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ABSTRACT Predicting an abnormally rapid decline in battery capacity in low-temperature environments is 

important for maintaining battery stability and performance. This study introduces a method that integrates 

cycling tests under various current conditions with deep neural network algorithms to identify and predict in 

real-time the trend of battery capacity reduction in low-temperature conditions (-10 ℃). For this method, 18 

feature data points were included, consisting of the test environment and conditions, as well as geometric and 

statistical features. The importance of these features was analyzed using the Random Forest (RF) algorithm, 

and the top 12 feature data points were selected to improve the efficiency and accuracy of the Long Short-

Term Memory (LSTM) model. Furthermore, we applied a sequential ensemble technique that uses the output 

of the LSTM model as the input for the particle filter, significantly improving the performance of the 

prediction model. The approach was used to predict the capacity of the tested battery using C-rate 

transformation based on the WLTC. The results showed an error rate of 0.9% and an RMSE of 0.0048, 

representing a 25% decrease in the error rate and a 48% reduction in the RMSE compared with those predicted 

by the LSTM model. 

INDEX TERMS Lithium-ion battery; Low-temperature; Long Short-Term Memory (LSTM); Particle Filter 

(PF); Worldwide Light Vehicles Test Cycle (WLTC); Real-time prediction  

I. INTRODUCTION 

Various studies are underway to achieve low-carbon goals 

using eco-friendly transportation methods. Electric 

vehicles (EVs), that use electric motors are being actively 

researched because they rely on battery packs instead of 

combustion engines [1, 2]. As the demand for electricity 

has surged, the need for stability and reliability has also 

increased. This makes fault diagnosis and battery pack 

monitoring crucial for enhancing safety, preventing cell 

damage, and ensuring optimal efficiency [3]. 

Lithium-ion batteries, which are known for their high 

energy density, high output voltage, low self-discharge, and 

minimal voltage drop, are used in various fields such as 

telecommunications, home appliances, energy storage 

devices, EVs, and aerospace [4-6]. These batteries begin to 

degrade immediately after production, necessitating their 

replacement when their capacity falls below 80% of the 

initial level [7-9]. Despite continuous improvements in 

performance and safety, lithium-ion batteries still pose 

risks of malfunction owing to aging, making precise 

monitoring of the capacity degradation process and 

remaining life predictions vital. Batteries are particularly 

sensitive to temperature; typically, energy (discharge 

capacity) and power (operating voltage) significantly 

decrease at temperatures below -10 ℃ [10-14], 

highlighting the importance of accurate life prediction and 

stability maintenance under such abnormal performance 

drops. Ongoing studies have focused on battery 

characteristics, such as the dependence of the remaining 

capacity on the discharge rate and internal temperature, as 

well as cyclic aging phenomena. 
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Because of the nonlinear degradation of lithium-ion 

batteries, theoretical models based on experimentally 

measured data struggle to accurately predict the Remaining 

Useful Life (RUL) [15]. Accurate RUL prediction requires 

consideration of various internal and external conditions in 

addition to capacity [16]. Traditional RUL prediction 

methods utilize impedance measurements to analyze the 

relationship between internal resistance and aging and 

estimate the lifetime based on frequency-dependent 

impedance [17]. Although it is effective, this method 

requires battery removal from the system and costly 

electrochemical impedance spectroscopy (EIS) equipment. 

For this reason, an online battery impulse measurement 

technology has been introduced. The online battery 

impedance measurement system can continuously track the 

RUL, SOH, equivalent circuit parameters, etc. without the 

need for expensive equipment [18, 19]. Data-based 

analysis relies on neural networks to describe performance 

degradation and learn patterns from inception to failure, 

depending solely on the degradation data used for the 

explanation. Filtering models such as the Kalman Filter 

(KF) and Particle Filter (PF) employ Bayesian theory-based 

adaptive learning algorithms to predict RUL [20-26]. Nuhic 

[27] utilized a support vector machine (SVM) to estimate 

the battery State of Health (SoH) and RUL, and Nuhic [28] 

used (Relevance Vector Machine) to develop a capacity 

degradation model for RUL estimation. Recent 

advancements in deep learning have significantly enhanced 

neural network training capabilities [29]; employed a deep 

neural network (DNN) to encode time-dependent 

dependencies in state of charge (SoC) values, enabling 

accurate SoC estimation. Furthermore, deep convolutional 

neural networks (DCNNs) have shown higher accuracy and 

robustness in cell-level capacity prediction than traditional 

machine learning methods such as RVM [30]. Long Short-

Term Memory (LSTM) RNN [31] captures long-term 

dependencies in performance degradation by optimizing 

the process using backpropagation over time. However, 

LSTM alone has limitations in predicting the trends of 

irregular battery capacities. Therefore, a combination of 

LSTM with other models has been proposed [32, 33]. In 

particular, the combination of LSTM with PF can 

effectively manage inherent noise and establish a 

probabilistic estimation framework, addressing LSTM's 

potential overfitting to historical trends when confronted 

with unusual data. This approach not only enhances 

prediction accuracy in the presence of data irregularities but 

also improves the reliability of state estimates under 

dynamic and uncertain operating conditions [34, 35]. In this 

study, we employed the LSTM-PF sequential ensemble 

model to create a hybrid prediction framework, 

significantly enhancing the reliability of remaining useful 

life (RUL) predictions for batteries under realistic variable 

conditions, thereby demonstrating the utility of this model 

in low-temperature environments. 

In this study, we conducted charge and discharge tests on 

lithium-ion batteries under low-temperature conditions, 

varying the current-rate (C-rate) from 0.5 C to 1.5 C in 

increments of 0.1 C. Test data were collected after each 

cycle. Eighteen variables were selected by extracting four 

test conditions: electrochemical properties, six geometric 

features related to battery deterioration owing to increased 

internal resistance during continuous charging and 

discharging, and eight statistical features related to voltage. 

These variables were divided into training and test datasets 

to train an ensemble model comprising the model and a 

particle filter. The trained ensemble model was designed to 

predict battery capacity degradation in the test data in real 

time by converting the speed specifications of the 

Worldwide Harmonized Light Vehicle Test Cycle (WLTC) 

international driving regulations into C-rates. 

 
II. TEST AND METHODS 

A. LITHIUM-ION BATTERY CYCLING TEST 

1) CYCLING EQUIPMENT AND TEST PROCESS 

The cells used in the experiment were Samsung 18650 

lithium-ion batteries containing NMC (Nickel, Mn, and 

Cobalt) with a capacity of 2600 mAh. These cells have a 

diameter of 18.0 mm and a length of 65.0 mm and are used 

globally. They were tested similarly to the cells previously 

used in Tesla vehicles. Detailed information about the 

batteries is presented in Table 1, and the specifications of 

all test equipment used in the cycling experiments are listed 

in Table 2. As indicated in Figures 1a and 1b, experiments 

were conducted using a cell cycler (WonATech) and a 

constant temperature and humidity chamber from Jeio Tech. 

 
TABLE I 

SAMSUNG 18650 CELL SPECIFICATIONS USED IN THE TEST 

Nominal Open Circuit Voltage 3.63 V 

Min / Max Voltage 2.75 V / 4.2 V 

Capacity 2600 mAh 

Mass 45g 

 
TABLE II 

EQUIPMENT SPECIFICATIONS USED FOR CYCLING TESTS 

Cycler Model WBCS3000S (WonA Tech) 

Test Channel Used 5 A, ±5 V Channel 

Voltage / Current Accuracy ±0.02% / ±0.05% Full Scale 

Thermal Chamber Model TH3-KE-100 (Jeio Tech) 

Temperature Range -40 ℃ − 150 ℃ 

Fluctuation ±0.3 ℃ 

 
TABLE III 

CYCLING TEST PROTOCOL 

Step No. State Condition Cut-off 

1 Charging (CC) 1C ≥4.2 V 

2 Charging (CV) 4.2 V ≤250 mA 

3 Rest - ≥30 min 

4 Discharging (CC) 1C ≤2.75 V 

5 Rest - ≥30 min 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3419009

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



 

8 VOLUME XX, 2017 

FIGURE 1. (a) Cell Cycler and Thermal Chamber used in battery cycling 
tests; (b) Test bench and system circuit diagram 

In cycling tests, the environment and conditions 

significantly affect battery degradation. In this study, the 

test environment was set to a temperature of -10 ℃, under 

which the cycling tests were conducted. Additionally, as 

part of the test conditions, the charge-discharge C-rate was 

set, and tests were carried out at increments of 0.1C from 

0.5C to 1.5C. The protocol used for the cycling tests, shown 

in Table 3, involved charging and discharging under a 

constant current–constant voltage (CC–CV), and a rest 

period of 30 min was provided after the completion of each 

charging and discharging cycle. 

 

2) CYCLING TEST AND DATASETS BASED ON THE 
WLTC PROFILE 

The WLTC is an automotive driving cycle included in the 

Worldwide Harmonized Light Vehicle Test Procedure 

(WLTP), agreed upon by the participating countries of the 

United Nations Economic Commission for Europe 

(UNECE) to measure fuel efficiency and pollutant 

emissions. This profile, developed based on real road traffic 

data collected from over 400 vehicles, has replaced the 

theoretically designed New European driving cycle (NEDC) 

since the 1980s, starting from 2018 [36]. The driving cycle 

includes three different cycle periods, Classes 1–3, applied 

according to the vehicle class defined by the output, with 

most general vehicles currently falling into Class 3. The 

cycle used for testing was Class 3, which was divided into 

four driving modes (low, medium, high, and extra-high) 

over 30 min, with each mode classified according to the 

maximum speed (Fig. 3a). Vehicles were assumed to be 

based on the WLTC to test the predicted battery capacity, 

and cycling tests were performed by calculating the C-rate 

(Table 4). Therefore, 12 cells were used for the test 

(WLTC001-012). The applied C-rate for the test protocol 

was averaged at 1-min intervals to ensure the stability of 

the cycling equipment (Fig. 3b). Detailed information 

about the hypothetical electric vehicle used for converting 

WLTC into C-rates is presented in Table 4. 

 
TABLE IV 

ASSUMED VEHICLE SPECIFICATIONS WITH WLTC DRIVING 

Vehicle Mass 1500 kg 

Battery Capacity 25 kWh 

Nominal Voltage 350 V 

Frontal Area 2.7 m2 

 

 

FIGURE 2. (a) WLTC Profile (Class 3); (b) C-rate converted by applying 
the vehicle assumed in the WLTC profile 

B. ALGORITHM DESIGN 

1) EXTRACT FEATURE DATA 

To predict the discharge capacity of batteries in various 

cycles, it is essential to obtain feature data representing 

battery performance throughout the cycling process. 

Figures 3a and 3b show the voltage changes during 

charging and discharging, respectively, across cycles. As 

the cycle count increased, changes in the voltage curve 

were observed, owing to battery degradation. Although the 

general form of the voltage change remained similar 

throughout the cycles, the length of each cycle shortened, 

and the overall performance degraded as the battery 

discharge capacity decreased due to degradation. In this 

study, feature data (Table 5) used for model training was 

extracted based on the results of cycling tests conducted at 

-10 ℃. The data included voltage changes (CVD, DVD) 

and battery temperature (CT, DT), and geometric analysis 

was utilized to extract features such as the initial rise and 

fall slopes of voltage (CVS, DVS), lengths of charge-

discharge state (LC, LD), and slopes of load (CLS, DLS) 

(Fig. 3). The average (CAV and DAV), variance (CVV and 

DVV), skewness (CSV and DSV), and kurtosis (CKV and 

DKV) of the voltage were included as feature data, and 

statistical properties were used to extract the distribution 

and shape of the voltage in the data (Fig. 4). 

 

2) LSTM-PF SEQUENTIAL ENSEMBLE MODEL 

The recurrent neural network (RNN) is a model designed for 

processing time-series data, where the output values (hidden 

values) from a previous moment (layer) propagate to the next 

moment (layer), inheriting past information to process the 

time-series data. RNNs, through their recurrent mechanism 

that captures and remembers information from previous steps, 

have improved performance in learning time-series data 

compared to 'Feed forward' neural networks, where data flow 

in only one direction. However, during the gradient 

propagation process, the passage through the tanh operations 

can lead to vanishing gradients, where the gradient of the loss 

function becomes progressively smaller over time during 

training. To solve the problem of the gradient vanishing 

observed in conventional RNNs, LSTM was introduced [37, 

38]. LSTM has three gates (input, forget, and output) that 

control the flow of information (Fig. 5). 
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FIGURE 3. Feature data extracted by cycling tests: (a) Changes in voltage, 
load, and length of the charging section for 60 cycles; (b) Voltage and 
load during discharging, length of discharging section; (c)  Initial slope 
of voltage to capacity in cycle 1 (blue) and cycle 60 (red) during charging; 
(d) Initial slope of voltage to capacity in cycle 1 (blue) and cycle 60 (red) 
during discharging; (e) Battery temperature change during charging; (f) 
Battery temperature change during discharging 

 

FIGURE 4. Statistical features of voltage during discharging: (a) Average 
of voltage; (b) Variance of voltage; (c) Skewness of voltage; (d) Kurtosis 
of voltage 

The input gate is responsible for memorizing new information 

by receiving the current input and applying corresponding 

weight parameters, which are then passed through a Sigmoid 

(σ) activation function. The computational formula is as 

follows: 

𝑖𝑡 =  𝜎(𝑊𝑖 × [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)                  (1) 

The hidden state (ht-1) is combined with the input (xt) and 

multiplied by the weight parameter (Wi), after which a bias (bi) 

is added. The weight parameters and bias are parameters 

learned by the model, which determine the importance of the 

input and previous hidden states, respectively, and adjust the 

activation of the gate. Finally, the value with the applied 

weights is passed through the Sigmoid activation function (σ). 

The Sigmoid function limits the output values between 0 and 

1, where values closer to 1 determine how much information 

will be added to the cell state; this is referred to as the output 

of the input gate (it). Each gate in LSTM follows a common 

computational paradigm but performs different functions with 

parameters adjusted according to their roles. 
 

TABLE V 

EXTRACTED FEATURE DATA FOR BATTERY CAPACITY PREDICTION 

No. Feature State No. Feature State 

1 Voltage difference 

(CVD) 

Charge 

10 
Voltage difference 

(DVD) 

Discharge 

2 Temperature (CT) 11 Temperature (DT) 

3 Initial voltage slope 
(CVS) 

12 
Initial voltage 
slope (DVS) 

4 Length of charge 

(LC) 
13 

Length of 

discharge (LD) 

5 Load slope (CLS) 14 Load slope (DLS) 

6 Average of voltage 
(CAV) 

15 
Average of 

voltage (DAV) 

7 Variance of voltage 

(CVV) 
16 

Variance of 

voltage (DVV) 

8 Skewness of voltage 

(CSV) 
17 

Skewness of 

voltage (DSV) 

9 Kurtosis of voltage 

(CKV) 
18 

Kurtosis of 

voltage (DKV) 

 

 

FIGURE 5. LSTM model structure 
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Furthermore, the forget gate is a key component of the LSTM 

that decides whether to retain or discard previous information 

in the cell. This allows the LSTM to effectively remove 

unnecessary information and maintain only the required 

information, thereby enabling it to learn long-term 

dependencies in sequential data. The computational formula is 

as follows: 

𝑓
𝑡

=  𝜎(𝑊𝑓 × [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)                   (2)  

Finally, the output gate receives the current input and outputs 

the final output value, or next hidden value (ht). Through this 

process, the LSTM can extract important information from 

sequence data and learn complex patterns and dependencies 

based on this information. The computational formula is as 

follows: 

𝑜𝑡 =  𝜎(𝑊𝑜 × [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)                     (3) 

To increase the generalization performance under various 

conditions, the proposed model is a multi-LSTM algorithm 

that learns using a dataset classified according to the current 

conditions and outputs the predicted capacity value of the final 

LSTM. 

 

 

FIGURE 6. Particle Filter process 

The PF is used to estimate the system states and is particularly 

effective in nonlinear systems where the relationship between 

the system's states and observations is complex [39, 40]. The 

PF process involves randomly generating particles and 

predicting the state of each particle using the system model, 

allowing the addition of noise considering the uncertainty in 

the process model as the particles are updated. The particles 

are evaluated based on how well they explain the observations, 

and initial weights are assigned, typically normalized so that 

their sum is equal to one. Particles with lower weights are 

discarded, whereas those with higher weights are replicated 

for a more accurate estimation. An improved state estimation 

was performed when the particle set was updated (Fig. 6). 

By sequentially ensembling the LSTM with the PF, a 

mechanism is used in which the output values of the LSTM 

are utilized as input values for the PF. In this model, the main 

prediction of battery capacity was performed using LSTM, 

and a particle filter was used to enhance the generalization 

performance of LSTM. This allows the LSTM to learn long-

term patterns and dependencies from sequence data for state 

prediction, whereas the PF applies a probabilistic modeling 

layer considering the uncertainty and noise in these predictions. 

Thus, it provides more precise state estimation. The ensemble 

model performed real-time predictions by replacing the 

capacity predicted in the previous cycle with the actual 

collected capacity when predicting capacity. The results 

predicted by this ensemble model were assessed by calculating 

the root mean squared error (RMSE), mean absolute 

percentage error (MAPE) and average error rate throughout 

the cycle. The RMSE represents the root mean square error 

between the actual and predicted values of the model, with a 

lower RMSE generally indicating a higher prediction accuracy. 

MAPE represents the percentage of errors, which can be 

interpreted independently and intuitively on the scale. 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑝𝑟𝑒𝑑

𝑖
− 𝑡𝑎𝑟𝑔𝑒𝑡

𝑖
)2𝑁

𝑖                (4) 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑ |

𝑝𝑟𝑒𝑑𝑖−𝑡𝑎𝑟𝑔𝑒𝑡𝑖

𝑝𝑟𝑒𝑑𝑖

|𝑁
𝑖 × 100%              (5) 

 

3) DATASET PARTITIONING FOR TRAINING, 
VALIDATION, AND TEST 

Data partitioning is essential to construct a model with good 

generalization performance [41]. The data should be divided 

into training data for the model to learn, validation data for 

calibration, and test data for evaluation to prevent overfitting 

and build a model with superior generalization performance. 

Generalization performance refers to the ability of a model 

trained on training data to predict external data that are not 

included in the training set. The better the generalization 

performance, the better the constructed model, which requires 

choosing learning techniques, datasets, and fine-tuning 

detailed parameters. In this study, the dataset from the cycling 

test results comprised 55 data points, from B_001 to B_055, 

with each current condition divided into 60% training data, 20% 

validation data, and 20% test data (Table 6). 

 

4) USING TECHNIQUES FOR EFFICIENT PREDICTIVE 
MODELING 

Random forest is a widely used machine learning method for 

building predictive models. Reducing the number of 

variables is important to reduce the burden of data collection 

and increase the efficiency of predictive modeling [42]. The 

random forest course first learns the dataset, and then 

evaluates the importance of each variable. We selected a 

variable of high importance and discarded the remaining 

variables. The model was then re-learned using the selected 

variables, and its performance was evaluated (Fig. 7). In this 

study, a random forest was used to evaluate the importance 
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of the variables on the capacity of the battery, and variables 

with high importance were selected. 

 
TABLE VI 

CYCLING TEST DATASETS TO BE USED FOR TRAINING, VALIDATION, AND 

TEST 

Dataset C-rate Cycle Note 

B_001 – B_003 

0.5 

80 

Training 

B_004 Validation 

B_005 Test 

B_006 – B_008 

0.6 

Training 

B_009 Validation 

B_010 Test 

B_011 – B_013 

0.7 

Training 

B_014 Validation 

B_015 Test 

B_016 – B_018 

0.8 

Training 

B_019 Validation 

B_020 Test 

B_021 – B_023 

0.9 

Training 

B_024 Validation 

B_025 Test 

B_026 – B_028 

1.0 

60 

Training 

B_029 Validation 

B_030 Test 

B_031 – B_033 
1.1 

Training 

B_034 Validation 

B_035   Test 

B_036 – B_038 

1.2 

Training 

B_039 Validation 

B_040 Test 

B_041 – B_043 

1.3 

Training 

B_044 Validation 

B_045 Test 

B_046 – B_048 

1.4 

Training 

B_049 Validation 

B_050 Test 

B_051 – B_053 

1.5 

Training 

B_054 Validation 

B_055 Test 

Voltage(V): 4.2/2.75, Temp(℃): -10 

 

Cross-validation is considered one of the most important 

tools for evaluating regression and classification methods 

[43]. The reason for using cross-validation is that it provides 

more datasets for training and testing than classifying into 

groups of datasets only, which is advantageous for increasing 

the accuracy in cases where data are limited. In this study, 

rolling window cross-validation (RWCV) was used to 

compensate for accuracy issues caused by data scarcity. This 

method involves a fixed-size window moving at a constant 

step size and repeating training and testing, thereby offering 

advantages in predicting time-series data. 

 

 

FIGURE 7. Random Forest classification process 

III. RESULTS 

A. DETERMINING FEATURE DATA FOR MODEL 
TRAINING 

Using Random Forest, we evaluated the importance of the 

existing 18 feature data points for battery capacity. The 

results indicated that the lengths of the charge and discharge 

segments were the most crucial factors. Because the 

importance of the voltage variance, kurtosis, and skewness 

was negligible (approximately 1 %), these features were 

excluded from the training. Consequently, the top 12 feature 

data points were used for training (Fig. 8a). When the model 

was trained using all 18 variables, the error rate was observed 

to be 1.1%. However, when trained with only the selected 12 

variables, the error rate decreased to 0.9%, indicating an 18% 

improvement (Fig. 8b). 

 

 

FIGURE 8. (a) The evaluation results of feature data importance using 
Random Forest and dashed line indicates 1%; (b) Comparison of 
prediction error rates based on variable selection 

B. REAL-TIME CAPACITY PREDICTION BASED ON THE 
LSTM-PF SEQUENTIAL ENSEMBLE MODEL 

To enhance the predictive performance of the LSTM model, 

the PF was applied as a sequential ensemble technique, 

utilizing the output of the LSTM as input for the PF. To 

verify the LSTM-PF sequential ensemble model, the tested 

battery capacity based on the WLTC was compared with the 

predicted result using the LSTM alone. The results of 

predicting the real-time capacity of 12 cells (WLTC001-012) 

are shown in Fig. 9. The gray line indicates the actual battery 

capacity, the blue line indicates the prediction by the 

standalone LSTM model, and the orange line indicates the 
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prediction by the LSTM-PF ensemble model. In all the cells, 

the ensemble model exhibited higher performance than the 

LSTM model. The RMSE, MAPE and error rates of the test 

cells are listed in Table 7. 

Figure 10 shows the average predictions for the 12 cells. By 

applying the C-rate conversion based on the WLTC driving 

regulation, the battery was tested up to an 80% capacity 

threshold for approximately 140 cycles; the blue shade 

represents the 80% capacity threshold of the battery (1.12 

Ah). At this point, the trained model predicts the capacity for 

the same number of cycles. Throughout the cycle, it was 

confirmed that the predicted values of the LSTM-PF 

ensemble model were closer to the actual capacity values 

than those of the standalone LSTM model. The ensemble 

model showed a higher prediction accuracy than the LSTM 

model during the 2.7% capacity decrease that occurred 

between cycles 45 and 50. Comparing the cell-average 

RMSE evaluation, the LSTM model showed 0.0092, 

whereas the LSTM-PF ensemble model showed 0.0048. The 

LSTM model showed a prediction error rate of 1.2%, 

whereas the ensemble model showed a prediction error rate 

of 0.9%. As the number of cycles increased, both models 

indicated that the error rate decreased. In particular, the error 

rate decreases significantly for up to 40 cycles. 

IV. DISCUSSION 

A. MODEL VALIDATION FOR REAL-TIME CAPACITY 
PREDICTION 

The approach of combining LSTM and PF into a sequential 

ensemble is useful for improving the accuracy of the battery 

capacity trend prediction. The LSTM model is effective for 

recognizing time-dependent data patterns and learning long-

term dependencies; however, it is limited to optimization 

within a fixed structure. Therefore, there are limitations to the 

predictive performance of LSTM for complex or noisy data. 

In this study, by combining the output values of LSTM as 

input values for PF, we were able to reduce the uncertainty 

in LSTM predictions and achieve high predictive 

performance, even with noisy data. When comparing the 

RMSE metrics of the models, the standalone LSTM model 

had an RMSE of 0.0092, whereas the ensemble model had 

an RMSE of 0.0048, indicating a 48% decrease compared to 

using LSTM alone. Additionally, when comparing the error 

rates, that of the LSTM model was 1.2%, whereas that of the 

LSTM-PF ensemble model was 0.9%, demonstrating a 25% 

lower error rate. As the number of cycles increases, the actual 

capacity data collected in real time become more abundant, 

resulting in a decrease in the prediction error rate. Notably, 

there was a significant reduction in the error rate for up to 40 

cycles, which was 30 percent of the total number of cycles. 

This proves that most predictions regarding battery capacity 

are performed by the LSTM model; however, the PF model, 

which can improve the shortcomings of LSTM and update 

the probability distribution of the prediction results to 

supplement generalization performance, was successfully 

combined for complex systems. 

B. SCALABILITY AND LIMITATIONS OF THE MODEL 

This study demonstrated the ability to reflect the battery 

performance for actual driving regulations in low-

temperature environments by predicting the battery capacity 

for the WLTC driving cycle using the LSTM-PF ensemble 

model. During the model training process, battery cycling 

test data under various current conditions were integrated to 

increase the versatility and scalability of the model. This 

approach can be extended to other battery technologies and 

various operational environments by capturing the complex 

system related to battery aging with high accuracy, without 

the need to detach the battery and measure the impedance 

with EIS. 

FIGURE 9. Prediction Results of LSTM and LSTM-PF Ensemble Models for WLTC Battery Dataset 
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TABLE VII 

COMPARISON OF PREDICTIVE PERFORMANCE BETWEEN LSTM MODELS 

AND ENSEMBLE MODELS BY CELLS 

Cell 
RMSE 

(LSTM) 

RMSE 

(Ensemble) 

MAPE 

(LSTM) 

MAPE 

(Ensemble) 

Error 

rate 
(LSTM) 

Error rate 

(Ensemble) 

WLTC001 0.0090 0.0042 0.44% 0.22% 1.31% 0.89% 

WLTC002 0.0091 0.0047 0.45% 0.21% 1.14% 0.92% 

WLTC003 0.0099 0.0051 0.49% 0.23% 1.48% 1.13% 

WLTC004 0.0097 0.0051 0.48% 0.25% 1.38% 0.97% 

WLTC005 0.0079 0.0048 0.39% 0.25% 0.91% 0.73% 

WLTC006 0.0081 0.0049 0.41% 0.24% 0.93% 0.76% 

WLTC007 0.0098 0.0052 0.49% 0.25% 1.36% 1.01% 

WLTC008 0.0092 0.0048 0.46% 0.24% 1.22% 0.88% 

WLTC009 0.0089 0.0047 0.44% 0.23% 1.06% 0.87% 

WLTC010 0.0101 0.0053 0.50% 0.26% 1.50% 1.24% 

WLTC011 0.0093 0.0047 0.46% 0.23% 1.17% 0.87% 

WLTC012 0.0094 0.0042 0.47% 0.21% 1.18% 0.88% 

 

 

FIGURE 10. (a) The prediction results of battery capacity based on the 
LSTM-PF ensemble model; (b) The trend of error rate of LSTM and 
ensemble models by cycle and the box plot, dashed line indicates cycle 
40 

However, the battery packs used in actual vehicles are 

composed of multiple cells and involve complex interactions, 

which can differ from the results of cycling tests based on a 

single cell. To overcome this limitation, future studies should 

conduct cycling tests at the battery pack level and develop 

prediction models that consider the interactions between 

various cells. Furthermore, incorporating variables related to 

complex electrical and thermal interactions can bring us 

closer to optimizing battery management systems in actual 

operating environments, thereby contributing to the overall 

performance and stability of EVs. 

V. CONCLUSIONS 

In this study, cycling tests were conducted, and a DNN model 

was designed to understand and predict real-time trends in 

battery capacity at low temperatures. From the results of the 

low-temperature cycling tests, 18 feature data points were 

extracted, including the test environment and conditions, 

geometric features, and statistical features. Important 

features for training were selected through analysis using 

Random Forest. The error rate improved by 18% from 1.1% 

to 0.9% when trained with the selected 12 variables. The 

prediction model combines the output of the LSTM as input 

for the PF using a sequential ensemble technique. The 

ensemble model accurately predicted (error rate: 0.9%, 

RMSE: 0.0048) the capacity of batteries tested with C-rate 

conversions according to WLTC driving regulations in real 

time, demonstrating a higher performance than using LSTM 

alone (error rate: 1.2%, RMSE: 0.0092). 

Our research presents an approach for collecting datasets 

from lithium-ion batteries at low temperatures to analyze the 

low-temperature behavior characteristics of lithium-ion 

batteries and accurately predict abnormal decreases in battery 

capacity. We propose a higher-performance model because 

LSTM alone is limited in capturing all the complex battery 

capacity decline trends. The approach proposed in this study 

is expected to assist in the efficient use of batteries and 

prevention of accidents during battery use by accurately 

predicting the lifetime of lithium-ion batteries. 
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