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ABSTRACT The growth of data publishing, sharing, and mining mechanisms in various fields of industry
and science has led to an increase in the flow of data, making it an important asset that needs to be
protected and managed effectively. To this end, different mechanisms have been used across different
domains, including Privacy Enhancing Technologies like Synthetic Data Generation, which aim to protect
user-sensitive data and prevent misuse among different domains. Then, Synthetic data has been used not
only to augment datasets and balance classes but also in applications of data analysis paradigms that aim
to provide useful insights in terms of utility while preserving the privacy of sensitive data. Still, there is a
gap in the conceptual and state-of-the-art understanding of the level of privacy synthetic data generators can
provide and how they affect various industries and fields. This systematic review attempts to address how
privacy has been assessed and measured in the framework of synthetic data generation, and getting to know
which metrics have been used to evaluate those mechanisms. We provide an overview a total of 105 recent
studies in this field after a screening process and identify future open research directions. The main findings
include a high prevalence of differential privacy as a privacy-preserving technique and privacy budget cost
as a trade-off metric, with a high percentage of GAN-based model implementations, and mainly healthcare
applications. Our systematic review covers multiple privacy domains and can be understood as a general
framework for privacy measurement applied in Synthetic Data Generation.

INDEX TERMS Anonymization, Confidentiality, Privacy, Privacy metrics, Privacy-preserving big data
analytics, Synthetic Data, Synthetic Data Generation

I. INTRODUCTION

THE collection and use of data has significantly driven
advances in different domains, such as science, health-

care, and industry. However, this data-driven progress has
also raised significant concerns, particularly in the context
of privacy and security. Since data collection involves the
creation of a data-sharing network to facilitate discovery
and ensure transparency, personal data, which often contains
sensitive information, requires privacy preservation during its
processing and dissemination [1].

Different types of sensitive information, such as where
users go, what health problems they face, what are their likes,
dislikes, and habits, among others, are susceptible to exposure
and use by different types of attackers [2]. This leads us to
consider how necessary it is to preserve data privacy and

how important it is to maintain the privacy of the results.
However, it is crucial to be aware not only of data privacy
but also of the usefulness that data may have. The latter
characteristic is seriously affected by the number of attributes
or general information lost from a source dataset after apply-
ing privacy-preserving mechanisms. The goal is to strike a
balance between data utility and privacy, i.e. to maintain the
privacy of individuals’ information while preserving the use
of such information in data analysis paradigms for secondary
purposes [2].

According to Matwin [3], it is not uncommon to confuse
and even underestimate data privacy when comparing it to
data security. Although both terms are related, since they seek
to guard two constant parts of the data flow, they represent
different concepts. Data security seeks to protect the flow
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of information when it has not reached its final destination,
preventing intrusion by intruders, unauthorized access, and
data theft. On the other hand, data privacy considers the
moment when the data reaches its final destination and tries
not to reveal sensitive or personal information that has been
collected in the data now in the possession of the recipient.
Therefore, this approach should ideally have a treatment from
the data itself, and not in the way it is shared.

With the above, considering data privacy nowadays be-
comes even more important, due to the constant increase in
the flow of information through sharing facilities, the amount
of data that can be shared is immense, and very rich in terms
of information, making threats such as membership inference
attacks, or model inversion attacks have the ability to reveal
information about the specific contents of a database. Even
so, there are current regulations that are rightly committed
to guaranteeing data privacy, such as the European Union’s
General Data Protection Regulation.

Among the many risks that exist considering data loss or
disclosure of information from a threat, identity theft and im-
personation, financial risks, reputational damage, phishing,
cyber-attacks, and unethical information sharing are some of
them.

As proposed by Majeed [1], there are three challenges
while handling sensitive information among individuals: (i)
to prevent the misuse of personal data, to enable fair and
unbiased decision-making concerning real-world entities, (ii)
to restrict target profiling, and (iii) to improve the quality
of personal data for the welfare of societies, enhancing data
quality, when available data is limited. These challenges can
be addressed by resolving the dilemma between privacy and
utility using different approaches complemented with Pri-
vacy Enhancing Techniques, making available larger privacy-
preserving datasets with higher quality and utility.

A. MOTIVATION
Data privacy and confidentiality play a critical role, par-
ticularly in healthcare contexts. The sharing of data raises
significant privacy concerns, especially during data-sharing
processes. Recent research has introduced Synthetic Data
Generation (SDG) techniques as a Privacy Enhancing Tech-
nology to address these concerns.

In this context, Rankin et al. [4] propose the utilization
of synthetic data for developing machine learning models,
which can be outsourced from healthcare departments. These
models can then be retrained and adopted for clinical practice
or to inform policy decisions. Additionally, Hernandez et
al. [5] demonstrate the integration and automation of SDG
within a control data processing workflow, emphasizing the
preservation of privacy in the health and wellness domain.

However, several recent works have established that SDG
models are insufficient to guarantee certain privacy standards.
According to Stadler et al. [6], synthetic data is insufficient to
preserve privacy. The study shows that synthetic data do not
prevent inference attacks and preserve the utility of the data.
In addition, studies tend to overestimate the anonymization

capacity resulting from the use of these technologies. This
fact is also supported by Zhang et al. [7], who show that
partially synthetic data is highly vulnerable to membership
inference attacks, while fully synthetic data is substantially
more resistant to such attacks, even marginally susceptible.
Also, the study developed by Torfi et al. [8] mentions that
although the process of generating synthetic data from a Gen-
erative Adversarial Network (GAN) is not reversible from
the data, the naive use of GANs for SDG does not guarantee
that the system preserves privacy based solely on the fact that
GANs are not reversible.
To overcome those weaknesses, different privacy tech-

niques have been developed to reinforce privacy in synthet-
ically generated data. The implementation of those, although
widely deployed, still needs to overcome a significant number
of challenges, such as the recognition of the appropriate
privacy techniques for a given data generation context.
The motivation behind this work is to analyze current re-

search at the intersection of SDG and privacy techniques. Our
goal is to offer a comprehensive overview that considers the
diverse aspects of research, including the field of application
(with a special focus on health data), generation models, and
the nature of the data. We intend for this resource to guide
future research adopters.
In addition, there is a lack of metrics that can correctly

capture the level of privacy and usability of the privately
generated data. Therefore, developing rigorously validated
evaluation criteria for future efforts is crucial, considering the
discussion about the inverse relationship between those terms.

B. RESEARCH QUESTIONS
The main objective of this review is to analyze the privacy
mechanisms used together with SDG, and the metrics used to
evaluate the privacy level of those combinations with a spe-
cial focus on privacy-preserving data publishing and sharing.
With this in mind, the research questions that directed this
review were:

• RQ1 Which privacy techniques can be integrated with
synthetic data generation models?

• RQ2 To what extent and criteria different metrics have
been applied to evaluate the privacy of generated data by
different SDG methods combined with privacy mech-
anisms? How are those methods applied in a privacy
utility trade-off evaluation?

• RQ3 How have privacy techniques in the framework of
synthetically generated data been used and applied in
health data?

C. CONTRIBUTIONS
This work presents a comprehensive and understandable
study on the implementation of privacy techniques and met-
rics in the framework of SDG. To achieve this goal, we
performed a systematic review of the topic. The review aimed
to start from the advances made in the area, resolve doubts
regarding the implementation of privacy techniques in certain
fields, and verify the most used methods in recent years
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with a certain set of models. Although work has been done
in this area, to the best of our knowledge, this is the work
that covers the most recent literature and is framed in the
general application of synthetic data generation, as well as
in the segmented implementation of privacy techniques in
different application domains, moreover, similar works are
discussed in Section II-G. Likewise, the study aims to analyze
approaches regarding the consideration of the privacy-utility
trade-off in recent studies, to establish a general summary
from which to start future investigations.

D. ARTICLE OUTLINE
Section II contains background information describing the
privacy risks associated with tabular data, the definition of
important terms such as Privacy Preserving Data Models and
Synthetic Data, and how they are covered in this line; a de-
scription of SDG models in the context of privacy-preserving
guarantees, along with the most commonly used performance
metrics, privacy metrics, and finally an overview of other
works that have been done on the subject and have similar
objectives to those of this article. Subsequently, Section III
describes the process of collecting the articles, including the
search methodology, selection criteria, and data extraction.
Section IV provides an overview of selected publications.
Section V describes data privacy techniques in synthetic data
generation. Section VI describes data privacy metrics in the
SDG, including an overview of metrics and categories of
metrics. Section VII gives an evaluation of the fields of im-
plementation of the mentioned works, Section VIII provides
a discussion which includes the main findings, limitations
of current research, and future directions, and Section IX
elaborates on the conclusions of the research.

A graphical summary of the systematic review is presented
in Figure 1.

II. BACKGROUND
To understand the use cases of synthetic data generation, and
how it creates a general framework to be analyzed in terms of
privacy, it is important to take into account some general con-
cepts in which this topic becomes relevant. The first of these
is the notion of Privacy Preserving Data Publishing (PPDP), a
process that provides methods and tools to publish useful in-
formation while preserving privacy. If a dataset is released for
data analysis, some techniques are needed to reduce the risk of
identifying sensitive information about individuals by linking
data. PPDP performs a data transformation that guarantees
its usefulness, while preserving privacy, in the publication of
large data collections. While Privacy-Preserving DataMining
(PPDM) performs data mining tasks in private databases,
PPDP’s main goal is how to publish the data for data mining
tasks [9].

The second concept is the privacy risk, which is associ-
ated with how an individual or user may have their data in
danger from different types of threat. Finally, it is necessary
to conceptualize a privacy metric and a privacy mechanism,
where the first concept encapsulates how privacy can be

measured, and the second, how privacy can be achieved under
the transformation of a dataset, all of this focused on the
general structure that establishes the generation of synthetic
data.

A. PRIVACY RISKS
For a structured data set, it is possible to establish a configu-
ration on the sensitivity of the attributes associated with each
of the individuals, being able to categorize them as follows:

• Explicit identifier (ID): A set of attributes that uniquely
identifies a record owner.

• Quasi-identifier (QID): A set of attributes that cannot
uniquely identify a record owner but potentially identify
the target if combined with some auxiliary information.

• Sensitive attribute (SA): Sensitive information that the
record owner intends to keep private from authorized
parties.

• Non-sensitive attribute (NSA): An attribute that does not
violate the record owner’s privacy if disclosed.

Additionally, the disclosure types of instances where the
release of personal information with the potential to affect
individuals can be classified as follows:

• Identity disclosure: When an adversary reveals the iden-
tity of a victim.

• Attribute disclosure: When an adversary successfully
links a victim to their SA information with a high prob-
ability.

• Membership disclosure: It occurs when an adversary
successfully infers the existence of a targeted victim in
the published dataset with high probability.

• Linkage attack: The adversary may re-identify the iden-
tity and discover the SA values of a targeted record
owner by matching the auxiliary QID values with the
published table T’.

• Homogeneity attack: This attack discloses the SA values
of a target when there is insufficient homogeneity in the
SA. That is, the combination of QID is mapped to one
SA value only.

• Background knowledge attack: This attack utilizes logi-
cal reasoning and additional knowledge about a target to
breach the SA values.

• Skewness attack: When the overall distribution of SA in
the original data is skewed, SA values can be inferred.
The SA values have different degrees of sensitivity.

• Similarity attack: This attack discloses SA values when
the semantic relationship of distinct SA values in an
equivalence class is close.

B. PRIVACY PRESERVING DATA MODELS
For a proper description of what is meant by privacy-
preserving data models, it is also necessary to consider the
previous definition of the term Privacy Enhancing Technolo-
gies (PETs).
To ensure that privacy and usability criteria are met, tech-

niques framed in PETs are used, which offer a wide variety
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FIGURE 1. A summary of the systematic review with the main findings of the research

of solutions adapted to specific scenarios. PETs or Privacy-
Preserving data models can be described as an algorithm
that, starting from some input data, generates a more private
version of it according to the criteria in which this feature is
measured. For a correct understanding of these techniques,
Carvalho et al. [10] complete a taxonomy for their classi-
fication, contemplating three essential categories: perturba-
tive, non-perturbative, and de-associative. The first ones refer
to techniques that distort the data before they are released,
even taking into account the non-alteration in the statistics or
usefulness that they may have, reducing the level of detail
or partially suppressing information from the original data
while preserving the veracity. On the other hand, models in
the non-perturbative category, sort the data before release in
such a way that the statistics to be measured do not differ
significantly from the data obtained by statisticians in the
original database. Finally, the de-associative models’ main
objective is to create buckets to curb the correlation between
QID and sensitive attributes.

Among the techniques considered as PETs are secure mul-
tiparty computation, federated learning, differential privacy,
and anonymization. These techniques alter, remove, or en-
crypt identifiers that can directly reveal a person’s informa-

tion or allow it to be linked to an external database. SDG
is also included in the PETs, running a mathematical model
for creating data that is not directly related to the registers
taken directly from different users, getting the behavioral pat-
terns, and preserving the statistical properties of the original
database.
On the other hand, Majeed [1] briefly proposes a taxon-

omy based on a scheme describing SOTA privacy tracks.
Within this classification, we have the following categories:
Syntactic privacy methods, Clustering privacy methods, Se-
mantic privacy methods, AI-based privacy methods, Attack-
specific privacy methods, Application-specific privacy meth-
ods, Data-specific privacy methods, Domain-specific privacy
methods, Hybrid privacy methods, Attribute-centric privacy
methods, and Synthetic data-based privacy methods.

C. SYNTHETIC DATA
According to Jordon et al. [11], synthetic data can be de-
fined as data that has been generated using a purpose-built
mathematical model or algorithm, to solve a (set of) data
science task(s). This model can take many forms, from a
Bayesian Network to a GAN or a Variational Auto-encoder.
The idea around the existence of this model, which we can
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denote as generatorG, is that considering a real databaseD,
the generator is capable of producing a D̂ ∼ G(D), which
denotes the synthetic data generated by G. Although they
proposed a definition that covers sufficient categories in this
area, this concept does not have a widely accepted meaning.

Synthetic data has several uses in this field and has regained
relevance in recent years due to the growing need to extract
information from large databases for the development of
data-driven models, where the quality of the model output
depends directly on the amount of data used for training.
Jordon et al. [11] give a detailed description of the differ-
ent implementations result of this trend, among which they
consider: Machine Learning tool development, Software test-
ing, Bias reduction/elimination, What-if scenario generation,
Data augmentation-data labeling, and finally the use of syn-
thetic data as a private data release.

Although the generation of synthetic data is part of the
techniques framed under PETs, which may lead one to think
that synthetically generated data is inherently private mistak-
enly, it has been shown that various generators may have the
ability to leak information about real data. Such is the case
with [12] and [13].

D. SDG TECHNIQUES
In this section, SDGmodels are listed in 4 categories that will
be used for classifying the literature models. These categories
were created to segment the model according to its internal
functionality and the general structure used for generating
synthetic data.

1) GAN-based Synthetic Generation Models
GAN-basedmodels have been regaining great relevance since
their introduction in 2014, by Goodfellow et al. [14]. The
original architecture is based on two different artificial neural
networks trained simultaneously in a competitive manner.
One of them, the generator, represented by Gθ, has the objec-
tive of generating the most realistic possible data, where the
parameter θ represents the weights of the neural networks,
taking an input a Gaussian random variable, with an output
Gθ(Z), where the distribution of Gθ(Z) is denoted by Pθ.
The goal of this network is to choose a θ such that the output
Gθ(Z) has a distribution close to the real data. The second
network is called the discriminator, which has the opposite
aim of the generator, trying to distinguish the realistic data
from the synthetic data the best it can. It is represented byGω ,
parameterized by weights ω. The goal of the discriminator is
to assign 1 to the samples from the real distribution PX , and 0
to the generated samples (Pθ). GANs are represented by the
next optimization function:

min
G

max
D

EX [log(Dω(X))] + EZ [log(1− Dω(Gθ(Z)))]

where EX is the expected value over all real data instances,
and EZ is the expected value over all random inputs to the
generator.

Posterior to the classification of D, the G is trained again
with the error signal from D using backpropagation. This
equation is the log of the probability of D predicting that the
real data is genuine and the log probability of D classifying
synthetic data as not genuine. The mathematical representa-
tion of the optimal discriminator is:

min
G
JS(Px ||Pθ)

where JS represents the Jensen-Shannon divergence between
the probability of the real data and the probability of the
generated data.
Maintaining the basic structure of a GAN, different ap-

proaches to this concept have been implemented, to correct
different shortcomings of the model, the practical interest,
or the data used. Among the different sub-models, we have
the WGAN [15] [16]. It was first introduced by Arjovsky et
al. [17], to insert different amounts of noise in the training
process in the gradients of the discriminator, which improves
the stability of learning and provides meaningful learning
curves useful for debugging and hyperparameter searches.
Another sub-structure is the DPGAN model, which fol-

lows the conventional differentially private mechanisms by
introducing deliberate noise to gradients of the Wasserstein
distance during the learning process, intending to do gradient
clipping and clip solely on weights [18].
DCGAN [19] is another type of GAN, introduced as a type

of CNN especially good at learning the hierarchy of represen-
tations from objects parts to scenes in both, the generator and
the discriminator, where the first becomes fractional-strided
convolutions, and the second with strided-convolutions, using
a batch norm in both structures.
WaveGAN was based on the previous architecture [20].

It was proposed by Donahue et al. [21], which focuses on
generating synthetic audio waveforms in an unsupervised
manner. It is trained by minimizing the Wasserstein-1 dis-
tance between the distribution of the real and generated data.
AC-GAN [22], formulated by Odena et al. [23], adds more
structure to the GAN latent space along with specialized cost
functions. So, every generated sample has a corresponding
class label c ∼ pc. The generator uses this label and a z noise
vector as an entry, and then the discriminator gives a proba-
bility distribution over sources and a probability distribution
over the class labels: P(S|X), and P(C |X) = D(X). The
objective function has two different parts: the log-likelihood
of the correct source LS and the log-likelihood of the correct
class, LC .D is trained to maximize LS+LC while G is trained
to maximize LC − LS .
CTGAN [24] [25], another GAN derivation that stands

for Conditional Tabular GAN, addresses some of the key
problems for tabular data synthesis, simulating records in the
training process one by one, selecting one of the variables,
then randomly selecting a value for that variable, and accord-
ing to that value the algorithm finds a matching row from the
training data, also generating the rest of the variables condi-
tioning on the selected one. Finally, PATEGAN [26], which
stands for Private Aggregation of Teacher Ensembles GAN.
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Thismechanism replaces the GANdiscriminator with a PATE
mechanism so that the discriminator is differentially private,
but requires the student version to allow back-propagation to
the generator [27]. Since the discriminator is replaced with
the PATE mechanism, a set of k teacher-discriminators and
a student-discriminator is built. So, teachers are now being
trained to improve their loss respect to the generator, the
generator is being trained to improve its loss respect to the
student, and the student is trained to improve its loss of respect
to the teachers.

2) Machine Learning based Synthetic Generation models
The models compiled in this category address those that use
a structure based on some machine learning to generate syn-
thetic data. Here, we group some based on Neural Networks
(NN), Deep Learning (DL), and linear regression modeling

One of the methods used is K Nearest-Neighbor (KNN).
Beigi et al. [28] use this mechanism under the assumption
that with tabular data, any strong conditional relationships
for a given measurement are only detectable among highly
similar individuals, ignoring strong conditions that are only
detectable in a few individuals that will have an impact on
the overall analysis. Additionally, most of the critical global
conditional relationships can be detected with a lower dimen-
sion represented by the dimension d . With this in mind, the
algorithm takes data from a space embedded by Principal
Components Analysis (PCA), and new records are gener-
ated from a seed, with their nearest neighbors, and then, the
number of attributes is randomly selected from the nearest
neighbors to generate a synthetic data point.

Sequential Encoder-Decoder is a structure proposed to
learn the mapping between raw real data and their represen-
tations in the latent space. The model used by Yoon et al. [29]
is combined with a GAN for the generation of synthetic data.
Since the data consists of 5 different categories: measurement
time, static numerical, static categorical, temporal numer-
ical, and temporal categorical, the encoder-decoder model
is trained with a weighted sum of reconstruction losses for
each feature category. The reconstruction losses includemean
squared error for numerical features, softmax cross-entropy
for categorical features, and binary cross-entropy for mask
features.

The CART model, which stands for Classification and
Regression Trees, is a non-parametric method for generating
partially synthetic data. It has been used in [30]–[32]. The
CARTmodels, which were formulated by Breiman et al. [33],
are highly flexible for estimating the conditional distribution
of a univariate outcome given multivariate predictors. The
model partitions the space into subsets of units with rela-
tively homogeneous outcomes. The partitions are found by
recursively splitting the predictors into binary subsets. A tree
structure can effectively represent the series of splits, with the
leaves corresponding to the subsets of units. This approach
is useful for analyzing complex data sets and identifying the
most important predictors for a given outcome [34]. Since this
method is non-parametric, it can be used to impute missing

data, using leaves of trees as imputation classes, assuming the
data are missing at random. To generate partially synthetic
data, the imputer selects the values from the observed data
that will be replaced with imputations, and then imputes
new values, considering the conditional distributions of the
variables to be replaced. The imputer controls the disclosure
risk and data utility by choosing values to replace, pruning the
CART trees, and sampling from the leaves of the trees.
The DP-CSM model proposed by Yao et al. [35] for gen-

erating a synthetic set of trajectories uses the original tra-
jectories in a location generalization module. In this mod-
ule, some coresets are constructed to implement a k-means
algorithm and obtain k centers. Then, the model generates
a set of candidate trajectories according to the generalized
location sets via the set Cartesian product alike operation. The
DP-CSM model also employs a trajectory selection module,
where a scoring function is defined to measure the similarity
between the original and candidate trajectories based on the
spatio-temporal features. The model then selects the top-k
candidate trajectories with the highest scores as the synthetic
trajectories, which preserve the privacy and utility of the
original data.
A Variational Autoencoder (VAE) is a type of neural net-

work architecture that can be used to generate synthetic data.
It is a variant of the autoencoder, where the central hidden
layer is replaced with latent dimensions instead of ordinary
nodes. This forces the network to map the input data into one
or more normal distributions. The result is that new data can
be sampled from the latent dimensions, andwill have a similar
distribution as the training data, eliminating the need to access
the original data in the data reconstruction process [36].
Another DL structure is used by Benarous et al. [37] and

Sasada et al. [38], where an extended Long Short-TermMem-
ory (LSTM) is proposed. It is based on RNN while solving
the vanishing gradient problem. An LSTM unit is made of
a cell, an input gate, an output gate, and a forget gate. The
cell remembers values over arbitrary time intervals, and the
three gates regulate the flow of information into and out of
the cell. The forget gates decide what information to discard
from a previous state by assigning a value between 0 and 1
compared to a current input. Input gates decide which pieces
of new information to store in the current state, using the same
system as forget gates. Output gates control which pieces
of information in the current state to output by assigning a
value from 0 to 1 to the information, considering the previous
and current states. Selectively outputting relevant information
from the current state allows the LSTM network to maintain
useful, long-term dependencies to make predictions, both in
current and future time steps.
A framework based on called Siamese Neural Network

(SNN) can be found in [20]. An SNN has the goal of find-
ing similarities between input samples, using at least two
identical networks to train the model to identify similar and
dissimilar inputs. One common approach is to train the model
with triple-loss, using three identical networks. The triple loss
is a distance-based function and operates with three inputs:
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a as the reference sample (anchor), p as a similar sample
relative to a, and a dissimilar one as negative called n. The
loss function is defined as:

L = max(d(a, p)− d(a, n) + a, 0)

To achieve a clear separation between the two classes, the
margin a is introduced. The function is minimized to reduce
the distance between the anchor and the positive sample while
increasing the distance between the anchor and the negative
sample. Additionally, three identical models are used for the
three inputs, which share the same architecture and weights

Dandekar et al. [39] used the ridge regression model, a
variant of linear regression, to train models that predict the
response attribute given the predictor attributes on a private
dataset. To generate synthetic predictor attributes for a set of
records, they sampled from histograms constructed over pre-
dictor attributes in the private dataset. These values were used
as inputs for the regression models to generate a synthetic
attribute.

3) Statistical-based Synthetic Generation Models
The models compiled in this category are defined by an
internal structure based on statistics (Bayesian or frequentist),
which learns the underlying patterns and distributions of
the data and generates new data samples that meet specific
needs or conditions. Here, we compile marginal, stochastic,
histogram, and density-based algorithms.

One of the most common methods in this category is
Markov chains, which are used byVie et al. [40] andBenarous
et al. [37]. This probabilistic graphical model relies on a
probability transition for jumping from one action to another:
Psu = P(jt+1 = u|jt = s) is the probability of jumping
from action s to action u. The Markov Chain is trained on the
existing corpus of actions, and once the matrix P is estimated,
it can be used to sample random walks from action to action.
This model is memoryless since the next actions depend only
on the current action: P(jt+1|jt , · · · , j1) = P(jj+1|jt).
An extension of the previous method is the Variable-order

Markov Model (VMM), which defines the states similarly to
the standard definitions. In contrast to fixed-order Markov
models, where the orders are the same for all positions and
contexts, VMMs allow the order to vary for each position
based on its context. Thus, VMMs provide the means for
capturing both large and small orders, reducing the memory
needed to store the model, but requiring an increase in com-
putation time.

Chen et al. [41] used a method for generating synthetic data
that preserves the correlation between attributes in a dataset
while ensuring privacy. The method involves two modules: a
marginal sampling module and a data generation module. The
marginal sampling module is used to sample from the original
data to obtain two-way marginals. The sampling process is
based on mutual information, which is updated iteratively to
retain, as much as possible, the correlation between attributes.
The data generation module is used to extract the synthetic
data from the sampled two-way marginals. This method

can be used to generate synthetic data for high-dimensional
datasets while preserving privacy and correlation information
between attributes.
Also, some works have been made using Bayesian Net-

works [42], [43]. A Bayesian network over a set of random
variables is a way to compactly describe their joint distribu-
tion, by specifying conditional independence among certain
random variables. Considering a set of attributes A a fully
connected set of attributes, and a set of attribute-parent (AP)
pairs, {(Ak+1,Πk+1), · · · , (Ad ,Πd)}, for a certain k ≥ 1. the
fully connected set of attributes and the (d − k)AP pairs in
the Bayesian NetworkN , define a way to approximate P(A)
using a joint distribution P(A1, · · · ,Ak), and (d − k) condi-
tional distributions P(A1|Π1),P(A2|Π2), · · · ,P(Ak |Πk). Fi-
nally, PN (A), is expressed as follows:

PN (A) = P(A1, · · · ,Ak)
d∏

i=k+1

P(Ai|Πi)

4) Kernel-based Synthetic Generation Models
There are very few works listed in this category. Although it
could be considered a subcategory of the previous one, it was
decided to elaborate it based on the particularities of these
methods. The most common SDG model is based on Kernel
Density Estimation (KDE), which is a way of estimating the
probability density function of a random variable based on a
sample of data points. It works by placing a kernel function,
such as a Gaussian, on each data point and summing them up
to obtain a smooth curve that approximates the true density
function. The kernel density estimate model is defined as:

f̂h(x) =
1

nh

n∑
i=1

K
(
x − xi
h

)
Where h represents a bandwidth parameter that controls the

kernel’s width and affects the estimated density’s smoothness.
A larger bandwidth leads to a smoother density but may over-
smooth the data and lose some details. A smaller bandwidth
leads to a more detailed density, but may be too noisy and
sensitive to outliers; K is the kernel function, and x is a single
data point. The KDE method can be applied to univariate or
multivariate data and can be used for generating synthetic data
by sampling from the estimated density function. Particularly,
the works done by Harder et al. [44], Cunningham et al.
[45], and Pozi and Omar [46] use this approach. Harder et al.
[44]uses random feature representations of kernel mean em-
beddings. They introduced a model called DP-MERF, which
learns the distribution of an unlabeled dataset, by minimizing
the random feature representation of the Maximum Mean
Discrepancy (MMD), a metric that compares two probability
functions in terms of all possible moments. Cunningham et
al. [45] adapt the KDE method with a Laplacian Kernel for
generating Road Network - and Geography Aware data, and
Pozi and Omar [46] used a Gaussian kernel KDE modeling,
combined with a feature selection mechanism to determine
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the dependent and independent variables, and model them
according to this nature in two separate cases.

E. PERFORMANCE METRICS
Compiling the resemblance and utility techniques imple-
mented in the different research papers for synthetically gen-
erated data, we also carried out a classification based on the
general concept, structure, and internal functioning of the
metric used, contemplating 3 different categories

1) Statistical analysis
Statistical analysis techniques are employed to explore and in-
terpret inherent patterns, variations, and relationships within
datasets. This category includes classical statistical methods
such as hypothesis testing (e.g., Welch t-tests [30], Mann-
Whitney U [22]), measures of central tendency and dispersion
(mean, standard deviation), tests for distributional differences
(Kolmogorov-Smirnov [28], [31], [47]–[49]), and correla-
tion measures like Pearson Correlation [18], [28], [50], [51].
Other techniques, such as Kaplan-Meier curves [28], entropy-
based techniques [52], or Kullback-Leibler divergence-based
techniques [25], aim to reveal the statistical significance of
observed phenomena, providing insights into the nature of the
data and potential differences between real and synthetic data.

2) Distance and similarity measures
Distance and similarity measures quantify the relationships
between data points or distributions. These metrics help as-
sess the dissimilarity or similarity of data instances. Common
measures include Euclidean distance [25], [53], cosine simi-
larity [51], cosine distance [38], [54], and statistical distance
metrics (e.g., Hellinger distance [16]). These techniques are
crucial for understanding the data structure, identifying pat-
terns, and clustering similar data points to detect how far or
close the synthetic data is to the real data.

3) Utility evaluation and Machine Learning Models
Utility evaluation metrics encompass techniques that evaluate
the general performance of models, algorithms, or data. It
involves evaluating how well the utility of data is preserved
after applying privacy mechanisms. Metrics such as accuracy
[6], [20], [26], [40], [41], [46], [55]–[64], precision [65]–
[67], recall [60], [61], [65], F1 score [8], [60], [61], [68]–[71],
and AUC [29], [32], [60], [72]–[75] are used to quantify the
performance of models or the impact of privacy-preserving
techniques. This category is essential for balancing privacy
and utility trade-offs in various applications. Some of the
models included are neural networks (CNN) [16], [72],Multi-
Layer Perceptron (MLP) [16], regression [36], decision trees
[36], and KNN [36], [76].

F. PRIVACY PRESERVING DATA METRICS
From a mathematical perspective, a metric is a function that
measures the distance between two points in a metric space.
A metric satisfies the following conditions: the distance be-

tween two points is always non-negative, the distance be-
tween a point and itself is zero, the distance between two
points is the same regardless of the order in which they
are considered, and the distance between three points satis-
fies the triangle inequality. However, when we speak in the
context of privacy metrics we are not referring to a metric
in the mathematical sense. It is necessary to keep in mind
that there is no consensus on the conditions that a privacy
metric should meet, but we will consider for the benefits of
generalization the comment proposed by Wagner et al. [77],
who in his review establishes a privacy metric as a measure
that somehow describes the level of privacy. Even with the
level of generalization that is handled, the review proposed
by Wagner et al. [77] describes a compilation using authors
about the conditions to define a privacy metric, among which
are: that the metric be mathematically understandable, that it
be orthogonal to the level of cost and utility, that it proposes
bounds on how the adversary can effectively succeed in iden-
tifying individuals, that it be probability-based, that it returns
the number of individuals an adversary cannot distinguish
and how variant the adversary’s predictions are, that it reflect
how difficult it is for an adversary to succeed, and even that
it be monotonic with increasing adversary strength. As can
be seen, many of these conditions cannot be met for a single
metric (e.g. that a metric returns a probability and at the
same time returns the number of individuals that the adversary
cannot distinguish).

G. PREVIOUS REVIEWS AND WORKS
Some reviews and compilation research have been conducted
in the field of SDG models, privacy models, and privacy
metrics, which build the taxonomy to identify the categories
in these fields and provide a baseline for the construction
of articles on the topics in this paper, at the technical and
conceptual level. One of the main reviews to consider is
by Majeed A. [1]. He described different privacy-preserving
data publishing and major tracks of research, proposing a
brief taxonomy and explanation of the difference between
attribute-centric methods and synthetic-data-based privacy
methods. In section 4 of his paper entitled “Discussion on
Synthetic Data-Based Privacy Methods,” he explored how
synthetic data generation and data-based methods have been
exploited in recent years. He showed that the mechanisms
commonly used in this field are framed in differential privacy,
probabilistic modeling, variational autoencoders, generative
adversarial networks, neural networks, generative models,
pipelines including differential privacy, clustering methods,
and transformer models. Privacy is commonly achieved using
DP or any other model with synthetic data generation and
anonymization.
Another important review to consider is the one presented

by Carvalho et al. [10]. They described privacy-preserving
techniques for data publishing, describing those used in mi-
crodata de-identification, privacy measures suitable for sev-
eral disclosure types, information loss, and predictive perfor-
mance measures. They defined the de-identification process
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as starting from deleting the identifiers to measuring the
utility of the data and implementing privacy-preserving tech-
niques. Also, they ensured that the results complied with risk
and utility thresholds before releasing the data. Carvalho et al.
[10] compile a taxonomy of privacy-preserving techniques,
data utility measures, available software, and disclosure at-
tack types.

Boudewijn A. et al. [78] recently published a study that
compiles the state-of-the-art and future research directions
regarding privacy measurement in Tabular Synthetic Data.
They discussed different synthetic privacy risks, properties of
statistical privacy indicators, attack mechanisms, and other
relevant terms in this field. Their work is relevant in terms
of the discussion of the privacy definition properties found,
showing that there is no consensus in the choice of the pa-
rameters, being one of the causes of the difficulty of choosing
appropriate values in practice. Additionally, they proposed
several avenues for future research, such as standardizing pri-
vacymetrics assessment, outlier protection, and incorporating
privacy into generators.

Wagner and Eckhoff [77] presented a systematic review of
technical privacy metrics. They compiled the various privacy
metrics, taxonomizing them according to their output cate-
gory, and presented a method for choosing privacy metrics
based on 9 questions to help identify the right privacy met-
ric for a particular scenario. Countinho-Almeida et al. [79]
conducted a study on current GAN implementations adapted
to tabular healthcare data. They focused mainly on the mod-
els employed, the datasets used, and the metrics reported
on the quality of the data generated in terms of usability,
privacy, and how they compare to each other. Monreale et al.
[80] discussed advances in privacy-preserving mobility data
publishing. They described adversarial attacks and privacy
models typically considered for mobility data, as well as
frameworks for privacy risk assessment. Ghatak et al. [81]
performed a conceptual analysis of different privacy meth-
ods, privacy-utility trade-off, and different real applications,
focusing on microdata applications. Ficek et al. [82] re-
viewed the use of differential privacy in the field of medicine.
They addressed the concept of privacy utility trade-off, but
without focusing primarily on the generation of synthetic
data. Tran et al. [2] conducted a study covering both the
systematic and multidimensional view of the preservation of
privacy of big data analytics in an integrated framework with
consideration of different typical practical scenarios. Fung
et al. [9] conducted a survey conceptually covering recent
developments in privacy-preserving data publishing. They
evaluated different approaches to the term, and different study
challenges considered the importance of identifying the non-
technical difficulties faced by decision-makers in applying
such privacy techniques, such as degradation of data/service
quality, loss of valuable information, increased costs, and
increased complexity. Additionally, various studies, such as
those by Endres et al. [83] and Dankar & Ibrahim [84],
conduct experiments to draw general conclusions about the
advantages and disadvantages of using SDG methods. These

experiments are carried out under different contexts, such as
data preprocessing techniques and the use of various datasets.
The systematic review conducted in this work aims to

provide a current temporal horizon by performing a detailed
comparison of the methods used to preserve privacy when
synthetic data is generated, categorizing them, and returning
a general overview of the state of art applied to different areas
of development. To address research gaps in the literature on
various SDG techniques and their connection with privacy
mechanisms and metrics, we identified and established these
relationships. This provides a general overview of the topic
and lays the groundwork for future developments in the field.

III. SYSTEMATIC REVIEW PROCESS
In this section, we describe in detail the process of compiling
the articles, in order to ensure the reproducibility of the
review, and to justify the set of articles selected for subsequent
inspection. To carry out this systematic review, the methodol-
ogy designed by Uman [85] was used as a starting point. First,
a search route is established through a strategy that constructs
the way to find the publications of interest. Subsequently,
a bibliographic search is performed in different databases
with the established criteria, to extract the information from
the results through a process of reading and synthesis. A
summarized graph can be seen in Figure 2.

A. SEARCH STRATEGY
1) Search string and engines
To identify relevant literature, we used a query that included
the following keywords: "((Privacy) OR (Privacy-utility) OR
(Privacy utility trade-of)) AND ((Synthetic Data Genera-
tion) OR (SDG))". We searched for these terms in the title
and abstract fields of articles published between January 1,
2018, and October 1, 2023, in the following databases: Web
of Science, PubMed, Google Scholar, and Scopus. For the
Google Scholar engine, using the equivalent search string, we
conducted a pre-screening criterion by selecting only the texts
related to the research topic.

2) Selection criteria
The selection criteria for this study are divided into two
categories: inclusion and exclusion criteria. The inclusion
criteria consist of the following: (1) papers must directly
address privacy and utility, exploring concepts, models, or
methods related to PET or PPDP in the context of SDG;
(2) only peer-reviewed research articles, conference papers,
and proceedings will be considered to ensure the quality
and credibility of the sources; and (3) papers published in
English or other relevant languages that the research team can
effectively review will be included. In the exclusion criteria
phase, papers with irrelevant topics, no peer review, insuffi-
cient information, or not available full text will be eliminated.
By using these criteria to select the appropriate studies, we
ensure that the sources chosen to contribute to the central
theme of the survey, uphold the quality and credibility of
the sources included in the analysis, prevent redundancy, and
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FIGURE 2. Flow diagram of the systematic review process

exclude sources with unavailable full text helps ensure that all
selected papers can be thoroughly examined and analyzed. A
detailed list of the criteria is listed below.

• Inclusion criteria
1) Relevance to Privacy: Papers must directly address

privacy and utility, exploring concepts, models, or
methods related to PET or PPDP in the context of
SDG.

2) Peer-Reviewed Journals and Conference Proceed-
ings: Consider only peer-reviewed research arti-
cles, conference papers, and proceedings to ensure
the quality and credibility of the sources.

3) Language: Include papers published in English or
other relevant languages that the research team can
effectively review.

• Exclusion criteria
1) Irrelevant Topics: Exclude papers that do not di-

rectly address or are not completely related to the
privacy evaluation in the context of SDG.

2) Duplicate Publications: Exclude duplicate papers,
conference abstracts, or papers that do not pro-
vide substantial additional information compared
to other included sources.

3) Publication Types: Exclude sources that are not
peer-reviewed, such as blog posts, magazine ar-
ticles, non-academic websites, or non-scientific
publications.

4) Insufficient Information: Exclude papers that lack
sufficient detail or relevance to the research ques-
tions and objectives.

5) Unavailable Full Text: Exclude sources for which
the full text is unavailable or not accessible for
review.

B. DATA EXTRACTION
The phase of extracting data to answer the research questions
involves the following steps: (1) identifying the relevant stud-
ies that meet the inclusion criteria; (2) extracting the neces-
sary data from each study, including publication year, study
design, privacy mechanisms used, utility measures, trade-
off assessments, and key findings; and (3) summarizing the
key findings from each study, focusing on how they address
the trade-off between privacy and utility. By following these
steps, we can ensure that the data extracted is relevant to the
research questions and can be used to answer them effectively.

C. SYNTHESIS OF RESULTS
After completing the data extraction phase, we summarized
the key findings according to the comments for solving each
research question. Then, we categorized the studies based on
their different attributes, considering similarities in privacy
mechanisms, utility metrics, or other relevant characteristics.
Using these groups, we concluded the studies and discussed
the implications for privacy-preserving data generation meth-
ods. Finally, we highlighted some limitations and how they
affect the generalizability of our findings.

IV. OVERVIEW OF THE SELECTED PUBLICATIONS
In this section we present a general review of the publica-
tions selected through the selection process described in the
previous section, categorizing the papers in their most global
aspects regarding SDG models and performance metrics, as
well as the various fields of application inwhich they are used.
As can be seen in Figure 2, a total of 860 publications were
collected through search engines, with the later addition of
8 publications added manually, as they had highly relevant
content but were outside the search period. A total of 238 du-
plicates were eliminated to begin the screening process. Then,
a total of 41 papers were excluded for not meeting the pre-
reviewed publication requirements, to perform a title/abstract
screening of the remaining 581 publications. Those publica-
tions whose titles and abstracts did not have direct relevance
to the topic of privacy were excluded. At the end of this
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process, a total of 179 remaining works were thoroughly eval-
uated to determine the quality of their methods and the level
of detail that the paper proposed, excluding 33 papers in the
process. Finally, the publication format and its presentation
were evaluated in the last step of the screening, discarding
those publications that were contemplated as books, theses,
and surveys/reviews, the latter being evaluated for compara-
tive analysis.

Moving on to the eligibility step, a total of 120 papers were
selected for the final stage, where the amount of detail and
relevance to answering the research questions is evaluated
first, followed by relevant conclusions for the same cause.

In the end, 105 research papers were collected for review,
to conduct a thorough analysis and the potential to answer the
research questions with them.

Table 1 provides a brief description of the selected papers.
Considering that the central objective of this Systematic Re-
view is to evaluate privacy techniques in the context of syn-
thetic data generation, the mentioned table contains a catego-
rized description of the methods used for synthetic data gen-
eration, as well as their performance metrics, which include
both data utility and resemblance methods. For synthetic data
generation methods, a classification was made considering
the following categories: GAN-based, ML-based, Statistical-
based, and Kernel-based, taking as a reference the review by
Hernandez et al. [86]. Performance metrics were classified
into statistical analysis, distance and similarity measures, util-
ity evaluation, and machine learning models or techniques.
Also, we classified the papers according to their field of
development or application, as well as a subcategory based
on the method, technique, or sub-area to have a better un-
derstanding of the former applications of the research papers.
The classification of the papers in table 1 allows a more
refined inspection of the papers investigated, and the essential
characteristics for the SDG methods and the performance
metrics used.

The classification process involved a thorough analysis of
the papers, with a focus on the relevance of the content to the
research question.

Finally, Figure 3 shows the increase in interest and the
number of articles published on the topic presented, noting
an evident jump from 2020 to 2021. Nevertheless, there is
a decrease in the trend for the period 2022-2023, probably
because the compilation of papers was made before the 2023
year ended.

V. DATA PRIVACY TECHNIQUES IN SYNTHETIC DATA
GENERATION
The objective of this section is to respond to RQ1, which
raises the need to know what privacy mechanisms are used
in SDG. In Table 2, it is possible to observe in detail which
techniques are used in the collection of carried-out works,
along with a compilation of the SDG mechanisms that are
used together with these techniques. Considering how diverse
the techniques can be, they will be stratified and explained
according to different categories.

FIGURE 3. Year distribution of the selected publication in the date
interval of research

A. DIFFERENTIAL PRIVACY (DP)
Differential Privacy is by far the most widely used privacy
mechanism, as its properties place it as a state-of-the-art
method. This model is based on a perturbation approach. The
objective is to mask the differences in computation results
of a function f on neighboring datasets, which differ on at
most one data item. DP acquires the intuition that releasing
aggregate results should not reveal too much information
about any individual data item that contributes to these results
[2]. The formal definition considers a randomized algorithm
M with domain NX , where X represent the universe of
databases X (collection of records).M is (ϵ, δ)-differentially
private if for all S ⊆ Range(M) and for all X ,Y ∈ NX such
that ∥X − Y∥1 ≤ 1 :

P[M(X) ∈ S] ≤ exp(ϵ)P[M(Y ) ∈ S] + δ

If δ = 0, we say that M is ϵ-differentially private [134].
Another derivation of DP is Local Differential Privacy (LDP).
A privacy algorithm satisfies ϵ-Local Differential Privacy if
and only if any input β and β′, ∀s ∈ Range(M) we have

P[M(β) = s]
P[M(β′) = s]

≤ eϵ

where Range(M) is the value of the algorithmM area. LDP
aims to protect the privacy of individuals’ data by controlling
the similarity of the results of any two inputs. This ensures
that attackers cannot deduce the input data through the result.
Unlike classic differential privacy, local differential privacy
is less constrained by neighboring datasets. This is because
local differential privacy does not require a trusted third party
to complete the privacy processing of the data [108].
Renyi Differential Privacy (RDP) is another derivation of

the differential private algorithm. Consider the randomized
algorithmM previously defined as (α, ϵ) − RDP for all the
neighbor datasets X and Y if:

D∞(M(x)||M(y)) ≤ ϵ
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TABLE 1. Overview of included publications

Reference Field SDG Techniques Performance metrics

GAN
based

ML
based

Statistical
based

Kernel
based

Statistical
analysis

Distance
and
similarity
measures

Utility
evalua-
tion

[54] Facial Recognition x x x
[30] Sports x x
[55] Health-Image analysis x x
[68] Health-Image analysis x x
[29] Health-Tabular records x x x x
[72] Health-Image analysis x x
[73] Health-Image analysis x x
[87] Health-Image analysis
[47] Health-Tabular records x x
[88] Health-Tabular records x x x x
[89] Health-hybrid
[28] Health-Tabular records x x x x
[90] Theoretical development-Method x x
[91] Health-Tabular records x x
[92] Health-Tabular records x x
[53] Health-Image analysis x x x
[93] Compilation
[15] Health-Image analysis x x x x
[94] Energy x
[95] Health-Signals x
[96] Health-Tabular records x
[97] Health-Signals x x
[98] Health-Tabular records
[99] Health-Demographic
[100] Health-Image analysis
[101] Image Processing x x x
[102] Health-Tabular records x
[22] Health-Tabular records x x
[103] Health-Tabular records
[65] Recommendation systems x x
[35] Mobility-Trajectory x x x
[74] Health-Tabular records x x
[36] Demographic-Method x x
[44] Theoretical development-Method x x
[48] Social graphs x x
[16] Health-Image analysis x x
[40] Education x x x
[104] Theoretical development-Method x x
[56] Mobility-Trajectory x
[37] Geoprivacy-Geoespatial location x x x x x
[105] Image processing-Method x x x x
[8] Health-hybrid(Signals, Tabular Data) x x x
[106] Energy
[107] Theoretical development-Method x x
[108] Graphs-Method x x x
[57] Health-Tabular records x x
[109] Trajectory x x x
[58] Theoretical development-Method x x x
[49] Health-Tabular records x x x x
[38] Generative text model-Method x x
[50] Mobility-Trajectory x x
[110] Theoretical development-Method x
[59] Image Processing x x
[111] Graphs -Method x
[75] Health-Tabular records x x x
[112] Health-Signals x x x
[113] Theoretical development-Method x
[18] Theoretical development-Method x x x
[114] Theoretical development-Method x x
[76] Theoretical development-Method x x
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Reference Field SDG Techniques Performance metrics

GAN
based

ML
based

Statistical
based

Kernel
based

Statistical
analysis

Distance
and
similarity
measures

Utility
evalua-
tion

[115] Image Processing x x
[116] Theoretical development-Method x x x
[41] Theoretical development-Method x x
[25] Theoretical development-Method x x x
[66] Theoretical development-Method x
[117] Theoretical development-Method x x x x
[60] Theoretical development-Method x x
[118] Image Processing-Forensic x x
[67] Health-Sharing Data System x x
[51] Trading-Financial Market x x x
[119] Theoretical development-Method x x x
[120] Trajectory-Vertical partitioning method x x x
[69] Mobile computing-Location x x x
[121] Theoretical development-Method x x
[122] Image Processing x x
[123] Energy
[70] Theoretical development-Method x x
[42] Theoretical development-Method x x
[43] Theoretical development-Method x x x
[45] Trajectory-Location x x x x
[61] Economy-Method x x x
[62] Theoretical development-Method x x
[71] Theoretical development-Method x x
[124] Theoretical development-Method x
[31] Taxes-Policies x x
[63] Theoretical development-Method x x
[125] Theoretical development-Method
[126] Theoretical development-Method x
[127] Framework -Method x x x
[20] Health-Signals x x x
[24] Theoretical development-Method x x
[128] Theoretical development-Method x x x
[129] Theoretical development-Method x
[32] Microbiology x x x
[64] Image Processing x x x
[52] Theoretical development-Method x x x
[130] Theoretical development-Method x
[131] Theoretical development-Method x
[132] Health-Signals x x
[46] Theoretical development-Method x x x
[26] Browser Fingerprinting x x x
[39] Theoretical development-Method x x
[133] Theoretical development-Method
[6] Scenario evaluation -Method x
[7] Health-Attacks x

where D∞ refers to the Rényi divergence.
DP-SGD is a common technique that stands for differen-

tially private stochastic gradient descent. Since DL models
are trained by minimizing some loss function f (X ; θ) :=
1

m
∑m

i=1 f (xi; θ) on a dataset X = {xi ∈ Rn}mi=1, a usual
method to find the optimal value is to perform stochastic
gradient descent (SGD) on a batch B of sampled data points
iteratively:

B← BATCHSAMPLE(X)

θ ← −η 1

|B|
∑
i∈B
∇θf (xi, θ)

To make SGD private Abadi et al. [135] proposed to first clip

the gradient of each sample to ensure the l2-norm at most C:

CLIP(x,C) := xmin (1,C/ ∥x∥2)

To make a private quantity g that can be used for the descent
step θ ← θ− η · g we estimate using a multivariate Gaussian
noise parametrized by ψ:

g← 1

|B|

(∑
i∈B

CLIP(∇θf (ci, θ),C) +N (0,C2ψ2I)

)

Jorgenser et al. [136] introduce the term Personalized dif-
ferential Privacy (PDP), considering that not all users re-
quire the same level of privacy. Considering a privacy budget
S = {ϵ1, · · · , ϵn}, a set of users U = {u1, · · · , un}. A
randomized mechanismM which satisfies S-PDP if for any

VOLUME 11, 2023 13

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3417608

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Osorio-Marulanda et al.: Privacy mechanisms and evaluation metrics for Synthetic Data Generation: A systematic review

pair X ,Y ∈ D which differs in one arbitrary user ui, and for
all sets O ∈ R of possible outputs

P[M(X) ∈ O] ≤ eϵi P[M(Y ) ∈ O]

There are other combined mechanisms, or applied to spe-
cific fields, that have been implemented based on the concept
of DP. Such is the case ϵ-geo-indistinguishability [56], which
introduces the use of distance between two objects to make it
applicable to protect users’ location, or (k−ϵ−δ) anonymiza-
tion, which improves the privacy of datasets by implementing
DP and k-anonymization using KD tree and random sampling
mechanisms.

In Table 4, it is possible to observe a subcategorization of
the citations of the review that use DP as a model to ensure
privacy. As given by definition, different mechanisms are
used to ensure that the differential privacy rate is met. Those
mechanisms work by adding random noise to the data, which
masks the identity of individuals while still providing useful
information.

1) DP mechanisms
A randomized query mechanismM for a query function will
randomly output a number with a probability distribution. A
necessary definition of these types of mechanisms is the con-
cept of sensitivity. l1-sensitivity of a function f : N|X | → Rk

is:

∆f = max
x,y∈N|X|
∥x−y∥1=1

|f (x)− f (y)|1

This function captures the magnitude by which a single in-
dividual’s data can change the function f in the worst case
[134]. among the different DP mechanisms, the most used
are the Laplace mechanism, the Gaussian Mechanism, the
exponential mechanism, the geometric mechanism, and the
staircase mechanism.

• Laplace mechanism [134]
Consider the Laplace distribution centered at 0, with
scale b, defined by:

Lap(x|b) = 1

2b
exp
(
−|x|
b

)
with a variance δ2 = 2b2. Given a function f : N|X | →
Rk , the Lapalce mechanism is defined as

ML(x, f (·), ϵ) = f (X) + (Y1, · · · ,Yk)

where Yi are i.i.d random variables dram from
Lap(∆f /ϵ).

• Staircase mechanism [35]
For a given function f : N|X | → Rk , the Staircase
mechanism adds noise to the query result:

Ms(x, f (·), ϵ) = f (x) + g(∆f , ϵ)

where g(∆f , ϵ) is the noise generator sampling noise
from a staircase-shaped probability distribution, which
is defined as:

hγ(X ,∆, ϵ) ={
e−jϵα(γ) if ∥X∥1 ∈ [j∆f , (j+ γ)∆f ]
e−(j+1)ϵα(γ) if ∥X∥1 ∈ [(j+ γ)∆f , (j+ 1)∆f ]

(1)

where j ∈ N, and γ ∈ [0, 1], α(γ) is a normalization
factor to make∫ ∫

· · ·
∫
Rk
hγ(x)dx1dx2 · · · dxk = 1

defined as

α(γ) =
k!

2k(∆f )k
∑k

j=1

k!
j!(k − j)!

ck−j(b+ (1− b)γj)

where b = eϵ, cj =
∑+∞

i=0 i
jbj and γ =

1

1 + eϵ/2
.

• Gaussian mechanism [104]
For a given function f : N|X | → Rk , the Gaussian
mechanism is to add noise to the query result:

MGa(x, f (·), ϵ) = f (x) + z

where z is the noise generator sampling noise from a
Normal probability distribution N (0, σ2∆f 2), which is
defined as:

N (0, σ2∆f 2) =
1

σ∆f
√
2π

e
−
1

2

( x
σ∆f

)2

This mechanism holds the condition

σ2ϵ2 ≥ 2 ln(1.25/δ)∆f 2

• Geometric mechanism [137]
The geometric mechanism for a given function f :
N|X | → Rk defined as

MGe(x, f (·), ϵ) = f (x) + m

where m is a random variable distributed by a two-sided

geometric distribution P(M = m) =
1− α
1 + α

α|m|.

• Exponential mechanism [66]
This algorithm uses a score function to determine the
quality of a query result. It then generates a query result
with a probability that is proportional to an exponential
function. Specifically, given the output range Rk and a
query score function f (x, r), where r is the output of a
query function on a dataset x, this algorithm outputs r ∈
R with a probability proportional to exp

(
ϵf (x, r)
2∆f

)
.

B. ENCRYPTION TECHNIQUES
These techniques use mathematical algorithms to transform
data into an unreadable format unless decrypted. Among
the techniques used in this category, we have encryption,
Homorphic encryption, and pailler cryptosystem. Encryption
is used by Khowaja et al. [68] with a spike learning technique

14 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3417608

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Osorio-Marulanda et al.: Privacy mechanisms and evaluation metrics for Synthetic Data Generation: A systematic review

for model weights by representing the spatial domain data
into the temporal axis, making it resilient against leakage
attacks. Homomorphic encryption is also used for securely
generating synthetic V-histograms over distributed datasets in
[103]. Pailler cryptosystem is also used in [123], with two
Horner parameters by leveraging homomorphism, for line-
loss calculation in Residential Areas.

C. ANONYMIZATION TECHNIQUES
This category involves techniques that modify data to pre-
vent the identification of individuals whose information is
included in the dataset.

k-anonymity model is used against record linkage in which
the adversary can uniquely identify the victim’s record with
the help of some additional information. This measure states
that any released data item must be linked to at least k
individuals with equal probability [138]. Let T{A1, · · ·An}
be a table which represents a structured dataset. A QID of
T is a set of attributes {Ai, · · · ,Aj} ⊆ {A1, · · · ,An} whose
release must be controlled. Consider the tuple t ∈ T where
t|Ai, · · · ,Aj| means the sequence of values Ai, · · · ,Aj in t ,
and T (Ai, · · · .T ) is a projection, maintaining the duplicate
tuples of attributes Ai, · · · ,Aj in T . Finally, Q|T denotes the
set of quasi-identifiers associated with T , and |T | denotes
the number of tuples in T [139]. Each data release must
be such that at least k individuals can indistinctly match
every combination of quasi-identifier values. So, with a table
T (A1, · · · ,An) and the quasi-identifiers associated Q|T , T is
said to satisfy k-anonymity if and only if for each quasi-
identifier QI ∈ Q|T each sequence of value in T [QI ] appears
at least with k occurrences in T [QI ].
l-diversity can deal with the main problem of k-anonymity,

which considers that if all k values with the same quasi-
identifiers also have the same value for the sensitive attribute,
k-anonymity can be met while still revealing the sensitive
value for an attribute to an adversary [138]. Let us define
a q*-block to be the set of tuples in T* whose nonsensitive
attribute values generalize to q*. A q*-block is l-diverse if
contains at least l well represented values for the sensitive
attribute S. A table is l-diverse if every q*-block is l-diverse
[140]. Since "well represented" values can be a non-objective
term, Machanavajjhala et al. [140] define it in three possible
ways:

• Distinct l-diversity: At least l distinct values for the
sensitive field in each equivalence class exist.

• Entropy l-diversity: A table is entropy l-diverse if for
every block q*-block

−
∑

s ∈ Sp(q∗,s)log(p(q∗,s′)) ≥ log(l)

where
p(q∗,s) =

n(q∗,s)∑
s′∈S n(q∗,s′)

represents the fraction of tuples in the q*-block with sen-
sitive attribute value equals to s, and p(q∗,s) is the fraction
of records in the q*-block which has the sensitive value
s.

• Recursive (c − l)-diversity: This definition ensures
that the most common value does not appear too often
while less common values are ensured to not appear too
infrequently. Basically, in a given q*-block, let ri denote
the number of times the ith most frequent sensitive value
appears in that q*-block. Given a constant c, the q*-
block satisfies recursive (c, l)-diversity if r1 < c(rl +
rl+1 + · · ·+ rm). A table T* satisfies recursive (c− l)-
diversity if every q*-block satisfies recursive l-diversity.

A final approach from l-diversity is t-closeness. An equiv-
alence class is said to have t-closeness if the distance be-
tween the distribution of a sensitive attribute in this class
and the attribute distribution in the whole table is no more
than a threshold t . Table T* is said to have t-closeness if
all equivalence classes have t-closeness. There are some
metrics to measure the distance between two probabilistic
distributions. Given two distributions P = (p1, p2, · · · , p3)
and Q = (q1, q2, · · · , q3), the variational distance is defined
as:

D[P,Q] =
m∑
i=1

1

2
|pi − qi|

and the Kullback-Leibler (KL) distance is defined as

D[P,Q] =
m∑
i=1

pilog
pi
qi

= H(P)− H(P,Q)

where H(P) =
∑m

i=1 pi log pi is the entropy of P and
H(P,Q) =

∑m
i=1 pi log qi. However, Ningui et al. [141] say

those distances cannot reflect the semantic distance among
values. They proposed using Earth Mover’s distance, which
is based on the minimal amount of work needed to transform
one distribution to another bymoving distributionsmass. This
can be formally defined as a function to minimize:

WORK (P,Q,F) =
m∑
i=1

m∑
j=1

dijfij

where dij is the ground distance between element i of P and
element j of Q. We want to find a flow F = [fij] where fij is
the flow of mass from element i of P to element j of Q. The
optimization function is subject to:

fij ≥ 0 1 ≤ i ≤ m, 1 ≤ j ≤ m

pi −
m∑
j=1

fij +
m∑
j=1

fji = qi 1 ≤ i ≤ m

m∑
i=1

m∑
j=1

fij =
m∑
i=1

pi =
m∑
i=1

qi = 1

D. INFORMATION THEORETIC TECHNIQUES
These techniques are based on quantifying and managing
information gain and loss. One of them is Mutual informa-
tion, used in [51] as a part of the generator, which in the
training process attempts to privatize the input data, and the
discriminator attacks the generator by maximizing the mutual
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information between the actual sensitive attributes and those
retrieved from released data. Sensitivity is another technique
used in [65], defined to describe the privacy guarantee for
the original item at the item level, by calculating the relative
similarity between the original data and the original data set,
and it is used as part of a privacy regularizer. Given an original
data i ∈ Iu and the synthetic data v ∈ Vu, and q a feature
vector of a particular user, it is defined as:

fsim(qi, qv) =
qTi qv −min(qi)
qTi qi −min(qi)

(2)

where min(·) is the cosine similarity between item i and
the item which is the most insensitive one in the item set I.
For a synthetic item to meet the user’s privacy in terms of
sensitivity, sensitivity must have a boundary fsim(qi, qv) ≤ γ.

E. BLOCKCHAIN TECHNOLOGY
The techniques in this category utilize decentralized and dis-
tributed digital ledgers to ensure transparency and security in
transactions. Chen and Huang [51] use the blockchain mech-
anism to ensure access control and security, with blockchain
smart contracts to store and verify user permissions that reg-
ulate access to smart patient records and also guarantee that
only authorized agents can access the data, and depending
on permissions, possibly only part of the data. It provides
a programmable, distributed ledger with an immutable his-
tory of transactions, which means that the data stored in
the blockchain cannot be altered or modified by a single
organization or node. The blockchain also requires consensus
among the participating organizations before any transaction
can be written on the ledger, which prevents unauthorized or
malicious actions.

F. OTHER SPECIFIC OR COMBINED METHODS
These are either specific methods for certain types of data
or combinations of various techniques for enhanced privacy
preservation.

Multi-Aspect Trajectory Classification (MARC) [50] is a
method that can be used as a machine-learning model for user
identification based on trajectory data, aiming tominimize the
categorical cross-entropy loss provided by:

− 1

Ntrain

∑
T∈Ttrain

∑
L∈L

1T∈Ttrain · log p[T ∈ L]

where Ttrain is the set of trajectories used to train the model,
Ntrain is the number of training instances, and L is the set of
labels used to classify the trajectories.

Kuppa et al. [24] propose an Instance Level Privacy Co-
efficient for generated synthetic data to avoid MIA-type at-
tacks. Given Xr and Xs, real and synthetic data set generated
by some algorithm G, latent vectors in embedding space
Em(Xr),Em(Xs), the spherelet distance between s(Xi) and
s(Xj) is measured:

dS = dR(Xi,Xj) + dEu(Xi,Xj)

where dEu is the euclidean distance, and dR is Riemanian
Geometric Divergence.With this, the distance between points
by projecting the samples onto a sphere centered at c with
radius r is measured. The Spherelet of X is denoted by
s(X) = S(V , c, r) where V determines an affine subspace
the sphere lies in. The spherical error is defined by [24]:

ϵ(X) =
1

n

n∑
i=1

(||xi − c| | − r)2

If xi lie on the sphere then ϵ(X) = 0. It is possible to see which
points are found in the data manifold with low probability,
and how close the synthetic and real in nearest neighbor
proximity, which can give us a proxy measure for over-fitting
and data memorization [24], since a problem with synthetic
data generators is data memorization from the model itself.
With this consideration, since this model works on the data
level can be used to filter synthetic data which does not
accomplish privacy.
Subsample-and-aggregate is also used. It randomly splits

a dataset X into k blocks of equal size, and then, a query
function f is applied to each block to obtain a query result,
which is an estimation of the query function over the entire
dataset. A total of k estimations are produced and afterward
aggregated using a deferentially-private aggregation function
[66]. The aggregated result is used as the perturbed result for
the query function.
Lyu et al. [54] implements a Makeup generation algorithm

that proposes the perturbation of face images from transfer to
render makeup in source faces according to the style of ref-
erence images while keeping the identity information intact.
This is done by transferring the adversarial makeup in the UV
space, using an encoder-decoder architecture as its backbone.
Vietri et al. [71] proposed a method to iteratively construct

synthetic data by repeatedly selecting queries on which the
SD currently represents poorly using DP with a Gaussian
Mechanism and a private selection mechanism, called One-
shot Report Noisy Top-K With Gumbel Noise. It takes as
input a dataset X ∈ X n with n rows, and a synthetic dataset
X̂ ∈ X∗, a set of m statistical queries Q = {q1, · · · , qm} and
a parameter ρ. Adding Gumbel noise to the queries:

ŷi =
∣∣∣qi(X)− qi(X̂)∣∣∣+ Zi

where Zi ∼ Gumbel (K/
√
2ρn)

Let i(1), · · · , i(i) be an ordered set of indices such that
ŷi(1) ,≥, · · · ,≥ ŷi(i) . The algorithm outputs the top-K indices
{i(1), · · · , i(k)} corresponding to the K queries where the
answer to the synthetic and real data differs the most.

VI. DATA PRIVACY METRICS IN SYNTHETIC DATA
GENERATION
The objective of this section is to answer RQ2, which raises
the need to explore the extent to which different privacy
metrics have been used in a framework of synthetic data
generation to evaluate their effectiveness and quality. The
metrics, listed in the Table 3 can then be stratified as follows:
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TABLE 2. Privacy mechanisms in literature and its(their) associated SDG model(s).

Privacy Mechanism Associated SDG technique References

Encryption GASCNN [53], [68]

DP 2-way margins, 3-way margins, AC-GAN, AsgLDP*, Autoencoder, Bayesian networks,
BGAN, CART, Copula Based, CopulaGan, Copula-Shirley, CTGAN, Density-Aware
Grid, Discriminative-Generative Distillation, DP latent tree (DPLT), DP-auto-GAN, DP-
BLSGD, DP-CGAN, DPCopula, DP-CSM, DP-CTGAN, DP-GAN, DP-Hflow, DP-
MERF, DPView, DP-WGAN, DTG (RNN gradient descent algorithm with differential
privacy), Encoder-decoder + Long Short-Term Memory, Extended short-term memory
networks (LSTMs), FL-GAN, Fully Bayes Model, GAN, Gaussian Copula, GEDDP,
GEM,GEP, G-PATE, GS-WGAN, Iterative proportional fittingwith target ofmarginal dis-
tributions, Kernel Density Estimation (KDE), KNN, low-dimensional marginals, Markov
chains (MC), Masked Autoregressive Flow, Mobility model, MST (Private-PGM :Query
selection with marginals), MWEM, Normalizing flows, PART-GAN, PATE-CTGAN,
PATE-GAN, PEP, Posterior inferences using k-way margins, Posterior Predictive Distri-
bution (PPD), PPDU*, PPGAN, Private sampling, PrivSyn(Marginal selection + Noise
addition + postprocessing + Graduate update method for synthesis), Pseudo posterior
mechanism, QUAIL Method, r-anonymous microaggregation, RDP, Relaxed Adaptive
Projection, Ridge regression, Route length distribution, Simulation based, Synthetic
Data Vault, Trip Distribution, TSADP, TVAE, Variable-order Markov models (VMMs),
Variational Autoencoder, Weighted Uniform Distribution (WUD), WGAN, Wind Power
Obfuscation* + Transmission Capacity Obfuscation*, zCDP

[15], [16], [18], [22], [25], [26],
[28], [35]–[39], [42]–[48], [57]–
[59], [61], [63], [64], [66], [67],
[69]–[71], [76], [87], [89], [90],
[96], [99]–[107], [109], [111]–
[117], [119]–[121], [124]–[126],
[128]–[131]

epsilon-Geo-
indistinguishability (DP)

GAN [56]

Multi-Aspect Trajectory
Classification (MARC)

GAN [50]

(k- ϵ− δ)- Anonymization — [110]

Hashing for SI CTGAN [60]

Mutual Information PPGAIN [51]

l-diversity CART [31]

k-anonimity WaveGAN, Siamese Neural Networks [20]

Instance Level Privacy Co-
efficient

CTGAN, WGAN-GP, PATEGAN, DPGAN, RVAE [24]

Makeup attack mechanism 3DAM-GAN [54]

Homomorphic encryption — [103]

Sensitivity UPC-SGD [65]

kRR 2-ways marginal [41]

t-closeness CTGAN [60]

Pailler cryptosystem — [123]

Statistical Disclosure Ridge regression [39]

Blockchain — [67]

One-shot Report Noisy
Top-KWith Gumbel Noise

Relaxed Adaptive Projection [71]

Subsample-and-aggregate
algorithm

— [66]

A. DISTANCE METRICS
These metrics are used to measure the similarity between two
data points. In the context of privacy-preserving, thesemetrics
allow us to calculate how close is the original dataset com-
pared to the synthetic dataset. According to the data structure,
the data usage of the different techniques may vary according
to their dimensionality, and also to their nature. Metrics found
in this review include Hamming distance, Euclidean distance,
Wasserstein distance, Hausdorff distance, Closet distance,
and distance.

B. PERFORMANCE METRICS
Generally, these metrics are focused on calculating the per-
formance of an attack model on a dataset. These metrics
include accuracy, which identifies when an attacker has a
successful prediction, misclassification cost, a ROC curve of
private vs non-private implementation, and correct attribution
probability.
These attacks aim to extract sensitive information from

a dataset without authorization and measure the efficiency
of the algorithm according to its capacity to keep the data
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private. Among the different privacy attacks, we can identify
Minimum difference attacks, Membership inference attacks,
Re-Identification attacks, Attribute inference attacks, outlier
leakage attacks, and also pairwise attacks based on distance.
In this category, we can also enclose the adversarial attacks,
which aim to fool a model by manipulating the input data,
such as Nearest Neighbour Adversarial Accuracy, Dominant
set clusters, and Model inversion attacks.

C. PRIVACY BASED METRICS
These metrics are metrics that come from privacy models and
measure their particular performance. Here we can include
ϵ-identifiability, ϵ-privacy, Privacy Gain, Differential budget,
and Privacy loss.

D. OTHER METRICS
These metrics do not fit into any of the above categories.
Examples include Linear regression, @K score, Cumulative
privacy loss, Outliers defense, RNNR, GCAP, K-NN, Mem-
orization coefficient, Replicated uniques, Gϵ, Distance eval-
uation, Shadow-modeling, RTS Similarity, Privacy budget,
GroundHog, Attackmodels, Reverting SNN toResNet attack,
Synthetic Predictor, Generating class representation attack,
Kernel density, Replacement ratio, Likelihood estimation,
and Generative representation learning

E. TRADE OFF METRICS
Various metrics have been used not only to measure the
privacy of data but also to see how privacy models alter the
quality and performance of synthetic data when used to simu-
late, model, predict, forecast, or classify. Many of the models
that use DP in their base use differential budget to analyze
the trade-off, putting the ϵ rate used to generate differentially
private data on one axis and a quality performance measure,
usually accuracy, F1-score, or AUC, on the other axis. Fung
[9], while considering anonymization for classification tasks,
proposes a trade-off metric between privacy and accuracy
(utility). The score proposed by him is defined as:

Score(v) =
InfoGain(v)

PrivLoss(v) + 1

which works as a selection criterion for guiding their top-
down refinement process to heuristically maximize the clas-
sification goal, with a refinement v.

To provide a privacy-utility trade-off strategy, Liu et al.
[65] employs a privacy regularizer to constrain the differences
of relative similarity between the original and synthetically
generated data. From Eq. 2, the follow privacy regularizer is
defined:

Ls =
∑
u,i,v

[fsim(qi, qv)− γu]+

where [z]+ = max(z, 0) refers to the standard hinge loss. and
γu indicates the sensitivity for an user u, adopted as a safety
margin. They also define the following utility regularizer:

Lg =
∑
(u,v)

− ln δ(pTu qv)

Since their purpose is to create a recommendation system, the
utility is maximized with the effectiveness of a recommenda-
tion of a n item V to the user u, being p the feature vector of
the user, and q the feature vector of the item v. Finally, the
loss function is formulated as:

LI = λsLS + λgLg

whereλS andλg are hyperparameters that control the weights.
Galloni and Lendák [131] introduce an evaluation frame-

work for evaluating not only a privacy guarantee (ϵ) but also
macro-statistics and data utility. It is defined as:

Gϵ = αµ(Xs,Xp) + βδ(Xs,Xp)

where α and β are weights, Xs is a synthetic data set, and Xp
is a private dataset. The macro statistics measure is defined as
follows:

µ(Xs,Xp) =
∥ϕk(Xs)− ϕk(Xp)∥2

m(m− 1)/2

where m is the number of features, and ϕk is a correlation
coefficient defined in [142]. On the other hand, the utility
measure δ is defined as

δ(Ds,Dp) =
1

mKL
∑m

i=1

∑K
k=1

∑L
l=1 ||accl(M k

Xi,s)− accl(M k
Xi,p)||2

where m is the number of machine learning tasks, K is
the number of different Machine Learning Models, and
L is the total number of different Accuracy Scores (or
any other metric). So that, M k

Xi,s refers to the k-th ML
model optimized using the data Xs and the attributes
X1,s,X2,s, · · · ,Xi−1,s,Xi+1,s, · · · ,Xm,s to predict the attribute
Xi,s

VII. FIELDS OF INTEREST
The objective of this section is to answer RQ3. Figure 4
shows the distribution of the different applications found in
this study, defined in the synthesis of results phase in the
systematic review process, according to the main field of ap-
plication, keywords, and the focus of the methodology in the
paper. A clear result in terms of the number of articles in the
health and theoretical development category can be observed.
The vast majority of the works in the theoretical development
category propose different techniques or methodologies as
the main findings in their articles. In these, even presenting
examples, they are generalizable to any other field of interest
that adapts to the data structure and the models they propose.
On the other hand, it is possible to observe in figure 5 the
subfields in which the health field is segmented. Other fields
of interest are energy and image processing applications.

VIII. DISCUSSION
The systematic review presented in this document analyzes
and compiles advances in privacy techniques and metrics
in the context of synthetic data generation. The review’s
findings provide evidence of the efforts made by different
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TABLE 3. Privacy metrics in literature and its(their) associated SDG model(s).

Unique values metrics Associated SDG technique Reference

Minimum difference attack GASCNN [68]
Membership inference attack GAN, Gaussian Multivariate, Synthetic Data, CTGAN, WGAN, WGANGP,

Markov chains, IRT, Variational autoencoder, WGAN-GP, PATEGAN, DPGAN,
RVAE, Sequential encoder-decoder networks

[7], [24], [29], [40], [59],
[87], [88]

Pairwise attacks ac-GAN, pGAN [73]
Hamming distance DP-CGANS, MST, Bayesian Networks [47], [125]
Euclidean distance DP-CGANS, Gaussian Multivariate, Synthetic Data Vault, CTGAN, WGANGP [47], [88]
Linear regression DP-CGANS, KNN, Gaussian Copula, CopulaGAN, TVAE, CTGAN [28], [47]
ϵ-identifiability ADS-GAN [91]
Nearest Neighbour Adversarial Ac-
curacy

PGAN, GAN [74], [92]

Disaggregation using NILM GAN, hybrid-GAN [94]
ϵ-privacy - [99]
Re-Identification attack Sequential encoder-decoder networks, GAN, Markov chains, IRT [29], [40], [97]
Wasserstein distance FL-GAN, Federated Learning [105]
Similarity Gaussian Multivariate, Synthetic Data Vault, CTGAN, WGANGP, Bayesian

networks
[49], [88]

@K score GAN [50]
Tachycardia Privacy MWEM, DP-CTGAN, PATE-CTGAN [112]
Attack: Dominant set clusters Variational Autoencoder [115]
Cumulative privacy loss Masked Autoregressive Flow [116]
Earth Mover’s Distance (EMD) CTGAN [60]
Bozorth3 (similarity score) StyleGAN, ProgressiveGAN [118]
Outliers defense (Density-Aware Grid + Trip Distribution + Mobility model + Route length

distribution)
[69]

RNNR Bayesian Networks [43]
GCAP (Generalized correct attribu-
tion probability)

Bayesian Networks [62]

Closet-distance (Hamming
distance, LP-distance)

MST, Bayesian Networks [125]

K-NN DP-CGANS, WaveGAN, Siamese Neural Network, CART, Synthetic Data Vault [6], [20], [32], [47]
Memorization coefficient CTGAN, WGAN-GP, PATEGAN, DPGAN, RVAE [24]
Replicated uniques (ru) (Disclosure
risk)

2-way margins, 3-way margins [130]

Gϵ Bayesian Networks, Copula-Shirley, DPCopula [131]
Utility : Accuracy Variational Autoencoder [59], [132]
Leading bit attack GASCNN [68]
Distribution attack ac-GAN, pGAN [73]
Hausdorff distance Gaussian Multivariate, Synthetic Data Vault, CTGAN, WGANGP [88]
Missclasification cost - [99]
Differential budget FL-GAN, Federated Learning [105]
Distance evaluation Bayesian Networks [49]
Privacy loss Encoder-decoder + Long Short-Term Memory [38]
ROC (private vs non-private) Masked Autoregressive Flow [116]
Correct attribution probability
(CAP)

Bayesian Networks [43]

Shadow-modeling MST, Bayesian Networks [125]
Model inversion attack GASCNN [68]
Attribute inference attack Gaussian Multivariate, Synthetic Data Vault, CTGAN, WGANGP, Sequential

encoder-decoder networks,GAN
[29], [88]

RTS Similarity Gaussian Multivariate, Synthetic Data Vault, CTGAN, WGANGP [88]
Privacy budget Encoder-decoder + Long Short-Term Memory [38]
GroundHog MST, Bayesian Networks [125]
Attack models: Logistic regression
Random Forest

- [6]

Reverting SNN to ResNet attack GASCNN [68]
Synthetic Predictor MST, Bayesian Networks [125]
Generating class representation at-
tack

GASCNN [68]

Kernel density MST, Bayesian Networks [125]
LP-Distance MST, Bayesian Networks [125]
Replacement ratio UPC-SGD [65]
Likelihood estimation WGAN [7]
Generative representation learning
(GRL)

WGAN [7]

Contrastive representation learning
- local augmentation

WGAN [7]
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TABLE 4. Differential privacy mechanisms and variations

DP variation Associated SDG Technique Reference

Laplace mechanism MST (Private-PGM : Query selection with marginals), Bayesian Net-
works, Simulation-based, GAN, (Wind Power Obfuscation*, Transmis-
sion Capacity Obfuscation*), BGAN, WGAN, DTG (RNN gradient
descent algorithm with differential privacy), DPView, Pseudo posterior
mechanism, Fully Bayes Model, Copula Based, Differentially private
latent tree (DPLT), Weighted Uniform Distribution (WUD), Kernel
Density Estimation (KDE), Bounded Laplace Method (BLM)

[45], [52], [57], [58], [66], [76],
[89], [96], [101], [106], [109],
[111], [114], [120], [125]

Staircase mechanism DP-CSM [35]
Gaussian mechanism DTG (RNN gradient descent algorithm with differential privacy),

Masked Autoregressive Flow, Normalizing flows, DP-Hflow, Autoen-
coder, Encoder-decoder + Long Short-Term Memory,low-dimensional
marginals, PEP, GEM, Bayesian networks, Relaxed Adaptive Projec-
tion, MST (Private-PGM: Query selection with marginals), PrivSyn
(Marginal selection + Noise addition+postprocessing + Graduate update
method for synthesis), DP-WGAN

[38], [42], [52], [64], [67], [70],
[71], [104], [109], [116], [119],
[121], [125]

Geometric mechanism k-way margins [129]
Exponential mechanism (Wind Power Obfuscation*,Transmission Capacity Obfuscation* ) [66], [106]
Personalized Differential Privacy
(PDP)

- [66]

DP-SGD DP-CGANS, DP-auto-GAN, Masked autoregressive Flow [47], [107], [116]
Renyi Differential Privacy Normalizing flows, RDP-CGAN [8], [70]
LDP LDPGM-ORR, 2-ways marginal, DP-Federated-Generative-

Autoencoder (Wasserstein Autoencoder (WAE)), Bounded Laplace
Method (BLM)

[41], [52], [108], [127]

FIGURE 4. Distribution of the different fields of application

fields to preserve privacy, under the premise that the use of
unique synthetic data generation techniques poses a risk to
the privacy of different users. SDG techniques are known
for representing considerable potential in the progress of
models executed in different fields of knowledge and in the
enhancement of methods that can perform their functions
while ensuring privacy guarantees are a clear demonstration
of how implementations can be carried out responsibly. This
work can be used to gain insight into current privacy metrics
and techniques in the context of synthetic data generation, to
serve as the root of eventual investigations that aim to search
for synthetic data in various areas, as well as a compilation
of which techniques are most used in different contexts to
facilitate scientific access and development.

FIGURE 5. Distribution of the sub-categories of health field

A. MAIN FINDINGS

To answer each of the research questions presented in the
methodology section, the following compilation of findings
is presented.
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1) RQ1: Which privacy techniques can be integrated to
evaluate the privacy of synthetically generated data?
To answer this question, it was first necessary to classify the
techniques of synthetic data generation and their evaluation
metrics, to recognize the existence of these techniques and the
importance of a certain set of them in the general development
framework of synthetic data. The first finding is represented
by the common use of techniques based on GANs, used
by 42% of the compiled works, and secondly, techniques
based on statistical models and the variety derived from them
stand out. On the other hand, the most common metrics for
measuring performance are utility-based metrics, a finding
that highlights the interest in achieving utility standards in
synthetic data generation, rather than resemblance.

Themost commonly used privacy technique throughout the
compiled studies is Differential Privacy, confirming its posi-
tion as a state-of-the-art technique, either with its general use
or with uses derived from it (Section V-A). This technique has
been integrated into SDG models of all categories. Within its
use, as can be seen in Section V-A1, the Laplace mechanism
and the Gaussian mechanism stand out as mechanisms for
preserving DP, followed by the use of LDP and DP-SGD.
The implementation of techniques based on Blockchain or
Encryption stands out for their lack of use of methods for syn-
thetic data generation. Likewise, the utilization of anonymiza-
tion techniques such as l-diversity or k-anonymity are still
present in a few works. Finally, it is possible to look through
the table 1 a dominance of GAN-based methods, in addition
to the fact that utility-based metrics are the most widely used
when making implementations with privacy guarantees.

2) RQ2: To what extent and criteria different metrics have
been applied to evaluate the privacy of generated data by
different SDG methods combined with privacy mechanisms?
How are those methods applied in a privacy utility trade-off
evaluation?
To answer these questions, we compiled various privacy met-
rics used in the articles. Initially, there is a lack of depth in
the concept and differentiation of privacy techniques, privacy
metrics, and synthetic data. In this research, we try to dif-
ferentiate the concepts from definitions used by Boudewijn
et al. [78], Wagner et al. [77], and Carvalho et al. [10]. A
data transformation to make synthetic data from original data
is not a methodology for generating synthetic data, but the
implementation of a mechanism. Thus, a metric is, as the
name describes, a measure for data privacy, which can vary in
different categories, as defined in this paper: distance metrics,
performance metrics, privacy-based metrics, and other types
of metrics. However, it should be noted that many privacy
metrics are used within synthetic data generators to produce
data with privacy guarantees, a situation in which such a
metric would behave as a mechanism within that framework;
or a situation in which a parameter of a privacy mechanism
can be interpreted as a privacy metric.

There is a high diversity in the privacy metrics used, and
the choice of their use in the different fields of development

has no clear criteria. This means that in the methodology
of elaboration of some papers, the privacy metric is more
related to the objective of the paper than to the synthetic data
generation technique used there. The latter is facilitated when
the privacy mechanism used is differential privacy since this
parameter can be useful when performing parallel analysis.
Additionally, it is possible to observe how the models based
on attacks are well used in the literature, which may be a
sign of the interest of developing works in this field: avoiding
privacy attacks.
The evaluation of the second part of this question is

described in Section VI-E, where we describe works that
implement privacy-utility trade-off mechanisms within their
synthetic data generation models, seeking to solve an opti-
mization problem, or globally evaluating the behavior of a
synthetic data generation model with the use of a privacy
mechanism. As described, most of the articles make a final
implementation based on a privacy metric vs. a utility metric
to perform an analysis in this sense, in particular, Privacy
Budget has a large number of implementations, where the
performance of the DP is compared with utility metrics such
as ROC, AUC or accuracy.

3) RQ3: How have privacy techniques in the framework of
synthetically generated data been used and applied in
health data?
To answer this question, a classification by fields of applica-
tion documented in the Section VII was carried out. It is pos-
sible to observe that the medical field is one of the most inter-
ested in producing synthetic data generation methodologies
that guarantee the privacy of users or patients. Likewise, there
is a considerable diversity in the subcategories of application,
where applications in tabular data, image analysis, and signal
analysis stand out. It is necessary to point out that although
another of the most developed categories are theoretical de-
velopments, many of these works have direct applicability in
the field of health. However, relevant implementations in the
OMICS field were not found in this review. At last, there is
still a lack of standardization to compare properly different
metrics, as it was mentioned by Hernandez et al. [86].
Although the use of DP is becoming very relevant, even

in the medical field, there is still no confidence interval that
verifies that a certain value of epsilon guarantees privacy,
since the utility and privacy gained lies in the specific method
of fulfilling the conditions that ensure DP.

B. LIMITATIONS
The limitations of this study begin with the methodology
designed for the search of papers, as the date range, publi-
cation requirements, the databases used for the search, and
the screening performed may have discarded papers and doc-
uments relevant to the topic of interest. In particular, the selec-
tion used to extract the articles fromGoogle Scholar may have
increased the bias from earlier stages of the systematic review.
Due to the number of articles explored and the objective of the
review, many of the synthetic data generation methods were
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not explored in depth, which can lead to inaccuracies when
describing them. In the same vein, important informationmay
not have been considered in the descriptions of the privacy
mechanisms and metrics implemented.

Finally, there may be inaccuracies at the time of catego-
rization since many techniques could belong to more than
one category. Therefore, the naming and description of the
techniques were done seeking a balance between the global
and the specific, that is, categories that better segmented the
data but that internally could describe general characteristics
of the methods that belong to them.

Future extensions of the systematic review could involve a
detailed investigation into the specific nature of health data
utilized in synthetic data generation studies, understanding
the differences of data types, such as cancer or diabetes data,
for providing valuable context for evaluating the effectiveness
of privacy-preserving techniques in different healthcare re-
search domains. Also, exploring the establishment of practi-
cal privacy thresholds for each type of study could offer some
insights about the use of DP, determining the threshold at
which mechanisms perform optimally would enable the iden-
tification of thresholds that balance privacy protection with
data utility. Finally, an analysis of the relationship between
the choice of model and the characteristics of the data across
various could identify correlations between specificmodeling
approaches and the nature of the data, helping to know which
models are most suitable for different types of health data.

C. RESEARCH DIRECTIONS

This work has found several possible avenues for future re-
search with high relevance in the field of privacy mechanisms
and their evaluation metrics in the context of synthetic data
generation. One possible avenue for development involves
researching whether the use of specific metrics is biased
toward a particular set of privacy mechanisms or synthetic
data generation methods. This exploration should consider
the nature, structure, and volume of the data that the model
uses for generating and measuring privacy.

Similarly, there is a lack of publications on how different
privacy techniques are challenged when dealing with outliers
or data with high variability, and how different synthetic data
generators are involved in data with these characteristics. In
this line, there is a lack of research on privacy-utility-bias
trade-off issues, as well as on the effect of the use of this
framework on the fairness of the data. On the other hand,
more research is needed on metrics to determine how statis-
tics such as covariance are preserved when different privacy
mechanisms are implemented in the data.

Regarding the findings on the privacy-utility trade-off, an
important line of research is the implementation of mecha-
nisms that are internally coupled in the synthetic data gen-
eration models, and that in the best case, optimize these two
characteristics of the data in each iteration. Also, advance-
ments in statistical metrics to more easily compare studies are
a possible avenue for future developments.

This research shows an advance in the development of
privacy techniques for the generation of synthetic tabular
data. However, the development of metrics and techniques
in this framework for unstructured data is scarce, and no
configuration on the sensitivity of the attributes associated
with this type of data (e.g., images, time series) is described.
Finally, there is a lack of development of privacy tech-

niques in the framework of synthetic data generation in highly
relevant fields, such as economics, energy, LLM and text gen-
eration models, mobility, recommender systems, and health
implementations using OMICS data.

IX. CONCLUSION
The research carried out in this systematic review compiles
works that address privacy metrics and techniques imple-
mented in the context of synthetic data generation, intending
to provide an overview that serves as a state-of-the-art and
current diagnosis of the topic. It highlights the applications in
the field of health, the use of GAN-based generating models,
the use of Differential Privacy as a method of privacy preser-
vation, and the use of metrics such as the Privacy Budget
or attack mechanisms for measuring privacy in synthetically
generated data. The growing popularity of privacy techniques
for synthetic data has been emphasized due to recent concerns
about how SDG techniques alone can fail to maintain the
privacy of the original data. The wide mixture of elements
in theoretical developments is also considered, as well as
the diversity of applications in different fields. This review
lists solutions from a development perspective to implement
privacy techniques among the different SDG algorithms and
encourage the development of diversification and standard-
ization of metrics, and sensitivity analysis of the different
metrics to properly select them according to the structure
of the data, and the SDG model used. It also provides an
applicability perspective in fields of knowledge where syn-
thetic data are relevant, and the sensitivity that they inherently
contain makes them candidates for the implementation of
privacy measures. In practice, this review recommends and
justifies the use of Differential Privacy as a suitable technique
for privacy preservation in different fields of knowledge, the
use of GAN-based techniques, with their derivations, for the
generation of synthetic data, and a diverse set of evaluation
metrics. Unfortunately, the study may have suffered from the
lack of an existing general framework for categorizing privacy
techniques and metrics, as well as the limited use of metrics
that guarantee covariance, bias, and fairness. Therefore, fu-
ture research should focus on developing a general framework
for categorizing privacy techniques and metrics, as well as
on the use of metrics that guarantee covariance, bias, and
fairness.
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