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ABSTRACT Experts have been researching different types of gait since the 19-century. The way people walk can give a 

myriad of clues as to the health of a person. Abnormal gait detection might help protect senior people from injury and reveal 

underlying health problem. In aging societies, the application of recognition of abnormal gait based on vibration signal is very 

useful, especially for those people who live by them own. Unlike other methods in the related research requiring image 

acquisition equipment and wearable device to identify relevant feature information, not even mention many are intrusive or 

too complicated for users. The proposed systematic prototype firstly uses foot vibration signals as the source for abnormal gait 

and fall detection. This paper investigates algorithmic aspects; the particular algorithm's framework involves gathering data 

from several artificial sensors. An altered version of the Dynamic Time Warping (DTW) algorithm computes the anomaly 

index after splitting the active portion into active elements and denoising the active elements. Next, the K-Nearest Neighbor 

(KNN) algorithm separates the anomaly indices into distinct groups and generates the projected values representing the user's 

gait. Ultimately, the predicted values are processed by the Hidden Markov Model (HMM), which then determines the user's 

gait. In the meantime, if an abnormality of gait arises for various experimental environments, subjects, and shoe types, etc., its 

corresponding index and the value representing the user's gait will also change in comparison to his or her normal gait, which 

will remain unaffected by the environment and the shoe type of the subject. As a result, the experiments in this paper are 

flexible. In the experiments, various sensor placements and subjects can also, to the greatest extent possible, reflect the 

algorithm's adaptability to these changes. 

 

INDEX TERMS Abnormal gait, Dynamic Time Warping (DTW), Hidden Markov Model (HMM), Vibration signal 

I. INTRODUCTION 

Internet of Things (IOT) has many potential applications 

and can be implemented in fields of smart homes, offering 

important features like identification recognition, sleep 

sensor, and fall protection etc. Moreover, this technology 

has tremendous application value in abnormal activity 

detection for older generation. China's seventh national 

census revealed that the proportion of the country's 

population over 60 years old rose to 264 million, or 18.7% 

of the total. By 2027, this percentage is anticipated to 

increase to 20% [1]. The world is currently seeing an aging 

trend, not just China. The United Nations released the 

World Social Report 2023 on January 12, 2023, which 

states that by mid-century, there would be 1.6 billion 

people worldwide who are 65 years of age or older. The 

number of individuals who are 80 years of age or older is 

predicted to increase much more quickly [2]. The trend 

requires spending more social resources in medical care to 

maintain the living quality of aging people. However, it is 

unrealistic to rely on more human resources under the 

context of working force shortage. Scientific aids and 

technology will help solve the problem in large scale. 

Recognizing the limitations imposed by societal and human 

resources emphasizes how urgent it is to look for scientific 

solutions to the problems an aging population presents. 

Among existing options, one important area of focus is the 

recognition of aberrant gait. The recognition of abnormal 

gait based on vibration signal is very useful to protect 

seniors from injury by revealing underlying health 

problems and timely informing caregivers. The way people 

walk can give a myriad of clues of health, as abnormal gaits 

are early signs of disease. The gait pattern of a hemiplegic 

patient, for example, is different from that of normal people 

in terms of movement pace, rhythm, symmetry and walking 

speed. Hence early disease detection and proper treatment 

can improve the quality of life for seniors.  
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Fall is one of the major issues which can endanger the lives 

of older people. According to[3], fall detection system 

helps solitary seniors with immediate medical care and 

support once a fall event happens. A well functioned fall 

detection system may reduce 80% of death risks and helps 

seniors live as long as possible. Numerous research studies 

investigate the use of wearable technologies, computer 

vision, sonar technology and radio frequency technologies 

to detect falls in everyday environment. Although wearable 

sensor provides accuracy and sensitivity for fall detection, 

it is not convenient as seniors wear sensors or tags 

everywhere[4]. Vision-based fall detection system operates 

by analyzing real-time movement with the fall-event 

judging criteria. However, computer vision technologies 

function best in confined space with good illumination and 

less obstacles. Moreover, vision-based technology violates 

people’s privacy, hence it is not applicable for large scale. 

Likewise, there are disadvantages of radio frequency 

technology. First, the costs for massive distribution of 

sensors outweigh the possible benefits[5]. Second, fall 

could not be detected by radio frequency technology before 

it really happens. Sound technology can detect fall in 

despite of background noises, still the environmental sound 

level has great impact on the accuracy of the audio system 

[6], especially in places nearby noise pollution source of 

rail station or highway. 

This paper introduces vibration signals to monitor and 

detect continuously floor vibrations produced by daily 

activities. Compared with the detection technologies 

mentioned above, the advantages are: firstly vibration is 

unaffected by environmental noise or space obstruction. 

Secondly there is no need to deploy massive sensors across 

place. Lastly people do not need to wear any devices with 

them. Encouragingly, the smart living system based on 

vibration can be built in IOT environment [7]. 

In our prototype, walking vibration and fall pattern are 

recorded to compose activity element sequences. Based on 

the analysis of sequences, our prototype may surmise 

whether fall event or abnormal gait occur. There are three 

major issues to be addressed in our research.  

(1) gait diversity: Many diseases affect gait and lead to walking 

patterns different from normal ones. In order to solve the 

problem of abnormal gait detection, we adopt DTW-KNN 

framework. Instead of applying general gait standard, the 

framework detects abnormal gait by comparison with personal 

normal gait in different walking patterns.  

(2)environmental interference: Unusual activity elements as a 

result of environmental interference do not necessarily mean 

walking abnormality; thereof this paper focuses on identifying 

abnormal gait with certain interference in various settings. In 

this prototype, we adopt HMM algorithm to increase the 

accurateness and robustness to identify abnormal or irregular 

strides, in particular in settings with interference. 

(3) rapid setup: The gait diversities may cause the problem that 

fixed training dataset and results are not adaptable to various 

situations. Our prototype is aimed to collect field data at a fast 

pace and train limited number of activity elements to realize 

functionality. 

This research discusses vibration based gait identification 

as non-wearable fall detection solution in settings with 

interference. Specifically, we updated the computing 

methods of DTW algorithm by changing the Euclidean 

distance to the Centre distance. The method of Segment 

Comparison is applied to compare activity elements. 

Furthermore, to evaluate the generality of our approach, we 

also apply it to the setting with interference. The proposed 

methods are carefully evaluated and the results show 

promising outcomes. The structure of this paper is as 

follows. After related works in part 2, related problems and 

the system design of each module are addressed in part 3. 

Experimental results are discussed in part 4 and the 

conclusion was given in the final part. 
II. RELATED WORKS 

There are many researches about gait recognition, in which 

computer vision based and wearable devices based gait 

recognition approaches are mostly common. Researches 

about vibration based gait recognition are less studied, 

mainly focusing on human identification and very few on 

abnormal gait recognition.  

By using image technology to process data collected by 2D 

or 3D devices, computer vision technique is able to analyze 

gait sequence. L. Yao [8] proposed a novel model of 

Skeleton Gait Energy Image (SGEI) based on the robust 

skeleton points produced from a two-branch multi-stage 

CNN network, which has been presented increased 

robustness for gait recognition. M. Babaee et al. [9] 

proposed a gait recognition algorithm from an incomplete 

gait cycle information by creating an incomplete Energy 

Image (GEI) from a few available silhouettes of a subject 

and reconstructing the complete GEI from incomplete GEI 

using a deep auto-encoder. Nguyen et al. [10] created a 

model based on human joint positions (Kinect skeleton), 

which shows that very promising in distinguishing normal 

and abnormal gaits. Zhang et al. [11] employed K-means to 

cluster all gait features obtained from a number of walking 

videos into 6 key gait features, and three Support Vector 

Machines (SVMs) are trained for walking pattern detection. 

Liao et al. [12] proposed a model of pose-based temporal-

spatial network (PTSN) for gait recognition by using Long 

Short Term Memory (LSTM) to analyze time sequence feature. 

Wearable sensors technology integrates Data Acquisition Unit 

into common objects that users carry with them, such as smart 

phone or shoe pad. Ronao et al. [13] proposed a two-stage 

continuous hidden Markov model (CHMM) approach for the 

task of human activity recognition using accelerometer and 

gyroscope sensory data gathered from a smartphone. Segundo 

et al. [14] analyzed and proposed a Human Activity 

Recognition (HAR) system based on Hidden Markov Model 

that uses accelerometer signals from different smartwatches 

and smartphones to identify six different human gaits, 

walking, running, standing, sitting, walking upstairs and 

walking downstairs. Wang et al. [5] presented gait assessment 

system based on SVM (support vector machine) classifier and 
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on gait variability-based features calculated from the hip and 

knee joint angle trajectories recorded using wearable IMUs, to 

distinguish healthy gait patterns from the pathological ones. 

Lin et al. [15] designed Smart Insole integrated with pressure 

sensors covering 80% of plantar to fully measure the pressure, 

offering precise acquisition of gait information and providing 

an unobtrusive way to perform the gait monitoring. 

Using the Method of Characteristics to identify Step Event and 

calculating eigenvalue, vibration signal based technique 

identifies gait modes by classifying eigenvalue into different 

groups. Dong et al. [16] introduced an indoor person 

identification system that utilizes footstep induced structural 

vibration. By sensing floor vibration and detects the footstep 

signal, the system extracts features from the signals that 

represent characteristics of each person's gait pattern. 

Clemente et al. [17] presented a smarter fall detection system 

that uses floor seismic data produced by footsteps and 

introduced a voting system among sensor nodes to improve 

accuracy in person identification. 

Based on the aforementioned related research, it is evident that 

the machine vision-based smart home system has high 

environmental requirements, including proper lighting, 

minimal obstacles, and privacy invasion; the wearable device-

based approach necessitates that users wear specific devices 

with them, which decreases user comfort and increases the risk 

of elderly users forgetting to wear them or wearing them 

incorrectly, which will invalidate the entire detection system 

because it cannot obtain the correct data; and the vibration 

signal solves the issues raised by abnormal gait recognition 

based on machine vision and wearable technology. It does this 

by not being blocked by obstacles inside buildings, not 

carrying privacy information, not requiring the detected target 

to wear additional equipment, and having a better tolerance to 

noise in the environment. 

This paper proposes a novel abnormal gait recognition method 

based on vibration signals and performs higher accuracy rate 

and better robustness in identifying abnormal gait & fall event. 
III. SYSTEM DESIGN 
A. Research Strategy 

As people have different gait modes, the problem of using the 

Method of Characteristics to detect abnormal gait is that it is 

difficult to find suitable eigenvalue to describe various gait 

modes. The signal before denoising in Fig. 1 is represented by 

a1 and the signal after denoising by a2. The denoised signal is 

much more readable and suitable for additional investigation, 

as can be observed. Furthermore, the active element 

waveforms of the two gaits in groups B and C differ 

significantly from one another. Group b represents a regular 

user, and group c is a simulated hemiplegic user: As for group 

b, there are two clear peaks in every activity element, 

separated by a purple dashed line in a2 and b3, and the first 

peak is highlighted by red square and the second by green. c1 

and c3 in group c are similar with group b, and in group c the 

first peak is highlighted by purple square and the second by 

orange square. However, the orange square in c2 and c4 show 

a period of small fluctuations that alternate with smaller peaks. 

From figure 1 it may conclude that there are regularity and 

similarity of activity elements in one type of gait mode, and 

yet there are obvious difference between various gait modes. 

Based on the characteristics, this research adopts the DTW 

algorithm to compare similarity among active elements. Each 

element is compared with two elements before it to calculate 

the abnormal index of difference and compose the abnormal 

index pair. Next KNN algorithm is applied identify whether 

the active element represents abnormal gait or any predicted 

value of certain situation. 
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FIGURE 1. Sketch map of active elements 

Environmental interference issue, such as stepping on loose 

floor, might cause active element of normal gait to be 

classified to abnormal gait. Hence using the predicted value of  

single active element to identify gait mode will cause 

recognition error [17][18]. However, this interference only has 

impact on the present active element and not on the successive 

elements. Therefore, integrating neighbor active elements as a 

whole complex is a way to correct the gait recognition result 

caused by environmental interference issue.  

In order to solve these problems, this research adopts HMM as 

the method to recognize gait mode. DTW-KNN algorithm 

produces the sequence of predicted values of active elements, 

named predicted sequence. HMM algorithm calculates the 

predicted complex number to produce the gait mode with the 

maximum probability, hence correcting the gait recognition 

deviation caused by interfered active element in most cases.  

Besides gait diversity and environmental interference issues, 

there are three more issues to be addressed to solve the 

problem of abnormal gait recognition based on vibration 

signal.  

The first question is the noise issue. All collected data contains 

certain level of noise, which could be produced by 

construction shaking, or electric appliances working. As 

background noise effects active elements, so this paper adopts 

the Wavelet Transform Denoising Algorithm to eliminate 

background noise.  

The second issue is related with active element separation. In 

practice, the major part of collected data is background noise, 

and only a small part is active elements that need segmentation 

and storage. So far, available segmentation methods can only 

identify the start of active element, and can hardly identify the 

end of it. Moreover, segmenting active element by defining the 

threshold value performs not well because of background noise 

interference. So in this paper we design a method based on the 

Second-Moment Method to identify and divide active elements.  

The last issue is about the active element selection. When 

multiple sensors coordinate together, various sensor data 
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collected might be inconsistent, so it is necessary to select the 

optimal active elements. This paper also develops an 

optimizing algorithm to solve this problem, explained later. 
B. System Framework 

The prototype contains four modules, including Data 

Sampling Module, Denoising Module, Predicting Module and 

Decision Module. Fig. 2 describes the relationships among 

those modules and the components in them. The hardware part 

of this system is made up of sensor units, which interact 

through WiFi network. The second moment method serves as 

the foundation for the segmentation and optimization 

techniques employed in the data sampling module. This study 

allocates some of the center node's tasks to the edge nodes and 

coordinates the dispersed working sensors to minimize the 

load of data transmission and increase the detection range, in 

addition to designing the active element segmentation method 

to store the data more efficiently. This is due to the fact that 

the majority of redundant data is present in the collected data, 

and retaining all the data will strain the device and consume 

storage capacity. A seismic detector, an amplifier, and a 

BeagleBone development board make up the hardware used 

for data acquisition. The BeagleBone development board, 

which is the most important component of the system, is a 

low-cost, low-performance, on-board Linux system, 

programmable embedded development board, around which 

the entire system is built. The wavelet thresholding method is 

applied in the Denoising Module to eliminate background 

noise and enhance the signal to noise ratio. The Predicting 

Module is a architecture of DTW-KNN framework. DTW 

calculates abnormal index of active element, and then KNN 

classifies and produces the predicted value of the active 

element. The Decision Module uses HMM to analyze 

predicted sequence to identify gait mode. 
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Sensorn
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FIGURE 2. System framework 

 
C. Hardware Sensors 

The hardware for collecting vibration data includes: sensor 

unit as edge node and personal computer as center node. As 

indicated from fig.3, every edge node is composed by three 

major parts, i.e. seismometer, amplifier and Beagle Bone 

development board. The seismometer detects vibration signal 

with 200Hz sampling frequency, while the amplifier amplifies 

the original sample signal by enhancing the ratio of signal to 

noise. The Beagle Bone development board is the single chip 

computer embedded with Linux system, which operates 

various processing programs. BeagleBone is a powerful, low-

cost, open-source Linux computing platform with processor 

speeds of up to 2 billion instructions per second, providing 

users with ample computing power for a variety of complex 

tasks. Compared to other similar products, the cost of the 

BeagleBone is lower, usually between $45~$55, which makes 

it ideal for prototyping and product development. It provides 

standard interfaces for many electronic devices for easy 

connection to other hardware components, modules, and USB 

devices. At the same time, the BeagleBone has low power 

consumption, with a power consumption of only about 1 watt 

(when idle) and a maximum peak power consumption of only 

2.3 watts, which helps to save energy and extend battery life. 

By using daughter boards and USB devices, users can easily 

expand the functions and interfaces of the BeagleBone to meet 

the needs of different application scenarios. In addition, 

BeagleBone has a large number of innovator and enthusiast 

forums where users can share experiences, exchange 

questions, and get technical support and guidance. As open-

source hardware, BeagleBone supports open-source software 

tools and applications, providing users with greater flexibility 

and freedom. When equipping edge node, seismometer is 

fixed by wax oil to the floor to better collect the high frequency 

vibration signal [19]. 

 

FIGURE 3. Edge node composition 

D. Data Acquisition Module 

1) ACTIVE ELEMENT SEPARATION 

𝑆𝑛 = {𝑥1, 𝑥2, 𝑥3,⋯ , 𝑥𝑛−1, 𝑥𝑛} indicates the sample sequence, 

𝑥𝑖(1 ≤ 𝑖 ≤ 𝑛) refers to the sample value at time 𝑖. Here the 

range of sample value is set as 0 ≤ 𝑥𝑖 ≤ 1.8. 

The active element is the valid part in a sample sequence, i.e. 

the sub-sequence contains user’s activity data. This research 

adopts the second-moment method to calculate separation 

point 𝑝，which satisfies the following conditions:  

𝑚2 =
1

𝑁
∑ (𝑥𝑖 − 𝜇)

2𝑝+𝑁
𝑖=𝑝 ≥ δ                        （1

） 

𝑁  indicates the size of time window, 𝜇 =
1

𝑁
∑ 𝑥𝑖
𝑝+𝑁
𝑖=𝑝 . This 

paper chooses 100 millisecond as the window size, which 

contains 20 sample values (𝑁=20), to calculate separation 

point of active element. In this paper, considering the 

computing power of the BeagleBone edge device and the gait 

characteristics of the elderly in the room, 100ms is selected as 

the window size, which mainly captures the effective vibration 

signal in the complete footsteps of the elderly, rather than 

capturing the whole process. When 𝑚2> δ (δ is the threshold)

，then this point is determined as a separation point. Here the 

threshold is set as three times of the standard deviation of 

background noise, i.e. for a sampling sequence of background 
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noise without active element, 𝑆𝑚 = {𝑦1, 𝑦2, 𝑦3, ⋯ , 𝑦𝑚−1, 𝑦𝑚}
，the threshold value δ is given as： 

δ = ε√
∑ (𝑦𝑖−𝑦̅)

2𝑚
𝑖=1

𝑚−1
           （2） 

𝑦̅ is the sample mean，and ε refers to threshold factor, here 

ε=3. The louder is the accidental noise in background, the 

greater value of ε will be. 

After calculation, this paper has a sequence of separation 

points, given as 𝑃𝑠 = {𝑝1, 𝑝2, 𝑝3, ⋯ , 𝑝𝑠−1, 𝑝𝑠}. 𝑝𝑗(1 ≤ 𝑗 ≤ 𝑠) 

indicates the value of the 𝑗 th separation point, shown in 

Fig.1(a1). Here only 𝑝1 and 𝑝5 are necessary in the sequence 

𝑝1~𝑝5  for separating active element. So these two are 

effective points and 𝑝2~𝑝4 are redundant points. An effective 

point 𝑝𝑗 satisfied the follows: 

𝑝𝑗+1 − 𝑝𝑗 ≥ γ𝑁, 2 ≤ 𝑗 < 𝑗 + 1 ≤ 𝑠 − 1 

γ is the separation factor, and here γ = 3. Moreover, the first 

point 𝑝1 and the final 𝑝𝑠  are always effective. Then this paper 

has 𝑃𝑡 as sequence composed by effective points, and every 

two points may separate an active element  𝐴𝑖 , defined as 

follows： 

𝐴𝑖 = 𝑆𝑝2𝑖−1,𝑝2𝑖
= {𝑥𝑝2𝑖−1 , 𝑥𝑝2𝑖−1+1, 𝑥𝑝2𝑖−1+2, ⋯ , 𝑥𝑝2𝑖−1, 𝑥𝑝2𝑖}, 𝑝 ∈ 𝑃𝑡 , 1 ≤ 𝑖

≤
𝑡

2
 

Moreover, one active element is inadequate to test which 

edge node produce the best element, hence the amount of 

signal energy is considered to make decision. This research 

adopts Fast Fourier Transform (FFT) to calculate amount of 

energy by converting active element from time domain to 

frequency domain. As amount of energy reflects in general 

the intensity of a signal, so the energy level 𝐸𝑖 of element 𝐴𝑖  
is given as:    

                   𝐸𝑖 = ∑ |𝑥𝑙|
2 , 𝑥𝑙 ∈ 𝐶𝑂𝐹𝐹𝑇(𝐴𝑖)                      （3） 

𝐶𝑂𝐹𝐹𝑇(𝐴𝑖)  indicates the coefficient of of 𝐴𝑖  in FFT 

calculation. The edge nodes will upload a two-tuple 𝐴𝐸𝑖 =
(𝐴𝑖 , 𝐸𝑖) to center node, where the active element selection will 

be processed next. 

2) ACTIVE ELEMENT SELECTION 

 The algorithm in this research is developed on Network Time 

Protocol (NTP) , and all edge node synchronizes with the 

central node through NTP. A data storage is created for every 

edge node in the central node. When active element is 

separated in the edge node, data consisting of the element and 

its energy is sent to the central node. Then by comparing the 

energy of different active elements sent by all edge nodes at 

this time, the element with the maximal energy will be selected 

and saved. The process is shown in Algorithm 1. 

In this algorithm, the input is connected sensor socket list sl, 

and every element in the list is a socket object from which data 

will be obtained from sensors. Filtered signal is then written to 

a queue, waiting to be called at the next step. The 1st and 2nd 

line refer to the data storage queue for every element from the 

linked list. The 3rd line refers to program ends once receiving 

ending signal. The 4th line indicates waiting until getting a 

new signal sent by edge node. The 5th and 6th line refer to 

store data when the data queue that matching an active element 

is empty, which may happen just after the former active 

element is processed. Line 8th to 14th indicate the steps to 

process active element. From all data queues which are not 

empty, the element with the maximal energy is selected and 

stored in the signal queue, and then this active element 

received is stored in the corresponding sensor queue. 
E. Denoising Module 

Since the correlation and modal maxima denoising algorithms 

are best suited for denoising signals with high and low signal-

to-noise ratios, respectively, they require a lot of 

computational power and high arithmetic complexity when 

used on embedded platforms with low performance. For this 

reason, this paper uses the most popular algorithm, the wavelet 

threshold denoising algorithm, to automatically remove 

background noise. 

Choosing the threshold or threshold function and how to 

handle the wavelet coefficients are crucial steps in the wavelet 

threshold denoising process that control the denoising impact. 

Hard and soft threshold functions are the most widely used 

types of threshold functions. Nevertheless, there may be 

disadvantages to any of the approaches. The soft threshold 

function will always be different from the existence of the 

difference when the conditions are met, which will result in 

the reconstruction of the signal and the real signal deviation 

between the signal. The hard threshold is discontinuous 

throughout the entire wavelet domain and has breakpoints in 

the position, so the original signal after hard threshold 

denoising may appear obvious oscillations after 

reconstruction. 

In this work, the improved threshold function and Equation 4 

are used to solve the shortcomings of the soft and hard 

threshold functions: 

𝑊𝑗,𝑘
′ =

{
 

 𝑊𝑗,𝑘 −
2𝜆

1+exp(𝜆−𝑊𝑗,𝑘)
  𝑊𝑗,𝑘 ≥ 𝜆

0                     |𝑊𝑗,𝑘|<𝜆

𝑊𝑗,𝑘+
2𝜆

1+exp(𝜆+𝑊𝑗,𝑘)
  𝑊𝑗,𝑘≤−𝜆

         （4） 

Compared to the soft threshold function, the improved 

function exhibits a steadily decreasing deviation as it moves 

towards infinity. The function can also meet the similar trend 

Algorithm 1: Active Element Selection 

Input: sensor socket list sl 

Output: NULL(put the best signal bss into a queue oq) 
1: for c in sl: 

2:     create queue sqi = NULL;  //create active element storage queue 
3: while not END: 

4：    wait until get a new signal nsi;     

5:     if sqi is NULL: 
6:         sqi.put(nsi);  // 

7:     else: 
8:         bss = NULL; 

9:         for each sqi: 
10:            if sqi is not empyt: 
11:                jsi = sqi.get(); 

12:               bss = maxEnergy(bss, jsi);  //choose larger value from  bss and 
jsi 

13:        oq.put(bss); 
14:        sqi.put(nsi) 

15:return NULL 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3417377

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



 

8 VOLUME XX, 2017 

of maintaining the signal coefficients across the wavelet 

domain while weakening the noise coefficients. The function 

continues to be continuous as the wavelet coefficients 

converge to zero. 

As seen in Fig. 1 (b2), the signal noise is decreased following 

the denoising process. 
F. Predicting module 

The Predicting Module is built with DTW-KNN framework. 

Here this paper improves DTW algorithm from two aspects to 

adapt active element comparison. Firstly this paper changes 

Euclidean Distance to Center distance; secondly it adopts 

Segment comparison. The distance function in DTW is 

defined the Centre distance, given as 𝑓(𝑥𝑖 , 𝑦𝑖) = ||𝑥𝑖| − |𝑦𝑖||
。 

When performing comparison, the active element is adjusted 

to X axis, and the absolute values of 𝑥𝑖  and 𝑦𝑖  indicate the 

distance of sampling element to X axis. Some part of active 

element might be symmetrical to X axis, such as parts shown 

in the green box in Fig. 1 (b2). In essence, those parts are same 

kind of vibrations. The greater abnormal index produced by 

Euclidean distance will affect the inference value, so it is more 

reliable to use the Center distance instead. 

As stretching and squeezing of active element in DTW 

calculation will cause its feature hardly being reflected in 

frequency domain, hence the index difference between active 

element and abnormal element will be not significant enough. 

According to literature[20], Gait mode describes the way of 

walking and four limbs movement characteristics. A gait starts 

from one heel touches the ground and ends when the toe leaves 

the ground. During the whole process, a series of muscles 

stretch and contract. First the ankle dorsiflexion stretches, then 

the gastrocnemius and soleus muscle stretch, finally the 

gastrocnemius and soleus muscle contract. This process 

indicates multiple smaller stages can be divided in one active 

element. According to the analysis, the active element could 

be divided into several smaller parts to calculate separately 

with DTW algorithm, and then added together. The active 

element division is indicated in Fig. 1 (a2) and (b3). (b3) is a 

normal active element and (a2) is abnormal. Both elements are 

divided by pink dot line and compare both left and right side 

to improve the classification accuracy. 

Abnormal index generated by DTW calculation is input into 

KNN classifier, producing the predicted value of active 

element. As the predicted value relates to user’s gait only and 

indicates the gait variation, so predicted sequence composed 

by those values can be used in HMM Decision Module to 

recognize gait.  
G. Decision Module 

λ = (𝑁, 𝑀, 𝜋, 𝐴, 𝐵) is the HMM with five elements, or 𝜆 =
(𝜋, 𝐴, 𝐵) in short. N is the infinite set of states and M is the 

infinite set of observations. 𝜋 is the probability distribution of 

initial state, and A is the state transition matrix. B is the 

observation probability distribution matrix, i.e. the confusion 

matrix. The parameter set 𝜆 = (𝜋, 𝐴, 𝐵)  is trained with 

Baum–Welch algorithm. According to the observed sequence, 

Viterbi algorithm is applied then to find out the best hidden 

state sequence which most likely produces the observed 
sequence. The HMM is defined as follows. 

1) STATE SET 

The hidden state is not directly observed in HMM decoding 

process, hence it is a finite set to be solved. In our research 

domain, the hidden state indicates user’s gait mode, i.e. 

normal, abnormal and fall, which cannot be obtained from the 

predicted sequence. The three states are all status in the state 

set in our research.  

2) OBSERVATION SET 

Observation set is an important known condition to solve the 

hidden state, in which every hidden state has a certain 

probability to produce possible observation value. In our 

research the observation set is the output of the surmise 

module.   

3) PARAMETER TRAINING AND ACTIVITY 

RECOGNITION 

As mention above, the parameter set 𝜆 = (𝜋, 𝐴, 𝐵) of HMM 

module, is trained by Baum-Welch algorithm, which is a 

special case of the Expectation-Maximization algorithm 

(EM). It is an unsupervised algorithm running on the 

observation sequence input. The hidden states sequence which 

produces the observation sequence is unknown, so there is no 

need to input it. Initial HMM parameter estimation is given at 

very beginning, then the value of parameter is re-estimated by 

given data in order to reduce the error it may cause. In our 

context, this paper trains the model by adjusting and testing 

different floor situation to simulate real environment. The 

training process is given in equation 2.  

Algorithm 2’s input is collected data list rae, i.e. raw activity 

element. Every element in rae is the data of a complete 

walking. There are n hidden states; here n=3, indicating three 

HMM parameters of 𝜆. The 1st to 3rd line indicate creating 

and initializing algorithm data; the 4th line indicates denoising 

of raw data; the 5th to 9th indicate the DTW-KNN calculation 

and storage of result and data length; the 10th line indicates 

algorithm training using DTW-KNN data set and data length 

to generate the hidden states; the 11th line indicates the output 

of 𝜆. 

Algorithm 2：HMM Parameter Training 

Input: Raw activity element list for training rae, Number of hidden states n 

Output: parameters 𝜆 = (𝜋, 𝐴, 𝐵)  

1: whole_data = []; 

2: lengths = []; 

3: data_size = len(rae); 

4: wae = wavelet(rae);   // denoise the raw data 

5: for wi in wae: 

6:         fwi = DTW_KNN(wi); 

7:         li = len(fwi); 

8:         whole_data.append(fwi); 

9:         lengths.append(li); 

10:𝜆 = Baum-Welch(whole_data, lengths, n);   //Baum-Welch has two 

parameters: training data set an data length 

11:return 𝜆; 
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After parameter training, then the HMM decision module is 

constructed. Viterbi algorithm is applied to recognize user 

gait. Using dynamic programming to find out the hidden state 

sequence of maximum probability, it is also called a Viterbi 

path. The recognition process is given in algorithm 3. 

In the algorithm, the input is aq (raw activity queue) and ws 

(window size), and the output is the user status list tl. The first 

line declares a storage list, storing the inference value for a 

single recognition. The 2nd to 6th lines withdraw active 

elements cyclically from raw data and denoise them, then 

operate DTW-KNN algorithm and write in the storage list till 

recognition list satisfies the defined window size. The 7th to 

8th data line identify the data in recognition list with Viterbi 

algorithm and return result. 

H. System Time Complexity Analysis 

A complete gait recognition is composed by different steps, 

including active element separation, selection, denoising, 

surmise and decision module. The average length of active 

element is given as 𝑛，and the complexity of each module is 

as follows. 

Active element separation: from equation 1 and 3, the time 

complexity is 

 𝑂(
1

𝑁
𝑛 ∙ 𝑂(1)) + 𝑂(𝑛 log𝑛) + 𝑂(𝑛) = 𝑂(𝑛 log 𝑛)     （5） 

Active element selection: as the sensors are small in number 

and fixed, so from algorithm 1 the time complexity is 𝑂(1). 
Denoising is based on wavelet transform and its complexity 

equals to the wavelet transform time complexity of 

𝑂(𝑛 log𝑛). 
Predicting module: time complexity of DTW is 𝑂(𝑛2)，and 

that of KNN is based on one-sample dimension k and sample 

size m. Here 𝑂(𝑘 log𝑚) = 𝑂(2 log𝑚) = 𝑂(log𝑚)， and 

the total time complexity is 𝑂(𝑛2) + 𝑂(log𝑚). 
Decision module: as HMM adopts Viterbi algorithm for 

recognition, if the hidden state number is Q and the 

recognition window size is P, then the time complexity is 

𝑂(𝑃𝑄2). In summary, the whole system time complexity is 

 𝑂(𝑛 log𝑛) + 𝑂(1) + 𝑂(𝑛 log 𝑛) + 𝑂(𝑛2) + 𝑂(log𝑚) +
𝑂(𝑃𝑄2) = 𝑂(𝑛2) + 𝑂(𝑃𝑄2) + 𝑂(log𝑚).  
Yet in practice, Q and P are far less than 𝑛，and 𝑂(𝑃𝑄2) ≪
𝑂(𝑛2) . Here the value of m is fixed, so system time 

complexity is considered as 𝑂(𝑛2), which meets the real time 

performance constraints.  
IV. EXPERIMENTAL VERIFICATION 

A. Experimental Settings 

Figure 4 depicts the experimental setup used in this 

investigation. The floor is made up of several 70*70 mm 

planks that have been joined together. As seen in Fig. 4-right, 

the backs of the planks are joined by metal dumpling chains. 

Each plank has five supporting feet: four at the corners and 

one in the middle. Not every adjacent board has a metal chain 

connecting it. A group of planks is made up of multiple planks, 

and Fig. 4's test floor is made up of various plank groups. 

Rather than connecting every adjacent plank to every other 

plank, dumpling chains are used to join a group of planks. One 

of the planks' supporting feet is elevated slightly to cause the 

planks to become unbalanced and mimic a loose floor. 

 

FIGURE 4. Experimental settings 

 

The center node is represented by the blue box in the upper left 

corner of Fig. 4, the router is represented by the yellow box, 

and the edge node is represented by the red box (see Fig. 3 for 

details). The edge nodes are dispersed throughout the four 

corners of the test area and the center region. There is at least 

one edge node for data collection associated with each group 

of planks. The center node manages the edge nodes via the 

SSH protocol to receive and store the activity components that 

are gathered, while the edge nodes communicate with each 

other via the WiFi network. Data can be safely transferred over 

unprotected networks using the encrypted network protocol 

SSH (Secure Shell). It offers a safe method for controlling and 

accessing computer systems from a distance. In the example, 

SSH protocol is used by the center node to control and interact 
with the edge nodes. Data is encrypted during transmission via 

SSH, preventing unauthorized users from accessing or altering 

the data's security and integrity. In order to ensure the safe 

operation of the entire system, the Secure Shell protocol 

enables the center node to securely receive, store, and manage 

the activity data acquired from the edge nodes. Considering 

that most indoor scenes are basically similar, compared to the 

experimental scenes in this article, although there are some 

external interference vibrations in the actual indoor scenes, 

they are different from human gait vibration signals and can 

be removed by simple denoising. Therefore, this article 

excludes these external interference vibrations to achieve the 

purpose of simplifying the experiment. 

Two gait modes are designed in our experiment, one is NOR 

mode and the other is CRI mode. NOR simulates an average 

user who has no disease affecting his walk. CRI mode 

simulates a user with hemiplegia at the right leg. Each gait 

mode contains normal mode, abnormal mode and fall mode. 

The simulation method of the abnormal gait is that as one leg 

Algorithm 3：Gait Recognition 

Input: Raw activity element queue aq, Window size ws 

Output: True status list tl 
1: cogList = [] 

2: while len(cogList)<ws:  //  add data in cogList to satisfy window size 
3:     rs = aq.get(); 

4:     wrs = wavelet(rs); 
5:     cog = DTW-KNN(wrs); 

6:     cogList.append(cog); 
7: tl = Viterbi(cogList); 

8: return tl 
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walks unsteadily with relaxing muscles while the other leg 

keeps the original walking pattern as possible. Meanwhile, due 

to the relatively singular gait of the elderly, this article only 

designed the two types of gait mentioned above. 

B. Active Elements Classification Experiment 

To test the validity of our DTW-KNN framework, multiple 

indicators are compared with those in the Method of 

Characteristics[16][20], which are chosen from time domain 

and frequency domain separately. Standard Deviation, 

entropy, peak value and partial signals before and after peak 

are chosen in the time domain; spectral centroid, peak 

position, peak amplitude, and power spectral density are 

selected in the frequency domain [15]. 

 
TABLE I 

DTW COMPUTATION TIME AND ABNORMAL INDEX VARIATION RATE IN 

DIFFERENT SEGMENTATION  

 

Table 1 shows the average time, change rate of abnormal index 

and spatial variation in related with segment sizes in one DTW 

calculation. In the experiment, there are 400 NOR mode 

normal active elements. The segment size refers to the number 

of samples for comparison each time. In a given segment size, 

the average computation time is the mean time spent to finish 

active element comparison in multiple tests. The change rate 

of abnormal index refers to the growth rate of DTW 

computation result compared to the direct calculation in a 

given segment size. Spatial variation rate is the growth rate of 

the space consumed in DTW compared with that in the direct 

calculation. As a single active element lasts less than 2 

seconds, so the segment size 400 represents the situation of 

direct calculation.  

From table 1, the average computation time is reduced as the 

segment size reducing, and the calculation speed is increased 

with a decreasing improving rate. Eventually, the ultimate 

recognition speed is 10 times faster than that in direct 

calculation. Moreover the abnormal index gradually increases, 

and dramatically increases when segment size is 300, 200 and 

50, while change rate approaches to 20%. Also, the space 

consumed keeps decreasing constantly before slightly 

increases when segment size is 50. Less than 50 (not listed in 

Table 1), computation speed demonstrates a modest increase 

while abnormal index has substantial increase, and the space 

consumed rises modestly too. Therefore, this paper chooses 50 

as the segment size. 

While the average computation time of the Method of 

Characteristics is 0.065 seconds, which is almost the same 

with DTW method; yet the space consumed is threefold to 

fourfold as much as the that of DTW. Therefore, the DTW 

computation is outperforming the Method of Characteristics. 

Table 2 lists the related indicators when DTW and the Method 

of Characteristics are applied in SVM classifier and KNN 

classifier in both NOR and CRI gait mode. 70% of data are 

provided for training and 30% for testing, and the k value is 9. 

The results are analyzed in below. 
TABLE 2 

TRAINING TIME COMPARISON OF TWO FRAMEWORKS IN CRI AND NOR 

GAIT MODE  

Here 200 normal active elements and 200 abnormal ones are 

used in the NOR mode. As to DTW, every indicator of KNN, 

except for the average classifying time, which is 0.07 seconds 

more than that of SVM, outperforms each indicator of SVM. 

As for the Method of Characteristics, however, every indicator 

of SVM outperforms that of KNN, except that SVM spends 

more training time than KNN. The SVM indicators using the 

Method of Characteristics perform 20% lower than the KNN 

indicators using DTW, caused by the result of wrongly 

classifying 40% to 50% abnormal active elements to normal. 

Yet such error would not possibly occurs in DTW-KNN. So it 

shows the absolute advantage of DTW-KNN compared with 

SVM using the Method of Characteristics. 

Again, 200 normal active elements and 200 abnormal ones are 

used in the CRI mode. Table 2 explains that the DTW-KNN 

indicators perform mostly the same as those in NOR, while the 

indicators of SVM using the Method of Characteristics have 

dramatic decline in CRI than in NOR. So it indicates that 

DTW-KNN is able to adapt to different gait modes, yet SVM 

using the Method of Characteristics is not so.  

As for the fall recognition, multiple fall active elements may 

be added in the KNN training data. The chance of 

misclassifying fall event is very low as the fall active element 

is distinctly different from other kind of element, so fall 

recognition is easy in the DTW-KNN model. Table 3 shows 

the testing results of NOR mode with fall active elements. 

Misclassification may happen as either normal elements are 

recognized as abnormal or vice versa; however none is 

recognized as fall element. Fall active elements are all 

correctly recognized.  
TABLE 3 

CONFUSION MATRIX WITH FALL ELEMENT 

To summarize, the DTW-KNN framework is able to 

accurately classify various active elements of normal, 

Segment Sizes 400 350 300 250 200 150 100 50 

Average 
computation  
time(s) 

0.85 0.64 0.48 0.36 0.25 0.17 0.12 0.08 

Abnormal index 
variation rate 

0.00
% 

0.35% 1.60% 2.70% 9.0% 10.50% 
13.30

% 
19.80% 

Spatial variation 
rate 

0.00
% 

-
19.70

% 
-35.00% -38.50% -49.7% -60.60% 

-
64.90

% 
-63.70% 

Gait 
Mode 

Framework Classifier Accuracy Precision 
Recall 
Rate 

F1 

Aver. 
Trai. 
time 
(s) 

Aver.
Clas. 
time
(s) 

NOR 

DTW 
SVM 87.21% 86.02% 84.50% 86.38% 1.56 0.02 

KNN 91.54% 90.46% 89.74% 90.30% 0.15 0.09 

Method of 
Characteristics 

SVM 73.25% 77.32% 74.56% 72.81% 35.78 0.07 

KNN 70.50% 71.64% 71.82% 70.31% 0.33 0.21 

CRI 

DTW 
SVM 88.10% 85.82% 83.15% 84.19% 1.72 0.03 

KNN 90.34% 91.18% 90.56% 89.96% 0.17 0.08 

Method of 
Characteristics 

SVM 55.44% 56.13% 55.74% 54.60% 34.97 0.07 

KNN 63.80% 64.29% 63.52% 62.21% 0.31 0.20 

Actual  Normal   Abnormal   Fall  

Classify Normal Abnormal Fall Normal Abnormal Fall Normal Abnormal Fall 

Counts 104 19 0 5 112 0 0 0 7 
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abnormal and fall in different gait modes. However, this paper 

also uses HMM to identify gait mode when dealing with 

possible interference in actual environment. 

C. Gain Recognition Experiment 

In this experiment, there are two kinds of gaits, i.e. normal and 

abnormal. Normal gait indicates that user walks with set 

pattern, and abnormal gait indicates abnormal pattern.  
TABLE 4 

COMPARISON DTW-KNN INDICATORS UNDER STEADY/UNSTEADY CONDITIONS 

 

 

 

The HMM identification accuracy rate varies with the change 

of the window size, as shown in table 4. The experimental data 

is the predicted sequence mixed with both NOR and CIR gait 

modes in the condition of stable experiment environment, i.e. 

the floor with no loose board. 70% of inference value in the 

predicted sequence is used for training and 30% for testing. 

Window size means the number of inference values of HMM 

recognition at one time. The accuracy rate is only 32% when 

the window size is 1, which is much lower than others; and 

when window size is 2, 4, 6 and 8, the accuracy rates are all 

above 93%, higher than that of surmise module. The peak 

value, which is 96%, appears when the window size is 4. After 

that, the accuracy rate shows slightly decrease as window size 

increases. Considering the issue of identification latency 

grows as window size increases, so this paper sets the size as 

4. 
TABLE 5 

HMM  ACCURACY IN DIFFERENT WINDOW SIZE UNDER STEADY CONDITION 

Table 5 shows the comparison of indicators in the surmise 

module when two gait modes appear in different experiment 

environments, stable and unstable. In unstable environment, 

there are 15% of loose floorboards, distributed as equally as 

possible. Under this condition, table 5 shows that the 

indicator’s performance of NOR mode have declined by about 

5% and those of CRI mode have declined by 8%. In summary, 

it show a pattern of regularity that if a certain active element 

is influenced by loose floorboards, then the inference values 

of successive three elements, including the previous one, will 

be affected. Considering this pattern, HMM is able to improve 

the identification accuracy rate. 

 

FIGURE 5. Accuracy comparison of DTW-KNN vs. HMM 

In figure 5 this paper compares the accuracy rates in the 

surmise module and HMM in the four combinations of gait 

modes and environments. From this figure, the accuracy rate 

increased by 5% to 12% when using HMM. Moreover, most 

inference errors happen in the CRI-Unstable combination, and 

the accuracy rate of HMM in this situation is still as much as 

94%. Correction rates in different combination are also given 

in this figure. This is a new indicator defined as the HMM 

correction inference value divided by the error inference 

value. This indicator measures the ability of HMM correcting 

the interfered active elements, and the higher the correction 

rate, the more robust and adaptive the HMM could be. In all 

combinations, HMM shows good correction performance at 

an average level of 88.75%. HMM is helpful in increasing the 

overall performance of systematic identification rate, and 

hence improving the systematic robustness. 
V. SUMMARY 

This paper studies the detection of abnormal gait identification 

based on vibration signals, which has been little studied. 

Vibration signals  are acquired, and we calculate inference 

value of active element by the improved DTW-KNN 

framework. This method shows better adaptivity for different 

gait modes, hence solving the problem that the Method of 

Characteristics has difficulty to identify correct feature of 

different gait modes. The predicted sequence is further 
analyzed by HMM to correct the inference value effected by 

uncontrolled interferences. The experimental results show that 

the method can effectively identify abnormal gait and the 

recognition accuracy rate reaches 95.25%, and the correction 

performance is as good as 88.75%. Although this paper's 

research and design on aberrant gait recognition based on 

vibration signal can successfully handle changes in gait 

patterns, external interference, and quick arrangements, it still 

has certain drawbacks. 

(1)We only take into account the user's walking on both legs 

when analyzing their gait pattern, and they may also be using 

crutches or other walking assistance. More adaptable 

techniques should be created for these users. For example, a 

detection system to identify the number of actives in a cycle 

during training should be added. 

(2)The distributed architecture of the vibration signal 

acquisition system is not fully utilized. To address this, a 

dialogue mechanism that allows nodes to communicate with 

one another to independently choose the center and the activity 

window size 1 2 4 6 8 

Accuracy 32% 93% 96% 95% 94% 

DTW-KNN Accuracy Precision Recall Rate F1 

NOR-stable 91.54% 90.46% 89.74% 90.30% 

NOR-unstable 85.19% 86.64% 85.67% 85.4% 

CRI-stable 90.34% 91.18% 90.56% 89.96% 

CRI-unstable 82.18% 83.73% 82.51% 82.94% 
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element in order to accomplish load balancing can be added to 

the system. 
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APPENDIX 

ABBREVIATION WHOLE PHRASE 
 DTW Dynamic Time Warping 

KNN K-Nearest Neighbor 

HMM Hidden Markov Model 

IOT Internet of Things 

FFT Fast Fourier Transform 

NTP Network Time Protocol 

SVM Support Vector Machine 
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