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ABSTRACT This paper demonstrates the significance of enipdpyhe infinitesimal dipole modeling
(IDM) in analyzing uniform circular array-orbitahgular momentum (UCA-OAM) near-fields in terms of
electromagnetic (EM) energy densities. The elearid magnetic field, and the EM energy densities of
UCA-OAM waves are theoretically analyzed and nuoadly estimated where the spatial distribution of
EM Lagrangian density and complex Helicity is viized. It is validated that the IDM is more accerat
than the conventional far-field assumption in eatihg the near-fields of UCA-OAM waves as the EM
Lagrangian density and the complex Helicity areadie depicted based on the IDM, while they are
unobservable with the far-field assumption. Theualzation of EM Lagrangian density and complex
Helicity can be beneficial in designing UCA-OAM camnication system as it suggests the mutual
coupling between antennas by describing the regiémeactive EM energy densities and non-orthogonal
EM fields in the near-field region.

INDEX TERMS Orbital Angular Momentum (OAM), Near-field Analgsilnfinitesimal Dipole Modeling
(IDM), EM Lagrangian Density, Complex Helicity

I. INTRODUCTION astronomy [21], [22], imaging [23], [24], and rotatal
The concept of orbital angular momentum (OAM) hased  Doppler shift detection [25].

prominence as an intriguing property of light, ating Generation of OAM radio waves has been investigted
increasing attention from the academic communily [Al.  varied physical structures such as spiral phast fib],

OAM of light denotes the revolution of electricliearound  [18]-[20], ring resonator [16], Cassegrain refle¢iy], [26],
the beam axis where the light beam is given aapaltiase  reflectarrays [27], transmitarrays [28], metaswetad29],
distribution ofil@. Here, @ is the azimuthal angle along the [30], and uniform circular array (UCA) [24], [31]32].
beam axis and the integer mode numbéndicates that  Furthermore, the characteristics of OAM have begrioeed
azimuthal phase change in a cross sectio27# for a  regarding various physical factors. The effect plical loss
revolution. In this way, light vortices having @ifent mode  and grating imperfection on the OAM mode purity was
numbers become spatially orthogonal to each o8jer [ investigated [33]. The channel capacity of OAM afela
Allen et al. were the first to experimentally prove that light was assessed based on paraxiality and orthogof@dityIn
can carry OAM with Laguerre-Gaussian (LG) laser e®d [35], OAM-based multiple-input-multiple-output (MI®)
[4]. Later, it was found that radio waves and atiousams  was found to provide larger channel capacity thhe t
can also convey OAM [5]-[7]. The inherent orthoddpaf  conventional MIMO for a transmission distance lanyan a
OAM enables mode multiplexing, with the potenti@l t particular threshold. The influences of receiveerape and
significantly enhance channel capacity in commuiioa  the multipath on the power loss and the crosstéliaro
For this reason, the application of OAM has gamhere OAM-multiplexed link were analyzed through simudati
attention as a promising technology for 6G comnatioa  [36].
[8] and it has been extensively explored in botticap[9]- As mentioned above, UCA is one of the options for
[13] and radio wave communication fields [6], [1{#8].  creating OAM waves. When a UCA hbhsarray elements,
Besides, it has been discovered that OAM can béegipp  OAM waves can be generated by feeding eatth element
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employed to improve the prediction of the widebdmgdm
pattern of the antenna array [46]. The mutual admie of
two random antennas in nonplanar skew positions was
estimated via the IDM [47]. The IDM also facilitatantenna
diagnostics and characterization with limited measent
data [48], [49]. Additionally, the S21 between tantennas
was directly estimated based on the IDM [50].
Electromagnetic (EM) Lagrangian density and complex
Helicity are distinctive EM energy densities whichn be
observed in the near-field region of EM fields [H5B]. The
EM Lagrangian density indicates the region where th
electric and magnetic energy density are not bathnthe
complex Helicity appears where the electric and matg
field are not orthogonal to each other. Analyzirlg Energy
densities based on the IDM can prove valuable endibsign
of UCA-OAM communication systems by offering ingigh
into mutual coupling between antennas. Visualizatib the
FIGURE 1. Phase distribution of OAM wave transmitted from UCA. EM Lagrangian density and the Complex Helicity wgdhe
regions of the non-propagating(reactive) EM enelgysities
and non-orthogonal EM fields between transmittingd a
receiving UCA antennas or between transmitting UCA

h icall vzed ing thatah antennas with different radii sharing the same .akisr
wave was theoretically analyzed, revealing thatafieenna analyzing the EM energy densities, it is essemtiaichieve

array ir_' the same direction (jgmonstrated the higdrrwg_y both electric and magnetic near-field, which is gilole
transmission efficiency. Additionally, a theoreti@alysis through the IDM. Nonetheless, in the literaturéelieffort

was conducted to assess the channel capacit_y of Q&M has been made to analyze and utilize the magjiefticusing
and UCA-MIMO systems [38]. Beam steering of UCA- the IDM

OAM waves was investigated in terms of mitigating
performance degradation from misalignment [39] andnear-field analysis for UCA-OAM waves over the

maintaining high _mode isolation during beam _stegp_[ﬂ@]. conventional far-field assumption. The array eletnef the
The transmission of UCA-OAM waves primarily occurs UCA are modeled as IDs where each element radisct
within ~ the near-field region, because a UCA-OAM gio\qq yithout the far-field assumption. The elactand

communication system has substantial dimensions anpnagnetic fields of UCA-OAM waves are both theortic
requires operation at a high frequency to achiekigla data and numerically analyzed through the IDM, where Eé

transmissipn rate over Ion_g _distances [41]—[43]adi_uiition, energy densities in near-field regions are alsonestd. The
OAM-mgItlpIe_xed transmission ha_s the potential t@ b 05 fields and EM energy densities assessed lmsdde
applied Ina high-capacity backhaul link of 6G [Pherefore, IDM are compared to those obtained with the fddfie
the near-fields of UCA-OAM waves need_ to be acelyat assumption and the results of commercial full-wave
analyzed. However, conventional analysis of UCA-OAM simulation based on the method of moments (MoM)e Th

waves is derived l_mder the gssumption that eaqﬂy am |pM-based analysis shows good agreement with theltee
element of UCA radiates a far-field [24], [31], [37haking achieved using MoM and it also demonstrates mudterbe

it inaccurate for the near-field analysis. Therefdtelds of accuracy in assessing UCA-OAM near-field energysifiess

UCA'O'_A‘M waves n_eed to be rigorously analyzed withou than the analysis via far-field assumption. In @ers

the f"?“?f'e'q assum ption. . ) publication [54], the near-fields of UCA-OAM wavegere
Infinitesimal dipole modeling (IDM) is an accurated analyzed for various parameters using Hertzian lepo

efficient technique for describing the current rilisttion of However, the analysis presented in this papestinguished
an antenna [44]. By employing the IDM, the anteousrent from previous research by demonstrating the sufigriof

distribution is_equivalgntly modeled as infinitesindipoles DM over the far-field assumption through viization
(IDs). IDs at fixed positions are extracted basedidknown of near-fields and EM energy densities. Interesfinghe

field simula_tion or me_as_ure_ment result of the amten magnitude of normalized complex Helicity exhibitistihct
through an iterative optimization method S_UCh as_ldrast- spatial distributions according to the sign of @&M mode.
squares method (LSQR): Then, the near-field r_adilfmm In section Il, the near-fields and EM energy déesipf
t_he antenna can be readily calculated by re-radialectric UCA-OAM waves are theoretically analyzed based fw t
fields from the extracted ID_S [45]' Numerous stedreve conventional far-field assumption and the IDM. kcgon lIl,
been conducted on the application of the IDM. TDEIwas  ;cA.0AM near-fields and EM energy densities are

with an azimuthal phase ofi27#n/N for the mode
numberl. The OAM multiplexing based on UCA has been
analyzed in multiple research works. In [37], théAJOAM

This paper highlights the superiority of the IDMskd
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numerically analyzed and the analysis results ®fifiM are  field with the far-field assumption can be calcathtas
compared to those of the far-field assumption dued full- E (r) = iw(Ag +A ) . which is denoted as
wave simulation results. Section IV presents theclusion. v

: i(kr-1g)
Il. THEORETICAL ANALYSIS E (r ) _ Iwﬂoj;r N (_i)l J, (kasinﬁ)
A. THEORETICAL ANALYSIS BASED ON THE FAR- (;(T + 91- + 7T ) (3)
FIELD ASSUMPTION X 4 z

In this section, UCA-OAM near-fields and EM energy
densities are theoretically analyzed based ondheentional  where X , 9 , andz are unitx, y, andz vector, respectively.
far-field assumption. We refer to [37] whel antenna
arrays of the UCA are electrically short dipoles the xy

: > o T, =—sin* 8 cosp sinp
plane centered around thexis. Additionally, it is assumed _ ) (4)
that there is no mutual coupling between antenraysr As T, =cos’ @+ sirt & cody
shown in Figure 1, each dipole antenna is aligmeg axis T, = —cosd sind sinp .

direction. The OAM waves are produced by excitinghm-
th element with a currenk, =€™'* for an integer mode Then the magnetic fielH (r) can be easiy derived as

numberl whereg, =2/m/N . Based ore™ convention (r)=rxE(r)/n wherep is the impedance of free-

where w is the angular frequency, the magnetic VeCtorspace. Then the magnetic fieldrais

potential at an observation poihlz(r,é?,@ produced byn-

th array element at positian is described as H(r)= M N (i )' J, (kasin@)
4rmr
~ ikl 1| -Xcosf+z sind co (5)
A, (r)= y—dﬂ0 el & 1) ( $0)
A Ir=r,|

The EM energy densities of UCA-OAM waves can be

whered is the length of each short dipole antenpg,is the ~ estimated using (3) and (5). First, the total EMrgy density

permeability of free-spacé, is the wavenumber, an@ is uis defined asu =w, +w, wherew, =&E[E /4 and

unity vector. W, = ,HH /4 are the electric and magnetic energy
For|r|=r > a whereais the radius of the UCA, the far- density, respectively is then expressed as

field assumption can be applied. Then the distémre n-th

element to the observation point is apprlchimated as u =%(£0E (E' + p H IZIH*)
. . ikr=r, ~
|r rn|~r and the phase is approximated @ 4 [ kNdJ, (kasing) 2 L ©
ik(r—an) ikr —ikasing co§g-¢;) :E T am (1_ sin” 6 sz(a)
e , which can be described &s in
this case. Then the magnetic vector potentidl & depicted ) o
as whereg, is the permittivity of free-space. Furthermoreg th
EM Lagrangian density> and the complex Helicity{_ can
A(r)= QMeikf ZN: g il g ikasing cofp-4,) be calculated as follows [53]:
47r reur]
i(kr=lg)
_ ~ Uyde N . _ _1 . “\ 7
=y~ N(-i) J (kasing L=w,-w, ==(gEE -yHMH )=0 ()
yHEE N (i) 3, (kasin®) =W = 2 (£E TE = pH )
=(?sin6’sin¢1+3’ cod sip+g co$) H :E(EEH*):O. (8)
© 2
i(kr 1)
,uode A\l . 2
Fo~ N (-i) J, (kasing 2)
4rr ( I) '( asin ) (7) and (8) show that the EM Lagrangian density Hrel

complex Helicity cannot be observed with the fetdfi
where J, (kasin®) is the Bessel function and, §,  are  assumption. In addition, the complex Poynting vecto

unit vectors of the spherical coordinate systene &lectric

1 <\ _ kawp, | Nd . 2
Sc = E(E>< H )— TQ{EJI (kasmﬁ)}
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FIGURE 2. Arbitrary antenna expressed as a volume current density in
volume V. and electric field radiated by the antenna outside Va.

T, sin@ cospx

~1 (9
-(T,cos6 +T, sind cop)y ®)
+T, cosfz
has a relation withu , £ , and_ [53]:
H,[* = c?(u? - %) - s, [ (10)

wherec is the speed of light in free-space.

B. THEORETICAL ANALYSIS BASED ON THE IDM
In this section, we utilize the IDM to analyze thear-fields

1 is unit dyadic wherd A =A and the scalar free-space
Green’s functiorg is

' eik\r—r’\ (15)
ror)=———.
9(rr') amlr —r'|
Here, the volume current density in V. can be
alternatively expressed as electric IDs [45] as

(16)

where p, describesn-th complex electric dipole moment
vector. Then we can rewrite the radiated elecigtd fand
magnetic field by substituting (16) into (11) ad®), which
can be expressed as

R, (17)
-ik 1 )&
(3nn(nn |jJn)_pn)(F\, +R_nz] R

H(r):ﬁ,i[(nnxpn)[ik—Ri]f"}n |

(18)

n=1 n n

wheren, represents the unit vector framthID atr,' to the
observation point andRyis |r —r/|.

For a UCA antenna shown in Fig. 1, we represenh eac

of the UCA-OAM waves. As described in Figure 2, anantenna array as an ID. The positionreth ID can be

arbitrary antenna can be equivalently expressea\asume

current densityd (A/m? in the volumeV, that contains the

antenna in a linear, homogeneous, and isotropiciumed
Then the electric fieldE (V/m) and magnetic fieléH (A/m)
radiated from the antenna are expressed as

depicted as, (X, V,,2,) = Xa cosg, + ya sing and n-th
ID is denoted asp =e%y for mode | where

@ =2nm/N and x and 9 are unitx and y vector,

respectively. Then the electric field and magnéigtd of
UCA-OAM waves can be represented as

E(r)=[[[G=(r.r)a(r)av (11)
Va [ -i(lg kR, ) 1
w,e .
Va o " _
K x) (v %) o
wherer is the observation point outsidé, andr’ is the oo , R2 (19)
position of the source insidé,. GE andG" are the dyadic E(r)= A roE Z A [(Y‘ Yn) ‘?”J
Green’s functions for electric field and magnetield, o +y -
respectively where they reflect the responsg ofThen the —2k°R;
dyadic green’s functions for# r' can be derived as [55] 3k’R?+9ikR, - 9
|+z(y-v,)z ]
GE(r,r')=iw T+Loor (r.r') (13) (1R, i
) = 1w, K2 alr, H(r)_liwnel%kﬁ’n(ik 1}
_ — AT mz |V R
GH(r,r'):Dg(r,r')xl (14) 4 R, R,
[—xz+ z(x—x;)}. (20)
where 0" =[0/0x, 0/dy, 0/dz] is del-operator and
the superscriptiom means transpose operator. In addition,
8 VOLUME XX, 2017
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FIGURE 3. Estimation results of the normalized magnitude of E,.
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FIGURE 4. Estimation results of the phase (deg) distribution of E,.

I=-4 1=-3 1=-2 1=-1
| 1
. | 0.6
O IO
0.4
( ) 0.2
0

FIGURE 5. Estimation results of the normalized magnitude of H..

employed to verify the numerical analysis. The nucaé
lll. NUMERICAL ANALYSIS analysis results estimated with the far-field agsion are
In this section, electric field, magnetic field,caBM energy  compared to the results calculated based on the abilithe
densities of UCA-OAM waves are numerically analyzed MoM. For all three analysis methods, the radiuthef UCA
based on the equations acquired in the previoutosedn is A and the dimensions of the observation plane warass
addition, commercial MoM-based full-wave simulati@
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FIGURE 8. Estimation results of the EM Lagrangian density.

20/ in bothx andy directions atz =64 where its center efficiency. The length of each short dipole for faefield

coincides with the center of the UCA. Herg, is the
wavelength. The numerical analysis is done fordesgy of
83.5 GHz. The number of array elemeNtsor the far-field

assumption and the MoM simulation #/10 . First, y
component of the electric field, and thex component of the
magnetic fieldHy are analyzed as they carry OAM of mdde

assumption and the IDM is 100, while the number ofwith the highest energy efficiency [37], therefothe

elements for the MoM simulation is set to 16 folcakation

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

properties of OAM waves can be well observed. Tayais
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FIGURE 9. Estimation results of the normalized magnitude of the Complex Helicity.

is done for eight OAM moded:=-4,1=-3, | =-2,
[=-1,1=1,1=2,1=3,1=4.
Figure 3 and 4 show the normalized magnitude ardeh

with the MoM results. Since our proposed methodased
on rigorous formulas that are applicable regardle§s
frequency, it operates effectively even at highegtiencies.

distribution ofE, estimated based on the far-field assumptionThis validates that the UCA-OAM near-fields can be

the IDM, and the MoM. The normalized magnitude is
acquired by dividing the magnitude by the maximuatug
on the observation plane. The donut-shaped vortiék w
amplitude null at the center and azimuthal phassgé is
observed for all three analysis methods. The &dHi

analyzed more accurately based on the IDM than thi¢h
conventional far-field assumption. Furthermore, etinal
analysis can be much more efficiently conductedugh the
IDM while still maintaining accuracy compared tdlfwave
simulations. The EM Lagrangian density visualizés t

assumption results show good agreement with the IDMegions of unbalanced electric and magnetic endemgity,

results except for slight rotations of the vortides the

while the complex Helicity indicates where the iecfield

magnitude ofE, in the IDM cases. These rotations are alsoand magnetic field are not orthogonal. In addititre sign

observable in the MoM results. Besides, the OAM avav

spreads more as the absolute value of the mode erumbcomplex Helicity. The regions of relatively hiqtm

increases. In Figure 5 and 6, the normalized madaiand
phase distribution oHy are presented. The magnetic field
also shows the vortex with clear azimuthal phastidution
and amplitude null at the center where the regilthe far-
field assumption match well with the IDM and the Mlo
Based on the estimated EM fields, EM energy dexssif
the UCA-OAM waves are analyzed. The real part & th
normalized complex Poynting vector Refon}, the
normalized EM Lagrangian density: —~, and the

normalized magnitude of complex HeIicnIyr—gc | are

assessed. Each EM energy density value was noeddiy
CUmax Whereumax is the maximum total EM energy density on
the observation plane. In Figure 7, Bgbm estimated with
the far-field assumption matches well with the hssaf the
IDM and the MoM although there is small differerinegthe
shape of the vortices. In Figure 8 and 9, estimatésults of
L and|H are depicted for three analysis methods.

norm

As shown in (7) and (8), the EM Lagrangian denaitd the
complex Helicity are unobservable using the faidfie
assumption.

However, when employing the IDMg and|H

c,norm

c,norm

become clearly discernible and the IDM results agrell

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

of the OAM mode is distinguishable by assessing the

c,norm
can lie on a straight line, where the OAM mode asitive
for the line with a negative slope and the modeeigative for
the line with a positive slope.

IV. CONCLUSION

In this paper, we demonstrate the significancetitizing
the IDM in analyzing the UCA-OAM near-fields by
estimating the distribution of the normalized EMgkangian
density £ and the normalized magnitude of complex

Helicity |Hc norm| in the near-field region. The electric and

magnetic field, and EM energy densities are themigt
analyzed based on the conventional far-field astompand
the IDM. The results of the theoretical analysise ar
numerically estimated to visualize the EM nearsfieland
EM energy densities. MoM-based full-wave simulativas
also conducted to verify the accuracy of the IDM.isl
demonstrated that the IDM is superior than the eatignal
method for analyzing the UCA-OAM near-fields as

and |Hc norrn| are clearly observable based on the IDM, where

they are imperceptible through the far-field asstiomp The
EM Lagrangian density denotes the areas of unbadanc
electric and magnetic energy densities where thaptx
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