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ABSTRACT Mild cognitive impairment (MCI) is an early stage of Alzheimer’s disease (AD), which is
currently incurable. Early diagnosis of AD is essential for effective intervention since the World Alzheimer’s
Report 2015 predicted the number of cases will triple by 2050. The 18F-FDG PET imaging technique,
although effective in detecting metabolic activities in the brain, faces challenges such as low signal-to-
noise ratios and limited data availability, which complicates the existing methods to extract necessary lesion
information effectively for diagnosing early-stage MCI. To overcome these challenges, we introduce a
novel deep learning-based model, ResGLPyramid, that combines convolution operations, MobileViTv3,
and a global-local attention module (GLAM) block, to capture local and global representations. By
utilizing a softened cross-entropy (SCE) objective function, the model reduces overfitting, improves
generalization, and enhances the detection of subtle metabolic changes. The proposed model enhances the
sensitivity and specificity of Alzheimer’s detection by leveraging local- and long-range interactions among
critical diagnostic features that lead to more precise and efficient analyses. Experimental results show the
ResGLPyramid model achieved an accuracy of 92.75% in classifying MCI and AD individuals, which is
3.44% higher than state-of-the-art methods.

INDEX TERMS 18F-FDG PET, Alzheimer’s disease, deep learning, global feature representation, local
feature representation, MobileViT

I. INTRODUCTION

ALzheimer’s disease (AD) is a chronic and progressive
brain disorder, characterized by a form of dementia,

that gradually impairs cognitive abilities and eventually dis-
rupts the inherent skills to perform even the simplest tasks
[1]. As reported by the World Alzheimer’s Report 2015,
approximately 46.85 million people globally are affected by
AD and other forms of dementia, with projections indicating
that figure will double by 2030 and triple by 2050 [2].
Mild cognitive impairment (MCI) represents a transitional
stage between normal cognition (NC) function and AD,
characterized by slightly reduced cognitive abilities that do
not significantly affect daily activities. Despite this, MCI
substantially increases the risk of developing dementia, high-
lighting the critical need for precise early detection methods
and effective interventions to slow symptom progression and
manage cognitive decline [3].

Diagnostic techniques such as magnetic resonance imag-

ing (MRI) [4], [5] and positron emission tomography (PET)
[6] are vital tools in detecting AD and MCI. MRI captures
structural and functional changes in the brain, while PET,
particularly 18F-fluorodeoxyglucose PET (18F-FDG PET),
is more effective in the early stages of AD because it mea-
sures metabolic activities at the tissue level [7], detecting
decreases in metabolic activities before structural changes
occur [8]. However, PET faces several challenges: images
often have a low signal-to-noise ratio, contain repetitive
information among slices within the same class, and suffer
from a lack of sufficient data volume. These issues compli-
cate the use of deep learning (DL) models for accurate AD
prediction, underscoring the necessity for improved imaging
techniques and data handling to enhance the diagnosis and
management of AD and MCI [9] [10].

To address these challenges, deep learning approaches
have become essential for classifying and diagnosing neu-
rological conditions such as NC, MCI, and AD. Various
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studies have employed DL models to enhance diagnostic
accuracy. For instance, Liu et al. [11] leveraged convolutional
neural network (CNN) layers, to extract features from brain
slices, processed by a gated recurrent unit (GRU), in order
to integrate inter-slice features, achieving an area under the
curve (AUC) of 95.3% for AD vs. NC and 83.9% for MCI vs.
NC. Ding et al. [12] applied the InceptionV3 model [13] with
ImageNet weights [14] for extraction of AD brain features,
achieving a detection rate of 87.5% for AD and 61% for MCI.
Zhang et al. [15] employed CNNs, pooling layers, and fully
connected networks (FCNs) to extract information and corre-
late it with clinical scores, achieving an 84.2% detection rate,
which Kim et al. [16] improved to 91.02% by substituting a
global average pooling layer for FCNs to classify AD and NC
from multi-slice PET images. In the preceding year, Song
et al. [17] introduced a U-shaped multi-scale architecture
that effectively extracts inter-slice and intra-slice features,
enhancing the accuracy of AD and NC classification to 92%
and achieving 73.01% and 72.6% accuracy for AD vs. MCI
and MCI vs. NC, respectively.

Despite these advancements, significant limitations persist
in the existing approaches. First, these methods often fail to
capture comprehensive features from PET images, primarily
extracting local features and overlooking crucial global con-
textual information. This limitation hinders early detection
of AD, which is vital for effective intervention and man-
agement. Secondly, many models struggle with classification
confidence, particularly when distinguishing between closely
related classes due to the subtle variations in PET image
features. The use of traditional cross-entropy loss impairs
this issue by not effectively managing data points near the
decision boundary. To address these challenges, Chen et al.
[18] shifted to a contrastive loss approach within a double-
attention-based CNN framework, although this method de-
mands extensive training time and relies heavily on effective
data augmentation strategies. These challenges underline the
need for ongoing development in DL techniques to improve
the robustness and accuracy of diagnosing AD and MCI
using PET imaging.

Addressing these constraints, the Vision Transformer
(ViT) model [19] presents a promising alternative with a self-
attention mechanism that captures long-range dependencies,
potentially outperforming traditional CNNs in feature extrac-
tion. However, ViT faces challenges such as an inductive bias
problem and higher data requirements, which complicates
its application in the medical field where data acquisition is
severely restricted. Consequently, most approaches employ
supervised fine-tuning or self-supervised learning, and al-
though some adopt transfer learning, its effectiveness is often
limited by significant domain shifts [20] [21].To overcome
these challenges, researchers have explored combining a
CNN with ViT to leverage both local and global feature ex-
traction capabilities [22] [23] [24], although these approaches
demand significant computational resources. Another inno-
vative solution, MobileViT [25], targets efficient operation
on mobile and edge devices by balancing local and global

information processing with fewer model parameters, but
this design may not fully meet the accuracy requirements
for complex PET image classification of MCI and AD [26].
These efforts underscore the critical need for innovative
approaches that balance efficiency and precision in medical
imaging diagnostics.

In this paper, we introduce a novel DL model, ResGLPyra-
mid, consisting of the Tri-Convolutional-Transformer (TCT)
and Global Local Attention Module (GLAM) module, de-
signed to enhance the diagnosis of MCI and AD using PET
images. The proposed DL model combines the strengths of
the CNN, MobileViTv3, and GLAM module to address the
challenges inherent in PET imaging diagnostics. This model
is precisely structured to extract local and global features,
effectively solving the inductive bias problem associated with
traditional transformer models and markedly increasing AD
and MCI classification accuracy. Our significant contribu-
tions are as follows:

1) To improve the detection of MCI and AD by over-
coming the challenges of analyzing PET images with
a complex nature, we proposed ResGLPyramid which
incorporates TCT and GLAM modules to process lo-
cal information and leverage global contextual under-
standing effectively. ResGLPyramid employs patch-
based self-attention to capture long-range dependen-
cies and fuse them to expand the scope of model
attributes. This strategy allows for a comprehensive
analysis by capturing detailed and predominant pat-
terns in PET images and significantly helps the model
identify subtle nuances associated with early stage of
AD to overcome redundant information, boosting di-
agnostic accuracy. The ResGLPyramid model achieved
an accuracy of 92.75% in the classification of MCI
and AD individuals, which is 3.44% higher than the
state-of-the-art (SOTA) method [18]. The results show
that predicted regions of interest are interpretable and
consistent with the AD lesion region in clinical studies.

2) To the best of our knowledge, this is the first DL model
that employs label smoothing with cross-entropy, re-
ferred to as softened cross-entropy (SCE), to optimize
the objective function in orders to diagnose AD’s early
stage. This technique effectively increases the distance
between feature representations of different classes
while minimizing the gap within the same class, en-
hancing the model’s robustness and accuracy in distin-
guishing between closely related diagnostic categories.
This combination addresses the problem of overfitting
caused by highly similar PET image slices. Compared
to using only cross-entropy with the ResGLPyramid
model, the proposed combination can achieve 6.5%
higher accuracy in classifications between AD and NC,
6.4% higher accuracy in classifications between AD
and MCI, and 6.23% higher accuracy in classifications
between NC and MCI. This technique can be applied
in various similar medical fields and is beneficial for
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FIGURE 1. (a) Overview of the Proposed ResGLPyramid Model’s three stages, each with TCT modules. At the end of the
third stage, the GLAM module is integrated to apply channel and spatial attention to the deep-layer feature maps. (b) The TCT
module, consists of tri-convolution block and MobileViTv3 for extracting local and global contextual information and fusing
them. (c) All four attentions are applied to an input feature map at 256x8x8 to extract more features related to the metabolic
activities across the brain.

diverse diagnostic and treatment scenarios.

The architectural design of the ResGLPyramid model is
well-suited to handling low-resolution PET images, provid-
ing detailed and accurate diagnostic insights that are essential
in clinical environments where high fidelity in image analysis
is crucial. The proposed model enhances diagnostic accuracy
for AD and MCI as well as offers a scalable and efficient
solution adaptable to similar challenges across various med-
ical imaging fields by holding significant potential for broad
application in clinical practice, contributing to better patient
outcomes through earlier and more precise diagnosis.

The rest of this paper is organized as follows: Section II
presents the methodology of the proposed ResGLPyramid,
Section III analyzes and discusses the experimental results,
and Section IV provides concluding remarks.

FIGURE 2. Random brain 18F-FDG PET random patient
slices of NC, MCI, and AD.

II. PROPOSED METHODOLOGY

The Alzheimer’s Disease Neuroimaging Initiative (ADNI)
dataset (adni.loni.usc.edu) collected data from 720 subjects
using 18F-FDG PET imaging, which included 212 subjects
diagnosed with AD, 290 with MCI, and 218 with NC.

VOLUME 4, 2016 3

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3418508

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 1. Demographics of the subjects in this study.

Dataset/
Modality Class Cases

(Male/Female)
Age

(Mean ± Std)
MMSE

(Mean ± Std)

ADNI/
PET

NC 130/88 73.5 ± 8.1 28.9 ± 1.3
MCI 165/125 74.3 ± 7.8 27.2 ± 2.3
AD 122/90 72.2 ± 9.3 23.0 ± 2.0

Each subject underwent a 30-minute dynamic 3D PET scan
for six five-minute frames, initiated 30-60 minutes after
an intravenous injection of 185MBq ± 10% of 18F-FDG.
Random sample images from each class displayed in Figure
2 highlights the distinct imaging characteristics observed
in the stages of cognitive decline. The preprocessing of
these images was precisely performed using the Statistical
Parametric Mapping tool SPM12 [27], and involved spatial
normalization to the Montreal Neurological Institute (MNI)
template, having a dimensions of 91× 109× 91 with a voxel
size of 2 ×2 × 2mm3, intensity normalization based on the
global mean, and skull stripping with a PET mask to isolate
brain tissue, followed by smoothing with a Gaussian filter
of 8 mm full width at half maximum (FWHM) [28]. This
rigorous standardization facilitates a uniform analysis frame-
work crucial for subsequent diagnostic evaluations detailed
in the demographic data and Mini-Mental State Examination
(MMSE) scores in Table 1.

To further improve neuroimaging accuracy, we developed
the ResGLPyramid model, shown in figure 1(a), which em-
ploys the tri-convolution transformer (TCT) module with a
residual connection to effectively extract and integrate local
and global features throughout the analysis. The GLAM
enhances this process by refining neuroimaging data using
attention mechanisms, culminating in comprehensive diag-
nostic output through a multilayer perceptron (MLP) layer,
as seen in Figure 2. This integrated approach ensures precise
and reliable diagnostic predictions, advancing the field of
neuroimaging in detecting cognitive decline. The details of
each component are as follows.

A. CONV STEM
The purpose of Conv Stem is to reduce the computational
load, highlight essential features, prevent overfitting, and
detect features at multiple scales [29]. Given the properties
of the image, we selected a small kernel size of 3×3 for con-
volution, with a stride of 2 and padding of 1. The number of
output channels, denoted as C, is set to 64. This initial step is
particularly effective in processing neuroimages, which often
contain redundant information, thus enabling the extraction
of relevant features. Subsequently, batch normalization (BN)
is applied, followed by a 3 × 3 max pooling operation to
produce X ∈ RC×H

2 ×W
2 , where X represents the output

features from this block, H is the height and W is the
width of the input image. These features are then fed into
a three-stage network comprising a TCT module for further
processing.
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FIGURE 3. An illustration of the TCB block that consists
of depth-wise separabale, simple and point-wise convolution
for local spatial features extraction.

B. THE PROPOSED TCT MODULE
The tri-convolution transformer (TCT) module as shown in
figure 1(b), integrates three convolution blocks to encode
local information alongside patch-based self-attention mech-
anisms for capturing global context and fusing them. This
synthesis is essential in a clinical environment for accurate
diagnosis of AD [24], because it provides a nuanced view
of both specific regions of interest (ROIs) and broader brain
structures, including cerebrospinal fluid and the hippocam-
pus. The TCT module enhances this process by incorporating
residual connections that facilitate information flow via skip
paths, thus improving integration efficiency. Structurally, the
network is designed with three stages: the first two stages
contain two TCT modules each, while the final stage includes
three TCT modules. This configuration produces feature
maps with increasing channel dimensions C of 64, 128, and
256 across the stages, allowing detailed and comprehensive
extraction and integration of both local and global informa-
tion critical for AD diagnosis.

1) LOCAL FEATURE EXTRACTOR
The clinical heterogeneity of AD and the different absorption
rates cause PET scans to vary among individuals which com-
plicates diagnosis. We apply the TCB, as shown in Figure
3. to capture range of features from different regions of the
brain, enhancing detection of subtle pathological changes.
This helps to minimize data redundancy and prioritizes
critical diagnostic features, leading to precise and efficient
analysis. The module processes features with dimensions
C × H

L × W
L , and L values of 4, 8, and 16. The processing

begins with depth-wise separable convolution (DWConv),
followed by a 3 × 3 kernel convolution, and inference with
point-wise convolution using a 1 × 1 kernel. The first two
stages of this sequence incorporate batch normalization and
the Gaussian error linear unit (GELU) activation function
to enhance feature integration, as detailed in Equations 1-3.
After the final convolution, batch normalization is applied
in isolation, setting the stage for the subsequent attention
mechanism. The output from this attention block is then
seamlessly integrated with residual output, optimizing the
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feature processing workflow for detailed and effective analy-
sis.

XL = Gelu (BN (DWConv3×3(X))) (1)

XL = Gelu (BN (Conv3×3(XL))) (2)

XL = BN (Conv1×1(XL)) (3)

where XL is the local feature map.

.

.

.

Unfolded Ordered 
Patches

N
O

R
M

M
H

SA

N
O

R
M

FF
N

.

.

.

Self-Attention Mechanism
Folded Ordered

 Patches

Transformer

XL XTrans

XTrans XTrans

FIGURE 4. The transformer block first inputs features that
are unfolded then employs normalization (NORM), multi-
head self-attention (MHSA), and a feed forward network
(FFN) for global representation extraction that is folded back
into the same dimension as the input

2) GLOBAL FEATURE EXTRACTOR AND FUSION
We utilize the MobileViTv3 [30] module to employ spatial
inductive bias to consistently capture long-range feature de-
pendencies across spatial pixels and patch order, as depicted
in Figure 2(b). That figure illustrates the process of global
information extraction and fusion. Locally extracted fea-
tures from the TCB undergo convolution through depth-wise
3 × 3 and point-wise 1 × 1 convolutions, resulting in output
XL ∈ RD×H

L ×W
L with channel dimension D and spatial

dimension H . These features are then fed into a transformer
block, detailed in Figure 4., where XL is segmented into N-
ordered, non-overlapping patches p, reshaping the dimension
to D × p×N , with p representing the area of each patch
(wh), and N , the total number of patches (WH

p ). Each
patch, with height h and width w not exceeding the kernel
size k, passes through normalization (Norm), multi-head self
attention (MHSA), and feed-forward network (FFN) layers.
After processing, these patches are reassembled back into
the original dimension to produce XTrans, which is further
processed through depth-wise convolution to generate XG.
Extracted features XL and XG are then concatenated dur-
ing the fusion step and subsequently processed with point-
wise 1 × 1 convolution to produce XTCT, with dimensions
RC×H

L ×W
L , where XTCT, XTrans, and XG denote the outputs

from their respective processes. The sequence of operations
from capturing long-range dependencies to final output of the
feature maps is outlined in equations 4 to 11, highlighting the
comprehensive fusion of local and global information within
the TCT module.

XL = DWConv3×3(XF ) (4)

XL = Conv1×1(XL) (5)

XTrans = MHSA(LN(XL(p)) +XL(p) (6)

XTrans = FFN(LN(XTrans(p))) +XTrans(p) (7)

XG = DWConv3×3(XTrans) (8)

XGL = Fusion(XG, XL) (9)

XTCT = Gelu (XGL +XL +X) (10)

C. THE GLOBAL LOCAL ATTENTION MODULE (GLAM)
We incorporated the GLAM [31] into our network to enhance
representation learning and enrich embedding by applying all
attention i.e., local channel attention, global channel atten-
tion, local spatial attention, and global spatial attention, as
shown in Figure 1(c). The module captures the subtle early
signs by identifying hypometabolism in specific brain regions
and contextualizing these findings within the overall brain
metabolism. Initially applied in image retrieval challenges,
the GLAM module shows significant improvements by em-
ploying a comprehensive approach to attention, utilizing a
weighted vector to optimize the attention process. In our
implementation, we adapted the traditional global average
pooling to adaptive average pooling for its effectiveness in
handling pooling tasks. Features from XTCT with a di-
mension of 256 × H

16 × W
16 are the input for the GLAM

block, where local, global, and incoming features are equally
weighted by using wl,wg and w before fusion. This integra-
tion allows selective enhancement of the most informative
features, which are subsequently refined through adaptive
average pooling using a 1 × 1 kernel, achieving superior
feature extraction and pooling outcomes.

In the end, a two-layer multilayer perceptron (MLP) is
utilized to perform binary classification. The extracted XTCT

features are flattened and fed into the MLP, which comprises
dense layers with 128 and 2 hidden units, respectively. Each
layer is equipped with batch normalization and a GELU
activation function.

D. LOSS FUNCTION
Label smoothing is implemented to prevent overfitting and
to address the issue of redundant information across slices
[32], which helps the model avoid overconfidence in its
predictions. Our model employs the SCE loss function, from
the PyTorch Image Models library (TIMM) [33]. SCE loss,
for a batch of predictions x and the corresponding true labels
y, is evaluated by obtaining the log probabilities (LP) from
applying the log softmax function to the logits produced by
the model. Following this, the negative log likelihood (NLL)
loss is computed for the actual class labels.

LPi = log(p(x)i) (11)

NLLLoss = − 1

N

N∑
i=1

log(p(x)yi) (12)

where p(x)i = exi∑K
j=1 exj

, p(x)i is the probability of the
i-th element and K is the number of classes. N is the number
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of instances in the batch, and yi denotes the true class for the
i-th instance.

To further refine the model’s predictions, label smoothing
is applied by averaging the log probabilities across all classes.
This ensures that the probability mass is evenly distributed
among all classes, contributing to a more balanced learning
process.

SmoothLoss =
1

N

N∑
i=1

LPi (13)

The final SCE loss is computed as a convex combination
of the NLL loss and Smooth Loss, with smoothing parameter
α adjusting the balance between these two components,
enhancing the model’s generalization capabilities.

SCELoss = (1− α) · NLLLoss + α · SmoothLoss (14)

where α = 0.2 is the smoothing factor that balances
the trade-off between adhering to the true class distribution
and promoting probability distribution uniformity across all
classes.

III. EXPERIMENTS AND DISCUSSION
In this section, we discuss the experimental environment,
evaluation metrics, and experimental results obtained with
the proposed model, including a visualization of the results
and an ablation study to underscore the importance of each
component.

A. EXPERIMENTAL ENVIRONMENT
Our experiments were conducted on a Windows system
equipped with 32 GB of RAM and an Nvidia RTX 3060
Ti GPU, utilizing the PyTorch framework for its proficient
handling of neural networks. To optimize performance, we
set a batch size of 8 and an initial learning rate of 0.001,
adjusted by an exponential learning rate scheduler with a
0.95 decay rate. We also used the Adam optimizer with beta
coefficients of 0.9 and 0.99 for weight adjustments. An early
stopping mechanism monitored validation loss to mitigate
overfitting. The dataset was distributed at a 0.8:0.1:0.1 ratio.
The model’s reliability was ensured through 10-fold cross-
validation, with training limited to 120 epochs to prevent
overfitting while allowing adequate learning depth. Data aug-
mentation techniques such as horizontal flipping, zooming,
and random rotation were applied to enhance the robustness
of the training process.

B. EVALUATION METRICS
The model’s performance was assessed using several metrics,
such as specificity (Spec) to measure the proportion of true
negatives correctly identified, sensitivity (Sen) or True Pos-
itive Rate (Tpr) to measure the proportion of true positives
correctly identified, F1-score to evaluate the harmonic mean
of precision and sensitivity to indicate the balance between
them, Accuracy (ACC) to assesses the overall correctness

of predictions, and AUC to predict the model’s ability to
discriminate between classes(values close to 1 indicate ex-
cellent discrimination and values close to 0.5 suggest random
guessing). These metrics are vital for evaluating the precision
and reliability of the model and are defined as follows:

ACC =
TP + TN

TP + TN + FP + FN
(15)

Sen =
TP

TP + FN
(16)

Spec =
TN

TN + FP
(17)

Pre =
TP

TP + FP
(18)

False Positive Rate (FPR) =
FP

TN + FP
(19)

F1-Score = 2× Pre × Sen
Pre + Sen

(20)

AUC =

n−1∑
i=1

(Fpri+1 − Fpri) · (Tpri + Tpri+1)

2
(21)

These metrics are calculated based on the counts of true
positives (TP), true negatives (TN), false positives (FP),
and false negatives (FN). The AUC is particularly derived
from the relationship between the Tpr and the False Posi-
tive Rate (Fpr), providing a comprehensive view of model
performance across different thresholds and The variable n
represents the total number of data points on the Receiver
Operating Characteristic (ROC) curve.

C. EXPERIMENT RESULTS AND COMPARISON
The receiver operating characteristic (ROC) curves for our
proposed model, illustrated in Figure 5. showcase its perfor-
mance across three binary classifications: AD vs. NC, AD
vs. MCI, and MCI vs. NC. The highest AUC recorded was
96.90% for the AD vs. NC classification, with the AUC for
AD vs. MCI and MCI vs. NC at 92.48% and 93.08%, re-
spectively. Notably, the ROC curve for AD vs. MCI showed a
steep rise between the false positive rates of 0.1 and 0.6, high-
lighting the model’s sensitivity in distinguishing between AD
and MCI, thus yielding lower test errors. Overall, the model
effectively differentiated between the most challenging cases.

In comparing our results with SOTA methods in Table 2.,
our model demonstrated superior performance in classifying
AD vs. MCI, AD vs. NC, and MCI vs. NC using deep neural
network models, encompassing both 3D and 2D approaches.
While a direct comparison is limited by the variance in
subject data across studies, our evaluation employed 10-fold
cross-validation to ensure robustness. Previous 3D network
studies by Song et al. [17] and Gao et al. [35] reported lower
accuracies (92.1% and 88.8% respectively) for AD vs. NC
due to redundant information in 3D brain data volumes and
the high computational costs associated with training these
networks. Studies employing 2D slice images, however, such
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TABLE 2. Comparison of the proposed model with other DL models on the ADNI database.

Reference Year Subjects Performance Metrics (%)

AD MCI NC Sensitivity Specificity Accuracy AUC F1-Score

Pan et al. [34] 2020 237 - 242 90.32 95.49 93.13 97.11 –
Kim et al. [16] 2020 141 – 348 87.93 93.57 91.02 – –
Zhang et al. [15] 2019 91 – 101 96.58 95.39 98.47 98.61 –
Liu et al. [11] 2018 93 – 100 91.40 91.00 91.20 95.30 –
Song et al. [17] 2021 95 – 126 89.13 94.27 92.10 – –
Gao et al. [35] 2021 196 – 227 86.10 90.80 88.80 94.30 –
Tuan et al. [36] 2022 323 – 497 90.04 93.54 91.83 96.84 –
Chen et al. [18] 2023 124 – 212 97.18 96.29 98.54 98.76 –
Our proposed – 218 – 212 96.10 97.50 96.90 96.90 96.20
Liu et al. [11] 2018 – 146 100 78.10 80.00 78.90 83.90 –
Zhang et al. [15] 2019 – 200 101 84.54 75.36 84.62 87.44 –
Song et al. [17] 2021 – 160 126 72.81 70.56 72.00 – –
Chen et al. [18] 2023 – 192 84 93.13 91.66 93.56 94.70 –
Our proposed – – 290 212 93.80 92.47 93.08 93.13 92.61
Zhang et al. [15] 2019 91 200 – 94.97 79.24 84.20 87.92 –
Song et al. [17] 2021 95 160 – 57.46 89.69 78.30 – –
Chen et al. [18] 2023 124 192 – 90.59 89.86 89.31 90.69 –
Our proposed – 212 290 – 90.80 94.14 92.75 92.48 91.28

as those by Kim et al. [16], Zhang et al. [15], Liu et al.
[11], Yonglin et al. [18], and Pan et al. [34] listed in Table
2., provided more promising results, with improvements in
sensitivity, specificity, and accuracy in all cases, particularly
for difficult classifications like MCI vs. NC and AD vs. MCI.

In this study, we propose a 2D-slice AD neuroimage
prediction model that synergizes local and global features to
refine early AD diagnosis. The model’s architecture, com-
bining convolutional operations’ inductive bias with self-
attention mechanisms on patches, markedly enhanced per-
formance, especially in the complex cases AD vs. MCI and
MCI vs. NC. Notably, our model showed accuracy and AUC
improvements (3.44% and 1.79%, respectively, for AD vs.
MCI) as well as sensitivity and specificity improvements
(0.67% and 0.81%, respectively) for MCI vs. NC in these
difficult classifications, underscoring the value of integrating
local and global information to effectively capture brain
metabolic activities. Although the AUC for AD vs. NC was
slightly lower by 1.86% compared to other methodologies,
our model required less data owing to the generalization
capabilities of CNNs, suggesting the potential for further
improvements with more diverse training datasets.

D. MODEL INTERPRETATION AND VISUALIZATION

1) FEATURE VISUALIZATION

t-distributed stochastic neighbor embedding (t-SNE) [37] is
a non-linear dimensionality reduction technique employed
to visualize high-dimensional features in low-dimensional
spaces. This method, illustrated in Figure 6., arranges similar
data points close to each other while positioning dissimilar
ones at a distance. It facilitates visualization of the feature
distribution of network predictions to assess the effectiveness
of the network in learning PET lesion features. Figure 6(c)
illustrates AD vs. MCI clusters in close proximity, with some
points existing within the opposing cluster. This minimal
variation between the two class features complicates the

FIGURE 5. ROC curves for the three binary classifications
in this paper.

model’s predictive accuracy. Such a difficulty is mirrored in
clinical findings, emphasizing the challenge of distinguishing
between these conditions. For the classification of AD vs.
NC, Figure 6(a) reveals optimally aggregated features, indi-
cating the model’s high sensitivity and precision. Meanwhile,
Figure 6(b) displays well-defined clusters for MCI vs. NC,
demonstrating the model’s effectiveness in discriminating
between these closely related cases with very few data points
positioned within the alternate cluster.

2) MODEL INTERPRETATION
The class activation map is employed in our proposed model
to identify the regions of focus by following the methodology
outlined in [12]. Figure 7(a) presents heatmaps images of AD
slices, and figures 7(b), (c), and (d) illustrate the progression
from initial convolution features to deeper layer feature maps.
These colormaps, generated using the JET algorithm, clearly
highlight the model’s concentration on critical brain areas for
diagnosing AD, such as the posterior temporal lobe, posterior
cingulate cortex, hippocampus, thalamus, parahippocampal
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(a) (b)

(c)

FIGURE 6. t-SNE visualizations for different classes: (a) AD vs. NC, (b) MCI vs. NC, (c) AD vs. MCI.

TABLE 3. The ablation Study of w/o SCE, w/o global features, and w/o the GLAM.

Binary Classification Proposed Model Sen(%) Spec(%) ACC(%) AUC(%) F1-Score(%)

AD vs. NC

TCB 70.83 77.26 74.30 74.00 70.90

TCB+SCE 79.10 82.10 80.80 80.50 78.31

TCT+SCE 89.81 93.22 91.70 91.32 90.20

TCT+GLAM+SCE 96.10 97.50 97.00 96.90 96.20

AD vs. MCI

TCB 68.90 74.50 71.90 71.40 70.10

TCB+SCE 75.40 80.60 78.30 78.00 76.60

TCT+SCE 85.70 90.20 88.10 87.80 86.80

TCT+GLAM+SCE 90.81 94.14 92.75 92.48 91.28

MCI vs. NC

TCB 70.12 75.433 72.98 72.67 70.59

TCB+SCE 76.38 81.27 79.21 78.90 77.98

TCT+SCE 87.56 89.65 88.89 88.58 87.40

TCT+GLAM+SCE 93.80 92.47 93.08 93.13 92.61

gyrus, and supramarginal gyrus. The maps reveal a sharpened
focus on these regions as the model analyzes deeper layers.
Figure 7(e) displays heatmaps images from an MCI subject,
and figures 7(f), (g), and (h) show visualizations of the deeper
layers. Initially, broader regions were targeted compared
to the AD subjects, but as the depth increases, the focus
narrows distinctly to areas differentiating MCI from AD.
These include the superior parietal regions, angular gyrus,
right superior frontal gyrus, precuneus regions, marginal
sulcus, and bilateral postcentral regions. This focused sen-
sitivity aligns with clinical findings, confirming that results

are both visualizable and interpretable, ensuring the model’s
relevance and applicability in clinical environments.

E. ABLATION STUDIES OF THE PROPOSED MODEL

In this section, we detail the ablation studies conducted to
evaluate the individual contributions of different components
within our proposed model. Initially, the model was trained
using only triconvolutional blocks (TCB) with traditional
cross-entropy (CE) loss to establish a baseline. To mitigate
the issue of redundant information between slices and to curb
overfitting, we incorporated SCE loss. Subsequently, global
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIGURE 7. From AD slices (a) shows heatmaps images, whereas (b), (c), and (d) show colormaps of deep-layer features; from
MCI slices (e) shows heatmaps images, whereas (f), (g), and (h) show colormaps from deep layers of the proposed model.

features were derived from locally encoded features using a
transformer, enhancing the model’s performance. The final
integration involved the GLAM at the end of the backbone
network to extract and refine features into 256×1×1 vectors,
which were then processed through the MLP layer.

1) ABLATION EXPERIMENTS
• Effectiveness of the TCB and SCE Loss: Table 3.

shows the results for each model component. Incorpo-
rating TCB with SCE loss improved the AUC by 6.5%
for AD vs. NC, by 6.7% for AD vs. MCI, and by 6.2%
for MCI vs. NC. This enhancement indicates the TCB
effectively generalizes features, reducing the tendency
to overfit.

• Global Feature Integration: Further enhancements
were observed when global features were extracted and
fused with local features, capturing long-range depen-
dencies. This step notably increased the AUC by 11%
for AD vs. NC, 9.8% for AD vs. MCI, and 9.5% for
MCI vs. NC. The integration of global features is pivotal
for diagnosing early stages of AD, demonstrating the
critical role of comprehensive feature analysis in cap-
turing brain metabolic activity.

• The GLAM Contribution: The GLAM applied to fea-
tures from the backbone network, significantly extracted
relevant information through focused attention mecha-
nisms and adaptive average pooling, achieving feature
dimensions at 256 × 1 × 1. This enhancement led to
a 5.58% increase in AUC for AD vs. NC and further
gains of 4.68% and 4.55% for AD vs. MCI and MCI vs.
NC, respectively. The results underscore the importance

FIGURE 8. AUC Results vs. alpha for smoothing in each
binary case.

of last-stage features in diagnosing early-stage MCI of
AD.

2) EFFECT OF PARAMETER ALPHA (α)

Figure 8. illustrates how varying the α parameter in the
SCE function affects the AUC results across different bi-
nary classifications. Increasing α values generally led to a
degradation of results in a non-linear manner. For AD vs.
NC, significant decreases highlight the distinct differences
between these conditions, aligning with clinical findings.
However, the variations for AD vs. MCI and MCI vs. NC
were less pronounced, with optimal results achieved at an
alpha of 0.2, emphasizing the sensitivity of the model to the
parameter settings.
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These ablation studies validate the effectiveness of each in-
tegrated component and parameter adjustment in our model,
illustrating their collective impact on enhancing the diagnos-
tic accuracy for Alzheimer’s disease and its precursors.

IV. CONCLUSION
In this paper, we introduced the ResGLPyramid model,
which is designed to diagnose early stages of Alzheimer’s
disease using 18F-FDG PET. The model incorporates TCT
modules, including convolution operations, MobileViTv3,
and skip connections, enabling it to capture local region
specifics and global contextual information on metabolic ac-
tivities across the brain. We employed softened cross entropy
to mitigate overfitting and enhance the model’s generaliz-
ability. Experimental results show the ResGLPyramid model
achieved an accuracy of 92.75% in the classification of MCI
and AD individuals, which is higher compared to the SOTA
method. In the future, we will further refine the model’s
ability to distinguish among the three diagnostic classes by
enhancing its feature extraction capabilities. Additionally, we
will boost AD detection rates and explore the application of
this approach across different imaging modalities. This future
work will enhance the diagnostic precision and utility of the
ResGLPyramid model in a clinical environment.
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