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ABSTRACT This study utilized the U-Net deep learning model to automate the segmentation of three-

dimensional after-loaded metal source applicators, aiming to expedite treatment planning, reduce patient wait 

times, and enhance the treatment process. Using CT images from cervical cancer patients treated between 

December 2020 and August 2023, 27 images formed the training set, 3 were for validation, and 10 for testing. 

The model's performance was evaluated against expert delineations using metrics like the Dice similarity 

coefficient (DSC), Hausdorff distance 95% (HD95), and others. The results were integrated into a after-

loading planning system to locate applicator pathways and assess dose accuracy and feasibility. For the test 

group, the DSC ranged from 0.90 to 0.93, HD95 from 0.79 to 0.80 mm, and ASSD from 0.03 to 0.22 mm, 

with an average segmentation time of 65 seconds, significantly faster than manual delineation. The automatic 

pathways closely matched the original plan's dosimetric parameters (P > 0.05), indicating the system's 

potential for safe application in after-loading planning for cervical cancer treatment. The U-Net-based region-

growing method shows promise in improving the efficiency and accuracy of after-loaded applicator 

segmentation. 
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I. INTRODUCTION 

Cervical cancer is a common gynecological malignancy 

worldwide and is characterized by a high incidence and 

significant threat to patient health, making it a focal point for 

the World Health Organization (WHO) [1]. According to 

data from the WHO, in 2020, there were approximately 

604,000 new cases of cervical cancer worldwide, with 

342,000 deaths; cervical cancer was thus the fourth most 

common cancer by incidence [2]. Radiotherapy plays a 

crucial role in the treatment of cervical cancer, and after-

loading treatment is an indispensable portion of radiotherapy 

[3], [4]. 

Traditional after-loading treatment for cervical cancer 

typically involves two-dimensional planning, which is a 

widely used method. However, with the continuous 

advancement of medical technology, three-dimensional 

after-loading treatment plans have gained increasing 

attention. Compared to traditional two-dimensional planning, 

three-dimensional after-loading treatment offers a range of 

significant advantages, including greater precision, 

personalized treatment, treatment monitoring, and reduced 

side effects [5], [6], [7]. However, three-dimensional after-

loading treatment also has several limitations. For example, 

this process requires target area delineation and source 

applicator reconstruction; these processes often require a 

significant amount of time and human resources [8]. Using 

AI for target area delineation is difficult due to individual 

patient variations. However, using AI for source applicator 

reconstruction is more feasible for AI automation because 

their shape is generally fixed, and the tissue density differs 

from that of human tissue, especially for metal source 

applicators [9], [10], [11]. Currently, there are relatively few 

reports on the automatic segmentation of cervical cancer 

after-loading source applicators using the U-Net algorithm 

[12]. 
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In this study, a neural network region-growing deep 

learning (DL) model based on a small-sample U-Net training 

set was proposed. The proposed model was trained and 

evaluated for the automatic segmentation of metal source 

applicators in after-loading simulated CT images of cervical 

cancer patients. Subsequently, the performance of the DL 

algorithm model was compared against that of traditional 

manual delineation methods using software. Additionally, 

post processing of the source applicators was performed 

through skeletonization and polynomial curve fitting. The 

automatic reconstruction of source applicator pathways was 

achieved in the three-dimensional after-loading planning 

system, and the accuracy of the study results was assessed 

using dosimetric evaluation methods. 

 

Materials and Methods 

Data and data annotation 

The study was approved by the Medical Ethics Committee 

of Zhejiang Provincial People's Hospital (2024-03-11, No. 

QT2024054). Due to the retrospective nature of the analysis, 

the requirement for informed consent was waived. Data for 

this retrospective analysis were collected and analyzed 

between November 2023 and January 2024. The patient data 

was completely anonymous, and during or after data 

collection, the authors could not obtain information that 

could identify individual participants. 

In this article, the localization CT imaging data of 40 

patients who underwent cervical cancer after-loading 

brachytherapy at our institution from December 2020 to 

August 2023 were retrospectively studied. The CT images 

had a resolution of 0.1 cm × 0.1 cm × 0.3 cm, with a range 

of 37 to 65 slices and an average of 54 slices. The age of the 

40 patients ranged from 32 to 87 years, with a median age of 

54.5 years. The body mass index (BMI) ranged from 18 to 

25, with a median value of 21. 

The inclusion criteria for patients were as follows: ① Had 

early-stage cervical cancer after surgery, where this cancer 

was clinically staged as T1-2N0M0, and lacked distant 

metastasis. ② The absence of other systemic diseases. The 

exclusion criteria for patients were as follows: ①  Had 

contraindications to radiotherapy. ②  Previously received 

radiotherapy, chemotherapy, or other antitumor treatments.  

All 40 cases included metal tube applicators (Xinhua 

applicator, Shandong, No. 084.350). The applicators on the 

CT images were contoured by experienced physicists using 

the Acclearning platform (Manteia, Xiamen, China). High-

level physicists manually delineated the contours containing 

the applicators in the CT images and labeled the three 

applicators as Source_L, Source_M, and Source_R, 

representing the left, middle, and right applicators, 

respectively. 

Data preprocessing 

The training set's CT images were subjected to Z score 

normalization, which involved subtracting the dataset's 

image mean from each data point and then dividing that 

difference by the standard deviation. This normalization 

ensures data quality and consistency while enhancing the 

contrast between the source applicators and the backgrounds 

of the images, emphasizing the applicator features. After 

preprocessing, voxel resampling was applied to the images, 

uniformly resampling them to a voxel size of 1.0×1.0 while 

maintaining the slice thickness. Since source applicators are 

typically located in the middle portion of CT images, random 

window cropping was performed on the CT images and their 

corresponding ground truth images. The window center was 

randomly selected from the ground truth and background 

images at a 1:1 ratio, and the window size was set to 320×320. 

To increase the dataset diversity, data augmentation 

techniques, including flipping, scaling, rotation, gamma 

transformation, and elastic deformation, were applied to the 

training images. Both window sampling and data 

augmentation were performed online during the training 

phase to achieve the best augmentation results. 

Construction of the U-Net model 

Construction of the network model 

We employed a medical image segmentation network 

architecture based on U-Net, which consists of a total of 10 

parts. The model takes the input as 320×320 CT images. The 

first 5 layers are downsampling layers, each comprising two 

convolution operations and one max pooling operation. 

Layers 6 to 9 are upsampling layers; after a deconvolution 

operation in each layer, low-level and high-level information 

are fused through skip connection layers, enabling the model 

to capture both semantic information and textural details. 

Subsequently, two convolution operations are performed, 

with a convolution kernel size of 3×3, a deconvolution kernel 

size and a max pooling kernel size of 2×2, and a stride of 1. 

The activation function used was the rectified linear unit 

(ReLU). In the 10th layer, cross-channel features are 

integrated using a 1×1 convolutional kernel with the sigmoid 

activation function, resulting in a final output of a 320×320 

two-dimensional prediction map (as shown in Figure 1). 

 

Figure 1. The structure of U-net network 

annotation: Conv: Convolutional Layer, BatchNorm: Batch Normalization 

Layer, ReLU, Residual Block: Residual Connection Block 

 

Model optimization 

The optimizer optimized during training is Adam 

(adaptive moment estimation) [13]. Adam dynamically 

adjusts the learning rate for each parameter using first and 

second-order moment estimates of the gradients. After bias 

correction, the learning rate is within a determined range 
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after each iteration, ensuring parameter integrity. The 

selected loss function is a combination of cross-entropy and 

Dice loss [14]. 

Training and segmentation of the network 

The preprocessed training and validation sets are fed into 

the network for training with a batch size of 8. For each batch 

of data, the model's forward propagation process calculates 

the model's output. The input images are mapped to 

segmentation masks indicating the positions of the metal 

source applicators. The difference between the segmentation 

mask generated by the model and the real label mask (from 

the training set) is computed to determine the loss. This loss 

represents measures the discrepancy between the model's 

output and ground truth. Using the computed loss, gradients 

are calculated using the backpropagation algorithm to 

determine how each model parameter affects the loss. An 

optimizer is used to update the model's weights and biases to 

minimize the loss through self-adjustment. After each 

training epoch, the model's performance is evaluated using 

the validation set. The maximum number of epochs is set to 

200, the initial learning rate is set to 3e-4, and the exponential 

moving average loss is calculated for both the training and 

validation sets. If the loss does not decrease by more than 1% 

within 3 epochs, the learning rate is reduced by 50%. To 

improve the model's performance, the hyperparameters are 

adjusted based on the performance on the validation set. 

Training ends when the validation set performance no longer 

improves. Once training is complete and the model's 

performance stabilizes with an increasing number of samples 

(as shown in Figure 2), the test set data are input into the 

network for segmentation. This process yields the 

segmentation results for each patient, which are 

subsequently evaluated, including the Dice index, to assess 

the model's performance. 

 

Figure 2. Evolution of Dice similarity coefficient (DSC) of train and 

validation data sets during the training process. 

annotation: loss_tr: training set loss curve, loss_val: validation set loss 

curve, pseudo dice: validation set pseudo dice curve, pseudo dice (mov. 

avg.): moving average of validation set pseudo dice curve. 

Model evaluation 

The accuracy of source applicator reconstruction depends 

on the segmentation accuracy of the applicators. Therefore, 

to assess segmentation effectiveness, the following seven 

metrics are adopted for evaluation [13], [15], [16]. 

DSC 

The compilation section of the model defines the DSC, 

which is used to measure the similarity between two samples 

and has values ranging from 0 to 1. A value of 0 represents 

dissimilarity, while 1 indicates a high degree of similarity 

and excellent segmentation results. In actual predictions, 

each patient has CT images comprising 70-90 layers. 

Therefore, the mean and standard deviation of the DSC are 

calculated; the same approach is used for all other 

evaluations. 

Hausdorff distance (HD) 

Since the DSC is sensitive to the internal filling ratio, the 

HD is used to evaluate the model. Given two samples A and 

B in the spatial domain, the HD is used to measure the 

distance between these two samples. The HD is calculated as 

follows: 

HD (A, B) =  max(D (A, B), D (B, A)) (1) 

In the equation (1), D(A, B) =  maxaϵAminbϵB||a − b||，
where A represents the predicted image, B represents the 

ground truth image, and a and b are elements within A and 

B, respectively. To account for outliers in both the predicted 

and ground truth images, the 95th percentile of the HD is 

computed and denoted as HD95. 

Relative Volume Difference（RVD） 

The RVD is defined as follows: 

RVD = (
A + λ

B + λ
− 1) × 100 (2) 

Where λ is the Laplace smoothing factor. In the equation 

(2), λ is set to 1 to prevent division by zero. 

Average Symmetric Surface Distance（ASSD） 

The ASSD represents calculates the minimum Euclidean 

distance between all points in the predicted surface point set 

and the reference surface point set and then calculates the 

average of all these distances, where 0 is the best value, and 

infinity is the worst. 

Relative Absolute Volume Difference (RAVD) 

The RAVD calculates the relative coefficient of the 

nonoverlapping portions of the predicted volume and the 

reference volume, where 0% is the best value, and infinity is 

the worst. 

Jaccard Similarity Coefficient（Jaccard） 

The Jaccard similarity coefficient compares the elements 

of two sets to determine which elements overlap and which 

do not. This measures the similarity between two sets of data, 

where 1.0 is the best value, and 0 is the worst. 

Centroid Distance (CD) 

The CD between sets A and B is the average distance 

between the centroids of A and B. The CD is calculated by 

finding the average pairwise distance between points within 

each set, where 0 is the best value, and infinity is the worst. 

Dosimetric evaluation 

We applied the automated reconstruction of source 

catheter paths for the 10 test patients to the three-dimensional 

postimplantation treatment planning system. We duplicated 

the dwell positions and dwell times of each source applicator 

from the original clinical plan and used the original 

radioactive source activity to generate new test plans. Finally, 
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we identified the differences between the dosimetric 

parameters of the two sets of plans. The compared 

parameters included D90 (Gy) and D100 (Gy) for the HR-

CTV (high-risk tumor region) and IR-CTV (low-risk tumor 

region), as well as V100 (%), V150 (%), and V200 (%) for 

these regions. Additionally, we evaluated D0.1 cc, D1 cc, 

and D2 cc for the rectum, bladder, and sigmoid colon. SPSS 

19.0 software was used to perform paired t tests to assess the 

differences between the two sets of data. 

 

Results 

Model training results 

After 25 epochs, the loss functions on the training and 

validation sets converged to lower levels. After 200 epochs, 

the training set loss decreased to 0.07, and the validation set 

loss decreased to 0.1. The training set exhibited a DSC of 

0.93, while the validation set exhibited a DSC of 0.90, 

indicating that the model learned the features of the source 

applicators effectively. The total training time was 7 hours. 

The loss curves for the training and validation sets during the 

training process showed that the model converged after 200 

epochs, as shown in Figure 2. 

Figure 3 shows the comparison of the final evaluation 

parameters for the four source applicator models trained with 

15, 20, 25, and 30 cases in the training set and validation set. 

The Dice values for the left, middle, and right applicators 

gradually increased as the number of training and validation 

cases increased, and eventually stabilized. The other 

evaluation parameters for the four different training and 

validation sets varied for the three applicators. Based on the 

comparison of the final evaluation results, the model trained 

with 30 cases in the training set and validation set was 

selected for further source applicator segmentation research. 

Table 1 lists the specific values of the final evaluation 

parameters for the source applicator models trained with 30 

cases in the training set and validation set; the Dice values 

are slightly lower for the left applicator and greater for the 

middle and right applicators, averaging 0.91 and 0.89, 

respectively. 

 

Figure 3. A bar chart depicting the evaluation parameters of the four 

source applicator models. 

Table 1. Model evaluation parameter results for the validation set (x(s)) 

 

 
Roi dice hd95 assd ravd jaccard cd 

Source_L 0.81 

(0.02) 
7.60 

(2.15) 
0.58 

(0.19) 
28.39 

(1.13) 
0.68 

(0.02) 
5.84 

(3.97) 
Source_M 0.91 

(0.01) 
2.15 

(2.02) 
0.15 

(0.09) 
1.21 

(0.21) 
0.84 

(0.02) 
1.86 

(1.74) 
Source_R 0.89 

(0.03) 
2.17 

(2.04) 
0.23 

(0.15) 
9.60 

(6.38) 
0.80 

(0.05) 
2.70 

(2.30) 
Mean 0.87 

(0.02) 
3.97 

(2.07) 
0.32 

(0.14) 
13.07 

(2.57) 
0.77 

(0.03) 
3.47 

(2.67) 

 

The selected best trained model was used to segment the 

10 patients in the test set. Taking the first patient as an 

example, the segmentation results of the source applicator 

obtained by using this model are stronger, as shown in Figure 

4. Figure 5 illustrates the differences between the 3D 

contours of the source applicator trained by the model and 

the contours manually drawn by the experienced physicist. 

 

Figure 4. Comparison of the applicator  Cross-sectional image predicted 

by U-net (blue) and the manual delineated (red) in patient 1 

 

Figure 5. Comparison of the applicator 3d model predicted by U-net 

(blue) and the manual delineated (red) in patient 2 
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The segmentation results for the test set of 10 patients 

treated with metal cylinder applicators were satisfactory. 

Compared to the applicator contours manually delineated by 

experienced physicists, the average DSC for the left 

applicator is 0.91, the HD95 is 0.80 mm, the ASSD is 0.22 

mm, the MSSD is 5.06 mm, and the RAVD is 6.26 mm. For 

the middle applicator, the average DSC is 0.90, the HD95 is 

0.79 mm, the ASSD is 0.03 mm, the MSSD is 5.06 mm, and 

the RAVD is 1.19 mm. Finally, for the right applicator, the 

average DSC is 0.93, the HD95 is 0.79 mm, the ASSD is 0.20 

mm, the MSSD is 5.06 mm, and the RAVD is 4.99 mm. The 

CT segmentation prediction time for these cases ranged from 

a minimum of 78 seconds to a maximum of 124 seconds, 

with an average of 88 seconds. The specific numerical values 

are provided in Tables 2, 3, and 4, and the corresponding bar 

chart is shown in Figure 6. 

Figure 6. Bar chart of the evaluation parameters for the applicator test set 

of the model. 

Table 2. The left applicator evaluation parameters of 10 patients test set 

Patient 

Number 

DSC HD95(mm) ASSD(mm) MSSD(mm) 

1 0.91 0.80 0.22 5.06 

2 0.88 5.05 0.66 10.11 

3 0.87 1.54 0.33 5 

4 0.86 5.03 0.73 10.08 

5 0.89 0.61 0.29 5.08 

6 0.91 0.57 0.22 5.03 

7 0.88 1.42 0.3 2.88 

8 0.89 1.48 0.32 5.05 

9 0.8 5 0.62 5.17 

10 0.88 1.2 0.23 2.72 

Mean 0.9 0.79 0.22 5.06 

Table 3. The middle applicator evaluation parameters of 10 patients test 

set 

Patient 

Number 

DSC HD95(mm) ASSD(mm) MSSD(mm) 

Patient 

Number 

DSC HD95(mm) ASSD(mm) MSSD( mm ) 

1 0.9 0.79 0.29 5.06 

2 0.91 0.74 0.36 10.03 

3 0.93 0.77 0.06 1.54 

4 0.89 1.59 0.4 10.08 

5 0.92 0.62 0.16 5.08 

6 0.93 0.57 0.13 5 

7 0.87 1.42 0.29 5.05 

8 0.91 0.74 0.2 5.05 

9 0.92 0.59 0.16 5.04 

10 0.87 2.5 0.32 3.62 

Table 4. The right applicator evaluation parameters of 10 patients test set 

Patient 

Number 

DSC HD95(mm) ASSD(mm) MSSD( mm ) 

1 0.93 0.79 0.2 5.06 

2 0.87 5.05 0.67 10.11 

3 0.89 1.09 0.28 5.06 

4 0.92 0.56 0.24 5.25 

5 0.9 0.62 0.26 5.04 

6 0.92 0.8 0.19 5 

7 0.91 1 0.17 2.5 

8 0.89 1.05 0.29 5.05 

9 0.88 5 0.57 10 

10 0.93 0.54 0.12 2.56 

Mean 0.93 0.79 0.2 5.06 

 

Dosimetric evaluation results 

As shown in Table 5, when comparing the dose metrics of 

the treatment plans reconstructed automatically by the model 

with the original plans for 10 cervical cancer patients, the p 

values (P) are all greater than 0.05. This indicates that the 

source paths automatically reconstructed by this model are 

reasonable and do not statistically significantly differ from 

the source contours manually drawn by experienced 

physicists. Detailed dose‒volume histogram (DVH) 

comparisons for one of the patients are provided in Figure 7, 

illustrating minimal differences between the dose curves for 

organs at risk and the target area. 
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Figure 7. Comparison of DVH (Dose-Volume Histogram) for a Cervical 

Cancer. 

Table 5. Comparison of Original Plans and Plans with Automatically 

Reconstructed Applicator Pathways for 10 Cervical Cancer Patients 

annotation: Post plan: plan after reconstruction of the source applicator path 

Project Paramete

rs 
Original plan Post plan t 

valu

e 

p 

valu

e 
HR-
CTV 

D90(Gy) 690.04±39.1
7 

673.53±37.7
1 

1.34
8 

0.21
1 

D100(Gy

) 
449.57±71.8

31 
433.82±52.6

54 
1.45

6 
0.18

0 
V100(%) 88.59±4.388 87.22±3.93 1.28

0 
0.23

2 
V150(%) 53.15±3.39 50.50±4.22 1.99

8 
0.07

7 
V200(%) 30.42±3.41 28.62±2.75 2.23

0 
0.05
3 

IR-

CTV 
D90(Gy) 482.95±50.9

9 
483.50±67.5

4 
-

0.08
6 

0.93

4 

D100(Gy

) 
291.92±47.8

4 
274.73±56.3

2 
1.04

6 
0.32

3 
V100(%) 63.13±8.95 60.79±9.73 1.26

3 
0.23

8 
V150(%) 33.27±5.97 32.19±6.37 0.99

3 
0.34

7 
V200(%) 19.58±3.56 18.63±4.39 1.09

4 
0.30

3 
Rectu
m 

D0.1cc 506.20±92.7
8 

499.50±102.
08 

0.32
1 

0.75
6 

D1cc 402.07±87.2

9 
404.15±104.

79 
-

0.13

9 

0.89

2 

D2cc 363.78±85.1

6 
346.30±94.3

4 
0.75

8 
0.46

8 
Bladde
r 

D0.1cc 638.90±97.7
6 

611.56±94.4
4 

3.94
1 

0.11
3 

D1cc 525.81±79.9

6 
505.03±75.9

7 
4.49

6 
0.24

1 
D2cc 487.37±78.1

3 
470.43±76.6
7 

3.66
5 

0.54
5 

Sigmoi

d colon 
D0.1cc 395.92±195.

96 
347.57±167.

72 
1.44

5 
0.18

2 
D1cc 327.84±144.

48 
268.71±124.

25 
1.46

5 
0.17

7 
D2cc 301.72±128.

44 
244.48±110.

56 
1.62

1 
0.13

9 

 

Discussion 

In recent years, with the advancement of computer 

hardware, deep learning has been gradually improved in 

various fields, and different networks have been developed 

to solve various problems [17], [18]. In 2015, Ronneberger 

et al. [19] first introduced the U-Net, which is suitable for 

image segmentation with small datasets. It is designed for 

pixel-level classification and consists of an encoding and 

decoding part, with feature fusion achieved through skip 

connections. Due to its characteristics, U-Net has been 

widely applied in the medical image segmentation field [20]. 

Therefore, in this study, the U-Net network was chosen to 

combine deep learning technology with brachytherapy, 

enabling the source applicators in treatment planning to be 

rapidly and accurately reconstructed. This reduces the 

human errors introduced by physicists during the 

reconstruction process, resulting in more precise and 

convenient brachytherapy planning and ultimately enabling 

better treatment for patients. 

Currently, limited research has been conducted on source 

applicator segmentation in brachytherapy. Zhang et al. [21] 

constructed an attention network and applied it to 

ultrasound-guided high-dose-rate prostate brachytherapy, 

successfully segmenting and locating the interstitial needles 

in ultrasound images. Zaffino et al. [15] used a three-

dimensional U-Net network to reconstruct interstitial needles 

in MRI-guided cervical cancer brachytherapy, achieving a 

DSC of approximately 0.6. In comparison to these studies, 

our proposed method achieved a greater DSC. Furthermore, 

considering the high frequency of use of the three-tube 

source applicator at our institution, we specifically 

segmented and reconstructed the three-tube source 

applicator, improving the treatment effectiveness of our 

clinical practice. 

The importance of the source applicator as a connection 

between the patient and the radiation source in 

brachytherapy is self-evident. The source applicator 

reconstruction quality plays a critical role in the entire 

treatment plan [22]. In this study, we constructed a model 

based on the U-Net framework, preprocessed CT images and 

ground truth maps and fed them into the model to allow it to 

learn the features of the source applicator. These learned 

features were subsequently applied to new cases. Through 

multiple evaluations of the model's segmentation results, we 

demonstrated the feasibility and reliability of this method, 

demonstrating that it can quickly and accurately segment the 

source applicator. 

For 3D image-based brachytherapy (BT) in patients with 

cervical cancer who underwent postoperative radiotherapy, 

the dose calculation relies on the geometric accuracy of the 

source positions relative to the target volume and organs at 

risk (OAR). Due to the steep dose gradients in BT, 

uncertainties in source applicator positioning and 

reconstruction can lead to significant dose deviations 

between the target and OAR [23], [24], [25]. It has been 

demonstrated that a ±3 mm displacement of tandem and 

ovoid applicators or ±4.5 mm uncertainties in applicator 

reconstruction can result in dose variations of more than 10% 

in MRI-based BT for cervical cancer [26]. To minimize 

reconstruction uncertainties, avoid inadvertent errors, and 

achieve high precision and consistency, an automated source 

applicator reconstruction method with high accuracy is 

essential. 

In our study, the automated source applicator 

reconstruction method based on the U-Net model achieved 

relatively high accuracy. The source applicator segmentation 

took only approximately 65 seconds, and the DSC accuracy 

reached 0.90. The selected model successfully segmented all 

source applicator contours in the 10-test set, with Dice values 

exceeding 0.9 and HD95 values less than 1 mm. The 

proposed model also achieved favorable numerical values on 
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other evaluation parameters, illustrating the high precision of 

the method used for source applicator reconstruction. 

Automating after-loading treatment plan development is 

the future research direction. The planning process includes 

organ delineation, source applicator reconstruction, dose 

calculation, dose optimization, and plan evaluation [27]. We 

developed a after-loading treatment planning system (TPS) 

plugin tool in C++ that automatically converts source 

applicator contours into real source tube pathways. It can 

also automatically delineate organs at risk and target areas. 

The various dosimetric parameters of the automatically 

generated source tube pathways did not significantly differ 

(P > 0.05) from those of the manually planned pathways in 

the planning system. This finding first suggests that the 

proposed approach can be safely applied to three-

dimensional after-loading treatment planning systems by 

dosimetric evaluation. 

One of the limitations of this work is the relatively small 

size of the dataset. This limitation arises from the limited 

number 

of cervical cancer patients who underwent CT-based 

brachytherapy at our clinic. Increasing the size of the training 

dataset did not lead to a significantly improved Dice 

coefficient. Additionally, deep learning methods tend to 

benefit from larger datasets, which often yield improved 

performance and generalization. Therefore, we plan to 

collect more suitable image data in future research, and we 

expect to thereby achieve more accurate and reliable 

segmentation results. 

To investigate the feasibility and accuracy of the proposed 

method, we began our research with relatively simple 

tandem and ovoid applicators. Therefore, this work can be 

considered an initial exploration and a simple test. 

Subsequent development and more comprehensive 

evaluation will be necessary to extend the proposed method 

to more challenging scenarios. 

 

 

II. CONCLUSION 

In this study, deep learning was utilized through the 

construction of a U-Net model and region growing to 

examine applicator reconstruction in brachytherapy 

treatment planning. The proposed model successfully 

segmented metal tube applicators, automatically recognizing 

their position and shape. The segmentation results were 

evaluated using various metrics, and the applicators were 

automatically incorporated into treatment planning software. 

The results demonstrated that the model achieved good 

segmentation performance, with favorable evaluation metric 

values. This approach is suitable for applicator 

reconstruction in clinical practice, and the resulting 3D 

brachytherapy plans can be preliminarily applied in clinical 

treatment. This research provides a new solution for 

applicator reconstruction in cervical cancer brachytherapy 

and has potential for widespread clinical adoption. 
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