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ABSTRACT Spiking Neural Networks (SNNs) are Artificial Neural Networks which promise to mimic
the biological brain processing with unsupervised online learning capability for various cognitive tasks.
However, SNN hardware implementation with online learning support is not trivial and might prove highly
inefficient. This paper proposes an energy-efficient hardware implementation for SNN synapses. The imple-
mentation is based on parallel-connectedMagnetic Tunnel Junction (MTJ) devices and exploits their inherent
stochasticity. In addition, it uses a dedicated unsupervised learning rule based on optimized Spike-Timing-
Dependent Plasticity (STDP). To facilitate the design of the SNN, its training and evaluation, an open-source
Python-based platform is developed; it takes as input the SNN parameters and discrete circuit components,
and it automatically generates the associated full netlist in SPICE; moreover, it extracts the simulation results
and makes them available in python for evaluation and manipulation. Unlike conventional neuromorphic
hardware that relies on simple weight mapping post-off-line training, our approach emphasizes continuous,
unsupervised learning, ensuring an energy efficiency of 11.2nW per synaptic update during training and as
low as 109fJ/spike during inference.

INDEX TERMS MTJ, Neuromorphic, SNN, STDP, unsupervised learning.

I. INTRODUCTION

ARTIFICIAL Intelligence (AI) is transforming both so-
ciety and the economy with two crucial drivers at its

core: energy-efficient computing and unsupervised online
learning [1][2]. These qualities are particularly important
for IoT and edge computing devices which must operate
on limited battery power and adapt in real-time. Current
cloud-based AI chips (being power-hungry and relying on
offline training) have large silicon footprints, suffer from
static power and bandwidth constraints due to memory bot-
tleneck [3][4][5]. To address these issues, AI must not only
achieve up to 100 times more energy efficiency but also
facilitate post-deployment continuous unsupervised learning.
Brain-inspired computing, especially Spiking Neural Net-
works (SNNs) [6][7] that emulate the brain’s Spike-Timing
Dependent Plasticity (STDP), have shown a huge potential in
achieving both energy-efficient and unsupervised computing.
However, the development of low-power, reliable hardware
for SNNs remains an open question for research.

The work published on the hardware implementation of
SNN can be classified into three classes, based on their com-
puting paradigm. The first class is based on computing plat-
forms such as CPUs, GPU and TPUs, which make use of the
traditional Von-Neumann architecture and are capable of han-
dling intense parallel computing[8][9][10]. Although these
platforms deliver high accuracy, they consume significantly
more power compared to other neuromorphic architectures.
The second class are near-memory implementations, focusing
on power efficiency, they include dedicated CMOS-based
computing engines such as TrueNorth[11] and Loihi [12].
However, these chips, despite their near-memory character,
still suffer from memory bottleneck which limits the band-
width and requires massive data shuffling. The third class
uses in-memory computing paradigm, which makes it more
biologically plausible. The synapses that hold the weights
are stored in non-volatile (NV) technology devices[13][14]
in a crossbar array between the neurons. However, the vast
majority of the aforementioned proposals don’t support on-
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line learning[15]; they only map the trained weights to the
crossbar array for inference, after training the network offline.
Although there are a few works that proposed the use of
Magnetic Tunnel Junctions (MTJs) for plasticity dynamics
in SNN[16][17][18], there is a need to demonstrate this in
full network training. In short, the state-of-the-art of SNN
implementations suffer from high power consumption, poor
biological plausibility, and are unable to perform unsuper-
vised online learning in a full SNN. Hence, there is a need
for new energy-efficient implementations of SNNs, that are
capable of learning in an unsupervised manner, and do this
online, which means continuous learning after deployment.

This study advances the state-of-the-art of SNN hard-
ware implementation by introducing energy-efficient spin-
tronic synapses, combined with an adapted STDP learning
rule[19], to perform unsupervised learning, and develops a
user-friendly framework for SNN training in SPICE. In short,
the major contributions of the paper are:

• Introduction of multistate synapses by exploiting the
inherent stochasticity of parallel connected MTJs.

• Implementation of an optimized STDP rule tailored to
the unique characteristics of our spintronic synapses.

• Proposition of behavioral neuronmodels for both input
(spiking) and output (integrate-and-fire) neurons.

• Development of an automated Python framework 1

interfacing between user-defined parameters and SPICE
simulator, featuring netlist generation, training and eval-
uation.

• SPICE validation of unsupervised SNN training fol-
lowed by an evaluation on a functional framework
demonstrated an accuracy above 90% on MNIST data
recognition.

• Demonstration of a very energy-efficient SNN with
11.2nW per synaptic update during training and as low
as 109fJ/spike during inference.

The remainder of the paper is organized as follows: Section
II provides some background about MTJs and SNNs. Sec-
tion III details the contributions of this article including the
synapse structure, the learning rule, and the neurons’ models,
section IV explains the modules of the the developed SNN
framework. Next, section V shows the obtained results with
discussion. Finally, section VI concludes the paper.

II. BACKGROUND
A. MAGNETIC TUNNEL JUNCTION (MTJ)
A Magnetic Tunnel Junction is a nanoscale structure com-
prising two ferromagnetic layers separated by an insulating
oxide barrier Fig. 1B. The thicker ferromagnetic layer, of-
ten referred to as the ‘‘reference’’ layer (RL), has a fixed
magnetization direction. In contrast, the thinner layer, known
as the ‘‘free’’ layer (FL), has a magnetization that can be
manipulated to be either parallel or antiparallel to the ref-
erence layer. The relative orientation of these layers deter-
mines the MTJ’s resistance: a parallel configuration results

1The entire framework will be made Open Source upon acceptance.

in low resistance (Rlow or ‘‘0’’), while an anti-parallel con-
figuration yields high resistance (Rhigh or ‘‘1’’). The MTJ’s
functionality is harnessed in Spin Transfer Torque Random
Access Memory (STT-RAM) applications, where the bistable
resistance states represent binary data. The transition be-
tween these states is driven by Spin Transfer Torque (STT),
a phenomenon wherein the angular momentum from spin-
polarized electrons influences the magnetization direction
of the free layer. Our simulations employ a comprehensive
VerilogA MTJ model [20], which encompasses a wide range
of parameters, such as geometric dimensions, saturation mag-
netization, damping factor, and crystalline anisotropy. This
model uses the Landau-Lifshitz-Gilbert (LLG) equation [21],
a fundamental equation in magnetism that describes the tem-
poral evolution of magnetization under various influences:

∂m⃗
∂t

= −γµ0m⃗× H⃗eff + αm⃗× ∂m⃗
∂t

− βJm⃗× (m⃗× m⃗r) (1)

where m⃗ represents the unit magnetic moment of the FL
magnetization under the macrospin approximation. H⃗eff is
the effective magnetic field, which is the sum of different
magnetic fields. γ is the gyromagnetic ratio and µ0 is the
vacuum permeability. α is the Gilbert damping constant. β
is the STT coefficient. J is the switching current density, and
m⃗r is the unit vector of the RL magnetization.
The switching dynamics of the MTJ, governed by STT,

are inherently probabilistic due to thermal fluctuations. The
model distinguishes two regimes based on the magnitude and
duration of the switching current: the Sun model (for currents
greater than the critical current, I > Ic0) and the Neel-Brown
model (for I < 0.8Ic0). The former is characterized by rapid
switching events but at the cost of higher power consumption,
while the latter -used in our simulations- exhibits slower,
thermally-assisted switching with reduced power consump-
tion.

B. SPIKING NEURAL NETWORKS
The brain comprises billions of neurons interconnected by
trillions of synapses [22]. This network is unique in that
the communication inter-neuron is carried through spikes,
which confers a low power consumption to the brain. SNNs
that mimic the biological brain are inspired by this mode of
communication but also the method of learning that comes
with it. Biological neurons integrate incoming spike volt-
ages from other connected neurons, forming the membrane
potential. When this potential surpasses a firing threshold,
the neuron emits a spike, ensuring information is conveyed
only upon reaching this threshold. Various models, such as
the Hodgkin and Huxley model and the Leaky Integrate and
Fire (LIF) model, have been developed to emulate biological
neurons, some modules focus on the biological plausibility
and others on the simulation speed [23] [24]. Since the SNN
communicates only through spikes, encoding the datasets that
need to be fed to the network as spikes is another important
topic of investigation. This encoding can be achieved through
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methods like rate, frequency, or temporal coding. Another
active topic of research is SNN training, many works in the
literature propose training the SNN in two steps, first training
a usual ANN with backpropagation, then, once the training
is finished, the ANN is converted into an SNN for inference
[25] but both training and inference run in classical hardware.
Unfortunately, this does not fully unlock the potential of SNN
in terms of energy efficiency. We find also a slightly better
option in the literature, which consists of training an SNN in
classical hardware and then mapping the weights into a cross-
bar array of memristors [26]. Although this method is better
because it uses In-memory computing for inference, themem-
ristors of the network don’t learn online. Our method is more
biologically plausible because we train the network directly
in the crossbar array of MTJ-based synapses. Indeed, the NV
synapses in the crossbar change their stored weights as the
network is learning according to STDP learning rule. An SNN
consists of input spiking neurons (presynaptic) and output
spiking neurons (postsynaptic), interconnected by synapses.
These synapses can be arranged in a crossbar array as in
Fig. 1A, with input and output neurons positioned at the ends
of each row and column, respectively. Communication be-
tween neurons is facilitated by spike trains. In tasks like image
recognition using frequency coding, each pixel is associated
with one input neuron (or three input neurons for colored
images), with the neuron’s spiking frequency proportional
to the pixel’s intensity. Hardware-implemented SNNs with
probabilistic MTJ synapses is explored. In such architectures,
the synaptic weight is represented in conductance levels, and
a local training algorithm based on STDP is employed.

FIGURE 1: (A) A schematic of a fully connected SNN com-
posed of: 1) a crossbar array of spintronic synapses, each
synapse is a set of multiple MTJs in parallel. 2) input neurons
that generate a train of triangular voltage shapes. 3) output
neurons that fire a bi-rectangular voltage shape upon crossing
the membrane threshold. (B) Top: A schematic of the MTJ
structure. Bottom: Probabilistic switching of the MTJ.

III. PROPOSED SYNAPSE, NEURONS AND ASSOCIATED
LEARNING RULE
The goal of our study is to demonstrate unsupervised training
of SNN in hardware. To this end, we don’t content with
simulating the high-level functionalities of the synapses and
neurons, instead, we run electrical simulations with accurate
device models that capture the physics of the devices. In this
section, we present the overall architecture of the SNN. We
start by presenting the device models required to run SPICE
simulation, we present the spintronic synapses, we describe
the input and output neurons, and we explain the learning
dynamics. Subsequently, we show how important it is to au-
tomate the design process, especially for large SNNs. Finally,
we introduce our Python framework that allows for netlist
automatic generation and its interaction with the Specter
simulator.

A. MTJ-BASED SYNAPSE
The SNN under study employs synapses, where each is a
compound of multiple MTJs connected in parallel. Table 1
displays theMTJ parameters that are used in simulations. The
resulting equivalent conductance of the synapse could take
one of multiple states. Indeed, a single-MTJ device inherently
supports only two distinct conductance states. However, by
integrating multiple MTJs in parallel, a broader range of
equivalent conductance levels can be achieved. The number
of possible states of conductance in the synapse is equal to
N+1, where N is the number of MTJs. In this design, we op-
erate theMTJ devices in the stochastic regime to facilitate on-
line training and reduce power consumption. When a certain
writing voltage is applied, the synapse will end up in one of
the possible states with a certain probability. This is because
the switching of state in each MTJ is probabilistic, and the
final state after writing depends on how many MTJs are in
parallel and how many are in an anti-parallel configuration.

TABLE 1: MTJ Parameters

Parameter Description Value
α Gilbert Damping Coefficient 0.027
P Electron Polarization Percentage % 52
Hk Out of plane Magnetic Anisotropy (Oe) 1433
Ms Saturation Field in the Free Layer (Oe) 15800
r Radius of the MTJ nanopillar (nm) 16
tsl Height of the Free Layer (nm) 1.3
tox Height of the Oxide Barrier (nm) 0.85
TMR TMR(0) with Zero Volt Bias Voltage % 70
T Temperature (K) 300
RA Resistance area product (Ωµm2) 5

B. LEARNING RULE
Our objective is to leverage the probabilistic behavior of the
synapse so that when it receives signals from the pre-and post-
synaptic neurons, its conductance will be updated according
to a customized STDP rule, the Bi-sigmoid STDP, presented
in detail in [19]. On one hand, we know that the probability
that the spintronic synapse switches from one state to another
depends only on the magnitude and duration of the voltage
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FIGURE2: Temporal relationship between pre-synaptic input
pulses (Vpre), post-synaptic output pulses (Vpost ), and the
resultant synaptic weight modifications. The first two panels
depict Vpre and a sequence of Vpost respectively.The third
panel shows the resulting voltage drop across the synapse
(Vpre − Vpost ). The bottom panel provides a normalized view
of the synaptic conductance update, highlighting periods of
potentiation and depression corresponding to the timing se-
quences t1 through t7. The inset on the right shows a 6MTJ
synapse.

drop across its terminals. On the other hand, in STDP, the
crucial parameter that determines the value of the weight
update is the relative time between input and output neuron
spiking. To reproduce STDP, we manipulate the probability
of switching by tuning the voltage drop across the synapse,
so that an increase of conductance (potentiation) takes place
when the input-output relative spiking time is small. Like-
wise, a decrease in conductance (depression) takes place
when the input-output relative spiking time is large. This
switching probability manipulation can be easily obtained by
custom-designing the voltage responses of input and output
neurons. A thorough investigation -that extends beyond the
scope of this article- allowed us to find the optimal voltage
shapes of input and output neuron signals. A triangular shape
for the input neuron voltage (blue pulse in Fig. 2), and a
double square voltage shape for the output neuron (red pulse
in Fig. 2). The weight update happens when the output pulse
overlaps (in time) with a part of the input pulse, the resulting
voltage drop across the synapse Vpre − Vpost depends on the
relative time between spikings. This voltage drop which alters
the probability of switching is shown in Fig. 2 alongside the
input and output voltage profiles. Depending on the relative
spiking time between input and output, The obtained STDP
(green curve in Fig. 2) can be divided in five regions:

1) High Potentiation: Immediate post-synaptic spiking
after pre-synaptic results in a maximum Vpre − Vpost >
0, significantly increasing the synapse conductance.

2) Low Potentiation: A smaller positive voltage drop
with increasing delay slightly raises the synapse con-
ductance.

3) Unchanged Conductance: A transitional phase be-
tween potentiation and depression where the voltage
drop diminishes and cannot induce either potentiation
or depression.

4) Low Depression: A substantial delay yields a negative
Vpre − Vpost, reducing the synapse’s conductance.

5) HighDepression:A significant delay between pre- and
post-synaptic pulses results in a large negative voltage
drop, drastically decreasing the synapse conductance.

C. NEURON MODELS
1) Input neuron
We focus on the black-and-white image recognition task. The
number of input neurons corresponds to the image’s pixel
count. Each input neuron, modeled in Verilog-A, translates
the intensity of a single pixel into a series of triangular voltage
pulses (first panel of Fig. 2). Crucially, the frequency of
these pulses is directly proportional to the pixel’s intensity,
establishing a clear intensity-to-frequency conversion mech-
anism. A small challenge arises from neurons associated with
pixels of zero intensity, as the proportional conversion would
not generate any pulse, thus preventing that neuron from
contributing to learning. To address this, a small frequency
bias is introduced to the spike trains of all input neurons.
This ensures that even zero-intensity pixels contribute to
the synaptic training process. Fig. 3 presents a schematic
of the input neuron and how the designed voltage shape
could be generated. As the input neuron model is part of a
bigger framework, further customization is possible through
several adjustable parameters accessible via the framework’s
interface. This includes the ratio for converting intensity to
frequency, the duration for which an input image is presented
to the network, and the specific characteristics of the trian-
gular voltage pulses. These adjustable parameters allow for
fine-tuning of the input neuron model to suit various image
recognition scenarios, enhancing the system’s flexibility and
efficacy in processing diverse visual inputs.

2) Output neuron
The behavioral model of the output neuron describes a leaky
integrate-and-fire (LIF) neuron adapted from [27]. This LIF
neuron which is depicted in Fig. 4 integrates incoming signals
and produces a double rectangular spike when its membrane
potential surpasses a predefined threshold. At its core, the
LIF circuit operates as an RC (Resistor-Capacitor) circuit,
it is composed of a capacitor, a charging, and discharging
resistances, and finally, a voltage source that generates the
double rectangular spike. Three switches control the signal
flow in the neuron giving place to three primary phases: in-
tegration, leakage, and spiking. During the integration phase,
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FIGURE 3: Presynaptic neuron design, generating the spe-
cific presynaptic pulses with a proportional frequency to the
pixel intensity. The design is described by a behavioral model.

only the charging switch is connected to charge the capacitor
with incoming synaptic signals. If no incoming spike is being
received, leakage starts with connecting another switch that
allows the capacitor to discharge via Rdischarge while the
charging switch is disconnected. When the voltage across the
capacitor reaches the predefined threshold of the membrane
potential, the neuron enters the spiking phase, during which a
third switch connects the neuron terminal to a voltage source
that generates back the postsynaptic signal to update the
synapse connections. During this time, the charging switch
is disconnected and the discharging switch is connected to
a high resistance (Rpostdischarge) for a fast resetting of the
membrane potential.

FIGURE 4: Postsynaptic neuron design described by a behav-
ioral model

IV. AUTOMATED SNN FRAMEWORK
Development and training of SNNs at the device level
presents some unique challenges due to the extensive com-
putational resources required. Our open-source framework
addresses these challenges by automating the design and
training of SNNs for electrical simulations, specifically tai-
lored for SPICE environments.

♣ Framework Overview:
Our tool depicted in Fig. 5 streamlines the creation of intricate
SNN architectures for Spice simulations. It facilitates the gen-
eration of detailed netlists, which are essential for accurately

modeling the neural network’s behavior at the device level.
Unlike general netlist generators, such as those referenced
in [28] and [29], our tool is specifically optimized for SNN
applications. It incorporates user-defined parameters, includ-
ing the number of input and output neurons, as well as the
configuration of MTJs in each synapse, thereby allowing for
a high degree of customization.

♣ Integration with Spice Simulator:

A notable feature of the framework is its seamless integration
with Cadence Ocean tool. This compatibility enables users to
easily set simulation parameters all at once, the tool then takes
care of updating all the necessary files accordingly. Our tool
automates the simulation process, including the recording of
various signals for subsequent analysis.

♣ Simulation and Analysis:

Post-simulation, the framework presents comprehensive re-
sults that encompass synaptic weight evolution, neuron mem-
brane potential dynamics, and overall learning performance.
This analysis is conducted in the background, requiring min-
imal user input beyond the initial setup.

♣ Parallel Processing Capabilities:

One of the core strengths of the framework is its multipro-
cessing capability while satisfying the simulator constraints.
This feature is particularly beneficial for conducting parallel
simulations and parametric analysis across different SNN
designs, significantly reducing the time and computational
resources required for extensive exploratory studies.

♣ Key Modules:

The framework’s architecture which is summarized in Fig. 5
ismodular, with themain Python script (snn_simulator.py)
coordinating the flow between the following components:

• Parameter Specification: Design choices and simulation op-
tions are respectively handed to netlist_generator.py
and run_SPICE.py from the main script.

• Netlist Generation: netlist_generator.py dynami-
cally constructs SNN netlists, adaptable to various sizes and
architectures, and outputs to netlist.

• Spice Simulation Execution: run_SPICE.py integrates
with Cadence Ocean scripts (oceanScript.ocn) to auto-
mate simulation processes and output to designated folders.

• Performance Analysis: Leverages visualisation.py to
display key signals, facilitating an analysis of SNN training
efficacy.

• Parallel Processing: snn_simulator.py integrates mul-
tiprocessing with parametric analysis to simultaneously con-
duct multiple simulations for large design exploration.

Eachmodule is geared towards simplifying and automating
the complex processes involved in SNN design, training, and
analysis. The main script orchestrates the entire simulation
process. It initializes with user-defined parameters, generates
the netlist through a dynamic and scalable approach, and
interfaces with simulation tools for execution. The use of
Python’s multiprocessing capabilities not only accelerates
the simulation process but also allows for the simultaneous
exploration of multiple SNN configurations.
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FIGURE 5: Overview of the SNN Training Framework detailing module interactions and data flow.

V. RESULTS AND DISCUSSION
In this section, we first demonstrate the efficiency of the
proposed framework performing online training. SPICE sim-
ulations emulate the SNN training process to recognize a
small dataset selected merely as an illustrative example. The
derived leaning rule is then evaluated in a larger SNN using a
functional simulator.We then evaluate the power efficiency of
training and inference, and show the effect of spiking activity
and the synapse composition in the energy consumption.

A. VALIDATION WITH THE PROPOSED SPICE
FRAMEWORK
Our approach to training SNNs is unique because it trains
online directly on the MTJ crossbar array. Unlike typical
methods where an external algorithm trains the SNN con-
ventionally before mapping the weights to the crossbar, our
system updates connections in response to the ongoing activ-
ity of input and output signals, without relying on a separate,
explicit algorithm. However, the valuable demonstration of
hardware-based SNN training in SPICE comes at the cost
of dealing with computational overhead, which is influenced
by the number of input and output neurons, and the number
of MTJs per synapse. Each component adds more currents
and voltages to be calculated. Given the intense computa-
tional demands and lengthy processing times, we choose to
illustrate our approach in a manageable way, using 25 input
neurons. Each neuron is associated with a single pixel of
an input image that represents a character in a 5x5 pixel
format. For computational considerations, we let the SNN
learn one character at a time, hence only one output neuron
is required. Our main objective through this basic SNN is
to show that our design together with the customized STDP
online learning rule, performs effectively while maintaining
reasonable simulation times. We trained the SNN to learn

10 characters shown in Fig. 6, where each couple of images
shows the synaptic conductances before and after training.
Initially, conductances of the synapses are randomly initial-
ized, then after 150 ms of presenting the image to the SNN,
the synapses perfectly learn that character. It is worth noting
that thewhole process happenswith no supervision, but solely
thanks to the input-output activity that updates theMTJ-based
synapses accordingly.

Initial
weights

Trained
weights

Initial
weights

Trained
weights

FIGURE 6: Synaptic weights before and after training, 10
showcases are presented. The weights are randomly initial-
ized and finish by learning the presented character each time.

We first trained the network to learn the character "X" (top
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left on Fig. 6) in a network that has 6MTJs per synapse,
when the network perfectly learned, we reduced the number
of MTJs to only 2MTJs per synapse for all other trainings.
As shown in Fig. 6, SNN always learns the presented char-
acter, which indicates the robustness and versatility of our
design. The Fig. 7A provides a temporal evolution of synaptic
weights dynamics when the network is learning the character
"X". First, the 25 synapses are distributed randomly through 7
states, then as learning evolves, some weights potentiate and
others depress until stabilization. The Fig. 7B illustrates the
membrane potential of the output neuron over time, capturing
the neuron’s accumulation, leakage, and firing activity in
response to incoming spikes.
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FIGURE 7: (A) Synaptic weight history during the network’s
training phase, showing transitions between various conduc-
tance states. (B) Membrane potential dynamics of the output
neuron, depicting the threshold-triggered firing and subse-
quent weight adjustment in the synapses.

B. VALIDATION WITH A FUNCTIONAL FRAMEWORK
In our study, we first utilized SPICE simulations to authen-
ticate the efficacy and physical compatibility of our newly
derived STDP learning rule with MTJ-based synapses in
a small dataset. This approach confirms that our learning
rule is both theoretically robust and directly applicable to
neuromorphic hardware, leveraging MTJ’s advantages for

efficient in-memory computing. Given SPICE’s detailed elec-
trical simulations, which align closely with the equations
governing the synaptic devices, we could validate our STDP
rule’s device-level feasibility. However, to explore the scal-
ability and broader applicability of our learning rule, we
injected our STDP in Bindsnet [30], a functional framework
to speed up the simulations, while ensuring that it uses a
learning rule that originated from SPICE-based simulations
of the spintronic synapse. This shift allowed us to apply our
learning rule to train an SNN on MNIST dataset [31] with
the architecture presented on [32] adopting leaky integrate-
and-fire neuron models and conductance-based synapses, and
consisting of 784 input neurons and 400 output neurons. The
Fig. 8 illustrates the network’s classification performance on
the MNIST dataset over three epochs, showing a progressive
improvement as it processes an increasing number of training
samples. After training, the network was evaluated, achieving
an accuracy of 90.28%. While this figure may be modest
compared to state-of-the-art ANNs, it’s crucial to highlight
the significance of this achievement within the context of
SNNs. The observed performance underscores not only the
energy efficiency inherent to SNNs but also the advantage of
their unsupervised learning nature, as opposed to the super-
vised paradigm common in DNNs. Moreover, the foundation
of our learning rule in the physical properties of MTJ-based
synapses positions it as a particularly fitting choice for neu-
romorphic computing, aligning closely with the operational
principles of neuromorphic hardware.
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FIGURE 8: Incremental improvement in classification per-
formance as a function of the number of training samples.

C. ENERGY EFFICIENCY
Employing multiple MTJs in parallel as synapses in SNNs
presents a significant advantage in reducing energy consump-
tion. We analyzed the power consumption of synapses (ex-
cluding the power consumption of the neurons and of the
rest of the system). The synapses are equipped with varying
numbers of MTJs (2 to 8) depending on design choices which
are dictated by the complexity of the learned task and the
needed resolution of the synapse. Our analysis focuses also on
the power consumption dynamics of the synapses when sub-
jected to different spiking frequencies (20Hz to 80Hz). This
range of frequencies corresponds to the encoding of black and
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white pixels, respectively. Notably, during inference phases,
by disabling feedback from the output neuron—which ex-
hibits high impedance—we achieve a significant reduction in
power consumption. The power estimation of a single synapse
is quantified through SPICE simulations, which capture the
average power P over a 150ms image presentation interval,
calculated as:

P =
1

t1 − t0

∫ t1

t0

P(t) dt (2)

Where t1 − t0 = 150ms. Averaging the power as given in
Eq. 2 is performed to account for the varying instantaneous
power within a given spike, but also for the silent inter spike
intervals. The energy per spike is finally derived by multiply-
ing the average power by the spike’s duration (set at 10ms
in this analysis). Notably, the power consumption escalates
with the number of MTJs per synapse due to a decrease in the
equivalent resistance of the synapse. This effect is depicted
in Fig. 9A which shows the power consumption of synapses
with different number of MTJs during training at a maximum
spiking frequency of 80Hz. Consequently, our analysis bench-
marks in Fig. 9B the upper bound of power consumption
using 8-MTJ synapses, which are subjected to varying neuron
spiking frequencies. The results show a power consumption
ranging from 1.29nW to 11.2nW corresponding to an energy
consumption per spike of 112pJ and 12.9pJ for synapses
connected to the most and least active neurons, spiking at
80Hz and 20Hz respectively, during training. Inference stages
show even more promising figures, with energy per spike
dropping to as low as 438fJ and 109fJ for synapses connected
to the most and least active neurons, respectively. This effi-
cient synapse is neuron-agnostic and can bematched with any
neuron design available on the literature. This allows more
optimization from the neuron side for the energy efficiency
of the system.

In comparing various SNN implementations, several works
rely on offline training, followed by weights mapping to a
crossbar array of synapses based either on Resistive Random
Access Memory (RRAM) [33] [26] or MTJ [34], the net-
work is then intended for inference without online learning
capabilities. The works in [33] and [35] employed gradient
descent algorithm (supervised) and reported inference energy
efficiencies of 3.6fJ /spike experimentally and 270fJ /spike
in SPICE, respectively. However, the offline nature of their
training limits real-time application potential. In a similar
approach, [26] trains an SNN using unsupervised learning
with STDP, yet still follows an offline training methodol-
ogy before mapping the weights to the RRAM crossbar
for SPICE simulations, resulting in 20fJ /spike energy con-
sumption. The authors of [34] demonstrated that Spin-Orbit
Torque (SOT) MTJs are very energy efficient for inference.
The work demonstrates experimentally the plasticity of a
compound synapse composed of 16 SOT MTJ devices. the
MNIST offline training of a network followed by weight
mapping to SOT-MTJ based crossbar array achieved 1.3fJ
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FIGURE 9: Comparison of power consumption of the
synapse. (A) Average power consumption during training
with different counts of MTJ per synapse at a fixed spiking
frequency of 80 Hz. (B) Average power consumption during
training (nW) and inference (pW) across varying spiking
frequencies, in 8-MTJs-based synapses.

per spike during inference. Meanwhile, comprehensive eval-
uations of power consumption of training within networks
using unsupervised STDP onMTJ-based synapses, especially
via accurate SPICE simulations, remain limited. Furthermore,
the variation in communicated metrics, including total power
consumption, energy per spike, and energy per image, com-
plicates the task of establishing clear benchmarks, hence we
choose to benchmark the power required by a basic oper-
ation during training which is a single weight update. The
study by [36] introduces a simplified STDP mechanism for
synapses based on a singleMTJ, specifically targeting vehicle
counting applications. The authors preferred using a local
fast simulator over the accurate but slow SPICE simulations.
The reported weight update power dissipation ranges from
180nW to 0.42mW depending on the spiking mode. In this
context, the study by [37] explores stochastic computing
by performing system-level simulations of networks using
synapses comprised of MTJs in series, with configurations
extending to as many as 49 MTJs per synapse. Their sim-
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plified STDP involves three phases in one training process:
communication, potentiation, and depression. For a synapse
configuration of 4 MTJs in series, the authors reported an
estimated power consumption of 47.6 µW to update the state
of the synapse. Table 2 compares our work to other proposals.

TABLE 2: Training method & energy efficiency comparison

Network Training Learning rule Weight
update
power

Energy per
spike (Infer-
ence)

El Arrasi[26] Offline Unsupervised
(STDP)

N/A 20 fJ

Valentian [33] Offline Supervised
(backprop)

N/A 3.6 pJ

Ostwal [34] Offline Supervised
(backprop)

N/A 1.3 fJ

Zhang[37] Online Unsupervised
(simplified
STDP)

47.6 µW –

Vincent [36] Online Unsupervised
(simplified
STDP)

180 nW –

This work Online Unsupervised
(Dynamic STDP)

11.2 nW 109 fJ

Even with our most consuming synapse composed of 8
MTJs and subject to the highest spiking frequency (80Hz),
the power dissipation of our proposed synapse during training
outperforms both the proposals of [37] and [36]. Unlike the
mentioned proposals, our work uses a dynamic STDP that
properly interprets the relative time between spikes of pre-
and post-synaptic neurons and updates the spintronic weights
accordingly. During inference, our proposal is more energy
efficient than [33] but it is surpassed by [26] and [34]. How-
ever, our work not only uses unsupervised STDP adapted to
the physics of spintronic synapses, but it also implements
it in an online manner, which is not the case of [26] and
[34]. This feature, we believe, is more suited for IoT devices
and real-time applications, offering a balance between energy
efficiency and practical applicability in dynamic environ-
ments. Our work’s nuanced approach to synapse design and
online training not only reduces power consumption but also
ensures compatibility across various neuronmodels, fostering
greater optimization opportunities for overall system energy
efficiency.

VI. CONCLUSION
In this paper, we presented an energy-efficient implementa-
tion of SNN. Our approach enhances SNNs for unsupervised
online learning by utilizing a specialized STDP learning rule
that is rooted in the physics of MTJ-based synapses and
exploits the inherent stochasticity of MTJs. An open-source
Python platform developed for this purpose simplifies SNN
training and evaluation, automating SPICE netlist generation
and simulation. The results showcase our design’s effective-
ness, achieving an energy efficiency of 11.2nW per synaptic
update during training and surpassing conventional neuro-
morphic hardware that relies on post-offline training weight
mapping. These results pave the way for future advancements
in autonomous systems, IoT devices, and edge computing.
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