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ABSTRACT Mechanical Scanning Sonars (MSS) are popular underwater sensors for UnmannedUnderwater
Vehicles (UUV) due to their low cost, small size, and low power consumption. But due to their simplicity,
there are also many research challenges related to their usage. Unfortunately, there is also a lack of data with
ground truth UUV localization. We provide MSS datasets using a UUV with standard navigation sensors,
i.e., an Inertial Measurement Unit (IMU) and a Doppler Velocity Log (DVL). The UUV is globally localized
with a high precision optical tracking system in a large research pool to provide ground truth. The data is
of interest for multiple research areas related to MSS, e.g., extraction of range information, registration of
sonar scans, and especially mapping including Simultaneous Localization and Mapping (SLAM). Different
parameter settings and environment conditions are covered, e.g., dynamics in the scene. The IMU and DVL
data is also of interest for research on navigation independent of the MSS data. Results from navigation and
mapping with an Extended Kalman Filter (EKF) are in addition provided as baseline solutions.

INDEX TERMS marine robotics, mechanical scanning sonar, mechanical scanning imaging sonar, naviga-
tion, simultaneous localization and mapping (SLAM), optical tracking, ground truth data

I. INTRODUCTION

SONAR is an essential sensor for underwater machine
perception in general and marine robotics in particular.

There exist several device classes, which substantially differ
in their design and operation principles, physical parame-
ters like size and power consumption, cost, and intended
application scenarios. And while sonar is a well established
technology, there is also still a substantial amount of research
related to it - ranging from the fundamental principles of
device design and signal processing up to the way the sensors
are used. But in particular for mapping with sonar and the
related required methods like navigation, registration, and
Simultaneous Localization and Mapping (SLAM), there is a
lack of datasets suited for a proper quantitative analysis. This
holds especially with respect to widely used low-cost devices
in form of mechanical scanning sonars (MSS).

There is an abundance of sonar data related to bathymetry,
e.g., provided by the National Oceanic and Atmospheric Ad-
ministration (NOAA) [1]. These datasets have a very high
relevance for, e.g., marine science, but they are not well
suited to study mapping and the related methods of under-
water machine perception in the context of marine robotics.

First and foremost, there is no ground truth information of
the environment for these datasets. In contrary, the sea-floor
topology of interest is actually generated from the sonar data.
Second, the data is recorded with surface vessels that have
access to Global Navigation Satellite Systems (GNSS). At
first glance, this is an advantage as this data could be used
as a kind of ground truth for localization. But it also implies
that core navigation sensors formarine robotics like aDoppler
Velocity Log (DVL) are not required. And even if data from
(some) navigation sensors was fused into the generation of
the bathymetry, it is not included in the datasets as only the
resulting maps with GNSS data for georeferencing are of
interest. Third, the bathymetry in these datasets tends to cover
large-scale areas up to whole oceans, which go way beyond
marine robotics use-cases like obstacle avoidance or mapping
of man-made structures like marinas or harbors, where in
contrast more fine-grain resolutions are required.

In addition to bathymetry data, typically generated with
multibeam echosounders (MBES), there is also a strong in-
terest in sonar images from side-scan sonar (SSS) or acoustic
cameras that are also sometimes known as forward looking
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sonars (FLS). Typical use-cases are object detection and lo-
calization, e.g., [2]–[8]. Related data-sets contain sonar-data
plus hand-labeled classifications of objects or environment
types as ground truth. They inherently neither require nor
provide ground truth navigation data.

Within research on mapping with MSS and related meth-
ods, e.g., [9]–[23], the state-of-the-art is rife with qualitative
evaluations of the results, especially in form of visualizations
of generatedmaps. For a quantitative analysis, the Abandoned
Marina dataset recorded in St. Pere Pescador, Spain [22] is
a popular choice. The dataset consists of recordings from
a Tritech Miniking MSS, a SonTek Argonaut DVL, and a
digital compass. The robot, an Ictineu Autonomous Under-
water Vehicle (AUV), is operated close to the surface. Hence,
access to the Global Positioning System (GPS) via a buoy
is feasible and it is recorded as ground truth reference for
localization. As ground truth reference of the environment,
a satellite image is provided.

While the Abandoned Marina dataset is useful for quanti-
tative evaluations, it also has its severe drawbacks. First, GPS
data only provides position information and there is no ground
truth for orientation. The digital compass at best provides
some rough references and its data is needed for fusion with
the DVL, i.e., it is part of the solution that is to be evaluated.
There is hence no full pose information for the localization
reference. Second, the accuracy of the GPS corresponds to the
state-of-the-art of 2006 when the data was recorded, i.e., it is
far from the 1− 2cm accuracy of, e.g., Real Time Kinematic
(RTK) GPS used nowadays. Third, the dataset is based on a
single trajectory of the vehicle with static parameter settings.

We aim to overcome these limitations with our Bremen
MSS Datasets. First of all, we use an optical tracking system,
which provides both position and orientation information, i.e.,
the full pose as ground truth localization. Second, there is
a much higher accuracy of the ground truth. Third, data is
recorded in multiple trials with different device parameter
settings. Fourth, variations of environment conditions are
included, e.g., by running two MSS in parallel leading to a
relevant, non-trivial increase in the noise level, as well as by
using a 2nd robot to generate dynamics in the scene.

II. SENSORS, VEHICLE, AND METHODS FOR
DATA-ACQUISITION
A. MECHANICAL SCANNING SONARS

Amechanical scanning sonar (MSS), also known as scanning
sonar (SS) or mechanical scanning imaging sonar (MSIS),
is one of the most simple types of sonar. It features a single
beam that is mechanically rotated. Along the beam, or more
precisely, along the time axis, the amplitudes of the returns
are provided, i.e., the intensity of each return of an emitted
ping ordered by time-of-flight. This allows the rendering of
a polar image, also known as scan, by stepping through a
sequence of angles. MSS have the advantage that they are
low cost and they are easy to integrate due to their small size
and low power-consumption. Two different popular MSS are

used in the trials for the Bremen data, namely a BlueRobotics
Ping360 and a Tritech Micron DST Sonar.
The BlueRobotics Ping360 is a low-cost MSS, if not the

most affordable device of this type on the market. It emerged
in recent years in the context of open-source components
for marine robotics and it is positioned as an add-on for the
BlueRobotics BlueROV2, which is also used as vehicle in our
trials (Fig.1). Due to the open interfaces of the Ping360, it
can also be easily integrated on other vehicles. The Tritech
Micron Sonar is a well-established product that is available
for more than a decade. It is hence widely used in academia
and industry. It uses a chirped pulse to increase the signal
robustness and it has among others a higher depth rating than
the Ping360 - there even exists a deep-sea ready version suited
for operations down to 3, 000m depth. The core mechanical
and electrical parameters of both products are summarized
in Table 1. The basic sensor parameters for both MSS are
provided in Table 2.
The two sensors aremounted on the vehicle in two different

modes, namely forward-looking for the Ping360 and down-
looking or bathymetry mode for the Micron DST. This allows
among others a recording of both sensors in parallel, which
allows the investigation of topics like the influence of cross-
talk on sensor data quality as discussed later on.

B. THE VEHICLE AND THE NAVIGATION SENSORS
The vehicle used for the data collection is a BlueRobotics
BlueROV2 in the heavy configuration with a payload skid
[24] (Fig.1). It is used as Remotely Operated Vehicle (ROV)
in the trials, i.e., it is connected with a tether to a control
station in form of a laptop.

FIGURE 1: A picture of the BlueROV2 vehicle used for the
recording of the data.

Due to the slow speed of sound compared to, e.g., RF-
signals, the time to take a scan is in the range of multiple
(tens of) seconds depending on factors like the maximum
range, i.e., the power of the ping, the stepping angle of the
MSS, and its field of view. As a consequence, there is the
need for motion-compensation when the sensor is mounted
on a moving platform like an Unmanned Underwater Vehicle
(UUV) even just to generate a single scan.
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dimensions weight (center) frequ. (aver.) power depth rat.
H × L ×W [mm] in air [gr] in water [gr] [kHz] [W ] [m]

Ping360 83× 89× 77 510 175 750 5 300
Micron DST 79× 56× 50 320 180 700 4 750

TABLE 1: The core mechanical and electrical parameters of the two MSS used for the data recording.

beam width range mechanical max. field
H × V [deg] min [m] max [m] steps [deg] of view [deg]

Ping360 2o × 25o 0.75 50 0.9o, 1.8o, 3.6o 360o

Micron DST 3o × 35o 0.3 75 0.45o, 0.9o, 1.8o, 3.6o 360o

TABLE 2: The basic sensor parameters of the two MSS.

As GNSS information is not available underwater, the
localization, respectively relative motion estimation must be
based on navigation sensors [25]–[27], i.e., typically a DVL
and an IMU. In our Bremen datasets, recordings from a
Waterlinked A50 in the high-performance version [28] and
an Xsens MTi-300 IMU [29] are provided.

The transducer of the A50 DVL operates at 1MHz. It has a
0.05−50m altitude range, a 4−15Hz ping rate depending on
the altitude, and a nominal velocity resolution of 0.1mm/s at
±0.1% accuracy for the performance version. It is marketed
as the default DVL for the BlueROV2, among others due to
its small size of 66mm diameter and 25mm height as well
as the low average power consumption of 4W . The A50
version used in the trials has a depth rating of 300m. The
Xsens MTi-300 IMU is based on Micro-Electro-Mechanical-
Systems (MEMS) for the 6-axis gyroscope and acceleration
measurements combined with a magnetometer. It achieves a
good accuracy, especially within the class of MEMS-devices,
due to very good ex-factory calibration. It has a nominal
accuracy of 0.2◦ root mean squared error (RMS) for roll and
pitch, and 1◦ RMS for yaw. The bias within a run is 10◦/h
and the update rate is 200Hz.
As a fringe benefit, our datasets can be used for research

on underwater navigation [25]–[27] based on the according
sensors, i.e., the IMU and the DVL, by comparing the esti-
mated localization with the ground truth without taking any
of the sonar data into account. To further support this, we
also included additional data in some of the datasets, namely
PixHawk PX4 IMU data and recordings of motor data. The
very basic IMU in the PixHawk PX4 flight-controller fuses
data from two 6-axis MEMS-chips, namely a ICM-20689
and a BMI055, plus a IST8310 magnetometer. It can serve
as a comparison basis to the also MEMS-based but higher-
quality Xsens MTi-300. The motor data can be used to study
hydrodynamical models for navigation.

C. THE ENVIRONMENT AND THE MOTION CAPTURE
SYSTEM
The trials are carried out in the test basin at Robotics Inno-
vation Center (RIC) of the German Research Center for Ar-
tificial Intelligence (DFKI GmbH) in Bremen, Germany. The
test basin (Fig. 2) is quite large and deepwith 23m×19m×8m,
containing 3.4 million liters of saltwater. In addition, it is
equipped with optical motion capture system (MCS) from

Qualisys that can accurately track the pose of multiple objects
with respect to the basin, thereby providing highly accurate
ground truth data. A total of 12 cameras with 12 megapixels
each detect highly reflecting markers attached to the robot
to estimate its pose. The spherical markers used to track the
BlueROV2 are shown in Fig. 1. The calibration of the system
includes the estimation of the rigid transformations between
the markers that are placed on the robot as well as of the
cameras themselves.
The system provides an accuracy of about 4mm, i.e., much

better than state-of-the-art RTK GPS, at a very high update
rate of 300Hz. Furthermore, the MCS provides in contrast
to GNSS also orientation measurement. Hence, the full pose
information is available as ground truth.

III. OVERVIEW OF THE DATASETS
The data records consist of 14 datasets. There are 13 main
datasets with ground truth. A 14th dataset is provided where
the robot is kept in a fixed position without ground truth
localization. This 14th dataset can be used for calibrating
or analyzing the odometry sensors, i.e., the two IMUs and
the DVL, if this is of interest for the method(s) that are
investigated with the data. Furthermore, the sensor locations
on the robot are provided as part of the datasets and their
documentation (Fig.3).
The datasets are stored as ROS2-bags, respectively YAML-

files - see also section "Usage Notes". They are avail-
able for download via IEEE Dataport (https://doi.org/10.
21227/dy87-1k42) as a single zip-file. Furthermore, a
documentation-paper with technical information on the data
and its usage is provided under the above DOI on IEEE
Dataport.
The parameter settings and the trial complexity for each

dataset are shown in Tab. 3. The datasets 1-8 cover typical
state-of-the-art scenarios. The environment is static and there
are no aspects that introduce some added complexity. The
datasets are based on different parameter settings for the
MSS, namely with respect to range and stepping angle, as
well as the speed of the robot.
The changes in speed are of interest as a higher velocity of

the UUV makes navigation more challenging. A rough indi-
cation in form of fast (f) or slow (s) velocity is hence provided
for each dataset in Tab. 3. For a precise determination of the
UUV’s velocity, the ground truth data can and should be used.
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FIGURE 2: A snapshot of the DFKI test tank where the data was recorded. The 12 Qualisys cameras for motion tracking are
roughly placed in regular distances - a CAD layout of the pool and the exact locations of the cameras are provided together with
the data-sets.

FIGURE 3: A BlueROV2 CAD model is used to provide the locations of all sensors as part of the datasets and their
documentation. The reference frame of the robot itself is placed at the geometrical center of the robot (left). The locations
of the sensor frames, e.g., for the DVL (right), are provided relative to the robot frame.

The range and the stepping angle of the MSS as well as the
UUV’s velocity influence the input to the registration meth-
ods that may be used for mapping, especially in the context of
SLAM. Higher velocity and shorter range lead to less overlap
between consecutive scans that are to be registered. Higher
stepping angles lead to lower resolution. Furthermore, there
is the aspect of motion compensation, i.e., due to the design
principles ofMSS,multiple scan-lines have to be integrated to
form scans that are to be registered. Hence, pose-estimations
using short time navigation windows are needed in this scan-
formation. The difficulty to do a successful scan-formation is
therefore also influenced by these parameters, especially by
the velocity of the UUV.

The three datasets 9-11 feature the combined use of two
MSS, namely the Ping360 and the Micron DST. The main

purpose of the additional MSS is to generate a scenario with
acoustic "pollution", i.e., non-trivial noise as both sonars
operate in distinct but neighboring frequency ranges (Tab. 1).
While the Ping360 still provides reasonable range data, the
quality is clearly worse than in the datasets 1-8. The data
is hence of interest to test the robustness of, e.g., range ex-
traction, registration, and SLAM methods. Furthermore, the
data of the Micron DST, which is less affected by the dual
operation due to its chirp processing, can be used to study the
navigation in combination with (simple) bathymetry or 3D
mapping.
The datasets 12 and 13 include dynamics in the scene,

which is an underrepresented topic in the context of research
on the use of MSS. The dynamics are generated with a large
Autonomous Underwater Vehicle (AUV), which moves in the
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data- #scan- Ping360 Micron DVL IMU mot. dyn. vel.
set lines range [m] step [deg] range [m] step [deg] A50 MTi PX4 val. sce. f/s
1 6,993 15 0.9o — • • - - - s
2 7,361 15 0.9o — • • • - - f
3 9,198 15 3.6o — • • • - - s
4 6,608 15 3.6o — • • • - - f
5 14,578 7 0.9o — • • • - - s
6 7,784 7 0.9o — • • • - - f
7 9,146 7 3.6o — • • • - - s
8 7,074 7 3.6o — • • • - - f
9 12,396 15 0.9o 15 0.9o • • • • - s
10 7,400 7 0.9o 15 0.9o • • • • - s
11 13,346 20 0.9o 20 0.9o • • • • - s
12 7,339 15 1.8o — • • • • • s
13 7,645 7 1.8o — • • • • • s

TABLE 3: The settings and properties for each dataset, i.e., the total number of scanlines, settings for the range and the stepping
angle (step) of the respectiveMSS, inclusion of the different navigation data from the A50DVL, the XsensMTi-300 IMU (MTi),
the PixHawk PX4 IMU (PX4), and the motor values (mot.val.), as well as the presence of dynamics in the scene (dyn.sce.).
The UUV is operated with either fast (f) or slow (s) velocity (vel.). In the fast version, the robot additionally randomly rotates
around its own z-axis.

field of view of the Ping360. As usual with dynamics, this
generates challenges for the registration of scans, e.g., in the
context of mapping and SLAM.

IV. TECHNICAL VALIDATION
The ground truth of the robot poses plus the known geometry
of the pool including the rigid camera poses allow a large
range of quantitative analyzes depending on the applica-
tion case. Suited metrics can be path-based, e.g., the mean-
squared-error (MSE) and the variance of the estimated and
the real pose, i.e., in (x, y, θ)T , or the drift, i.e., the Euclidean
distance between the estimated and the ground truth position
in (x, y). There are also the various map-based metrics that
can be used.

For a technical validation of the datasets, we first provide
ground truth based visualizations of the datasets in the follow-
ing section. They illustrate the advantage of accurate full pose
information, i.e., the scan-lines can be rendered into accurate
maps - within the limits of the raw MSS data - based on just
the optical tracking. These maps also provide an overview of
the data that supplements the information provided in Tab. 3.

Second, a baseline method for using the sensor data is pro-
vided. It is based on standard navigation with dead reckoning,
i.e., an Extended Kalman Filter (EKF) is used to compute
localization estimates based on the IMU and DVL data. The
related pose-estimates are then used to render the scan-lines
into maps and to provide a quantitative analysis of this base-
line solution.

A. VISUALIZATIONS BASED ON GROUND TRUTH
The 13 datasets are visualized with the data from the Ping360
and the ground truth localization; the according maps are
shown in Figures. 4-6. For each scan-line st of the MSS, the
ground truth pose GTpt = GT(xt , yt , θt)T of the UUV is used
to render st into the map. More precisely, the known fixed
frame MSSF of the MSS relative to the vehicle frame UUVF
is used to determine the absolute position and orientation

of the start of the sonar-beam to integrate the amplitudes of
returns along the beam into the map. The exact frames of
all sensors relative to the vehicle’s center and hence to the
ground-truth are provided in the technical documentation that
complements this article.
On the left of each map, a rainbow color-palette for the

normalized amplitude of the returns of the MSS is shown.
The walls of the pool generate a clearly distinguishable back-
scatter in the range of ca. 0.35 to 0.6; it is occasionally even
higher up to the maximum, e.g., if the sonar-beam is per-
pendicularly facing a wall. The open water as well as ranges
beyond the wall are also clearly perceivable with very low
amplitudes near 0, i.e., they are just background noise. Values
of exactly 0 indicate that these parts have not been covered
by any sensor beam. The ground-truth path of the UUV is
also shown in each visualization of the datasets. On the right
of each map, a heat color-palette provides information on
the number of cameras that can track the robot during its
motion. Due to self-occlusion, not all cameras can always
detect sufficiently many markers on the robot. The maximum
is 10 out of 12 cameras. Typically, 7 to 8 cameras detect it. In
some parts of the trajectory, this can be lower, but the position
and especially orientation accuracy is still very high. More
details are provided in the datasets themselves. Furthermore,
the ground truth locations of the cameras are shown in each
map. They are marked with red crosses.
Fig. 4 shows the visualizations of the datasets 1-8. Espe-

cially the influence of the range parameter can be seen. The
whole pool is not covered with the shorter range setting of the
MSS in the datasets 5-8. Accordingly, the underlying scans
also have much more limited views of the pool, which makes
registration more challenging than in the datasets 1-4.
The three datasets 9-11 are visualized in Fig. 5, where the

Micron DST is used to generate acoustic disturbances for the
Ping360. This is reflected in a higher noise level in the sonar-
beams. The representation of the walls of the pools becomes
less pronounced. This data is hence of particular interest to
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Dataset: 8
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FIGURE 4: Visualizations of the datasets 1 to 8 with a static environment and different parameter settings for range and stepping
angle of the Ping360 plus different speeds of the UUV. For a detailed description, please refer to the text.

Dataset: 9
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Dataset: 11
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FIGURE 5: Visualizations of the datasets 9 to 11 where a secondMSS in form of aMicron DST generates acoustic disturbances.

test the robustness of range extraction methods as well as of
registration methods.

The visualizations of the two datasets 12 and 13 are shown
in Fig. 6. In these, an AUV generates dynamics in the scene.
On the right of Fig. 6, a zoom into themap of dataset 12 shows
the area where the AUV is moving. The multiple locations
where the AUVwas sensed are only faintly represented in the
maps as the according data is accumulated in the occupancy
grid, i.e., multiple views of empty space are fused with a
few views of an obstacle at the times when the AUV passed
there. The effects of the 2nd vehicle are accordingly more

pronounced in individual scans, where they constitute sub-
stantial dynamic effects between consecutive scans that are
to be registered. Furthermore, the AUV generates occlusions
and scattering, which is for example visible in Fig. 6 in dataset
12: the representation of the wall at the right-hand side of the
pool is, e.g., affected by this.

B. AN EXTENDED KALMAN FILTER (EKF) AS BASELINE
METHOD
To ease the evaluation of third-party methods and approaches,
a baseline solution for navigation and mapping is provided.
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Zoom into the area of the AUV motion
(Dataset 12)

FIGURE 6: Visualizations of the datasets 12 and 13 where an AUV in the field of view of the sonar generates dynamics in the
scene. On the right, a zoom into the area where the AUV is moving is shown for dataset 12.
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FIGURE 7: Maps with EKF-navigation using the datasets 1 to 8 with a static environment.

It is based on the standard method for core navigation using
an Extended Kalman Filter (EKF) operating on the DVL and
IMU data. The EKF provides motion estimation and path
integration, i.e., pose-estimates EKF̂pt = EKF(xt , yt , θt)T of
the UUV. Like for the the ground truth visualizations, the
pose EKF̂pt is used to render the corresponding scan-line of
the Ping360 into an occupancy map. The code of the baseline
solution with the plain vanilla implementation of the EKF is
provided as described below in sections "Usage Notes" and
"Code Availability".

The Fig. 7-9 show the maps generated with the datasets.

The data is again partitioned according to a static environment
and different parameter settings (Fig. 7, datasets 1-8), the
presence of an additional MSS and hence of acoustic distur-
bances (Fig. 8, datasets 9-11), and dynamics scenes (Fig. 9,
datasets 12&13).
As can be expected, the simple baseline solution with EKF-

based navigation is quite imprecise as can be directly seen
in the visualized maps. Path-integration has an element of
a random walk. Especially if a large angular error in the
pose-estimation happens by coincidence or due to a form of
bump-noise, this has strong lasting effects on the consecutive
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Dataset: 9
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Dataset: 11
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FIGURE 8: Maps with EKF-navigation using the datasets 9 to 11 with a 2nd MSS, i.e., with acoustic disturbances.

Dataset: 12
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Dataset: 13
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FIGURE 9: Maps with EKF-navigation using the datasets 12 and 13 with a 2nd UUV, i.e., with dynamics in the scene.

EKF performance
data- pose MSE drift
set ∆x : µ, σ (m) ∆y : µ, σ (m) ∆θ : µ, σ (rad) ||.||2 (m)
1 0.73± 0.56 0.57± 0.55 0.33± 0.2 2.0
2 0.52± 0.51 0.23± 0.19 0.13± 0.14 1.64
3 0.89± 0.78 0.72± 0.76 0.45± 0.26 2.53
4 0.36± 0.28 0.35± 0.34 0.19± 0.2 1.37
5 1.06± 0.92 0.77± 0.78 0.54± 0.31 2.99
6 0.47± 0.44 0.38± 0.31 0.21± 0.14 1.32
7 0.84± 0.67 0.57± 0.55 0.42± 0.24 2.46
8 0.56± 0.35 0.33± 0.27 0.2± 0.1 1.62
9 0.74± 0.61 0.78± 0.67 0.44± 0.30 3.13
10 0.58± 0.36 0.57± 0.52 0.21± 0.13 1.3
11 1.36± 1.39 1.06± 1.12 0.67± 0.43 2.28
12 0.36± 0.33 0.78± 0.66 0.36± 0.23 1.93
13 0.76± 0.66 0.48± 0.47 0.39± 0.23 2.47

TABLE 4: The results of two example error metrics for a
quantitative analysis of the baseline solution with an EKF,
namely the mean µ and the variance σ of a pose-based mean
squared error (MSE) and the total drift, i.e., the Euclidean
Distance ||.||2 between the final estimated and the real po-
sition of the UUV.

pose-estimates. When or how often this form of error occurs
over the duration of a trajectory is mainly a matter of chance
and independent of parameter settings of the MSS or the
conditions in the environment. This is of course different if
more sophisticated methods are evaluated with the datasets
as described above in section "Data Records", i.e., if the
registration of scans or SLAM are used.

For the sake of completeness, two quantitative analyzes of
the results of the baseline solution are provided in Tab. 4. The
mean-squared-error (MSE) of the pose and the total drift are
used as two different metrics for evaluating the results. More

precisely, the mean µ and the variance σ of the MSE of the
differences ∆x,∆y,∆θ in the 3 degrees-of-freedom (dof) of
the estimated poses EKF̂pt and the ground truth poses GT̂pt is
provided. Furthermore, the total drift, i.e., the Euclidean dis-
tance ||(EKFxN ,EKFyN ), (GTxN ,GTyN )||2 between the estimated
final location (EKFxN ,EKFyN ) and the ground truth location
(GTxN ,GTyN ) at the end of each trajectory is given.

V. USAGE NOTES
As mentioned above, access to the data and additional mate-
rial like links to the related code and a technical documen-
tation as white-paper is provided via IEEE Dataport (https:
//doi.org/10.21227/dy87-1k42). The message definitions of
the ROS2 bags are available as code on Github that can
be directly used and in addition, they are described in the
accompanying technical white-paper on IEEE Dataport. The
white-paper also provides information on the location of each
sensor frame relative to the reference-frame of the UUV itself.
All code that is directly related to the datasets and its

description in this article is freely available under a Cre-
ative Commons Attribution-NonCommercial (CC BY-NC) 1

license2. The Robot Operating System (ROS) that is used
to operate the UUV and to record the data in ROS2 bags is
freely available under the standard three-clause BSD license.
The additional copies of the data in YAML-files can be read
and processed with a wide range of free software packages
for data science and mathematical processing, e.g., according
Python libraries.

1https://creativecommons.org/licenses/by-nc/4.0/
2Please note that the use of the data is restricted while there is no related

academic paper published, yet.
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VI. CONCLUSIONS
Collections of data fromMechanical Scanning Sonars (MSS)
were presented, i.e., data from popular underwater sensors for
Unmanned Underwater Vehicles (UUV) due to their low cost,
small size, and low power consumption. The core contribution
is the provision of precise ground truth data for the full pose,
i.e., the localization with position and orientation, of the UUV
in addition to standard navigation sensors, i.e., an Inertial
Measurement Unit (IMU) and aDoppler Velocity Log (DVL).
More precisely, the UUV is globally localized with a high
precision optical tracking system in a large research pool.
Furthermore, different parameter settings and environment
conditions are covered, and baseline solutions for localization
and mapping are provided. This is of interest for multiple
research areas related to MSS, e.g., extraction of range infor-
mation, registration of sonar scans, and especially mapping
including Simultaneous Localization and Mapping (SLAM).
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