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ABSTRACT An autonomous network defense method under attack is a critical part of preventing network
infrastructure from potential damage in real time. Despite various network intrusion detection techniques,
our network space is not safe enough due to the increasing exploitation of software vulnerabilities. Thus,
timely response and defense methods under network intrusion are important techniques given the large scope
of cyberattacks in recent years. In this paper, we design a scalable and autonomous network defense method
by using the model of a zero-sum Markov game between an attacker and a defender agent. To scale up
the proposed defense model, we utilize a graph convolutional network (GCN) along with framestacking
to address the partial observability of the environment. The agents are trained using Proximal Policy
Optimization (PPO) which allows for good convergence in a reasonable timeframe. In experiments, we
evaluate the proposed model under the large network size while simulating network dynamics including link
failures and other network events. The experimental results demonstrate that the proposed method scales
well for larger networks and achieves state of the art results on various threat scenarios.

INDEX TERMS Reinforcement learning, network defense, Markov games, deep learning, graph convolu-
tional networks

I. INTRODUCTION
Timely defense against network intrusions is paramount in
interconnected digital ecosystems. As we rely extensively on
networked systems to facilitate communication and critical
operations, the threat landscape has evolved, giving rise to
sophisticated and diverse cyber threats with national security
implications [1] [2]. This necessitates the development and
implementation of robust network defense methods to safe-
guard against unauthorized access and malicious activities
in the network. Thus, recent research has explored the dy-
namic landscape of network intrusion detection, delving into
innovative approaches, advancements in machine learning
algorithms, and the integration of artificial intelligence to
enhance the efficacy of network defense techniques.

Reinforcement learning (RL) is a rapidly growing sub-field
of machine learning that allows an agent to learn from interac-
tions with an environment where the agent receives feedback
in the form of rewards [3]. Through these interactions, the
agent learns a policy which informs how it interacts with the
environment, improving its average reward over time. Agents
can also cooperate with or compete in an environment through

repeated interactions with other agents and the environment.
Cybersecurity, particularly network defense, is a good domain
for applying RL agents as the threat landscape is constantly
evolving [4] [5]. It is naturally adversarial and multi-agent
where adversaries can be humans or automated agents.
In this study we propose a RL approach trained using prox-

imal policy optimization (PPO) to train an agent to choose
countermeasures for defending a network. The goal of the
defender is to prevent the compromise of a critical node while
minimizing the impact of the attacker by the network. The
agents compete in a zero-sum game with rewards for each
agent based on the outcome of the game. We model both the
defender and the attacker as RL agents with a tournament-
based training regime. We leverage our previous work and
use a training curriculum which incorporates various network
topologies to train more general agents [6]. The agents are
evaluated in varying environments and with varying sim-
ulated threat scenarios in order to determine the effect of
observed vulnerabilities in the environment on defender per-
formance.
Prior methods test their approach on a single topology

2 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3418931

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Campbell et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

or on a fixed network size [5] [7] [8] [9]. However, real
world networks are rarely fixed and often add or remove
hosts based on demand, link failures, outages, or other factors.
Contrary to previous work that trains on a fixed topology and
network size, we instead evaluate our method across threat
scenarios with varying network sizes. We propose a scalable
approach that uses a new reward function and a graph convo-
lutional network (GCN) along with framestacking to address
the partial observability of the environment [10]. We choose
Proximal Policy Optimization (PPO) for training the agents,
which offers a good balance of computational complexity and
convergence speed. As shown in the experimental evaluation,
the proposed reward function achieves higher defender win
rates compared to the previously proposed reward [6] [7],
whereas the GCN architecture enables the model to scale
to larger network sizes, while also outperforming the MLP
architecture [6] across all network sizes, demonstrating the
capabilities of the proposed approach.

The remainder of this paper is organized as follows. A re-
view of the state-of-the-art is given in Section II. A breakdown
of the environment, state, and actions of the Markov game is
given in Section III. This section also includes a discussion
of the proposed rewards and observations per agent as well a
discussion of self-play and the proposed model architecture.
In Section V, we present the results of our experimental eval-
uation across various parameters, including framestacking,
reward, threat scenarios, and network size. Finally, in Section
VI, we discuss the results and give concluding remarks as well
as future research directions of the work.

II. RELATED WORK
We start by providing some necessary background and estab-
lishing the terminology on Reinforcement Learning (RL) and
Multi-Agent Reinforcement Learning (MARL). We then pro-
ceed to discuss in more detail the state-of-the-art approaches
that have employed RL/MARL for network defense.

A. REINFORCEMENT LEARNING
Reinforcement learning is the process of learning through
interactions between the agent and the environment with
reward as feedback. The interaction between an agent and
its environment is represented by a Markov Decision Process
(MDP). This model consists of pairs of states and actions,
denoted as (st , at), which helps in determining the likelihood
of transitioning between states s in the environment following
an action a at a specific time t . An enhancement of this model,
known as the Markov Reward Process (MRP), incorporates
rewards R for each state-action pair (st , at) [11]. The key
feature ofMarkov processes is their lack of memory, meaning
that only the current state matters, rendering historical data
irrelevant [12] [13]. A Partially Observable Markov Decision
Process (POMDP) differs from an MDP in that it includes
states s ∈ S which are not fully visible to the agent. Akin to
MRP, rewards can also be integrated into POMDP, forming
a Partially Observable Markov Reward Process (POMRP)
[14]. POMDPs are characterized by an observation function

st → Ot , which maps states s to observations O at time t
[12]. Markov decision processes can be expanded to include
multiple agents, from one to any number n >= 2, and are
termed Markov games. These games focus on identifying a
set of policies that form a Nash equilibrium among competing
agents, rather than solely aiming to maximize the sum of the
expected rewards. However, the learned Nash equilibrium can
be sub-optimal [13].
RL algorithms fall into two major categories: policy-based

and value-basedmethods. Value based networks such as Deep
Q Networks (DQN) learn to predict the expected total reward
for a given state swhen action a is performed [15]. The action
with the highest Q value is then the action with the highest
expected return. In contrast, policy based methods directly
optimize for the policy π. Approaches such as PPO are policy
based but augment with a value based critic to minimize
variance in policy updates [16].

B. MULTI-AGENT REINFORCEMENT LEARNING
Multi-agent reinforcement learning extends the ideas in
single-agent RL and applies them to Markov games. Markov
games can be either cooperative or competitive. Awell known
issue of MARL is the non-stationarity of the environment,
which violates the Markov property. This refers to fact that
from each agent’s perspective, the actions of additional agents
form part of the environment. Consequently, the moving pol-
icy distribution of the agents inhibit convergence [17].
Markov games where the possible actions and optimal

strategies are the same for all participants are known as
symmetric games. In 2017, Silver et al. used train an agent to
achieve grandmaster level play in Go [18]. The authors used
Monte Carlo Tree Search (MCTS) to simulate games. Owing
to the symmetric nature of the game, the authors were able to
use self-play to train the agent against itself and thus learns to
play Go from zero initial knowledge.
In asymmetrical games, the players have different sets of

actions and objectives. In 2019, OpenAI trained groups of
collaborating agents to compete in a simulated game of hide-
n-seek. The multi-agent competition creates a natural auto-
curricula where agents are always playing againts adversaries
with a similar skill level [19].
Most recently, Schrittwieser et al. expanded on the search

based framework built by AlphaZero in a work titled MuZero
[20]. MuZero is a model-based approach that outputs three
values at each step: actions, values, and rewards. The model
uses a recurrent model internally that takes the observa-
tion and possible future action as input. The authors tested
MuZero using self-play in various environments such as
chess, Go, and Atari.

C. ML FOR NETWORK DEFENSE
Machine learning has been extensively used in cybersecurity
research, particularly in network intrusion systems. Wang et
al. proposed a system for learning feature representations
to improve classification accuracy. This approach uses an
autoencoder to encode categorical features which when con-
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catenated to the numerical features is then encoded for use by
the downstream classifier [21].

Reinforcement learning can extend this paradigm by not
just identifying attacks but also responding in real-time. For
example, attackers can compromise devices and hide illicit
activity as spikes in traffic which can lead to packet loss.
Dake et al. [22] propose a RL system to detect DDOS and
other suspicious activity in an IOT network. The authors
highlighted three types of attacks in the network: traffic burst,
elephant flow, and DDOS in the network. An RL agent is then
trained to address to manage these events by installing flow
rules through the software-defined networks (SDN) controller
to manage traffic.

Reinforcement Learning (RL) has been utilized as a
method for intrusion prevention. In this context, an intrusion
prevention system, integrated within the controller of SDNs,
leverages feedback from an intrusion detection system to slow
down or avert cyber attacks. Han et al. [8] explored the use
of a defense agent and the potential adversarial threats to
RL agents within a centralized network controller. Similarly,
Gabirondo-Lopez et al. [7] investigated the application of RL
in training an intrusion prevention system. Their approach
frames the training as a simultaneous competition between
an attacking and a defending agent, essentially a zero-sum
Markov game. In their model, the network is depicted as
a fully interconnected system with a distinct, segregated
honeynet, allowing the defender to quarantine compromised
hosts.

In this study, we also modeled the problem as a zero-sum
Markov game between an attacker and a defender. Previous
methods evaluated their approach on a single topology or
limited the agents to a subset of the network [7] [4] [8] [5].
Instead, we leverage our previous work which proposed a
dynamic topology curriculum, enabling the training of more
general, capable agents [6]. In that study, we evaluated vari-
ous threat scenarios in terms of exploitability and impact and
concluded that the curriculum improves the defender’s win
rate over training on a static topology by exposing the agent to
more challenging environments over time.While our previous
work showed promising results, the framework architecture,
based on a multi-layer perceptron (MLP)-based network for
the value and policy models, was not scalable, whereas the
reward function used, which was that of Gabirondo-Lopez et
al. [7], workedwell with small networks but performed poorly
as we scaled the environment.

III. MULTI-AGENT REINFORCEMENT LEARNING FOR
AUTONOMOUS NETWORK DEFENSE
The agents engage in competition within a simulated network
setting, as modified by Campbell et al. [6], [23] from the
original concept by Gabirondo et al. [7]. In this environment,
the attacker’s goal is to infiltrate the critical node and capture
as many hosts within the network as possible. On the other
hand, the defender aims to protect the critical node and mini-
mize the attacker’s influence on the network. The competition
concludes either when one agent emerges victorious or when

TABLE 1. CVSS Vulnerability Severity Ratings

Rating Base Score Range
None 0
Low 0.1 - 3.9
Medium 4.0 - 6.9
High 7.0 - 8.9
Critical 9.0 - 10.0

the predefined duration of the episode is met, in which case it
is considered a tie. The agents take turns to act, starting with
the attacker and followed by the defender. Following each
action, the conditions for winning are evaluated, and at the
end of the game, rewards are allotted based on these results.
In the following sections, we describe the environment,

review the observations and actions [6], [23], and define the
reward function of the agents.

A. ENVIRONMENT
The environment is represented as a k×k graphG, where k is
the number of nodes in the network. Similar to an adjacency
matrix, G encodes the neighbors of the nodes on the off-
diagonal. Additionally, the value on the diagonal hi ∈ G
represents the node state, where i ∈ [0, k − 1].
Each agent has a corresponding observation of the envi-

ronment as the environment is partially observable from the
perspective of both the attacker and the defender. However,
the defender has more information of the environment’s true
state, in this case the links between nodes, since we assume
the defender is interacting with the network through the SDN
controller.

1) Vulnerability Scores
Each node has a vulnerability that can be exploited by the
attacker. These vulnerabilities are modeled using the NIST
Common Vulnerability Scoring System (CVSS) [24]. The
CVSS is a framework used by the National Vulnerability
Database (NVD) to categorize and rank vulnerabilities. The
scoring system rates vulnerabilities as none, low, medium,
high or critical risk using a vulnerability score with range 1-
10 as shown in Table 1. This score, also known as the base
score, is what we use in lieu of early warning alerts from
an intrusion detection system (IDS). The components of the
base score are used to determine the success of certain actions
in the environment. This idea was introduced in [7] and we
include it here for completeness.
The base score is composed of two subscores: the Impact

score and the Exploitability score [24].
The equations for impact score is defined as:

IScore = 1− (1− C)(1− I)(1− A) (1)

where C is the confidentiality, I is the integrity, and A is the
availability. The components measure the impact to confiden-
tiality, integrity, and availability as a result of the exploited
vulnerability. The exploitability score is defined as:

EScore = 8.22× AV × AC × PR× UI (2)
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where AV represents the attack vector, AC the attack com-
plexity, PR the required privilege, and UI the user interaction
to carry out the exploit.

With the impact and exploitability, the base score is then
defined as:

BaseScore =

{
0 IScore = 0,

round(min((IScore+ EScore), 10)) otherwise
(3)

As part of the global state there exists a map-
ping vi → VulnScores, where each entry is a tuple
(IScore,EScore,BaseScore).
The scores are utilized to evaluate the effectiveness of

specific actions by both agents. The IScore and EScore are
derived from a Gaussian distribution for each network node,
contributing to a training curriculum. This approach allows
for incrementally increasing the standard deviation of the
parameters, thereby challenging the agents with increasingly
complex environments. These range from low severity sce-
narios (characterized by low exploitability and impact) to
critical ones (with high exploitability and impact), as outlined
in Table 1. The parameters of the distribution are adjusted to
simulate various threat situations.

This work presumes that an intrusion detection system pro-
vides the scores. In practical applications, these vulnerability
scores can be integrated with other system monitoring the
network [25].

2) Topology
In order to test the approach against a variety of network en-
vironments, we use the proposed training curriculum frame-
work found in [6]. The advantages of that approach is topolo-
gies are varied over time, with the defender first exposed to
simple linear networks and encountering networks with more
edges between nodes as training progresses. The curriculum
also uses a fixed starting value of IScore and EScore that
increases in variance as training progresses. These features
therefore expose the defender agent to increasingly more
challenging environments, from both a topological and secu-
rity perspective.

B. OBSERVATIONS
As previously stated, both agents only partially observe the
environmental state. There is a global state that accurately
reflects the environment’s condition. Each episode starts with
the agents’ starting nodes being randomized. The attacker’s
starting point involves one node being designated as com-
promised, with the observation updated accordingly. Mean-
while, the defender’s starting node is identified as the critical
(flag) node. This approach of randomizing start positions is
employed to avoid the agents becoming overly accustomed
to specific hosts (nodes). Figure 1 provides a key for under-
standing the states of the nodes.

At each step, we update the observation for the respective
agent given action at . First we decompose the action into the
target node and target action. For both agents, we validate the
action given the observation and the action subcomponents

FIGURE 1. Color key and state value for node states.

at,n, at,a where at,n is the component of the action at time t
targeting node n and at,a is the component of the action at
time t performing action a on the targeted node. If the action
is valid, then the action is performed (step).
Additionally for the attacker, we find a subset of nodesN ⊆

V , where V is the set of nodes in the network. N is the set of
nodes that are one hop away from a compromised node whose
vulnerabilities are not exploited (state 0 or 1). If either N is
not empty or the target node is compromised then we take the
action on the selected target node.

C. REWARDS
The reward is comprised of two subcomponents: the ratio of
the nodes compromised in the network and the ratio of steps
remaining in the episode to episode horizon. The reward for
the attacker and the defender is proportional and inversely
proportional to the number of compromised nodes respec-
tively. Both attacker and defender are rewarded for winning
the game in the least number of steps possible. The reward Rw
is defined in Equation 4.

Rw =


CN
TN + SR

ST winner = attacker,
1− CN

TN + SR
ST winner = defender,

0 otherwise

(4)

where CN refers to the number of compromised nodes and
TN refers to the total number of nodes in the network. The
second term in the equation accounts for how quickly the
episode ends, with SR referring to the number of steps re-
maining in the episode and ST referring to the total number
of steps (horizon).

D. ACTIONS
Similar to previous work ( [6], [7]) we simplify the action
space to three actions per agent. This allows us to use the same
neural network architecture for both agents while training
both policies separately. An overview of the actions is given
in Table 2.

1) Attacker Actions
The attacker’s objective is to compromise the critical node as
shown in Figure 2. As such, the agent’s actions are directed
at exploring the network and identifying vulnerabilities in
order to exploit them. This model of the attacker is based on
a scenario where an attacker has gained access to a private
network through a publicly available service or host. Each
episode, the attacker starts with a single randomly selected
compromised node. From there, the attacker can explore and
exploit to compromise the critical node. The attacker Figure
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TABLE 2. Agent action overview

Agent Action Description
Explore Topology Update observation of compromised node

Attacker Scan Vulnerability Scan host for vulnerabilities
Exploit vulnerability Exploit vulnerability on host
Check Status Update observation of target node

Defender Isolate Node Isolate compromised node
Migrate Node Migrate critical node

3 shows an example of the actions in the environment in
the clique topology as well as the corresponding attacker
observations. Algorithm 1 details the attacker’s action step.

FIGURE 2. Win conditions example.

Algorithm 1 Attacker Agent Step
1: procedure AttackerStep(Oa, at,n, at,a)

2: exploitabilityRatio = Og[exploitabilityScore][at,n]/10
3: if at,a = 0 then ▷ Explore Topology
4: setNeighbors(Oa, at,n,Og)
5: end if
6: if at,a >= 0 then ▷ Scan or Exploit Vulnerability
7: actionSuccess = random()
8: if actionSuccess < exploitabilityRatio then
9: Oa[at,n][at,n]← at,a
10: Og[at,n][at,n]← at,a
11: end if
12: end if
13: end procedure

Explore Topology: This action updates the attacker’s state
based on the global state. This action incorporates the neigh-
boring nodes of the chosen target into the attacker’s obser-
vation. This action is limited to nodes that the attacker has
compromised; thus, any attempt to apply it to nodes in differ-
ent states will be unsuccessful. Additionally, if the defender
has succeeded in isolating the node, this particular action will
be rendered ineffective.
Scan Vulnerability: Performs a scan of the target node for

vulnerabilities. The success of this action depends on the
EScore of the targeted node. Target node must be in the
normal state.
Exploit Vulnerability: Exploits the scanned vulnerability.

Target nodemust be already scanned for the action to succeed.
If the critical node is exploited by the attacker, the attacker
wins and the game ends.

2) Defender Actions
The objective of the defender was to protect the critical node
while minimizing impact to the network and its services. Im-
pact is measured by the number of nodes compromised by the
attacker and whether the critical node has been compromised.
Figure 2 shows the potential win conditions for both agents.
The defender’s actions allow it to update its observation and
isolate known compromised nodes. The defender may also
migrate the critical node to another location in the network.
Figure 4 shows an example of the actions and the defender
observations in the environment. Algorithm 2 demonstrates
the logic behind the defender’s action in greater detail.

FIGURE 3. Example of attacker actions.

FIGURE 4. Example of defender actions in clique topology.

Check Node Status: If a node is compromised, the likeli-
hood of discovering the exploited vulnerability is:

P[Od(hi) = 2|Og(hi) = 2] =
BaseScore
10log2(k)

(5)

where k is the number of nodes in the network, Od is the
defender’s observation, Og is the global state, and hi is the
index of the host (node) [6].
Isolate Node: The defender can mitigate the impact of the

attacker in the network by isolating the node once an exploited
vulnerability has been discovered in the network. This is
a deterministic action that removes the neighbors from the
targeted host and updates the global state.
Migrate Node: This actions provides the defender with

the option to migrate the critical node to a different node
within the network. Initially, the defender verifies whether its
observation aligns with the observation in the overall network
state. This verification is identical to the one conducted in
the Check Node Status action. In cases where the global state
indicates that the target host is compromised and this verifi-
cation is successful, the defender then revises its observation.
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Algorithm 2 Defender Agent Step
1: procedure DefenderStep(Oa, at,n, at,a)

2: baseScore← Og[baseScore][at,n]
3: targetNodeState← Og[networkGraph][at,n]
4: actionSuccessThreshold ← baseScore

10×log2(k)
5: actionSuccess = random()
6: if at,a = 0 then
7: if targetNodeState = 0 then ▷ Check status
8: if actionSuccess < actionSuccessThreshold then
9: Oa[at,n][at,n]← 2
10: addCountermeasureCost(at,a)
11: end if
12: end if
13: end if
14: if at,a = 1 then ▷ Isolate compromised node
15: setNeighbors(Oa, at,n, 0) ▷ Set edges for node to zero
16: addCountermeasureCost(at,a)
17: end if
18: if at,a = 2 then ▷Migrate critical node
19: if targetNodeState = 2 then
20: if actionSuccess < actionSuccessThreshold then
21: Oa[at,n][at,n]← 2
22: addCountermeasureCost(at,a)
23: end if
24: end if
25: if targetNodeState ̸= 2 then
26: criticalNode← indexOf (Oa, 3)
27: Oa[criticalNode][criticalNode]← 0
28: Oa[at,n][at,n]← 3
29: end if
30: end if
31: end procedure

Conversely, if the global state suggests that the target host is
not compromised, the node is then migrated. It’s important
to note that due to the probabilistic nature of the Check Node
Status action, there’s a possibility that the defender fails to
detect the compromised node.

IV. TRAINING PROCESS
A. SELF-PLAY
Similar to previous work [6], [26], we use self-play to train
the agents. Rather than facing the latest adversary, we cre-
ate and manage a pool of past opponents for each agent.
Subsequently, the attacker and defender alternate in com-
peting against adversaries from their own respective pools.
Additionally, it’s important to differentiate between agents
and policies in this scenario. There are two main trainable
policies: the attacker and the defender. Each agent maps to
many policies, which are snapshots at different points during
the training process.

The trainable policies only play against the snapshot poli-
cies in the opponent pools. Before training, opponent pools
were initialized with a random policy for each respective
opponent pool. At each training iteration, the weights of the
past opponent were averaged with the weights of the recently
trained policy for that agent. This new policy is then added to
the opponent pool.

1) Opponent Sampling
Instead of a uniform sample of opponents [26], we considered
a split opponent pool with a bias towards more recent agents
similar to the approach in [17]. We define three quantities: (a)
the size of the recent agent pool, expressed as a percentage d ,

(b) the probability precent of sampling from the recent agent
pool, and (c) the probability of sampling one of the (1− d)%
agents, ppast = 1 − precent . Over training, we decayed the
value of precent to gradually increase the chance of training
against previous policies. This was done to address the issue
of catastrophic forgetting.

B. MODEL ARCHITECTURE
In our previous work we used a multi-layer perceptron (MLP)
based network for the value and the policy models [6]. The
main problem with using an MLP is scaling, as the model
parameter count increases exponentially as the number of
nodes increases. To better scale our method, we propose a
policy/value model that uses a graph convolutional network
(GCN) for feature extraction using a graph-level embedding.
A comparison between the number of parameters for theMLP
and the proposed GCN is shown in Figure 5. The figure shows
that the number of parameters increases exponentially for the
MLP whereas the GCN parameter count increases linearly.
This is due to two architectural details. The GCN weights are
shared across the frames of the input observations; addition-
ally, the number of units of the GCN remain fixed regardless
of the network size.

FIGURE 5. Comparison of model parameter count between GFAD and
CFAD. Y-axis uses log scaling.

In order to address the partial observability of the envi-
ronment, the model takes as input a stack of the the last
m observations [10]. As shown in Figure 6, this stack of
observations are preprocessed further so that the node states
are extracted from the observation as features for each node.
The edges and the node features were passed to the graph
convolutional layers, with the GCN applied to each observa-
tion in the framestack. This produces graph embeddings per
each observation which are then concatenated. The node em-
beddings are aggregated using a self attention global pooling
layer which selects the most relevant node embeddings [27].
In addition to the observations the model also takes as input

the past n actions as integer labels. This stack of actions is
one-hot encoded and concatenated into a single vector which
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FIGURE 6. In depth look at model input preprocessing steps.

TABLE 3. Model Architecture Parameters

Layer Num units Number of Layers
GCN 32 1
Global Attention Pooling 32 1
Dense 64 2

TABLE 4. PPO Parameters

Attacker Defender
Lambda 0.95 0.95
Gamma 0.99 0.99
Clip 0.1 0.1
Value Loss Coefficient 0.3 0.7
Entropy Loss Coefficient 0 0
KL Loss Coefficient 0.8 0.3
Initial Learning Rate 3e-4 3e=4

is then concatenated to the graph embeddings. This represen-
tation is then passed to the a stack of dense layers, with a
separate stack of layers for the policy output and the value
outputs. The overview of the architecture is shown in Figure
7. Layer sizes for the subcomponents of the architecture are
detailed in Table 3.

C. TRAINING SETUP
We use the framework Rllib with Ray which simplifies the
training loop [28]. This allows us to use the built-in imple-
mentation of PPO in Rllib. Ray also allowed us to run environ-
ments in parallel allowing sample collection at scale. The en-
vironment has a small memory footprint and therefore scales
well for training. The configuration details are presented in
Table 4. Additional information can be found in [29]. In
addition, we use the PettingZoo frameworkwhich allows us to
use an OpenAI Gym-like API to interact with the multi-agent
environment [30], [31]. Tensorflow was used as the deep
learning backend and use Stellargraph and Spektral to create
the graph convolution portion of the policy and value models
[32]. The training utilized 2 CPUs for sample collection along
with a GPU for model training with 5 environments.

The learning rate was annealed from 3× 10−4 to 5× 10−5

over the course of training. Each training iteration consists
of a bactch size of 10, 000 steps, with a batch size of 2, 000

samples for the stochastic gradient descent update. Additional
parameters for PPO are shown in Table 4.

V. EXPERIMENTAL EVALUATION
We train agents using the curriculum framework we intro-
duced in [6]. As mentioned previously, real life networks are
dynamic; nodes are added to networks, removed from the
network, and links can change between nodes. This training
curriculum accounts for the networks’ dynamic nature. The
objective was to demonstrate the effectiveness of the training
method for scaling to larger network sizes.
The section begins with a discussion of stacking frames

of the observation to address the partial observability of the
environment. We tested the approach using no framestack
(frame of size one) and compared with frame sizes of two
and three to determine which offers the best performance.
Secondly, the proposed reward is compared to the reward
introduced in [7] and modified in [6]. This comparison is
important as prior work demonstrates the current method
does not scale well to larger network sizes. To evaluate the
scalability of the approach, we trained the dynamic training
curriculum for varying network sizes. We use the network of
size 16 as a baseline and train with sizes 8, 16, 32, 64, and
128.
We also consider the impact of episode horizon on defender

win rate. For this section, the agent is trained with varying
horizon sizes and defender win rate is compared across ex-
periments.
Finally, we demonstrate the effectiveness of the approach

on varying threat scenarios. These threat scenarios are built by
adjusting the IScore and EScore. Unless otherwise noted, we
trained all agents for a total of 5million timesteps. The default
network size is set to 16 nodes. The mean Impact = 4.31 and
themeanExploitability = 2.59, again unless otherwise noted.

A. FRAMESTACK
We begin by investigating the utility of frame stacking to
address the partial observability of the environment. The
experiment compared three values for the framestack size
m ∈ [1, 2, 3]. The framestack parameter m adjusts the frame
size for both the previous observations and actions.
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FIGURE 7. Overview of model architecture.

There was no significant difference between the win rate
and the average reward across the tested values of the frames-
tack size. However, Figure 8 shows that the entropy for the
defender’s actions decreased with higher values of m. Based
on these results, we used a framestack value m = 2 for the
following experiments to balance memory usage and agent
performance.

FIGURE 8. Average defender entropy with confidence interval.

B. REWARD
The reward function proposed in this work, further referred
to as GFAD (for Graph Network Autonomous Defense) is
compared to prior work [6], further referred to as CFAD (for
Curriculum Framework Autonomous Defense), as shown in
Figure 9. This experiment uses the GCN model to compare
the reward results using the same model. Since the scale of
the rewards is different between the two reward schemes, we
instead compare them using the defender win rate.
Figure 9 demonstrates that the defender performs better

with the proposed reward. The defender maintains a high win
rate throughout training, which suggests that the defender is
more robust to changes in the environment and changes in
the opponent’s policy. Additionally, as shown in Table 5, we
observe that that GFAD scales better than CFAD but leave
more detailed discussion to Section V-E.

C. EPISODE HORIZON
The episode horizon length is a key aspect of the Markov
game as longer episode lengths could more accurately model
a real life scenario. To test the defender agent performance,
we compare defender win rate across six values of horizon
length h ∈ [100, 150, 200, 250, 300].
As shown in Figure 10 , shorter episode lengths generally

lead to lower defender win rate. Once episode length reaches
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FIGURE 9. Average defender win rate with confidence interval of our
proposed reward and the reward proposed in [7] [6].

200 steps, defender win rate plateaus. Since the difference
between the results for episode lengths h ∈ [200, 250, 300]
are not statistically significant, the episode length of 200 was
chosen as it performs similarly while offering the benefit of
faster convergence.

FIGURE 10. Average defender win rate for episode horizon lengths
H ∈ [100, 150, 200, 250, 300]

D. THREAT SCENARIOS
To test the robustness of the approach to various threat sce-
narios, we compare the defender win rate across varying
values of the Impact and Exploitability scores. For the threat
scenarios, we are interested in evaluating the effect of the vul-
nerability scores on the agent’s win rate. We considered the
IScore ∈ [1, 2.5, 5] and EScore ∈ [1, 2.5, 5]. This creates nine
risk scenarios as shown in Figure 11: three in the low severity
range, three in the medium severity range, two in the high
severity range, and the last one, when the BaseScore = 10
and severity is critical.

As the impact increased, as shown in Figure 11, the average
defender reward increases. This occurs because the higher the

impact, the more likely the defender discovers the vulnerabil-
ity when the node is scanned.
As exploitability increases, the average defender win rate

also increases. The higher the exploitability, the greater the
BaseScore. Since the BaseScore determines the likelihood of
the defender detecting a vulnerability, we expect that as the
EScore increases the defender win rate should also increase.
This is demonstrated in Figure 11. However, it’s notable that
the scenario with EScore = 5 and IScore = 5 does not
improve significantly from scenarios with a lower EScore.
This is likely due to the higher EScore which increased the
capability of the attacker to compromise nodes. This is most
pronounced further in training, as the curriculum introduces
topologies with fewer hops between the attacker and the
critical ndoe.

E. NETWORK SIZE
One of the motivations for changing the architecture of the
policy and value networks is to improve scalability of the
approach for larger environment network sizes. Prior work
such as [6] improved performance of agents across diverse
network environments but had issues with larger network
sizes as theMLP used as the policy/value model did not scale.
We considered five sizes for the environment network

n ∈ [8, 16, 32, 64, 128]. Figure 12 shows the win, loss, and
tie rates for the sizes n ∈ [8, 16, 32, 64, 128]. The column for
a network size of 128 was blacked out for the CFAD results
as the approach was not tested for that value. As the network
size increased, the win rate as well as the loss rate decreased.
As the network size reached 32, the majority of the games
ended in a tie. The results for 128 nodes are listed in Table 5
along with a comparison to similar results. Table 5 also shows
a higher win rate and lower tie rate across all network sizes
for the defender agent. The defender win rate increased an
average of 100% while the tie rate decreased by 26%.
The attacker agent also improves its win rate by 55%, with

the smallest network size showing the greatest change in the
tie rate. Both the defender and the attacker agent improved
overall however the greatest improvement was observed in
the defender’s win rate.

VI. CONCLUSIONS
We present a new intrusion response system to select de-
fensive actions by playing a zero-sum Markov game against
an attacker in a network environment. Because the proposed
system was improved by utilizing a graph convolutional net-
work (GCN) with a new reward function, it is more scalable
and reliable under various attack scenarios in real network
conditions. In other words, the new reward functions increase
the win rates with the new agents’ policy + value networks.
The GCN provides scalability for the proposed approach by
considering larger networks and a variety of threat scenarios.
The proposed system reflects real world network condi-

tions because threats and threat scenarios vary from organiza-
tion to organization. Our experimental results demonstrated
that the proposed reward improved both reward and win
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FIGURE 11. Average defender win rate for IScore ∈ [1, 2.5, 5] and EScore ∈ [1, 2.5, 5] with confidence interval. The max and min values are highlighted
for each cell. Colors represent the corresponding Base Score category BS ∈ [LOW ,MEDIUM,HIGH, CRITICAL].

FIGURE 12. Area plots of outcomes of games played by defender for network sizes 8, 16, 32, and 64. Win, ties, and losses are shown for all network sizes.
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TABLE 5. Network Size Results

GNAD CFAD [23]
Network Size 8 16 32 64 128 8 16 32 64 128
Attacker Win Rate 25.1% 13.8% 6.5% 3.7% 1.6% 11.2% 8.5% 5.6% 3.1%
Attacker Tie Rate 29.7% 81.9% 92.1% 95.6% 98.3% 40.3% 69.4% 87.3% 94.4%
Defender Win Rate 84.4% 48.1% 18.6% 6.6% 2.6% 52.4% 24.5% 8.6% 2.9%
Defender Tie Rate 10.9% 50.3% 80.9% 93.2% 97.4% 38.6% 67.8% 86.9% 94.6%

TABLE 6. Parameter counts of GFAD models

Network Size 8 16 32 64 128
Parameter Count 24,780 27,348 32,484 42,756 63,300

rate for the defender. Additionally, the defender can perform
well across different threat scenarios. An environment with
higher Impact vulnerabilities is on average more favorable
to the defender. The experimental results also demonstrated
in an environment with vulnerabilities with higher average
Exploitability where the defender win rate increases as the
Exploitability increases.

VII. FUTURE WORK
We conclude with a discussion of future directions for this
work. There are three main areas we identify as promising for
future investigation. The first issue is the quality and quantity
of training data to train agents. For automated defense meth-
ods tomore generally useful, trainingmethods should account
for the lack of training data and the constantly evolving threat
landscape. To bring the training environment closer to a real
life scenearios, we plan to test our approach in a higher
fidelity network simulation. Currently, the networking details
are abstracted but they play an important role in real world
threat scenarios. Furthermore, we plan to test our defensive
agent against a greater variety of attacker policies. That will
allow us to validate our approach across attacker strategies.
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