
X. Zhang et al.: Synchronization Analysis for State-Dependent Spiking Switched Neural Networks

.

VOLUME 4, 2016 1

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3416875

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Synchronization Analysis for
State-dependent Spiking Switched
Neural Networks
XIANXIU ZHANG1, KEKE WU2, YUMING FENG1, YI YANG3, AND BAOJIE ZHANG4
1Key Laboratory of Intelligent Information Processing and Control, School of Computer Science and Engineering, Chongqing Three Gorges University,
Wanzhou, Chongqing, 404100, China
2Department of General Education, Chongqing Preschool Education College, Wanzhou, Chongqing, 404047, China(e-mail: wkk@cqyz.edu.cn)
3School of Three Gorges Artificial Intelligence , Chongqing Three Gorges University, Wanzhou, Chongqing, 404100, China(e-mail: yang1595@126.com)
4Chongqing Engineering Research Center of Internet of Things and Intelligent Control Technology , Chongqing Three Gorges University, Wanzhou, Chongqing,
404100, China(e-mail: baojiezh@126.com)

Corresponding author: Yuming Feng (e-mail: ymfeng@sanxiau.edu.cn); First author: Xianxiu Zhang (e-mail: zxx1234567@sina.com).

This work is supported in part by the National Natural Science Foundation of China(12201086), the Foundation of Chongqing Municipal
Key Laboratory of Institutions of Higher Education ([2017]3), the Science and Technology Research Program of Chongqing Municipal
Education Commission (KJZD-M202201204), and the Foundation of Intelligent Ecotourism Subject Group of Chongqing Three Gorges
University (Nos. zhlv20221018, zhlv20221003, zhlv20221006 ).

ABSTRACT This paper investigates the exponential synchronization problem for the proposed state-
dependent spiking switched neural network. Under certain conditions, it is proven that state-dependent
spiking switched systems can be transformed into fixed-time spiking switched systems, and exponential
synchronization of homologous comparison systems implies the exact synchronization of the considered
systems. Then, an exponential synchronization criterion is obtained for the proposed systems. Finally, three
numerical examples are given to illustrate the validity of our results.

INDEX TERMS B-equivalence, exponential synchronization, neural networks, state-dependent spikes,
switch.

I. INTRODUCTION

IN recent decades, synchronization, an essential collective
behavior of dynamical networks, has received more and

more attention in many fields [1]-[3]. Network synchro-
nization has potential application prospects in information
science, secure communication, parallel image processing,
mechanical engineering, etc. [4]-[11]. From the perspective
of computer science, a neural network can be considered a
mathematical model containing many parameters, and this
model is generated via the substitution of several functions
(nested) [12]-[13]. The equilibrium points of a neural net-
work can be found by using machine learning algorithms or
mathematical methods. Since the synchronous networks have
almost identical dynamics, appropriate neural networks can
be selected to study the relevant problems. So, it is essential
to investigate the synchronization problem of dynamic sys-
tems.

Spiking phenomena exist in many research areas, like epi-
demic prevention, economics, etc. [14]-[23]. Spiking systems
can be mainly divided into two categories: fixed-time spiking
systems (FTSSs) and state-dependent spiking systems (S-

DSSs). SDSSs usually depend on the state, and thus different
solutions of SDSSs have other moments of spikes. Up to
the present, many books and papers have concentrated on
the FTSSs [22]-[29], and there are only a few reports on
SDSSs [30]-[34]. However, in reality, the spikes of many
systems such as ecological systems, physiological systems,
population control systems, and some circuit control systems
do not arise at fixed moments [34]. SDSSs are fundamentally
more important in modeling and control than FTSSs.

Switching systems could be utilized to model natural sys-
tems whose dynamics are selected from a series of options
in the light of a switching signal [35]. Particularly, many
practical systems are naturally multimodal in that several
dynamical subsystems are required to depict their behaviors
that may depend on various environmental factors [36]-[37].
Generally, spiking systems [38] and switched systems [35]
are two widely studied types of hybrid systems.

Based on the previous statement, it is vital to investigate
state-dependent spikes and switched systems. In [39]-[41],
the researchers only studied state-dependent spiking systems
without switching. Especially, the consensus of multi-agent
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systems was studied using state-dependent impulsive control
[41]. However, many complex nonlinear systems that are
unstable by a single controller can be stabilized by switching
between finitely many controllers [42]-[43]. Meanwhile, a
hybrid system, which is precisely a spiking and switched
system [44], has been extensively studied in recent years
[45]-[47]. In [45], the global stability of spiking-switched
Hopfield neural networks was investigated, but only fixed-
time spikes were considered, which happen at switched
instants. That is, both the spikes and the switch occur at
the same fixed moments, as introduced in [46] and [47]. In
this paper, the global exponential synchronization of state-
dependent spiking switched neural networks (SDSSNNs) is
investigated, where the spikes are state-dependent and do
not arise at switched instants. It is more consistent with the
situation in practice and thus has more practical values.

Based on the above discussions, the main contributions of
this paper are listed below:

1. State-dependent spiking switched systems are studied,
where the spikes are state-dependent and do not arise at
switched instants.

2. To the best of our knowledge, this paper is the first
to investigate the global exponential synchronization of S-
DSSNNs.

3. It is proven that state-dependent spiking switched sys-
tems can be transformed into fixed-time spiking switched
systems under certain conditions, and the linear relation
between original and homologous new jump operators can
be obtained.

The rest of this paper is organized as follows: in Section
2, the proposed system is introduced, and some preliminaries
are provided; in Section 3, the assumptions for the absence of
beating are given, and a corresponding B-equivalent system
is formulated; in Section 4, a criterion is established for
global exponential synchronization of SDSSNNs; in Section
5, three numerical examples are given to demonstrate the
validity of our results; finally, Section 6 summarizes this
paper and presents the following research direction.

II. MODEL DESCRIPTION

In this paper,Z+ andR+ represent the set of positive integers
and the set of positive real numbers, respectively;Rn denotes
the n-dimensional Euclidean space, and Γi = {(x, y(x)) ∈
R+ × G : x = θi + τi(y(x)), x ∈ R+, i ∈ Z+, y ∈
G,G ⊂ Rn} denotes the ith surface of discontinuity. PT

and I represent the transpose of matrix P and the identity
matrix, respectively; diag{· · · } denotes the block-diagonal
matrix. For y ∈ Rn, ‖y‖ represents the Euclidean norm of y.
For matrix P ∈ Rn×n, ‖P‖ =

√
max{|λ(PTP )|}, where

λ(·) denotes the eigenvalue value.

Now, SDSSNNs are proposed as follows:
ẏ(x) =−Aφ(i+1)(x)y(x) +Bφ(i+1)(x)fφ(i+1)(y(x))

+ Iφ(i+1)(x), x ∈ (θi, θi+1],

and x 6= θi + τi(y(x)),

∆y(x) = Ji(y(x)), x = θi + τi(y(x)),
(1)

with the switched neural networks as continuous subsystems:

ẏ(x) =−Aφ(i+1)(x)y(x) +Bφ(i+1)(x)fφ(i+1)(y(x))

+ Iφ(i+1)(x), x ∈ (θi, θi+1],

and x 6= θi + τi(y(x)),
(2)

and discrete subsystem:

∆y(x) = Ji(y(x)), x = θi + τi(y(x)), (3)

where y is the state variable, y = (y1, y2, · · · , yn)T ∈
G ⊂ Rn, φ : Z+ → U = {1, 2, · · · ,m}, m ∈
Z+, i.e., {φ(1), φ(2), · · · , φ(i), · · · } = {1, 2, · · · ,m}. The
time sequence {θi} satisfies θ0 = 0 < θ1 < θ2 <
· · · < θi < θi+1 < · · · , and θi → ∞ as i → ∞.
For k ∈ U,Ak(x) = diag(a

(k)
1 (x), a

(k)
2 (x), · · · , a(k)n (x))

has positive entries, Bk(x) = (b
(k)
ul (x)) ∈ Rn×n, and

fk(y) = (f
(k)
1 (y1), f

(k)
2 (y2), · · · , f (k)n (yn))T ∈ Rn repre-

sents activation functions. ∆y |x=ξi= y(ξi+)− y(ξi), where
y(ξi+) = limx→ξi+0 y(x) represents the state jump at ξi that
satisfies ξi = θi + τi(y(ξi)). Generally, it is assumed that
y(ξi−) = limx→ξi−0 y(x) = y(ξi), i.e., the solution y(x) is
left continuous at ξi.

Now, system (1) can be rewritten in the following form:
ẏ(x) =−Aφ(i+1)(x)y(x) +Hφ(i+1)(x, y(x)),

x ∈ (θi, θi+1], and x 6= θi + τi(y(x)),

∆y(x) = Ji(y(x)), x = θi + τi(y(x)),

(4)

where Hφ(i+1)(x, y(x)) = Bφ(i+1)(x)fφ(i+1)(y(x)) +
Iφ(i+1)(x). System (1) and system (4) are equivalent. System
(4) will be utilized to perform analysis in the next section.
The following assumptions are made in this paper:
(H1). ‖Aj(x)‖ ≤ ζ, for any j ∈ U , where ζ is a positive
constant. Hφ(i+1)(x, y(x)) is continuous and satisfy the Lip-
schitz condition with respect to y, i.e., for all x ∈ R+, there
is a positive constant lk such that ‖Hk(x, u) −Hk(x, v)‖ ≤
lk‖u− v‖, for any u, v ∈ Rn.
(H2). For each y ∈ G, Ji(y) : G → G, τi(y) : G → R are
continuous and satisfy Ji(0) = 0, τi(0) = 0, and there are
positive constants lJ and lτ such that ‖Ji(m) − Ji(n)‖ ≤
lJ‖m − n‖ and ‖τi(m) − τi(n)‖ ≤ lτ‖m − n‖, for any
m,n ∈ Rn.

From Assumption (H1), one may obtain that
−Aφ(i+1)(x)y(x)+Hφ(i+1)(x, y(x)) satisfies the local Lips-
chitz condition. By Theorem 5.2.1 in [31] (the local existence
theorem), a solution to system (4) can be obtained, where the
initial values y(θi) fall within (θi, θi+1].

Finally, several definitions are given.
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Definition 1 ([45]). A piecewise continuous function y(x) =
y(x; θ0, y0) is a solution to system (4) if
(i) for x ∈ [θ0, θ1], the solution coincides with the solution to{

ẏ(x) = −Aφ(1)(x)y(x) +Hφ(1)(x, y(x)),

y(θ0) = y0,

(ii) suppose that the solution has been determined in the
interval [θ0, θi−1]. Then, for (θi−1, θi], the solution coincides
the solution to

ẏ(x) =−Aφ(i)(x)y(x) +Hφ(i)(x, y(x)),

x 6= θi−1 + τi−1(y(x)),

∆y(x) = Ji−1(y(x)), x = θi−1 + τi−1(y(x)).

Based on Definition 1 and the statements mentioned above,
one can obtain that a solution to system (4) exists.

Definition 2. System (4) is said to achieve globally exponen-
tial synchronization, if there are some constants γ > 0 and
M > 0 such that ‖yi(x) − yj(x)‖ ≤ Mexp(−γ(x − x0)),
for any i, j ∈ {1, 2, · · · , n} and x ≥ x0.

III. ABSENCE OF BEATING AND B-EQUIVALENCE
The following presents two assumptions that ensure the
absence of beating, and then an FTSS is proposed as a
comparison system of (4).
(H3). There exist three constants ν, ϑ and ϑ̄ such that 0 <
τi(y) ≤ ν, ϑ < θi+1 − θi < ϑ̄, where ϑ > ν, for each
i ∈ Z+.
(H4). Fix any j ∈ Z+, and let y(x) : (θj , θj + ν] → G be
a solution to (4) in (θj , θj + ν]. One of the following two
conditions holds:

(i)


dτj(y)

dy
(−Aφ(j+1)(x)y(x) +Hφ(j+1)(x, y(x))) > 1,

τj(y(ξj) + Jj(y(ξj))) ≥ τj(y(ξj)), x = ξj ,

(ii)


dτj(y)

dy
(−Aφ(j+1)(x)y(x) +Hφ(j+1)(x, y(x))) < 1,

τj(y(ξj) + Jj(y(ξj))) ≤ τj(y(ξj)), x = ξj ,

where x = ξj is the spiking point of system (4), that is, ξj =
θj + τj(y(ξj)).

Lemma 1. Suppose that the condition (H3) is satisfied, and
y(x) : R+ → G is a solution to system (4). Then, y(x)
traverses every surface Γi.

The proof is omitted here.

Lemma 2. Assume (H4) holds. Then, each solution to system
(4) crosses over the surface Γi at most once.

Proof. Assume there exists a solution y(x) that traverses the
surface Γj at (s1, y(s1)) and (s2, y(s2)). Generally, s1 < s2,
and there is no spiking point of y(x) between s1 and s2. Then,

s1 = θj+τj(y(s1)) and s2 = θj+τj(y(s2)). For the situation
(i) of (H4), we have

s2 − s1
=τj(y(s2))− τj(y(s1))

≥τj(y(s2))− τj(y(s1) + Jj(y(s1)))

=τj(y(s2))− τj(y(s1+))

=

(
dτj(y)

dy
(−Aφ(j+1)(x)y(x)

+Hφ(j+1)(x, y(x)))

)
x=κ∈(s1,s2]

(s2 − s1),

>(s2 − s1).

This is a contradiction. The situation (ii) of (H4) is similar.
Therefore, the proof is completed.

By Lemma 1 and Lemma 2, we have

Theorem 1. Suppose that (H3) and (H4) hold. Then, each
solution y(x) : R+ → G to system (4) traverses every
surface Γi, i ∈ Z+ just once.

Remark 1. Without the absence of beating, the dynamics
of system (4) are too complex to study. The conclusion of
Theorem 1 ensures the absence of beating in system (4), and
this is the basis for the main theorem in this paper.

Now, a comparison system is constructed for system (4)
by the B-equivalent method. Let y0(x) = y(x, θi, y

0(θi))
be a solution to system (4) in [θi, θi+1]. Let ξi be the spik-
ing moment when the solution encounters the discontinuity
surface Γi, ξi = θi + τi(y

0(ξi)). Let y1(x) be a solution
to system (4) in [θi, θi+1] such that y1(ξi) = y0(ξ+i ) =
y0(ξi) + Ji(y

0(ξi)).
Define the following map:

Wi(y
0(θi))

= y1(θi)− y0(θi)

= y1(ξi)− y0(θi)

+

∫ θi

ξi

(−Aφ(i+1)(t)(y
1(t)) +Hφ(i+1)(t, y

1(t)))dt

= y0(ξi) + Ji(y
0(ξi))− y0(θi)

+

∫ θi

ξi

(−Aφ(i+1)(t)(y
1(t)) +Hφ(i+1)(t, y

1(t)))dt

=

∫ ξi

θi

(−Aφ(i+1)(t)(y
0(t)) +Hφ(i+1)(t, y

0(t)))dt

+ Ji

(
y0(θi) +

∫ ξi

θi

(−Aφ(i+1)(t)(y
0(t))

+Hφ(i+1)(t, y
0(t)))dt

)
+

∫ θi

ξi

(−Aφ(i+1)(t)(y
1(t)) +Hφ(i+1)(t, y

1(t)))dt.

(5)
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Remark 2. (θi, y
0(θi)) is the common point of [θi−1, θi] and

[θi, θi+1], and it meets the solution to
ẏ(x) = −Aφ(k)(x)y(x) +Hφ(k)(x, y(x)),

x 6= θk−1 + τk−1(y(x)),

∆y(x) |x=θk−1+τk−1(y(x))= Jk−1(y(x)).

for both k = i and k = i+ 1.

y0(x) = y(x, θi, y
0(θi)) could be extended as the solution

to system (4) in R+ by Definition 1 and Remark 1. Fur-
thermore, the following fixed-time spiking switched neural
network in R+ is considered.

ẏ(x) =−Aφ(i+1)(x)y(x) +Hφ(i+1)(x, y(x)),

x ∈ (θi, θi+1],

∆y = Wi(y
0(θi)), x = θi.

(6)

Definition 3. System (6) is the B-equivalent system of system
(4) if y1(x) = y(x, ξi, y

0(ξ+i )) could be extended as the
solution to system (6) in R+ by the definition of Wi(y

0(θi))
and

y0(x) = y1(x), x ∈ (ξi, θi+1], (7){
y1(θi+) = y0(θi) +Wi(y

0(θi)),

y1(ξi) = y0(ξi+) = y0(ξi) + Ji(y
0(ξi)).

(8)

For a more explicit explanation, readers can refer to the
book [31].

In addition, on (θi, ξi], let h = φ(i+ 1), and we have

y1(x)− y0(x)

=y0(θi) +Wi(y
0(θi))

+

∫ x

θi

(−Ah(t)(y1(t)) +Hh(t, y1(t)))dt

− y0(θi)−
∫ x

θi

(−Ah(t)(y0(t)) +Hh(t, y0(t)))dt

=Wi(y
0(θi)) +

∫ x

θi

[−Ah(t)(y1(t)− y0(t))

+Hh(t, y1(t))−Hh(t, y0(t))]dt.

From Gronwall-Bellman lemma, there is

‖y1(x)− y0(x)‖

≤‖Wi(y
0(θi))‖+ (ζ + lh)

∫ x

θi

‖y1(t)− y0(t)‖dt

≤‖Wi(y
0(θi))‖ exp[(ζ + lh)ν].

(9)

IV. A SYNCHRONIZATION CRITERION FOR THE
SDSSNNS
Next, the global synchronization of spiking switched systems
(6) and (4) is discussed, and the synchronization criteria for
systems (6) and (4) are proposed respectively.

Theorem 2. Under Theorem 1, assume a switching function
Vh(y(x)) and some positive constants µh, λh, p, αh satisfy

µh‖y(x)‖p ≤ Vh(y(x)) ≤ λh‖y(x)‖p, (10)

and

D+Vh(y(x)) ≤ −αhVh(y(x)), x ∈ (θi, θi+1], x 6= ξi,
(11)

where y(x) is a solution to system (2), h = φ(i+ 1). Then

(i) ‖y0(θi) +Wi(y
0(θi))‖ ≤ βh‖y0(θi)‖,

(ii) ‖y1(x)− y0(x)‖ ≤ δh‖y0(θi)‖, for any x ∈ (θi, ξi],

where

βh =

(
1− p

αh
(1− exp(−αhν

p
))(ζ + lh) p

√
µ−1h λh

)−1
(1 + lJ) p

√
µ−1h λh > 0,

δh = (1 + βh) exp[ν(ζ + lh)], and y0(x) = y(x, θi, y
0(θi))

is a solution to system (4), which traverses the surface Γi of
the spike at ξi, i.e., ξi = θi + τi(y

0(ξi)). y1(x) is a solution
to system (6) such that y1(θi+) = y0(θi) + Wi(y

0(θi)) and
y1(ξi) = y0(ξi+) = y0(ξi) + Ji(y

0(ξi)), where Wi(y
0(θi))

is defined by (5).

Proof. From conditions (10) and (11), we have

p

√
λ−1h Vh(y(x)) ≤ ‖y(x)‖ ≤ p

√
µ−1h Vh(y(x)),

and

Vh(y(x)) ≤ Vh(y(θ+i )) exp(−αh(x− θi)), x ∈ (θi, ξi].

By the last two inequalities, it can be found that, for x ∈
(θi, ξi],

‖y(x)‖ ≤ p

√
µ−1h Vh(y(θi+)) exp(αh(x− θi))

≤ p

√
µ−1h λh exp(αh(x− θi))‖y(θi+)‖.

Furthermore,

‖y0(x)‖ ≤ p

√
µ−1h λh exp(−αh(x− θi))‖y0(θi)‖,

and

‖y1(x)‖ ≤ p

√
µ−1h λh exp(αh(x− θi))‖y0(θi)+Wi(y

0(θi))‖.

Next, it is proven that the claim (i) holds. By (5), one can get

‖y0(θi) +Wi(y
0(θi))‖ = ‖y1(θi+)‖

= ‖y1(ξi)−
∫ ξi

θi

(−Aφ(i+1)(t)(y
1(t)) +Hφ(i+1)(t, y

1(t)))dt‖

≤ ‖y0(ξi) + Ji(y
0(ξi))‖+ (ζ + lh)

∫ ξi

θi

‖y1(t)‖dt

≤ (1 + lJ)‖y0(ξi)‖+ (ζ + lh) p

√
µ−1h λh‖y0(θi)

+Wi(y
0(θi))‖

∫ ξi

θi

exp(−αh(t− θi)/p)dt

≤ (1 + lJ) p

√
µ−1h λh‖y0(θi)‖+

p

αh
(1− exp(−αhν/p))

(ζ + lh) p

√
µ−1h λh‖y0(θi) +Wi(y

0(θi))‖,
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which implies that

‖y0(θi) +Wi(y
0(θi))‖

≤
(

1− p

αh
(1− exp(−αhν

p
))(ζ + lh) p

√
µ−1h λh

)−1
(1 + lJ) p

√
µ−1h λh‖y0(θi)‖

= βh‖y0(θi)‖.
Finally, it is shown that the claim (ii) holds. From (9), we
have

‖y1(x)− y0(x)‖ ≤ ‖Wi(y
0(θi))‖ exp(ν(ζ + lh))

≤ (1 + βh) exp(ν(ζ + lh))‖y0(θi)‖
= δh‖y0(θi)‖.

The proof is completed.

Remark 3. Suppose all assumptions of Theorem 2 hold.
Then, we have

{δφ(1), δφ(2), · · · , δφ(i), · · · } = {δ1, δ2, · · · , δm}

by the above proof and

{φ(1), φ(2), · · · , φ(i), · · · } = {1, 2, · · · ,m}.

Let δ = max{δ1, δ2, · · · , δm}, and then

‖y1(x)−y0(x)‖ ≤ δ‖y0(θi)‖, x ∈ (θi, ξi], for any i ∈ Z+.
(12)

Remark 4. Based on the aforementioned results, we have
that for each solution y0(x) of system (4), there is a solution
y1(x) to system (6) such that ‖y1(x) − y0(x)‖ ≤ δ‖y0(θi)‖
for x ∈ (θi, ξi] and y1(x) = y0(x) for x ∈ [θ0, θ1] ∪
(ξi, θi+1], and vice versa.

Theorem 3. Assume that the conditions of Theorem 2 are
satisfied, h = φ(i+ 1), and let

ψ(x) =

i+1∑
k=2

ln(ρβpφ(k))−
i∑

k=2

αφ(k)(θk−θk−1)−αh(x−θi),

(13)
where x ∈ (θi, θi+1], ρ = max(λu/µl)u,l∈U , and ψ(x) is
continuous on R+.

Then ψ(x) ≤ % − α(x − θ1), x ≥ θ1, with % > 0 and
α > 0 being constants, implies that system (6) is globally
exponentially synchronized.

Proof. Similarly, by the conditions of Theorem 2, one can
obtain

D+Vh(x) ≤ −αhVh(x), x ∈ (θi, θi+1].

So

Vh(x) ≤ Vh(θi+) exp(−αh(x−θi)), x ∈ (θi, θi+1]. (14)

It can be found that

Vh(θi+) ≤ λh‖y(θi+)‖p

≤ βphλh‖y(θi)‖p

≤ ρβphVφ(i)(θi).
(15)

Substituting (15) into (14), we obtain

Vh(x) ≤ ρβph exp(−αh(x− θi))Vφ(i)(θi). (16)

Repeating (16) on each interval, for x ∈ (θi, θi+1], we have

Vh(x) ≤ ρβphVφ(i)(θi) exp(−αh(x− θi))

≤ Vφ(2)(θ1)

i+1∏
k=2

(ρβpφ(k))

exp
( i∑
k=2

−αφ(k)(θk − θk−1)− αh(x− θi)
)

≤ Vφ(2)(θ1) exp(ψ(x)).

That is,
Vh(x) ≤ Vφ(2)(θ1) exp(ψ(x)). (17)

Substituting (10) into (17), we can obtain that

‖y(x)‖ ≤ p
√
ρ‖y(θ1)‖ exp(

ψ(x)

p
),

≤ p
√
ρ exp(

%

p
)‖y(θ1)‖ exp(

−α(x− θ1)

p
), x ≥ θ1.

Let y1i (x) be any solution to system (6), and so is y1j (x), then

‖y1i (x)−y1j (x)‖ ≤ 2 p
√
ρ exp(

%

p
)‖y(θ1)‖ exp(

−α(x− θ1)

p
),

for any x ≥ θ1. Therefore, system (6) is globally exponen-
tially synchronized. This completes the proof.

Remark 5. Let Ph be a symmetric and positive definite ma-
trix, Vh(x) = y(x)TPhy(x), h = φ(i+ 1), x ∈ (θi, θi+1],
and Vh(x) is a decreasing function. Then Vh(x) can satisfy
(10) and (11). That is, the assumptions of Theorem 2 can
hold.

Remark 6. If

lim
i→∞

i+1∑
k=2

ln(ρβpφ(k)) <∞,

then let

lim
i→∞

i+1∑
k=2

ln(ρβpφ(k)) < %,

and α = min{α1, α2, · · · , αm}, ψ(x) ≤ %− α(x− θ1) can
be satisfied. In other words, the assumption of Theorem 3 is
meaningful.

Theorem 4. Assume that the conditions of Theorem 3 hold.
Then system (4) is globally exponentially synchronized.

Proof. Let y0(x) = y(x, θi, y
0(θi)) be a solution to system

(4), for the homologous solution y1(x) to system (6), we may
suppose that there are M1 > 0, γ1 > 0 such that y1(x)
satisfies that ‖y1(x)‖ ≤ M1 exp(−γ1(x − θ1)) by the proof
of Theorem 2, where x ≥ θ1.

When x ∈ (ξi, θi+1], we have

‖y0(x)‖ = ‖y1(x)‖ ≤M1 exp(−γ1(x− θ1)),
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and when x ∈ (θi, ξi], by (12), we obtain

‖y0(x)‖ ≤‖y1(x)− y0(x)‖+ ‖y1(x)‖
≤δ‖y0(θi)‖+M1 exp(−γ1(x− θ1))

≤δM1 exp(−γ1(θi − θ1)) +M1 exp(−γ1(x− θ1))

=M1(1 + δ exp(γ1(x− θi))) exp(−γ1(x− θ1))

≤M1(1 + δ exp(γ1ν)) exp(−γ1(x− θ1)).

Hence, there are M2 = M1(1 + δ exp(γ1ν)), γ2 = γ1 such
that ‖y0(x)‖ ≤ M2 exp(−γ2(x − θ1)), which implies the
results of Theorem 4.

Remark 7. By Theorem 2 and Theorem 4, we have

‖y1(x)− y0(x)‖ ≤ δ‖y0(θi)‖
≤ δM1(1 + δ exp(γ1ν)) exp(−γ1(θi − θ1)),

where y1(x) and y0(x) are a solution to system (6) and a
solution to system (4), respectively, x ∈ (θi, θi+1]. Evidently,
θi → ∞ as x → ∞. So system (4) and system (6) are
exponentially synchronized.

V. THREE NUMERICAL EXAMPLES
Finally, three numerical examples are given to illustrate
the validity of the aforementioned results. For simplicity, a
two-dimensional SDSSNNs model is analyzed, where the
switching systems have two or three subsystems and the
corresponding switching sequence is 1→ 2→ 1→ 2→ · · ·
or 1→ 2→ 3→ 1→ 2→ 3→ · · · .
Example 1. Consider the SDSSNNs with I1(x) = I2(x) = 0
for simplicity, and there is no spike in [θ0, θ1]:

ẏ(x) =−A1(x)y(x) +B1(x)f1(y(x)), x ∈ (KT,

KT + σT ],K = 0, 1, 2, · · · ,
and x 6= θi + τi(y(x)),

∆y(x) =J1(y(x)), x = θi + τi(y(x)), i = 2K,

K = 1, 2, 3, · · · ,
ẏ(x) =−A2(x)y(x) +B2(x)f2(y(x)), x ∈ (KT + σT,

(K + 1)T ],K = 0, 1, 2, · · · ,
and x 6= θi+1 + τi+1(y(x)),

∆y(x) =J2(y(x)), x = θi+1 + τi+1(y(x)), i = 2K,

K = 0, 1, 2, · · · ,
(18)

with T = 2, σ = 0.5, θi = i, θi+1 = i + 1,
τi(y) = τi+1(y) = 0.2 arccot(y21) and ν = 0.1π, J1(y) =
1.3y, J2(y) = y,

f1(y(x)) = f2(y(x)) =

(
sin y1(x)
tan y2(x)

)
,

and

A1 =

(
2.2 + cosx 0
0 3.2 + sinx

)
,

B1 =

(
0.8 + sinx 0
−0.7 1.2

)
,

A2 =

(
2.4 + sinx 0
0 3.1 + cosx

)
,

B2 =

(
0.6 + cosx 0
−0.8 1.5

)
.

Note that
dτi(y)

dy

(
−A1(x)y(x) +B1(x)f1(y(x))

)
= 0.4y1

(
1

1 + y41
, 0

)((
2.2y1 + y1 cosx
3.2y2 + y2 sinx

)
−
(

0.8 sin y1 + sinx sin y1
−0.7 sin y1 + 1.2 tan y2

))
= 0.4y1

2.2y1 + y1 cosx− 0.8 sin y1 − sinx sin y1
1 + y41

<
2y21

1 + y41
≤ 1.

Moreover, τi(y + Ji(y)) − τi(y) = 0.2(arccot((2.3y1)2) −
arccot(y21)) ≤ 0, i.e., τi(y + Ji(y)) ≤ τi(y).

Similarly,

dτi+1(y)

dy
(−A2(x)y(x) +B2(x)f2(y(x))) < 1,

τi+1(y + Ji(y)) ≤ τi+1(y). Therefore, assumption (H4)
holds. It can be found that all conditions in Theorem 4
can be satisfied. So, system (18) is globally exponentially
synchronized, as shown in Figure 1.

FIGURE 1. The curves of (18) in Example 1, where y(0) = (0.6 − 0.6)T

and y(0) = (0.4 − 0.3)T , respectively.

Remark 8. For simplicity, the intended equilibrium can be
shifted to the origin by I1(x) = I2(x) = 0. As a result,
y11(x), y12(x), y21(x) and y22(x) converge to zero in Figure
1.

Remark 9. It can be seen from Figure 1 that the conditions
are a little conservative, and we expect to improve these
conditions in future research.
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Example 2. Consider again the SDSSNNs:

ẏ(x) =−A1(x)y(x) +B1(x)f1(y(x)), x ∈ (KT,

KT + σT ],K = 0, 1, 2, · · · ,
and x 6= θi + τi(y(x)),

∆y(x) =J1(y(x)), x = θi + τi(y(x)), i = 2K,

K = 1, 2, 3, · · · ,
ẏ(x) =−A2(x)y(x) +B2(x)f2(y(x)), x ∈ (KT + σT,

(K + 1)T ],K = 0, 1, 2, · · · ,
and x 6= θi+1 + τi+1(y(x)),

∆y(x) =J2(y(x)), x = θi+1 + τi+1(y(x)), i = 2K,

K = 0, 1, 2, · · · ,
(19)

with T = 2, σ = 0.5, θi = i, θi+1 = i + 1, τi(y) =
τi+1(y) = (arctan(y1))2/(2π) and ν = 0.125π, J1(y) =
−1.2y, J2(y) = −1.1y,

f1(y(x)) = f2(y(x)) =

(
sin y1(x)
sin y2(x)

)
,

and

A1 =

(
0.6 + cosx 0
0 0.8 + 0.6 sinx

)
,

B1 =

(
0.8 + cosx 0
−0.8 1.2

)
,

A2 =

(
0.8 + sinx 0
0 0.6 + 0.5 cosx

)
,

B2 =

(
1.2 + sinx 0
−1.2 1

)
.

Note that

dτi(y)

dy

(
−A1(x)y(x) +B1(x)f1(y(x))

)
=

(
arctan(y1)

π(1 + y21)
, 0

)(
−
(

0.6y1 + y1 cosx
0.8y2 + 0.6y2 sinx

)
+

(
0.8 sin y1 + cosx sin y1
−0.8 sin y1 + 1.2 sin y2

))
=

arctan(y1)(−0.6y1 − y1 cosx+ 0.8 sin y1 + cosx sin y1)

π(1 + y21)

≤1.7|y1|
1 + y21

<1.

Furthermore,

τi(y + Ji(y))− τi(y)

=
1

2π
((arctan((1 + (−1.2))y1))2 − (arctan(y1))2)

=
1

2π
((arctan(| − 0.2y1|))2 − (arctan(|y1|))2)

=
1

2π
(arctan(|0.2y1|) + arctan(|y1|))(arctan(|0.2y1|)

− arctan(|y1|))
≤0,

that is, τi(y + Ji(y)) ≤ τi(y).
Similarly,

dτi+1(y)

dy
(−A2(x)y(x) +B2(x)f2(y(x))) < 1,

τi+1(y + Ji(y)) ≤ τi+1(y). Thus, assumption (H4) holds.
One can obtain that the assumptions in Theorem 4 can all
hold for system (19). Therefore, system (19) is globally
exponentially synchronized, as shown in Figure 2.

FIGURE 2. The curves of (19) in Example 2, where y(0) = (0.7 − 0.6)T

and y(0) = (0.5 − 0.4)T , respectively.

Remark 10. It can be seen from Figure 2 that stabilizing
impulses may stabilize the unstable continuous subsystem at
its equilibrium point, which is consistent with the theoretical
results.

Example 3. Consider the SDSSNNs, where the switching
systems have three subsystems, and the switching sequence
is 1→ 2→ 3→ 1→ 2→ 3→ · · · .

ẏ(x) =−A1(x)y(x) +B1(x)f1(y(x)), x ∈ (KT,

KT + σT ],K = 0, 1, 2, · · · ,
and x 6= θi + τi(y(x)),

∆y(x) =J1(y(x)), x = θi + τi(y(x)), i = 2K,

K = 1, 2, 3, · · · ,
ẏ(x) =−A2(x)y(x) +B2(x)f2(y(x)), x ∈ (KT + σT,

KT + 2σT ],K = 0, 1, 2, · · · ,
and x 6= θi + σT + τi(y(x)),

∆y(x) =J2(y(x)), x = θi + σT + τi(y(x)), i = 2K,

K = 0, 1, 2, · · · ,
ẏ(x) =−A3(x)y(x) +B3(x)f3(y(x)), x ∈ (KT + 2σT,

(K + 1)T ],K = 0, 1, 2, · · · ,
and x 6= θi + 2σT + τi(y(x)),

∆y(x) =J3(y(x)), x = θi + 2σT + τi(y(x)), i = 2K,

K = 1, 2, 3, · · · ,
(20)
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with T = 2, σ = 1/3, θi = i, τi(y) = 0.2 arccot(y21) and
ν = 0.1π, J1(y) = 1.3y, J2(y) = y, J3(y) = 1.1y,

f1(y(x)) = f2(y(x)) = f3(y(x)) =

(
sin y1(x)
tan y2(x)

)
,

and
A1 =

(
2.2 + cosx 0
0 3.2 + sinx

)
,

B1 =

(
0.8 + sinx 0
−0.7 1.2

)
,

A2 =

(
2.4 + sinx 0
0 3.1 + cosx

)
,

B2 =

(
0.6 + cosx 0
−0.8 1.5

)
.

A3 =

(
2.3 + cosx 0
0 2.8 + cosx

)
,

B3 =

(
0.7 + sinx 0
−0.6 1.1

)
.

Similar to Example 1, we have

dτi(y)

dy

(
−A1(x)y(x) +B1(x)f1(y(x))

)
< 1,

dτi(y)

dy

(
−A2(x)y(x) +B2(x)f2(y(x))

)
< 1,

dτi(y)

dy

(
−A3(x)y(x) +B3(x)f3(y(x))

)
< 1,

and τi(y + Ji(y)) ≤ τi(y). Therefore, assumption (H4)
holds. It can be found that all conditions in Theorem 4
can be satisfied. So, system (20) is globally exponentially
synchronized, as shown in Figure 3.

FIGURE 3. The curves of (20) in Example 3, where y(0) = (0.6 − 0.6)T

and y(0) = (0.4 − 0.3)T , respectively.

Remark 11. It can be easily seen from Figure 3 that com-
pared to Example 1, the time for the system to reach synchro-
nization is prolonged because the unstable spike frequency
increases.

VI. CONCLUSIONS
This paper discusses the exponential synchronization of S-
DSSNNs using B-equivalence. Under certain conditions, the
state-dependent spiking switched systems can be transformed
into fixed-time spiking switched systems. Based on this, an
exponential synchronization criterion is formulated for the
proposed neural network.

The dynamics of two synchronized neural networks are
almost identical, and the dynamics of a neural network can be
obtained by investigating its synchronous networks. General-
ly, the dynamics of a neural network can be investigated by
using mathematical methods or machine learning algorithms.
In fact, the conditions presented in this paper are a little
conservative due to the complexity of the state-dependent
spiking switched systems, such as the conditions of absence
of beating and the estimation of the norm of the transforma-
tion map Wi(x). We will relax these conservative conditions
for certain neural networks and extend the presented method
to delayed systems or more general spiking switched systems
in future work.
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