in their natural growing 

environment. 
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(a) 

 

(b) 

 

(c) 

 

FIGURE 11.Visualization analysis of heatmap. (a) Original Image; (b) YOLOv5s; (c) YOLOv5s-MCD. 

E. COMPARISON OF DECETION RESULTS IN NATURAL 
ENVIRONMENTS 

To validate the robustness of the YOLOv5s-MCD model 

in natural environments, five datasets were constructed for 

different scenarios: unobstructed, obstructed, backlighting, 

shaking, and wide angle. Each scenario dataset comprised 50 

images and was compared with the YOLOv5s model. The 

performance of the improved model was evaluated using the 

Precision (P), Recall (R), Mean Average Precision (mAP), 

and F1-score. The P-value measures the probability of 

correctly identifying the Safflower-B and Safflower-D 

filaments; a higher P-value indicates better accuracy in 

recognizing these filaments. The R-value assesses the 

probability of correctly identifying all filaments as filaments; 

a higher R-value indicates a lower probability of missed 

detection. The mAP measures the average precision across 

both categories, while the F1-score balances the relationship 

between P and R. These two metrics comprehensively 

evaluate the  performance of the model in recognizing 

safflower filaments, with higher values indicating a higher 

recognition accuracy for Safflower-B and Safflower-D. The 

detection results are listed in Table 6, and the detection 

images are illustrated in Figure 12. 

An analysis of the results from Table 6 and Figure 12 

shows that under unobstructed natural conditions, the 

YOLOv5s-MCD model has a higher accuracy rate P, recall 

rate R, mean Average Precision (mAP), and F1 score by 5.7, 

0.5, 4.4, and 2.9 percentage, respectively , compared to the 

YOLOv5s model. Additionally, the overall confidence level 

is higher than that of the YOLOv5s model, which exhibits 

instances of missed detection marked with blue arrows in the 

figure. When safflower filaments are occluded, the 

YOLOv5s-MCD model's recall rate R, mean Average 

Precision (mAP), and F1 score surpass those of the 

YOLOv5s model by 6.6, 0.7, and 0.4 percentage, 

respectively, although its accuracy rate P is slightly lower 

than that of the YOLOv5s model. The YOLOv5s model 

mistakenly identifies two different categories of the same 

filament, as indicated by yellow arrows in the figure. Under 

backlighting conditions, the YOLOv5s-MCD model 

achieved an accuracy rate P, mean Average Precision (mAP), 

and F1 scores of 91.2%, 89.7%, and 83.8% respectively, 

which were 17.1, 3.3, and 3.9 percentage points higher than 

those of the YOLOv5s. The overall confidence level of the 

YOLOv5s-MCD model was higher than that of the original 

YOLOv5s model, which still suffered from missed detections, 

as indicated by the yellow and blue arrows in the figure. In 

scenarios with shaking, both models perform poorly in 

recognition, but the improved model still outperforms the 

original YOLOv5s model with a higher accuracy rate P, 

mean Average Precision (mAP), and F1 score by 13.1, 3.4, 

and 3.1 percentage, respectively, and the overall confidence 

levels are slightly better. However, the original model has 

detection omissions, as indicated by the blue arrows in the 

figure. For safflower filaments observed at wide angles, the 

improved YOLOv5s-MCD model's accuracy rate P and 

mean Average Precision (mAP) were 8.7 and 1.0 percentage 

points higher, respectively than those of the original model. 

Although the recall rate R is slightly lower than that of the 

original YOLOv5s model, the latter has instances of missed 

and incorrect detections, which are marked with blue and 

yellow arrows in the figure. Because actual picking 

operations mainly focus on close-range small angles, and 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3422235

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



 

VOLUME XX, 2017 7 

wide angles are only used for initial preparation, these issues do not affect the overall recognition performance. 
TABLE 6 

THE DETECTION RESULTS OF YOLOV5S AND YOLOV5S-MCD MODELS IN NATURAL ENVIRONMENTS 

Different Scenarios Evaluation Criteria YOLOv5s YOLOv5s-MCD 

Unobstructed 

P 88.5% 94.2% 

R 83.1% 83.6% 

mAP@.5/% 87.1% 91.5% 

F1 85.7% 88.6% 

Obstructed 

P 85.0% 78.7% 

R 76.1% 82.7% 

mAP@.5/% 81.2% 81.9% 

F1 80.3% 80.7% 

Backlight 

P 74.1% 91.2% 

R 86.8% 77.5% 

mAP@.5/% 86.4% 89.7% 

F1 79.9% 83.8% 

Shaking 

P 35.1% 48.2% 

R 64.3% 48.9% 

mAP@.5/% 43.3% 46.7% 

F1 45.4% 48.5% 

Wide angle 

P 68.0% 76.7% 

R 83.5% 73.4% 

mAP@.5/% 77.7% 78.7% 

F1 75.0% 75.0% 

 

(a) 

 

(b) 

 

(c) 

 

(d) 
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(e) 

 

FIGURE 12.YOLOv5s and YOLOv5s-MCD detection performance in natural environments. (a) Unobstructed; (b) Obstructed; (c) Backlight; (d) 
Shaking; (e) Wide angle. 

Based on the analysis of the experimental results, the 

baseline model YOLOv5 exhibited issues of missing and 

incorrect detection of safflower filaments in natural scenes. 

These problems are particularly prominent in small, distant, 

and severely occluded filaments. The primary reason for 

these shortcomings is the limited capacity of CNNs for 

global feature extraction within YOLOv5, which hinders its 

ability to capture comprehensive feature information. 

However, the improved YOLOv5s-MCD model, which 

incorporates CA for dynamically adjusting the global 

attention weights, demonstrates higher accuracy and greater 

robustness. In additionally, it significantly reduces memory 

usage compared to the original YOLOv5s model and 

consistently shows reliable detection performance across 

various natural working environments.  

F. DISCUSSION 

Based on the experimental results, this study demonstrates 

that the proposed YOLOv5s-MCD model maintains the 

detection accuracy while significantly reducing the model 

weight. This enhancement addresses the issues of low 

detection accuracy and large model size in natural scenarios, 

making it more suitable for deployment on low-power 

mobile platforms. Furthermore, the improved model 

outperformed the state-of-the-art YOLOv9 algorithm by 

achieving a smaller model size and higher detection accuracy, 

particularly on the safflower filament dataset. However, 

deploying YOLOv5s-MCD on field robots for safflower 

filament detection requires the consideration of hardware 

compatibility and integration with the robot control system. 

To ensure hardware compatibility, it is essential to ensure 

that the hardware and drivers are compatible with the YOLO 

framework (PyTorch), considering the device's 

computational power and memory constraints. The NVIDIA 

Jetson Orin NX 16GB, with its 100TOPS computational 

power, can be selected for edge deployment to enhance the 

real-time identification performance of YOLOv5s-MCD in 

the field. In terms of integration with the robot control 

system, the control system should be modularized with the 

visual control system, appropriate data interfaces and 

communication protocols should be designed, and a real-time 

feedback mechanism should be established to adjust the 

robot's positioning and picking actions based on the 

YOLOv5s-MCD detection results. This is the focus of the 

next phase of research. 

In future research endeavors, the focus will be on 

determining the spatial picking points of safflower filaments 

through the integration of RGB and depth information, the 

combination of morphological characteristics and algorithms, 

and the lightweight design of end effectors. This approach 

aims to further optimize localization algorithms suited for the 

visual picking of safflower filaments. Additionally, it is 

imperative to investigate multi-arm coordination and the 

motion control strategies of end effectors to address the 

challenges posed by occlusion of filaments or the invisibility 

of flowers and fruits, which can result in the failure of 

picking point estimation. 

IV. CONCLUSION 

(1) To address the problems of low recognition accuracy 

and large model volume of existing safflower filament 

recognition algorithms, safflower filament dataset was 

developed in natural environmental conditions(the dataset 

has been published in the 

https://gitcode.net/m0_60172526/yolov5-mcd), a real-time 

recognition algorithm for safflower filament picking based 

on YOLOv5s aimed at a lightweight network structure, 

YOLOv5s-MCD, was proposed. It realizes the picking 

recognition of safflower filaments in different natural 

environments, thus providing visual guidance for the robotic 

arm to actively adjust its posture to avoid obstructions by 

fruit balls and leaves during filament picking. 

(2) Based on the YOLOv5s backbone network, it has been 

replaced with an improved lightweight network structure, 

Mobilenetv2, which achieves a lightweight improvement 

over the original backbone network. The CA attention 

mechanism is embedded in the Neck network layer, which 

enhances fusion processing performance by extracting 

different levels of features from the improved backbone 

network. The original YOLOv5s default CIoU non-

maximum suppression method was improved, effectively 

increasing the detection accuracy and convergence speed of 

the filament model. 

(3) The proposed YOLOv5s-MCD recognition algorithm 

can effectively recognize harvestable and non-harvestable 

safflower filaments. By comparing different lightweight 

backbone networks, this algorithm was found to have the 

smallest model volume and the best recognition performance. 

The test set experimental results showed that the algorithm 

reduced the model volume to 55.5% of the original 

YOLOv5s model, with the mean average precision of 
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blooming safflower filament recognition reaching 97.4%, 

and the average recognition time per image was 3.2 ms. 

(4) The improved YOLOv5s-MCD model was compared 

and analyzed with the YOLOv5s model under unobstructed, 

obstructed, backlighting, shaking, and wide-angle conditions. 

In the case of unobstructed filaments, P, R, mAP, and F1 

scores were 5.7, 0.5, 4.4, and 2.9 percentage points higher 

than the YOLOv5s model; in the case of obstructed filaments, 

R, mAP, and F1 scores were 6.6, 0.7, and 0.4 percentage 

points higher; in the case of backlighting, P, mAP, and F1 

scores were 17.1, 3.3, and 3.9 percentage points higher; in 

the case of shaking, P, mAP, and F1 scores were 13.1, 3.4, 

and 3.1 percentage points higher, with overall higher 

confidence; and in the case of wide-angle, P and mAP were 

8.7 and 1.0 percentage points higher. This model improves 

the picking recognition performance of safflower filaments in 

different natural environments, providing an important 

reference for the development of safflower picking robots. 
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