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ABSTRACT A refined bidirectional A* algorithm proposes to address the issue of imprecise path planning for 

unmanned mining vehicles navigating through complex open-pit mining terrains. To ensure the smooth traversal 

of these vehicles, a  gradient factor incorporates into the cost function to circumvent obstacles along the pathway. 

Additionally, a  weighted coefficient introduces into the heuristic function to fine -tune the combination of 

Euclidean and Manhattan distances, enhancing the accuracy of path distan ce measurement and ultimately leading 

to an optimal path. The enhanced algorithm adeptly simultaneously explores from both the starting and end points, 

significantly reducing search time and improving path planning efficiency. Utilizing the established map  of the 

mining environment, an experiment for unmanned mining vehicle path planning devises, and a simulation test of 

the global path planning algorithm conducts using the MATLAB platform. The experimental results demonstrate 

that the refined bidirectional A* algorithm exhibits accelerated search speed and superior path planning 

effectiveness. 

INDEX TERMS A* Algorithm, Open-Pit Mining Area, Path Planning, Synchronous Bidirectional Search, Unmanned Mining 

Truck

Ⅰ. INTRODUCTION 

As autonomous driving technology continues to advance, 

unmanned mining trucks have become prevalent in mining 

operations. Compared to traditional mining trucks, unmanned 

counterparts offer heightened safety, reduced labor costs, and 

enhanced transportation efficiency, thereby enriching 

socioeconomic benefits [1]. However, in open-pit minin g 

areas, rugged and winding roads with steep slopes present 

considerable challenges to the speed and trajectory of 

unmanned mining trucks. Consequently, ensuring the safe 

operation of unmanned mining trucks in complex terrain  has 

emerged as an imperative undertaking. 

Presently, conventional path planning predominantly revolves 

around traditional search algorithms and intelligent algorithms, 

including the A* algorithm [2], Dijkstra 's algorithm [3], ant 

colony algorithm [4], grey wolf algorithm [5], and genetic 

algorithm [6]. Scholars worldwide have proposed diverse 

solutions to the conundrum of path planning for unmanned 

mining trucks. For instance, Xing B et la . [7] an enhancement 

of deep learning techniques through the refinement of reward 

functions and action selection mechanisms, which 

consequently enables subaqueous vehicles to operate with 

increased safety in the challenging environs of the deep sea. 

Xie Y et al. [8] incorporate a cellular genetic algorithm to 

address the intricacies of loading and unloading tasks, taking 

into account factors such as road elevation, gradient, quality, 

and the velocity of the trucks. By integrating the mechanism of 

clandestine migration within the genetic algorithm, they have 

successfully actualized a comprehensive transportation route 

for mining vehicles. Lei T et al. [9] construct a stratified 

framework employing deep learning methodologies to 

actualize the CCPP trajectory for bicycling. Furthermore, they 

harness nature-inspired algorithms for vehicular obstacle 

avoidance, culminating in the realisation of autonomous 

vehicle navigation. Lei Z et al. [10] have presented a 

sophisticated approach to autonomous mining vehicle path 

tracking based on the Model Predictive Control (MPC) 

algorithm. They have empirically demonstrated that the 

implementation of the MPC algorithm contributes to a 

reduction in the vehicle's deviation angle, thereby enhancing 

the precision of its trajectory. Wang M et al. [11] elucidate the 

current research landscape of unmanned driving technologies 

within the mining sector. They offer a detailed exposition on 

the positioning and path-planning aspects of unmanned driving 

systems, underscoring the enhancement of enterprise 

efficiency afforded by these technological advancements. Xin 

P et al. [12] have proposed a model predictive control strategy, 

which, through the formulation of an optimization function and 

the incorporation of a terminal equation, ensures that the model 

predictive controller exhibits superior tracking performance 

during the unmanned mining vehicle's trajectory followin g 
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process. This methodology enhances the controller's ability to 

adhere to the intended path with increased precision.Vasilis 

Androulakis [13] has pioneered the integration of automated 

shuttle vehicles, thereby substantiating the operational 

feasibility of auto-batching transport vehicles within the 

subterranean coal mining production cycle. Empirical 

validation has been achieved through demonstration of the 

preliminary results pertaining to the autonomous navigation 

capabilities of the prototype shuttle vehicle. Zhao et al.[14] 

have introduced an articulated vehicle path-following strategy 

predicated on feedback linearization algorithms. The path 

tracking controller, grounded in feedback linearization, is 

capable of accurately adhering to the prescribed trajectory. Y. 

Li et al. [7] adjusted the weights of different areas, optimized 

redundant points, and smoothed turning points of the path to 

shorten it and enhance safety. Y. Chen et al. [8] advocated a 

fusion of the A* algorithm and sparrow search algorithm to 

eliminate redundant points and generate the optimal path using 

Bézier curves. Liu Hui et al. [9] refined the ant colony 

algorithm by integrating obstacle avoidance factors and 

selecting paths with gentle slopes to enhance the efficiency of 

ant colony search and achieve the optimal path for the mining 

truck. Meanwhile, Zhang Hui et al. [10] introduced an 

enhanced A* algorithm with extended key node search and 

one-way search for obstacle avoidance to augment the safety 

of the A* algorithm. Furthermore, Zhang Zhiyao et al. [11] 

proposed a method to address the obstacle avoidance issue of 

unmanned vehicles in complex environments using data fusion 

Dempster-Shafer in unknown environments, culminating in 

rapid optimization of local paths. Despite considering terrain 

and environmental factors for path planning in mining 

environments, these studies still exhibit certain limitations in 

swiftly planning the global path for mining trucks and 

achieving safe and expedient planning for rugged mining paths. 

In this paper, we present an enhanced path planning algorithm 

based on bidirectional search using the A* algorithm, built 

upon the traditional A* path optimization algorithm. The 

algorithm constructs a mining model through mesh and 

expansion functions and integrates a slope factor into the cost 

function to better align with the mining environment. 

Confronting the challenge of the traditional bidirectional 

search A* algorithm's incapacity to swiftly and accurately plan 

the optimal path in the uncertain environment of a mining area, 

we introduce the concepts of bidirectional midpoint and virtual 

target point in the algorithm to steer the bidirectional search 

algorithm towards convergence at the opposite point. 

Additionally, we introduce a weight factor in the heuristic 

function to adjust the relationship between Euclidean distance 

and Manhattan distance, thereby curtailing search time and 

ensuring the safety, real-time performance, and accessibility of 

the planned path for unmanned mining trucks. 

Ⅱ. Traditional A* Algorithm     
The A* algorithm is a heuristic-based pathfinding method, 

inheriting the concept of Dijkstra 's algorithm. It integrates a 

heuristic estimation function when computing the cost function, 

enabling rapid optimal path search from the starting point to 

the endpoint within a grid map. In 3D path planning issues, the 

conventional A* algorithm essentially uses a heuristic function 

to estimate the distance from the start to the end, subsequently 

determining the direction of the next search. The conventional 

A* algorithm is presented as follows: 

( ) ( ) ( )F n G n H n= +        (1) 

For a node coordinate n  in the problem solution space, 

( )F n  is an evaluation function used to estimate the minimum 

total cost from the starting point to the target node. ( )G n  

represents the current cost function, which signifies the cost 

incurred by the current node solution. ( )H n  is the heuristic 

estimation function, typically employing either the Euclidean 

distance ( )O n or the Manhattan distance ( )M n  to 

represent the estimated cost. 

The operation process of the A* algorithm in a three-

dimensional space is similar to that in a two-dimensional plane, 

but it requires consideration of changes in height. Therefore, in 

a three-dimensional space, the A* algorithm formula adopts the 

Euclidean distance representation, as shown in the following 

formula (2). 

2 2 2( ) (( ) ) (( ) ) (( ))n t x n t y n th n x x l y y l z z= −  + −  + −    (2) 

In formula (2), and represent the length and width of the unit 

grid, is the coordinate of the current node, and is the coordinate 

of the target point. 

When implementing the A* algorithm, two main lists are 

primarily involved: an open list for tracking nodes yet to be 

evaluated, and a closed list for recording nodes that have been 

inspected. Initially, the algorithm places the starting point on 

the open list and starts the loop, selecting the node with the 

smallest f(x) value ( least cost to the destination) from the open 

list to be the current node, and moving it to the closed list  

indicating it has been processed. Subsequently, the algorithm 

explores the adjacent nodes, skipping those already in the 

closed list, and adds new nodes not in the open list to it based 

on calculated g(x), h(x) values, and parent node information. 

This process is repeated until the end point is added to the 

closed list, indicating a path has been found, or the open list is 

exhausted, indicating the destination is unreachable. After path 

discovery, path reconstruction may be undertaken for path 

smoothing optimization, creating a more practical route.  

A* algorithm in three-dimensional terrain: 

(1) Initialize the map and determine the positions of the start 

and end points. 

(2) Create an open list and a closed list, and add the starting 

node to the open list. During each iteration, select the node with 

the smallest f value from the open list and move it to the closed 

list. 

(3) For all neighboring nodes of the current node, calculate 

their g value (the actual distance from the starting point to the 

neighbor node) and h value (the estimated distance from the 

neighbor node to the target node), then calculate the f value. 

(4) If the neighboring node is not in the open list or its f value 

is smaller than before, add it to the open list and set the current 

node as the parent node of the neighboring node. 

(5) At the end of each iteration, check if the target node has 

been reached. If it has, return the path; otherwise, continue 

looping until a  path cannot be found. 

The flowchart for the traditional A* algorithm is shown in 

Figure 1. 
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Figure 1. Conventional A* algorithm 

The traditional A* algorithm traverses too many nodes during 

the search process, which takes a long time and results in poor 

search efficiency. Therefore, its application in complex mines 

is not ideal. 

Ⅲ. Improving the Bidirectional A* Search Algorithm 

A. Improvement Idea 

Bidirectional A* search is a heuristic search algorithm which 

simultaneously begins to search from the start and end points 

until the two searches meet. This algorithm employs the cost 

function of the A* algorithm to estimate the cost of each node, 

speeding up the discovery of the shortest path from start to end. 

While literature [20] proposes a bidirectional search algorithm 

based on A*, some issues remain, such as only being able to 

search for the optimal path on flat roads, and the effect of 

choosing the forward path as the final path is not noticeable 

when the paths do not intersect. Given the uneven terrain of the 

mine, the path planning for the dump truck facing different 

slopes needs to be considered. To improve this algorithm, we 

integrated a slope factor into the cost function, and according 

to the literature, set the maximum slope for the safe operation 

of the dump truck in the mining area at 15%. At the same time, 

we introduced a weight factor into the estimation function to 

adjust the relationship between the Euclidean and Manhattan 

distances, thus enabling the improved bidirectional A* search 

algorithm to more effectively reach the optimal solution during 

the path search process. 

The improved process of the bidirectional A* algorithm is as 

follows: 

(1) Initialize the parameters of the map, perform forward and 

backward searches from the starting point and the end point, 

and add them to the corresponding open and closed lists. 

(2) Select the node N1 with the minimum F value from the open 

lists of the forward and backward searches. If N1 and N2 are 

both in the closed list of the other side, it means that a path is 

found and the search can be terminated. Otherwise, continue to 

the next step. 

(3) For node N1, traverse all its neighboring nodes, adding the 

slope factor and avoiding paths with a slope greater than 15%. 

Calculate its F value, and select the node with the minimum F 

value in the open list of the forward search to add to the closed 

list. If the node is already in the closed list, update its existing 

node. 

(4) For node N2, traverse all its neighboring nodes, adding the 

slope factor and avoiding paths with a slope greater than 15%. 

Calculate its F value, and select the node with the minimum F 

value in the open list of the backward search to add to the 

closed list. If the node is already in the closed list, update its 

existing node. 

(5) Add a weight coefficient to h to adjust the Euclidean and 

Manhattan distances. 

(6) If the neighboring node is not in the open list or its F value 

is smaller than before, add it to the open list and set the current 

node as the parent node of the neighboring node. 

(7) At the end of each cycle, check if the target node has been 

reached. If so, return the path; otherwise, continue the loop 

until no path can be found. 

The flowchart of the A* algorithm has been enhanced as 

depicted in Figure 2. 
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Figure 2. Enhanced A* algorithm  

B. Optimizing the cost function 

Due to the variable terrain of the mining area, it is necessary to 

consider the path planning of the mining vehicle when facing 

different slopes [21]. Therefore, a  slope factor is added to the 

cost function to ensure safer travel of the mining vehicle within  

the mining area. According to reference [21], the maximum 

slope for safe travel of the mining vehicle in the mining area is 

set at 15%. The formula for calculating the slope is shown in 

equation (3): 

100%
h

i
L


= 
            (3) 

In the formula, h represents the height difference between two 

adjacent nodes, L denotes the horizontal distance between the 

two nodes, and i  signifies the slope between the two adjacent 

nodes. Considering that different slopes require different 

speeds for the dump truck, the relationship between the mine 

slope, the power and transmission ratio of the dump truck, the 

total mass of the dump truck, and the driving speed is given 

according to the literature, as shown in Equation (4): 
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iv represents the driving speed of the dump truck on a path with 

a slope of i ,   denotes the total transmission efficiency, f  

is the coefficient of friction, P  signifies the total output 

power, m  represents the total mass of the dump truck when 

fully loaded, and g  stands for the acceleration due to gravity. 

When the dump truck is traveling on a horizontal surface, the 

speed is 0v . The relationship between 0v  and the formula 

(4.4) can be derived as follows: 

0
1 ,0 15%

1 , 15% 0i

i
iv

f
v

i


+  

= 
 −         (5) 

Therefore, based on the slope and speed, Equation (5) is 

utilized as the current cost function, serving as the movement 

cost in the enhanced A* algorithm, as depicted in Equation (6). 

( 1) (1 ) ( ) ,0 15%
( )

( 1) ( ) , 15% 0

i
g n O n i

fg n

g n O n i


− + +  

= 
 − + −     (6) 

C.  Improving the Heuristic Function 

Shortest path search is a common problem in computer science, 

and different distance measurement methods can be used to 

calculate the distance between nodes [22]. Among them, 

Euclidean distance [23] and Manhattan distance [24] are two 

common distance measurement methods, and they have 

different applicable scenarios. Euclidean distance is suitable 

for the shortest path search in unobstructed and open areas. 

Manhattan distance is suitable for the shortest path search in 

areas with many obstacles, closed, and even circular areas. In 

actual three-dimensional scenarios, there are both unobstructed, 

open flat areas and areas with many obstacles. Selecting either 

Euclidean or Manhattan distance monotonically as the heuristic 

function throughout the entire search process cannot take into 

account both types of terrain, and therefore, cannot achieve an 

optimal pathfinding strategy. Therefore, introducing 

bidirectional midpoints and virtual target points to guide 

bidirectional convergence towards each other and setting a 

heuristic function that can dynamically change the distance 

function in the algorithm. The heuristic function is improved 

by adding a weighting coefficient, denoted as w, to control the 

combination of Euclidean distance and Manhattan distance. 

This is shown in formula (7). 

( ) (1 ) ( ) ( )h n O n M n = − +
     (7) 

During the path search, the space with the smallest ( )f n  is 

selected from the open list each time. If there are obstacles 

within the four-grid range of the current space to be visited, the 

A value needs to be increased when calculating ( )h n ; if there 

are no obstacles, the   value should be reduced. The increase 

or decrease of the   value depends on the specific three-

dimensional map situation, and by default in this paper,   is 

increased to 1 and reduced to 0. The use of a dynamically 

adjusted heuristic function can take into account the 

characteristics of both distances, obtaining better pathfinding 

results than traditional heuristic functions. 

By amalgamating the refined cost function and heuristic 

function, the formula for the heuristic function is depicted in 

formula (8). 

( 1) (2 ) ( ) ( ) ,0 15%
( )

( 1) (2 ) ( ) ( ) , 15% 0

i
g n O n M n i

ff n

g n O n M n i

 

 


− + + − +  

= 
 − + − + −  

  (8) 

Ⅳ. Comparison of experimental results of the improved 

two-way A* algorithm 

This paper uses an IntelI CoreI i5-7300HQ CPU @ 2.50GHz, 

8GB of RAM laptop and MATLAB R2020b as the 

experimental hardware and software. The experiment 

compares the algorithm running time, path length, and number 

of traversed path nodes for the A* algorithm in reference [2], 

the bidirectional A* algorithm in reference [20], and the 

improved bidirectional A* algorithm proposed in this paper. 

The simulation experiments are compared with the improved 

A* algorithm in reference [2] and the bidirectional A* 

algorithm in reference [21], using time, path length, and path 

nodes as the comparison indicators to observe the experimental 

results. 

A. Mine Environment Modeling 

The mine environment is complex, with rugged roads, varying 

slopes, and obstacles. Therefore, for mine car path planning, it 

is necessary to first establish a working environment model for 

the mine car. In this paper, based on the actual mine 

environment, the mine is virtualized, and a grid method [20] is 

used in MATLAB to construct the mine model using the mesh 

function, placing it in a three-dimensional coordinate system. 

Initially, through data collection and preprocessing, the data 

import and cleaning capabilities of MATLAB are utilized to 

ensure data quality. Subsequently, interpolation techniques and 

mesh generation tools, such as griddata and 

delaunayTriangulation, are employed to construct the spatial 

framework of the mine area. During the geological model 

construction phase, surface fitting and geostatistical methods, 

including fit and kriging, are applied to meticulously depict the 

structure of the ore body. In the three-dimensional visualization 

segment, MATLAB rich plotting functions, such as scatter3, 

surf, and slice, bring the model to life in vivid display. In the 

analysis and optimization phase, MA TLAB's analytical tools 

are used to predict mining risks and optimize the model.Points 

are uniformly sampled on the surface of the mountain model, 

and these points are connected in a certain order. A triangle 

subdivision algorithm is used to generate the mesh. The 

resulting mesh accurately describes the shape of the mountain 

surface, as shown in Figure 3. 
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Figure 3. Simulated Mine Model 

B. Mine Environment Map Simulation Experiment 

Initially, path simulation is performed based on the mine 

environment map, with randomly positioned start and target 

points within the map. The path planning outcomes utilizing 

the enhanced A* algorithm, when the weight   of the 

heuristic function ( )h n  assumes various values, are 

illustrated in the figure. Here, the yellow point denotes the 

starting point, the green point signifies the target point, and the 

purple points represent the intermediate points. 

Upon experimental observation, it was found that when   is 

set to 0, the distance from the starting point to the destination 

for the minecart is 94, with 328 nodes searched for pathfinding. 

When   is 0.1, the distance remains 94, but the number of 

nodes searched decreases to 326. For   at 0.2, 0.3, and 0.5, 

the distance is consistently 94, with the number of nodes 

searched being 334, 328, and 307, respectively. When   is 

increased to 0.7, the distance is still 94, but the number of nodes 

searched significantly drops to 277. However, as   reaches 

0.9 and 1, the distance increases to 97, with the number of 

nodes searched at 260 and 308, respectively. It is evident that 

when the path length is constant, a  smaller number of nodes 

searched indicates faster minecart path planning. Therefore, 

  at 0.7 yields the fastest path planning. When   exceeds 

0.7, the path length increases slightly, while the number of 

nodes searched decreases marginally. Consequently, in this 

study,   at 0.7 is deemed the optimal weight for the heuristic 

function. The path length and number of nodes searched based 

on the improved A* algorithm, for different values of  , are 

detailed in Table I. 
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Figure 4. Path Simulation Results Based on the Enhanced A* Algorithm 
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TABLEⅠ 

Number of Path Nodes for Different Values of α 

 

Serial 

Number 

 

  

 

Path Length 

 

Nodes of 

the Path 

  

Serial 

Number 

 

  

 

Path Length 

 

Nodes of the 

Path 

1 0 94 328 5 0.5 94 307 

2 0.1 94 

 

326 6 0.7 94 277 

3 0.2 94 334 7 0.9 97 260 

4 0.3 94 328 8 1 97 308 

In the simulation comparison experiment conducted on the 

simulated mine map shown in Figure 3, four sets of different 

start and end points were used as examples for the simulation 

experiment. The start and end points were 

[(1,1,0),(48,48,0)],[(32,1,15),(6,26,17)],[(45,16,12),(7,14 ,26) ], 

and [(11,26,15),(44,48,20)], with four experiments conducted 

for comparison. The summary of the four experiments is shown 

in Table 4.2. Taking the starting point (1,1,0) and the ending 

point (48,48,0) as an example, simulations were performed for 

the algorithms in References [3], [20], and the improved 

bidirectional A* algorithm proposed in this paper. Figure 5 

displays the path of the algorithm in Reference [3], Figure 6 

shows the path of the algorithm in Reference [20], and Figure 

7 illustrates the path of the improved bidirectional A* 

algorithm presented in this paper. 

 

Figure 5. A* Path Planning Algorithm 

 

Figure 6. Bidirectional A* Path Planning Algorithm 

 

Figure 7. Enhanced A* Pathfinding Algorithm 

 

Upon comparing Figures 5 and 7, it is evident that the A* 

algorithm presented in Reference [3] results in longer paths and 

a greater number of search nodes within three-dimensional 

terrains. Contrasting Figures 6 and 7 reveals that the improved 

A* algorithm exhibits more pronounced obstacle avoidance 

capabilities, effectively circumventing steep mountain paths. 

According to Table II, the A* algorithm proposed in this paper, 

when compared to the algorithm in Reference [3], has reduced 

the average time expenditure, achieved more concise path 

lengths, and decreased the number of path nodes by 66.28%, 

while also shortening the average search time by 44.36%. In 

comparison to the algorithm in Reference [20], the proposed 

algorithm has reduced the average search time by 14.04%, 

slightly decreased path lengths, and lowered the number of 

path nodes by 23.42%. 

 

Figure 8. Presents a comparison between the improved A* algorithm and the other two 
algorithms. 
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Based on the data in Table II, Figure 8 can be created. The 

comparison results in Figure 8 reveal that the number of path 

nodes and the total path length of the three algorithms differ 

depending on the specific starting and ending points. However, 

the improved bidirectional A* search algorithm proposed in 

this chapter exhibits superior characteristics to the traditional 

A* algorithm and the bidirectional A* search algorithm in most 

circumstances, as the number of path nodes and the total path 

length more closely approximate the optimal solution. 

Ⅴ.CONCLUSION 

An improved bidirectional search A* algorithm is proposed for 

path planning of unmanned mining trucks in the complex 

environments of open-pit mines. Due to obstacles and steep 

slopes, these trucks face challenges that threaten safety. To 

address slope issues, a  slope factor is added to the cost function, 

preferring paths that avoid steep inclines and choose gentler 

slopes for climbing. The heuristic function is optimized by 

integrating Manhattan and Euclidean distances, enabling faster 

path planning in three-dimensional mine areas and facilitating 

the discovery of globally optimal paths. Simulation 

experiments have shown that the improved algorithm can plan 

routes with higher safety, shorter duration, and optimal paths 

in complex open-pit mine environments, providing effective 

technical support for intelligent mining truck path planning and 

navigation. Unmanned mining truck research, including 

autonomous navigation and positioning, energy supply, and 

mining robotics, will evolve to include applications of 5G 

communication technologies, mining big data analysis, and 

enhancing automation, intelligence, efficiency in mining 

operations. These research directions aim to improve mining 

efficiency, reduce costs, enhance safety, and foster 

technological progress in the mining industry. 

 

TABLEⅡ 

Comparison of Improved A* Algorithm with Existing Algorithm  

 number Starting point Endpoint The total 

length of the 

path /m 

The number of 

nodes in the 

path 

The duration 

/s 

A* 
1 (1,1,0) (48,48,0) 98 938 21.53 

2 (31,1,15) (6,26,17) 70 745 15.72 

3 (45,16,12) (7,14,26) 76 812 17.63 

4 (11,26,15) (44,48,20) 65 675 14.35 

Bidirectional 

A* 
1 (1,1,0) (48,48,0) 98 410 13.44 

2 (31,1,15) (6,26,17) 70 326 10.34 

3 (45,16,12) (7,14,26) 76 379 11.58 

4 (11,26,15) (44,48,20) 65 281 9.45 

The 

enhancement 

of A* 

algorithm 

1 (1,1,0) (48,48,0) 98 331 11.72 

2 (31,1,15) (6,26,17) 70 268 9.37 

3 (45,16,12) (7,14,26) 76 277 9.65 

4 (11,26,15) (44,48,20) 65 193 7.78 

REFERENCES 

1. Z. Qin, S. Chen, X. Xu and M. Zhao, "Research on Key 

Technologies and System Construction of Smart Mine," 2020 5th 

Asia-Pacific Conference on Intelligent Robot Systems (ACIRS), 

Singapore, 2020, pp. 116-121. 

2. Farouk E. El-K, MN , HMHS ,HTM. Evaluate the Blocking 

performance for "All Optical wavelength routed WDM networks 

with and without wavelength converters" using the iterative path 

decomposition algorithm.in Proceedings of IEEE Artifical 

Intelligence ,2009:211-220. 

3. ZUO L, GUO Q, XU X, et al. A hierarchical path planning a

pproach based on A* and least-squares policy iteration for m

obile robotsJ. Neurocomputing, 2015, 170(25): 257-266. 

4. Farouk E. El-K, MN , HMHS ,HTM. Evaluate the Blocking 

performance for "All Optical wavelength routed WDM networks 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3411872

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



 
with and without wavelength converters" using the iterative path 

decomposition algorithm J.in Proceedings of IEEE Artifical 

Intelligence ,2009:211-220. 

5. C. Xia, R. Wang, Z. Deng and Y. Zheng, "Research on cloud 

computing resource scheduling based on improved ant colony

 optimization algorithm," 2022 4th International Conference o

n Frontiers Technology of Information and Computer (ICFTIC

), Qingdao, China, 2022, pp. 295-298. 

6. B. Li and B. -f. Jin, "Research on Dynamic Multi-objective FJS

P Based on Genetic Algorithm," 2018 IEEE 16th Intl Conf on 

Dependable, Autonomic and Secure Computing, 16th Intl Con

f on Pervasive Intelligence and Computing, 4th Intl Conf on 

Big Data Intelligence and Computing and Cyber Science and 

Technology Congress(DASC/PiCom/DataCom/CyberSciTech), A

thens, Greece, 2018, pp. 347-352. 

7. Xing B, Wang X, Liu Z. An Algorithm of Complete Coverage 

Path Planning for Deep-Sea Mining Vehicle Clusters Based on

 Reinforcement Learning[J]. Advanced Theory and Simulation

s, 2024: 2300970. 

8. Xie Y, Miao Z, Li K, et al. Optimized application of GIS and 

CGA in transportation path planning of open-pit mines[C]//IS

CTT 2022; 7th International Conference on Information Scienc

e, Computer Technology and Transportation. VDE, 2022: 1 -7. 

9. Lei T, Luo C, Jan G E, et al. Deep learning-based complete c

overage path planning with re-joint and obstacle fusion parad

igm[J]. Frontiers in Robotics and AI, 2022, 9: 843816.  

10. Lei Z, Ma X, Yuan X, et al. Research on Automatic Driving P

ath Tracking Control of Open-Pit Mine Transportation Vehicle

s with Delay Compensation[J]. World Electric Vehicle Journal,

 2022, 13(8): 134. 

11. Wang M, Bao J, Yuan X, et al. Research status and developm

ent trend of unmanned driving technology in coal mine trans

portation[J]. Energies, 2022, 15(23): 9133.  

12. Xin P, Wang Z, Sun H, et al. Model predictive control of un

manned mine vehicle trajectory tracking[C]//2021 40th Chinese

 Control Conference (CCC). IEEE, 2021: 4757-4762. 

13. Androulakis V, Sottile J, Schafrik S, et al. Concepts for develo

pment of autonomous coal mine shuttle cars[J]. IEEE Transact

ions on Industry Applications, 2020, 56(3): 3272-3280. 

14. Zhao X ,Yang J, Zhang W, et al. Feedback Linearization Cont

rol for Path Tracking of Articulated Dump Truck [J]. TELKO

MNIKA, 2015, 13(3): 922-929. 

15. Y. Li, Z. Wang and S. Zhang, "Path Planning of Robots Based

 on an Improved A-star Algorithm," IEEE 5th Advanced Infor

mation Management, Communicates, Electronic and Automati

on Control Conference (IMCEC),2022 Chongqing, China,.2022, 

826-831. 

16. Y. Chen, P. Wang, Z. Lin and C. Sun, "Global Path Planning 

Method by Fusion of A-star Algorithm and Sparrow Search 

Algorithm," IEEE 11th Data Driven Control and Learning Systems 

Conference (DDCLS),2022Chengdu, China,.2022, 205-209. 

17. C. Zong, X. Yao and X. Fu, "Path Planning of Mobile Robot based 

on Improved Ant Colony Algorithm," 2022 IEEE 10th Joint 

International Information Technology and Artificial Intelligence 

Conference (ITAIC), Chongqing, China, 2022, pp. 1106-1110. 

18. H. Li, K. Yang, W. Luo, B. Dong, W. Qin and S. Cong, "An 

improved ant colony optimization algorithm in mobile robot path 

planning," 2021 40th Chinese Control Conference (CCC), Shanghai, 

China, 2021, pp. 4102-4107. 

19. Z. Meng, S. Zhao, H. Chen, M. Hu, Y. Tang and Y. Song, "The 

Vehicle Testing Based on Digital Twins Theory for Autonomous 

Vehicles," in IEEE Journal of Radio Frequency Identification, vol. 

6, pp. 710-714, 2022. 

20. T. Zhong, H. Zhang, F. Dong, K. Chen and Y. Wang, "FGP-Astar 

Algorithm Based on Path Planning for Mobile Robots," 2023 2nd 

International Conference on Computing, Communication, 

Perception and Quantum Technology (CCPQT), Xiamen, China, 

2023, pp. 207-215 

21. Z. Li, Y. Zhao, L. Gao and X. Zhang, "Multi-Feature-Based R

oad Complexity Calculation Model for the Evaluation of Unm

anned Ground Vehicles," 2018 10th International Conference o

n Intelligent Human-Machine Systems and Cybernetics (IHMS

C), Hangzhou, China, 2018, pp. 154-158. 

22. Z. Xu, X. Liu and Q. Chen, "Application of Improved Astar 

Algorithm in Global Path Planning of Unmanned Vehicles," 2019 

Chinese Automation Congress (CAC), Hangzhou, China, 2019, pp. 

2075-2080. 

23. Liwei Wang, Yan Zhang, and Jufu Feng. On the Euclidean Di

stance of Images.IEEE TRANSACTIONS ON PATTERN ANA

LYSIS AND MACHIN INTELLIGENCE, 2005, 27(8): 1334-1339. 

24. W. -Y. Chiu, G. G. Yen and T. -K. Juan, "Minimum Manhattan 

Distance Approach to Multiple Criteria Decision Making in 

Multiobjective Optimization Problems,".IEEE Transactions on 

Evolutionary Computation, vol. 20, no. 6, 2016: 972-985. 

25. H. Li, K. Yang, W. Luo, B. Dong, W. Qin and S. Cong, "An 

improved ant colony optimization algorithm in mobile robot path 

planning," 2021 40th Chinese Control Conference (CCC), Shanghai, 

China, 2021, pp. 4102-4107. 

 

PENGFEI HE received his Ph.D. degree in 

electromagnetic field and microwave technology from 

Beijing University of Posts and Telecommunications in 

2007, and joined the School of Physics and Electronic 

Information, Yantai University, where he is an associate 

professor. His current research areas include Short-range 

Wireless Communication Technology, Wireless Body Area Network, 

Broadband Access Network and Electromagnetic Compatibility. He has 

published more than thirty high-quality academic papers in the aspect of UWB 

Communication, Cognitive radio and Wireless Sensor Network.  

PENGFEIFAN was born in Weifang, Shandong Province 

in 2000. He received his bachelor's degree in 

communication engineering from Weifang University in 

2021. Since 2021, she has been pursuing a master's degree 

in electronic information at Yantai University. His 

professional research focuses on digital twins and the Industrial Internet. 

 

SHIE WU received the B.S. degree in electronic and 

information engineering from Yantai University, Yantai, 

China, in 2010, the M.S. degree in electronic and 

communication engineering and the Ph.D. degree in 

information and communication engineering from the 

Beijing University of Posts and Telecommunication 

(BUPT), Beijing, China, in 2013 and 2017, respectively. She is currently an 

associate professor with the School of Physics and Electronic Information, 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3411872

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



 

Yantai University. Her current research interests include radio resource 

management and computation offloading in mobile edge computing systems. 

 

YING ZHANG was born in Yaan, Sichuan in1996. She 

received the B.S.degrees in Communication Engineering 

from Yantai University in 2019.Since 2021. She has been 

studying for a M.S. in electronic science and technology 

from Yantai University.  

 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3411872

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/


