IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 20 December 2024, accepted 13 January 2025, date of publication 20 January 2025, date of current version 24 January 2025.

Digital Object Identifier 10.1109/ACCESS.2025.3532353

== RESEARCH ARTICLE

Reinforcement Learning-Based Generative
Security Framework for Host Intrusion Detection

YONGSIK KIM“1, SU-YOUN HONG?2, SUNGIJIN PARK2, AND HUY KANG KIM“, (Member, IEEE)

ISchool of Cybersecurity, Korea University, Seoul 02841, Republic of Korea
2LIG Nex1, Yongin-si 16911, South Korea

Corresponding author: Huy Kang Kim (cenda@korea.ac.kr)
This work was supported in part by Korea Research Institute for Defense Technology Planning and Advancement (KRIT) Grant funded by
Korea Government (Defense Acquisition Program Administration—DAPA) (Cyberwar Training Red-Team/Blue-Team Autonomous

System, in 2021) under Grant KRIT-CT-21-042; and in part by the National Research Foundation of Korea (NRF) Grant funded by Korea
Government [Ministry of Science and ICT (MSIT)] under Grant RS-2024-00359621.

ABSTRACT Protecting users’ systems from evolving cybercrime is becoming increasingly challenging.
Attackers create more complicated attack patterns and configure attack behavior to resemble normal behavior
to evade detection by defenders. Thus, it is indispensable to configure a security system that accurately
detects attacks on each user’s system. Since the attack does not occur only at a specific point in the network,
there is a limitation in identifying computer intrusion simply using network packets. A Host-based Intrusion
Detection System (HIDS) is a highly effective tool for monitoring computer systems and detecting unusual
or unauthorized activities. HIDS can quickly identify potential security threats by closely monitoring and
analyzing system logs, configurations, file integrity, and events specific to a host machine. It helps maintain
the security and integrity of individual systems by detecting unauthorized activities or policy violations.
With its advanced capabilities and reliable performance, HIDS is essential to any comprehensive host-based
security strategy. Although HIDS can detect insider intrusions, the known HIDS detection methods are
limited to specific attacks and may be ineffective against new attack patterns. Recently, researchers applied
Natural Language Processing (NLP) in HIDS to scrutinize complex attack patterns, but they could have
more effectively provided useful outputs for detecting intrusions based on these patterns. In this paper,
we use reinforcement learning methodology, Actor-Critic, and NLP to extract keywords that occur on each
anomaly system call log and propose a rule generation framework to prevent future intrusion detection using
the extracted words. We analyze the anomaly log using NLP and extract the characteristics of each attack
log as the ‘keyword.” Based on the unique keywords of each attack log, we utilize reinforcement learning to
establish a set of rules to protect against attacks. We extracted keywords based on textrank from the system
call log sequence and simultaneously provided ground truth data using the extracted keywords. Based on
the extracted keywords, the pre-trained Seq2Seq model generate rules according to the reward calculation
method in reinforcement learning. When calculating the reward in reinforcement learning, we used the
comparison value with the pre-trained Seq2Seq model, the malware log sequence detected by the rule set
based on reinforcement learning, and the false positive value generated by the normal data to create its
own rule set. We verified the proposed framework using the system call log datasets: ADFA-LD, LID-DS
2021 dataset. The proposed framework demonstrated a high accuracy rate of 96.5% average when faced
with different attacks. We compared the accuracy based on the proposed framework detection, textrank, and
Seq2Seq model-based keyword extraction methods. As a result, the proposed framework showed relatively
high accuracy against various attack logs.

INDEX TERMS Reinforcement learning, natural language processing, host-based intrusion detection
system.

The associate editor coordinating the review of this manuscript and
approving it for publication was Claudio Zunino.

© 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
15346 For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 13, 2025

https://orcid.org/0009-0005-1558-1180
https://orcid.org/0000-0002-0760-8807

Y. Kim et al.: RL-Based Generative Security Framework for Host Intrusion Detection

IEEE Access

I. INTRODUCTION

Since overcoming the COVID-19 virus, people have had to
adapt to more online circumstances, and services are now
available in various domains [1]. However, paradoxically,
the ease of access to the online circumstances has made it
easier for attackers to access it. Attackers have increased
their attacks to steal not just existing attack targets (e.g.,
companies) but also personal assets and information. Thus,
it has become crucial for users to have a defense solution
to protect their assets from external attacks. Users identified
and reacted to intrusion attacks into their environment by
configuring an Intrusion Detection System (IDS). However,
it is difficult for individuals to build and manage an intrusion
detection solution in response to attacks from attackers that
are gradually changing and evolving. The attackers created
sophisticated and complex attack patterns to circumvent
existing detection methods [2]. Sophisticated and complex
attack patterns show that no matter how excellent IDS
performance is, it is challenging to perform perfect intrusion
prevention. Moreover, attackers invade a user’s environment
and perform Advanced Persistent Threat (APT) actions after
infiltrating to achieve their goals. It is essential to not
only adapt to ever-changing attacks but also identify and
continuously monitor internal intrusions to ensure the safety
of user assets.

The Host-based Intrusion Detection System (HIDS), which
detects attacks by utilizing file system, system call, system
log, and events, continuously monitors and detects attacks
even if they cannot detect an attacker’s intrusion [3]. HIDS
installed on the host utilizes signature-based technology to
detect known attacks or anomaly-based detection technology
to detect unknown attacks. In the case of the existent HIDS
methodology, there is a disadvantage in that not only must
the user set the rules for existing attacks manually, but
also, the rules for mutated attacks must be identified and
changed. However, there are many difficulties in modifying
and applying the rules on their own for users who are not
cybersecurity experts. Since HIDS can improve detection
performance by analyzing the contextual information of
complex attack logs, it is difficult to perform real-time
detection based on a massive amount of log information,
including attack logs.

This study proposes a Reinforcement Learning Host Intru-
sion Detection System (RL-HIDS). This generative security
framework applies Natural Language Processing (NLP) and
Reinforcement Learning (RL) to construct an automated
detection method. RL-HIDS has the advantage of creating
and applying an optimal rule set for specific attack logs so that
users do not have to manually apply defense techniques for
specific attacks. To address the limitations of current HIDS,
which require manual configuration of rule sets towards
specific attacks, RL-HIDS generates rule sets based on
specific attack logs. We used extractive summarization-based
approaches among the NLP methodologies to extract the
essential keywords from each attack log and establish a
rule set. Each new keyword is presented when an attack

VOLUME 13, 2025

changes or evolves, even if the attack type is the same.
We adapted reinforcement learning to create rules suitable
for each attack based on keywords representing each attack.
The reinforcement learning constructs the optimal rule set
corresponding to each attack by combining the extracted
keywords. Our study’s main contributions are as follows:

o We proposed a reinforcement learning-based intrusion
detection system that understands attacks that can occur
on the user’s system and creates a detection rule set for
the attacks. The proposed reinforcement learning model
incorporates keywords extracted from each attack log,
creating an optimal rule set that best detects attacks.

o« We proposed an NLP method to extract the main
keywords that distinguish each attack log. This study
converted attack log information on the host system into
a machine-readable data format. Based on the converted
data, essential keywords were extracted for each attack.

o« We applied Actor-Critic, a reinforcement learning
methodology, to accurately extract keywords for attacks
that occur. Based on the extracted keywords, the
Actor-Critic model created a rule set; based on the
generated rule set, we used the detection metrics in
the testbed for each training step to calculate the
reinforcement learning as a part of the reward.

Il. BACKGROUND

A. INTRUSION DETECTION SYSTEM

IDS means a system that detects and responds to abnormal
behavior different from user behavior [4]. IDS mainly
detects events that may cause attacks, loggings events
information, and reports the logged information to the
security operator [5]. IDS can detect specific events more
efficiently by comprising various technologies. Depending on
the applied technology, IDS is divided into Network-based
Intrusion Detection System (NIDS), HIDS, Wireless IDS, and
Network Behavioral Analysis.

B. HOST-BASED INTRUSION DETECTION SYSTEM

A Host-based Intrusion Detection System (HIDS) detects
and reports unusual events by utilizing models of system
behavior. It can effectively identify new attacks by analyzing
sequences of system events, including system calls [6].
HIDS detects unusual events in real-time, based on system
event sequences such as system calls, when unusual events,
such as new or irregular ones, are expressed differently
from known ones. NIDS, which performs detection based
on network packets, has problems with packet encryption
inspection and non-traffic sensitivity attack detection [7].
NIDS must classify attack logs against the massive network
traffic generated every time. Identifying attacks through
the current detection method is daunting, especially when
attackers generate minimal network traffic. Additionally,
detecting attacks within the network while passing through
the NIDS is highly challenging. Thus, we focused on HIDS,
which can detect attacks inside the host system.

15347

IEEE Access

Y. Kim et al.: RL-Based Generative Security Framework for Host Intrusion Detection

C. REINFORCEMENT LEARNING AND ACTOR-CRITIC
ALGORITHM

Reinforcement learning is the process of learning what action
is optimal when an agent acts in a given environment with
a specific state. In the reinforcement learning process, the
consequent value of the agent’s action is defined as reward.
The reward expected value G; is the sum of the rewards that
can be obtained in each state when an episode ends and is
defined as follows:

o
Gi=Rit1+ YR +...= Z el o (D
k=0

The discounted return value G; is calculated using the
reward value R obtainable in each state and the discount
factor y, which determines the current worth of each reward.
Also, the prediction of the return value (E) is defined as
the state-value function V(s), and the state-value function
represents the reward for a given state s at each timestep ¢
and is calculated as the sum of all rewards [8]. The state-value
function can be defined as follows:

V(s) = E[G|S; = 5] @

The action-value function Q is the expected value for an
action in a specific state within a policy 7. The Q function is
defined as follows:

Or(s,a) =Ez[G|S; = 5,A; = a] 3)

In a policy =, the action-value function Q operates based
on action a and state s. The Q function is expressed based
on G;. The state s represents the agent’s current situation
in the environment and provides the information needed to
decide the following action. The action a refers to the choices
the agent can make in a given state. These choices may be
selected from a predefined set or represented as continuous
values. Policy is a strategy for an agent deciding an action in
a specific state. The policy definition is as follows:

n(als) = P[A; = alS; = 5] “

Although it is possible to evaluate each state based
on a deterministic value function and obtain the optimal
result, there are limits to its application when there are
countless states and actions. Thus, we applied policy-based
reinforcement learning to select the optimal action in the state
based on a policy. In policy-based reinforcement learning,
the agent directly learns policy m to select the optimal
action in each state. The agent probabilistically selects
action an in state s and determines the optimal action by
optimizing the policy to maximize the expected cumulative
reward. In order to maximize the reward in policy-based
reinforcement learning, we must evaluate policy m and
optimize the policy by increasing the evaluation score of each
policy. Notably, policy gradient is a representative example of
a method for optimizing policy. Policy gradient is defined as
J(0), and 6 means a parameter for approximating the policy.
The equation 5 defines the policy gradient as J(6) using

15348

the stationary distribution d(s), which is the probability of
starting in each state.

J(0) =D d(s) * Vi, (s0))

seS

Policy gradient can be expressed as the expected value of
the aggregate of rewards, and it is the same as the expected
value of return; it can be expressed as Vr, (so), which has the
same format as the value function value in the initial state
so do. The policy gradient uses gradients taken on both sides
because of a gradient ascent that maximizes the policy value.
The policy gradient for Time 7 is defined as follows:

T-1

Vo (0) = B[Y Vologmo(arls:)Gi (6)
=0

This type of policy gradient is defined as the Monte-Carlo
policy gradient. Monte-Carlo policy gradient collects ran-
dom samples and updates policy parameters. However, the
Monte-Carlo policy gradient uses the return G; as is, so the
trajectory can change significantly during training, which
causes a high variance problem. Therefore, the Actor-Critic
algorithm has proposed, approximating the action-value
function using the new parameter w.

The actor-critic algorithm is a method that helps find
the best action in a given environment. It comprises two
networks: an Actor Network that decides on actions based
on the current state and a Critic Network that assesses
the value of each state [9]. In the Actor-Critic algorithm,
the Actor network learns the policy € and selects the
optimal action in each state. In this process, the policy is
continuously improved to maximize cumulative rewards. The
critic network provides feedback on the actions chosen by
the actor, and the actor can efficiently update the policy
based on the feedback provided by the critic network. The
Actor-Critic algorithm can learn efficiently even in complex
environments; it can use feedback from the critic network
to reduce the policy gradient’s variance and increase the
actor network’s learning speed and stability. In summary,
the critic network in the Actor-Critic algorithm updates the
action-value parameter w, and the actor network updates the
policy parameter 6 based on the critic’s feedback. The Actor-
Critic formula can be expressed as follows:

T-1

VoJ (0) = Er[z Vologme(az|s:)Qw(st, ar)] @)
t=0

The Actor-Critic method that parameterizes the Q function
value is called Q Actor-Critic. Neural network-based Q
Actor-Critic has the advantage of being able to train without
the end of an episode, but it is unstable because the value of
the error function changes significantly depending on the Q
value. Therefore, Advantage Actor-Critic (A2C) uses the
advantage value proposed. A2C determines how good the
state-value function V(s) and the corresponding action value
Ow(st, a;) are in a given state. The equation 8 shows the

VOLUME 13, 2025

Y. Kim et al.: RL-Based Generative Security Framework for Host Intrusion Detection

IEEE Access

advantage value that equals the action-value minus the state-
value function.

A(st, ar) = Qw(se, ar) — Vi(sr) ®)

v is the parameter of another state-value function. At this
time, if O(s;, a;) = E[r;41 + yV(s;4+1)] is used according
to the Bellman optimization equation, the advantage value is
calculated using the equation 9. It can be expressed as:

A(se, ar) = req1 + ¥ Volserr) — Va(sy) 9)

The policy gradient equation can be expressed as equa-
tion 10 using the advantage value defined in equation 9.

T-1

Vo (0) = B[Y Vologmo(ails)A(si, a)] (10)
=0

In this paper, we propose a security framework based on
the A2C algorithm to extract optimal keywords from each
attack log and create rules to prevent each attack based on
the keywords.

lIl. RELATED WORK

A. MACHINE LEARNING-BASED HIDS

HIDS can identify potential attacks by analyzing system
behaviors, including user behavior, known attacks, and statis-
tical attributes [10]. HIDS also provides detailed information
about attacks and verifies the system’s integrity [11]. HIDS
effectively detects individual attacks, but analyzing system
calls from multiple hosts is challenging [12]. In addition,
there is a disadvantage in that it is challenging to build a HIDS
suitable for the host environment. Therefore, various studies
proposed detecting progressively intelligent attacks in host
environments based on HIDS.

Besharati et al. proposed the HIDS model Logistic
Regression HIDS (LR-HIDS) to protect virtual machines in
a cloud environment [13]. The proposed model combines
decision tree, Linear Discriminant Analysis (LDA), and
Multi-Layer Perceptron (MLP) models through a bagging
algorithm. The author performed feature selection using
a logistic regression algorithm and verified the proposed
model using Cloudsim software and the Network Security
Laboratory-Knowledge Discovery in Database (NSL-KDD)
dataset. They classified various attacks in NSL-KDD into
four types: Probe, DoS, R2L, and U2R, and showed how fea-
ture selection was performed and how it was not performed.
The proposed model showed an accuracy of 94.96% and
97.51% when feature selection was not performed and when
it was performed, respectively. This accuracy was higher
than what was achieved by applying basic machine learning
methodology on the same dataset.

Park et al. presented Siamese convolutional neural network
(Siamese-CNN), one of the few-shot learning techniques,
to improve the disadvantage of relearning every time a new
attack occurs [14]. The author imaged each cyberattack in
64 x 64 size and classified similar types of attacks using

VOLUME 13, 2025

Siamese-CNN. The author used attack types such as Brute-
force, SQL injection, and ZIP Slip in the LID-DS dataset
to verify the proposed model. Comparing the proposed
model with Vanila-CNN, Naive Bayes, Decision tree, logistic
regression, and MLP, the Siamese-CNN showed the best
performance with an Fl-score of 90.0%. Moreover, testing
the proposed model using the NSL-KDD dataset, similar
to NID-DS, showed higher accuracy than other machine
learning-based methodologies tested similarly, with an f1-
score of 82.0%.

Wang et al. proposed a framework that uses GraphSAGE to
detect host-based threats using system entities without prior
knowledge of attack patterns [15]. The author mentioned
that it was challenging to select a rule set to detect attacks
and detect anomalies by analyzing nodes on the graph. The
author used an external tool called Camflow to create a
system provenance graph showing the attack behavior in
time order [16]. The system provenance graph expresses
the intrusion behavior that occurred on the host. The author
used the StreamSpot, Unicorn SC-1, SC-2, and DARPA TC
datasets to verify the proposed framework. The training data
was limited to attack behavior, and as a result, SteamSpot,
Unicorn SC-1, and SC-2 datasets showed good accuracy
of 99.0%, 95.0%, and 93.0%, respectively. However, the
DARPA TC dataset showed relatively lower accuracy than
previous datasets due to the high imbalance problem between
normal and abnormal nodes in the dataset. In particular, the
‘fivedirections’ scene in the DARPA dataset, which has the
most severe imbalance in the DARPA TC dataset, showed an
average result of 73.5% but better performance than known
log analysis tools such as Log2Vec.

Hwang et al. proposed an ensemble security framework
that detected attacks using a Convolutional Neural Net-
work (CNN), Long Short-Term Memory (LSTM)-based
sequence model, and Deep Neural Network (DNN) ensemble
framework [17]. The proposed framework pre-trains host-
based data: network traffic, system logs, and host statistics
into each model CNN, LSTM-based sequence model, and
DNN model, and then derives prediction results for data
sources that co-occurred. After pre-training the models, each
model’s prediction results are combined to infer benign and
malignancy. The author collected seven attacks, including
ransomware and Mirai, using the CREME testbed to verify
the proposed framework [18]. As a result of the verification,
the proposed framework reached an Fl-score of 1.0, but
the log-based detection rate was low because the assumed
malicious point was not clearly revealed in the simple
log data set.

Joraviya et al. proposed an IDS using system call log-based
images to solve the low detection rate problem that can occur
when learning by integrating redundant metadata and system
call parameters [19]. The author preprocessed the system
call log generated in a containerized cloud environment by
label encoding to use it as an input and then constructed the
selected features into images with sizes of 64 x 64 and 128 x
128, respectively. The author evaluated the proposed model’s

15349

IEEE Access

Y. Kim et al.: RL-Based Generative Security Framework for Host Intrusion Detection

performance using the LID-DS 2019. As aresult, images with
sizes of 64 x 64 and 128 x 128 showed F1-scores of 95% and
90%, respectively.

Table 1 is a summary of machine learning-based HIDS.
Existing studies mainly evaluated the accuracy and F1-score
of the proposed models based on the confusion matrix.
Furthermore, they proposed a methodology to solve the
imbalance problem of the used datasets. However, some of
the datasets used were old, which had the disadvantage of
making it difficult to evaluate whether the proposed model
could detect various attack types.

B. NLP-BASED HIDS

The previous HIDS showed excellent performance in
detecting various attacks, but the gradual complexity of
attack patterns and the resulting overwhelming amount of
system call traces caused high false alarm rates in existing
HIDS [20]. Notably, security operators have limitations in
analyzing the overwhelming amount of system call logs.
Thus, HIDS methodologies using NLP have been proposed
to analyze recent complex attack pattern problems and the
overwhelming number of system call logs. NLP-based HIDS
can detect attacks by quickly understanding the contextual
data of system call logs due to the similarity between natural
language and system call sequences. Therefore, diverse
NLP-based studies have been conducted to detect attacks in
the host environment.

Chawla et al. proposed a combined CNN and Gated
Recurrent Units (GRU) model to perform intrusion detec-
tion based on system call sequences [21]. Using a one-
dimensional CNN, the author pre-processed the system call
sequence as input to GRU. The GRU layer classified the
received input value as ‘normal’ or ‘attack’ with the softmax
layer. The author verified the proposed model through the
Australian Defence Force Academy Linux Dataset (ADFA-
LD) dataset and showed an accuracy of 81.0%. Tahir and
Qadir demonstrated a model capable of detecting advanced
malware targeting MIPS, ARM, and x86 IoT devices using
a Random Forest (RF) model [22]. First, they collected
524 malware and 524 benign samples from IoT architectures
such as x86, MIPS, and ARM. The author created a system
call log from the samples using the ELF Digest tool and
converted it for machine learning. Initially, a technique called
Bag of Words (BoW) was utilized to extract features. This
involved expressing all distinct words as feature vectors,
without considering their order in the text. The proposed
method performs data cleaning in the feature extraction
step and ranks each feature using the Gain Ratio Attribute
Evaluator. The author compared the accuracy of the processed
system call sequence using Soft Vector Machine (SVM),
Logistic Regression, RF, MLP, and Bootstrap Aggregating
method. As a result, the RF model showed the best
performance at 99.0%; the author mentioned that the
model effectively performed cross-architectural analysis and
detection.

15350

Kim et al. proposed an anomaly-based HIDS method
based on the ensemble method [23]. The proposed model
utilizes Back-Propagation Through Time (BPTT), an LSTM
based system call language model, and proposes a new
ensemble method to avoid the overfitting problem. The
new ensemble method lowered the false alarm rate by
constructing a thresholding classifier corresponding to each
model. The author verified the proposed model using the
ADFA-LD, KDD98, and UNM-Ipr datasets and showed The
area under curve (AUC) values of 92.8%, 99,4%, and 96.9%,
respectively.

LV et al. demonstrated the sequence prediction model
by applying the Sequence-to-Sequence (Seq2Seq) model to
solve the sequence dependency in intrusion prediction [24].
The author utilized the GRU model to solve the problem
of a long-term dependence on system call sequences with
long input values. The author used a question-answering
system to construct train and test sets. They set the first
part of the system call sequence as the question of the
question-answering system and the second part as the answer.
The author used the bilingual evaluation understudy (BLEU)
score to verify whether the proposed model appropriately
predicts the target sequence. As a result of verifying the
proposed model with the ADFA-LD dataset, the maximum
BLEU value was 40.4, showing better performance as the
input sequence length increases. Notably, they mentioned that
the longer the sequence, the more practical information the
prediction model can obtain and make accurate predictions.
However, as a limitation of the GRU model, the author
mentioned that performance was not good when the input
sequence exceeded a certain length.

Zhang et al. proposed a behavioral semantics enhancement
method for system call sequences to overcome evolutionary
intrusion attacks such as obfuscation techniques [25]. The
author abstracted the system call sequence and created the
extended system call sequence by differential encoding.
Furthermore, the token sequence of the extended system
call sequence was acquired through the utilization of NLP’s
word segmentation and pre-training technology. Based on
the tokens of each sequence, vectorization was performed
through ‘Syscall2Vec’, ‘SyscallType2Vec’, and ‘Syscall-
Code2Vec’. Afterward, the text-CNN model performed
anomaly classification for each vectorized sequence. They
used the ADFA-LD dataset to verify the performance of the
proposed model and recorded an accuracy of 98.73%.

Sakarkar et al. detected and compared DNS Tunneling
attacks using Simple RNN, 1-D CNN, LSTM, and GRU
models [26]. The author performed DNS Tunneling using
the dnscat2 tool and then obtained attack data using the
Wireshark tool. Since the network packet data composed
of text cannot be directly used in the model learning
process, the text is converted into numbers by tokenizing
with the NLP model. In addition, since the lengths of the
tokens are different, the lengths were fixed by padding
after tokenization. For cross-validation, the author split
the train and test dataset ratios into 60:40 and 80:20,

VOLUME 13, 2025

Y. Kim et al.: RL-Based Generative Security Framework for Host Intrusion Detection

IEEE Access

TABLE 1. Summary of machine learning-based HIDS.

[Reference | Proposed Algorithm I Dataset I Best Performance [Year |
Besharati ef al. | LR-HIDS (decision tree, LDA, and MLP through a bagging algorithm) NSL-KDD 97.51% (Accuracy) 2019
Park et al. Siamese-CNN LID-DS 2019 89.0% (Accuracy) 2021
Wang et al. GraphSAGE-based framework treamSpot, Unicorn SC-1, SC-2, and DARPA TC 99.0% (F1-Score in SteamSpot) 2022
Hwang et al. CNN, LSTM-based model, DNN ensemble Collected from the CREME testbed 100% (F1-Score) 2023
Joraviya et al. deep CNN LID-DS 2019 95% (F1-score in 64 x 64 images) | 2024
TABLE 2. Summary of NLP-based HIDS.
[Reference | Proposed Algorithm Dataset [Best Performance [Year |
Kim et al. BPTT model ADFA-LD, KDD98, UNM-Ipr 92.8%, 99,4%, and 96.9% (AUC value) | 2016
LVetal. GRU model ADFA-LD 40.4% (BLEU) 2018
Chawla et al. CNN-GRU model ADFA-LD 81.0% (Accuracy) 2019
Zhang et al. behavioral semantics enhancement method ADFA-LD 98.73% (Accuracy) 2021
Sakarkar et al. Simple RNN, 1-D CNN, LSTM, and GRU model Collected using the dnscat2 tool 98% (F1-score, Simple RNN) 2021
Tahir and Qadir RF model They collected data directly from IoT architecture 99.0% (F1-score) 2022
Zaboli et al. LLM based methods Collected GOOSE, SV packet from HIL testbed 98.3% (F1-score in SV) 2023
TABLE 3. Summary of RL-based IDS.
[Reference I Proposed Algorithm I Dataset I Best Performance [Year |
Hsu and Matsuoka DQN NSL-KDD, UNSW-NB135, and collected PANW datasets 97.95% (Accuracy in PANW) 2020
Lopez et al. DQN, DDQN, Policy Gradient, and Actor-Critic - 91.20%, 93.72% (F1-score, DDQN) | 2020
Ren et al. DT and RFE based methods CSE-CIC-IDS 2018 93.54% (F1-score with RFE) 2022
Malik and Saini DQN algorithm, distributed agents, and attention mechanism NSL-KDD and CIC-IDS 2017 98.7% (Accuracy in CIC-IDS 2017) | 2023
Liang er al. MDP Generated a payload using a policy network NSL-KDD and AWID 2023

respectively. After pre-processing the dataset, the author
compared accuracy using 1-D CNN, Simple RNN, LSTM,
and GRU models. As a result, among the proposed models,
Simple RNN showed a good Fl-score of 98% on both
datasets with different ratios, and when the train and test
dataset ratios were split at 80:20, most models showed good
performance.

Zaboli et al. constructed and compared various Large
Language Model (LLM) based IDS for IEC 61850-based
digital substation communication security [27]. The author
utilized human-in the-loop (HITL) to alleviate problems
that may arise when LLM is applied to high-risk fields.
In the proposed framework, HITL checks outputs with
low confidence during the LLM model learning process
and adjusts the output. The author used the Generic
Object Oriented Substation Event (GOOSE) and sampled
value (SV) generated by the hardware-in-the-loop (HIL)
testbed to verify whether the proposed framework performs
abnormality detection properly. The author compared three
LLM models: ChatGPT 4.0, Anthropic’s Claude 2, and
Google Bard/PaLM 2 according to the level of human
recommendation. As a result of the verification, among the
LLM models, ChatGPT 4.0 showed the best performance
with 98.18% and 98.3% for GOOSE and SV, respectively.
The more the human recommendation process was applied,
the better the performance.

Table 2 is summary of NLP-based HIDS. The proposed
NLP-based HIDSs appropriately detected attacks within the
system call sequence log. Based on the aforementioned
studies, we can confirm that the NLP model effectively
comprehends the contextual data of the system call sequence
because the NLP model processes the system call sequence
like natural language. However, system call sequence logs

VOLUME 13, 2025

have variable lengths and require a unique approach for
processing and application.

C. SYSTEM CALL SEQUENCE SUMMARIZATION

Since long system call sequences help predict attacks, they
require significant computational resources to be detected.
Additionally, it becomes a factor that reduces model perfor-
mance as the sequence length becomes too long. Therefore,
various studies proposed to summarize system call sequences
and extract keywords, which are important words.

Dijkman and Wilbik summarized the number of statements
using clustering and pruning techniques to improve the pro-
cessing speed of long event log sequences [28]. The proposed
model generates subsequences in logs of a particular length
and clusters the subsequences using a clustering algorithm
or similarity metric simulation: Markov similarity. Once the
medoid of each clustering is determined, it is used as a
quantifier and summarizer for every statement. At this time,
the author performs pruning to reduce the possible number.

Meng et al. showed a new log summarization method,
breaking away from manual or rule-based log summarization
methods [29]. The author extracted information using
template matching, regular expression, and a set consisting
of a predicate and two arguments; select the rank for the
generated sets using cosine similarity and textRank.

Locke et al. proposed LogAssist, a log analysis framework
for efficient log analysis [30]. The proposed model parses
the input logs, groups them by ID, forms a workflow, and
summarizes log events using n-grams. The author tested
with Hadoop Distributed File System (HDFS) and Zookeeper
provided by the open source dataset and mentioned that it
showed a high log compression rate. However, since the
verification method for the summarized log is subjective, it is

15351

IEEE Access

Y. Kim et al.: RL-Based Generative Security Framework for Host Intrusion Detection

difficult to verify whether the summarized log contains vital
information.

Mvula et al. compare system call trace log datasets with
word embedding methods: Word to Vector (Word2Vec)
and Global Vectors for Word Representation (GloVe) to
extract semantic relationships from system call logs [31].
The author utilized the ADFA-DS, NGIDS-DS, WWW
2019, and LID-DS 2021 datasets and classified normals
and attacks through Extremely Randomized Trees (ERT),
a binary classification algorithm. As a result, accuracy
differed depending on the number of duplicate samples
in each dataset; the LID-DS 2021 dataset achieved stable
results due to its relatively low number of duplicates.
Moreover, the author divided it into four feature sets based
on the application of consecutive calls and the expression
of the number of calls in each call trace. After conducting
the experiment, the datasets ADFA-LD, The Next Generation
Intrusion Detection System Dataset (NGIDS-DS), WWW
2019, and LID-DS 2021 showed an accuracy of 95.85%,
95.64%, 95.52%, and 99.96%, respectively, when there
were no consecutive calls. The author mentioned that
it improves the performance of Machine Learning (ML)
models when there are no consecutive calls. Based on the
above, the author mentioned that the proposed method helps
reduce the number of duplicate samples and maintain data
diversity.

D. REINFORCEMENT LEARNING-BASED IDS

Performing extractive summarization on system call
sequences using the existing NLP method showed good
performance on NLP-based HIDS. Notably, performing
an anomaly detection model based on a LLM showed
excellent performance. However, there is still a limitation in
that human interaction is required. In the case of existing
text summary methods, only short, general, and simple
summaries are output for specific sentences [32]. Also,
some existing methods do not rank sentences according to
importance and do not consider the overall summary. This
limitation arises when summarizing specific logs, which
may result in using general words, such as time. Text
summarization with reinforcement learning can create a more
suitable model because the model receives feedback from
the real environment based on reward and is immediately
modified and updated [33]. Also, it can replace humans
by fine-tuning it based on predefined rewards. Therefore,
various reinforcement learning-based methodologies were
proposed to summarize, generate, and apply them to intrusion
detection.

Liang et al. proposed GPTFuzzer, a reinforcement
learning-based WAF test framework, to solve the existing
learning-based approach’s efficiency and limited perfor-
mance problems [34]. The proposed model pre-trains the
transformer model based on the pre-defined attack grammar
and performs reinforcement learning based on the pre-
trained transformer. The agent conducts black box tests

15352

WAF by Markov Decision Process (MDP). The proposed
model generates a payload using a policy network and
calculates a reward depending on whether the payload passes
through the WAF. Then, the agent is updated based on the
reward. The authors noted that the proposed model performed
better than the existing mutation-based and search-based
approaches.

Ren et al. proposed recursive feature elimination (RFE)
feature extraction and deep reinforcement learning-based
model ID-RDRL [35]. The author performs feature selection
through decision tree (DT) and RFE and processes the data
through a mini-batch module. The processed data is input
to CNN for additional feature extraction; then anomaly
detection is performed through a Deep Q-network (DQN)
based deep reinforcement learning (DRL) model. To verify
the proposed model, the author used the CSE-CIC-IDS
2018 dataset. As a result of the verification, the F1-score
when using only simple DT was 92.23%, but when using
RFE, the result was 93.54%, claimed to have been obtained.
Moreover, they mentioned that combining the DRL model
and RFE obtained a result of 94.89 The author asserted that
the execution time was reduced, and good performance was
achieved through the RFE process in the proposed ID-RDRL
model.

Hsu and Matsuoka proposed a DQN-based anomaly
network intrusion detection system [36]. The proposed RL
agent is set up as an intrusion detection engine, and whether
it was detected correctly is set as the reward value. The
proposed RL model consists of a learning mode and a
detection mode. The same model with the reward function
paralyzed was used for the detection mode. To operate the
proposed DQN model, the author converted features such
as IP address based on one-hot encoding. The author used
NSL-KDD and UNSW-NBI15 and directly collected Palo
Alto Networks (PANW) datasets to verify the proposed
model. As a result, the proposed model showed accuracies of
91.4%,91.8%, and 97.95% on the NSL-KDD, UNSW-NB15,
and PANW datasets, respectively.

Malik and Saini proposed a network intrusion detection
system using the DQN algorithm, distributed agents, and
attention mechanism [37]. The author configures a reliable
router as an agent and predicts Q-value from packet
feature vectors. They implemented a packet class-based
reward system that appropriately predicts harmful packets in
imbalanced datasets with intrusion and non-intrusion. The
author compared it with other models using the NSL-KDD
and CIC-IDS 2017 datasets to verify the proposed model.
As a result, the accuracy of the proposed model applying the
attention mechanism was 97.4%, an increase of about 16%
compared to the simple DQN model based on the NSL-KDD
dataset. Also, the CIC-IDS 2017 dataset, which has a data
imbalancing problem, showed an accuracy of 98.7%, proving
that the attention mechanism and applied reward system are
adequate. We referred to the paper and applied an attention
mechanism to analyze the attack log occurring on the host
effectively.

VOLUME 13, 2025

Y. Kim et al.: RL-Based Generative Security Framework for Host Intrusion Detection

IEEE Access

Lopez-Martin et al. implemented and compared various
deep reinforcement learning methodologies on a network
dataset [38]. The author implemented and compared various
deep reinforcement learning models: DQN, Double Deep Q-
Network (DDQN), Policy Gradient, and Actor-Critic using
labeled network datasets: NSL-KDD and AWID datasets.
As a result, among various deep reinforcement learning
models, the DDQN model showed the highest F1-score
of 91.20% and 93.72% in the two datasets, respectively.
Notably, the AC model showed more robust accuracy than
other models regardless of changes in the discount factor.
Referring to the paper, we confirmed that reinforcement
learning can perform similarly or superior to artificial
intelligence using a general neural network on datasets with
correct answers.

Table 3 is summary of RL-based IDS. As proposed in
various studies, RL-based IDS trained on itself based on
applied data and showed similar or better accuracy than
existing neural network-based models. In particular, RL-
based IDS performed well even when applied to various
datasets by adapting to input values. Based on the above
study, we will propose a HIDS framework that configures an
optimal rule set to detect existing attacks by utilizing system
log sequences occurring in the host environment.

IV. METHODOLOGY
A. RL BASED HIDS FRAMEWORK
This paper uses the RL-based HIDS framework to create
an optimal rule set corresponding to each attack. The
proposed framework focuses on the extractive summarization
method. The extractive summarization method demands that
significant sentences or phrases from the original text are
chosen to create a summary. In a study of the previous log
sequence, the meaning of essential words in the log sequence
was lost due to data cleaning [39]. Consequently, essential
keywords that could be derived from a specific attack log
sequence may be forfeited, leading to a significant setback.
When error codes that cannot be analyzed are treated as
abnormal or replaced with words humans can recognize,
there is a limitation in that worthy unique words can be
deleted [40]. The extractive summarization methodology
can sufficiently extract the main keywords from security
sentences [41]. Based on the extractive summarization
methodology, we supplemented the method of extracting
keywords from each attack sentence in an existing rule-based
format. We extracted the keyword of each attack log sequence
and constructed a rule set based on the extracted keyword
to check how efficiently it detects the attack that occurs.
Also, we utilized the log tokenizer proposed to learn from
every word extracted from the attack log. This method has the
advantage of learning partially different attack techniques for
each log sequence.

The Seq2Seq-based model performed well in summarizing
text or extracting keywords from documents composed
of various sentences [42]. However, when applying a

VOLUME 13, 2025

Seq2Seqg-based model to attack sequences, insignificant
words were designated as keywords, such as pid and
timestamp. To improve for these limitations, we used an
Actor-Critic methodology to apply Seq2Seq-based extractive
summarization methodology to security sentences. When a
simple Seq2Seq model is applied to security sentences, the
model shows a high bias toward data of low importance.
Therefore, we used the Actor-Critic algorithm to extract
important keywords in each attack. Also, Actor-Critic showed
excellent performance even in security log datasets where
normal and attack data are unbalanced [43]. We adopted a
ground-truth answer to the critic network on which parts to
‘focus’ in each attack log sequence. Providing a ground-truth
answer as an input in the Actor-Critic allows the agent to
perform the desired action, thereby obtaining a high return.
However, if we extract specific keywords from each security
log sentence using the general Q Actor-Critic algorithm,
the importance of keywords in the security sentence can be
ambiguous at each step [44]. The Q function-based Actor-
Critic is unable to accurately determine the value of the
chosen action by the agent. This inability makes it difficult
to apply the same framework to classify similarly structured
security attack sentences. Therefore, we used A2C using
advantage value to set the weight when the agent searches
for keywords in each security log sentence.

Figure 1 shows an overview of the RL-based HIDS
Framework. Following the figure 1, the HIDS framework
has two main parts. First, there is the pre-training process to
train an LSTM-based Seq2Seq model using the raw attack
log. Second, there is the rule generation process to train
reinforcement learning based on the pre-trained Seq2Seq
model to create rules.

The pre-train Seq2Seq model process trains a Seq2Seq
model based on generated keywords and label-encoded
attack sequences. The pre-train process consists of a log
tokenization process to refine specific attack logs as input
values for learning and a pre-train Seq2Seq model process
to train a Seq2Seq model based on the generated input
values. The pre-train Seq2Seq model is behavior cloning of
the Actor to perform the A2C algorithm based on Seq2Seq,
which performs keyword extraction in the A2C algorithm.
Behavior cloning is an imitation learning algorithm that
learns the behavior to be applied based on supervised learning
to improve the policy. We configured the optimal policy
based on fewer samples by pre-setting the direction of the
actor to apply the proposed framework to various attack log
sequences.

In the log tokenization process, a label encoding method
converts a specific attack log into an input value. Label
encoding is a technique that converts words in a sentence into
unique integer values, and is one of the effective methods
of embedding without changing the dimension of security
log data [45]. In order to carry out label encoding, it is
necessary to allocate a unique integer value to every word.
We constructed a word set using a specific attack log set to
label encoding the system call sequences. The words in the

15353

IEEE Access

Y. Kim et al.: RL-Based Generative Security Framework for Host Intrusion Detection

Pre-train process

Raw atiack log

A4

1 WL 1 1T 1111

Extracted keywords Numeric array

Update unique word set

A

—F

Train the seq2seq model

Raw attack logs

using textrank

Create
numeric array

Encoder Decoder Decoder

Save in dataset

I

CSV dataset

Seq2seq model

1
1
1
1
1
1
1
1
1
1.
|
|
[
1
: Extract keywords
1
1
1
1
1
[
|
[
|
|
|
|
[
1
1

Rule generation process
CSV dataset
St+1 - ‘
Environment
ne
Actor e Training <
T a
aks network . t Dataset
St
e e
St a Tti1
a;
Testbed >
Reward
Calculation
Critic s
network as

FIGURE 1. The overall structure of the RL-based HIDS framework.

word set were assigned unique integer values in the system
call sequence based on their index numbers. To extract the
words from the system call sequence, we must tokenize the
sequence using spaces and then extract the following words.
RL-HIDS performs pre-training based on attack logs in a
specific host environment, either from previously occurring
attacks or published attack datasets. We collected the unique
words extracted from each system call sequence into one
word set, and if a new unique word exists, the word set is
updated.

To properly train Seq2Seq, it’s necessary to provide
both the input value and the correct answer. Therefore,
we extracted the keywords of each log sequence based on

15354

the textrank algorithm. The textrank algorithm is a tool that
uses the PageRank algorithm to analyze natural language.
It determines the significance of words in a sentence [46].
Figure 2 is an example of performing textrank to extract
keywords from the attack sequence. We vectorized numerous
attack log sequences used as input values using word2vec.
Word2vec is an artificial neural network-based model that can
obtain vector representations of numerous words with a low
computational effort [47]. However, there is a limitation in
that keywords that appear less frequently in the context can be
omitted when simply using the textrank. In this study, we used
word2vec to utilize semantic similarity between words [48].
Based on the Continuous Bag of Words (CBOW) learning

VOLUME 13, 2025

Y. Kim et al.: RL-Based Generative Security Framework for Host Intrusion Detection

IEEE Access

Algorithm 1 Pre-Train the Seq2Seq Model

Input: Input sequences X and ground-truth output sequences Y.

Output: Pre-trained Seq2Seq model
: procedure Training Steps(X, Y)
for Input sequences (X, Y) do
Get N from X

end for

: end procedure

: procedure Testing Steps(X, Y)

for Input sequences (X, Y) do
Get N from X

end for
: end procedure

PP

Conduct encoding in Seq2Seq model on N and get the last state of encoder 4;
Conduct decoding in Seq2Seq model with A, and obtain the output sequence Y
Calculate the loss according to cross-entropy and update the parameters of model

Generates output Y for input value N based on the trained model
Evaluate the model with keywords from textrank and ground-truth answer

Yner x W
Vxar =
fC‘n[l

fentl

felelefole]-1°]

cmd

xcmd W
C

lel=defel-]-1°]

FIGURE 2. The example of textrank using system call logs.

method, we constructed word2vec so that textrank can find
important words from surrounding words in each attack log.

The formula 11 expressed the graph-based ranking model,
textrank.

SVy=(—d+dx > ——
Vo=U=dtdx 2, 5w
jen(Vi)

S(V)) Y
Based on the cosine similarity algorithm, the textrank pro-
posed a similarity measure between sentences. The formula
beta represents the similarity measure between sentences in

textrank.
[{wilwi € S1&wi € S2}]

] s = 12
SISt $2) = TS+ doglSa) (12)

VOLUME 13, 2025

fd

!
w VXM

In summary, the formula shows dividing the number of
common words wi between two sentences S by the log
sum of the number of words in each sentence. Based on
the vectorized attack sequences, we construct a sentence
similarity matrix using a cosine similarity algorithm on
textrank. Afterward, we extracted keywords for each attack
sequence based on the similarity matrix. The extracted key-
word is stored in the dataset as a pair with the label-encoded
attack sequence. Textrank performs well when extracting
keywords based on the similarity between each sentence,
but in the case of security sentences that do not consist of
complete sentences, the importance is low, but the essential
words that make up the log sentence can be designated as
keywords. Therefore, using the keyword extraction value

15355

IEEE Access

Y. Kim et al.: RL-Based Generative Security Framework for Host Intrusion Detection

mysqld 28991 setsockopt < res=0 fd=31(<4t>192.168.112.2:37204->192.168.112.3:3306)

A 4

Data cleaning

mysqld 28991 setsockopt < res=0 fd=31 4t 192.168.112.2:37204 192.168.112.3:3306

Textrank

setsockopt 28235 999
I Setting ground-truth data
mysqld 4t 192.168.112.2:37204 fd=31 setsockopt

FIGURE 3. Example of applying textrank and ground-truth data to attack logs.

Algorithm 2 The Custom Cross-Entropy Loss Function

Input: The prediction distribution y_pred and actual answer y_true

Output: Adjusted loss
0: procedure Custom cross-entropy loss function steps

Calculate base loss using cross-entropy using y_pred and y_true
Get rewards computed during reinforcement learning and normalize rewards to [0-1].

Weight of the reward o = 0.5

Calculate the Adjust loss = base_loss * (1 - o * normalized_rewards)

Return the adjusted loss
0: end procedure

obtained simply by using textrank as an answer for training is
challenging. To solve this problem, we provided ground-truth
data that answers the extracted keywords when pre-training
the model. We provide answers for un-important keywords
to extract more important keywords from each attack log
sentence based on the ground-truth data.

Figure 3 shows the procedure for applying ground-truth
data based on the keywords that extracted the attack log
using textrank. First, we extract keywords in specific attack
logs based on textrank. We performed data cleaning locally
only for specific characters, such as parentheses, to ensure
that meaningful words were not damaged during the data
cleaning process. Since there may be high-importance words
among the keywords that were not extracted later that reflect
the characteristics of the attack log, we found and added
keywords that reflected the characteristics of the attack log
but were not extracted after keyword extraction.

The algorithm 1 represents the process of pre-training
the Seq2Seq model. First, the Seq2Seq model encoding
converted attack log data as input based on the log

15356

tokenization process. In this process, the final state 4; is
obtained, and the decoding process of the Seq2Seq model
is performed based on A;. The loss value is calculated
based on Y obtained during the decoding process and Y,
the ground-truth value. We used cross-entropy as a loss
function to ensure that the keyword predicted by the Seq2Seq
model will most likely be the keyword obtained or set in
each attack log [49]. The cross-entropy loss function is
generally used to minimize the output word sequence and
the correct word sequence generated by the model. We used
the cross-entropy loss function to make the Seq2Seq model
minimize the difference in probability distribution between
the actual correct answer and the predicted value and predict
more accurate and significant keywords in attack logs. The
trained model outputs a keyword set Y for the input value N
in the test step and compares Y with the expected keyword
set to evaluate the model’s performance.

In the rule generation process, reinforcement learning is
performed based on the configured dataset and the pre-
trained Seq2Seq model. Before performing reinforcement

VOLUME 13, 2025

Y. Kim et al.: RL-Based Generative Security Framework for Host Intrusion Detection

IEEE Access

learning, the pre-trained Seq2Seq model provides initial
model parameters to the reinforcement learning agent. Based
on the constructed dataset, the pre-trained Seq2Seq model
generate keywords.

The process utilizes cross-entropy to determine whether
reinforcement learning keywords’ output deviates from the
pre-trained Seq2Seq model. This was applied to avoid deviat-
ing too much from the pre-trained model when reinforcement
learning outputs keywords. We integrated the reward from
reinforcement learning into the cross-entropy used during
pre-training. We modified the approach to ensure the model
predicts the correct answer and maximizes the reward.
Algorithm 2 is expressing the custom cross-entropy loss
function. We applied reward values to existing cross-entropy
loss values and evaluated the effectiveness of the keywords
predicted by the model in attack logs. We were concerned
that the reward values would be too large or unbalanced,
so we normalized them to a value between 0 and 1. Based
on reward value, we optimized the Seq2Seq model to acquire
higher rewards in the environment while adjusting keyword
prediction to produce more effective results in attack log
detection. We set the reward weight value to 0.5 to reflect
the cross-entropy loss and compensation information equally.
A detection rule is established using the keyword output from
reinforcement learning to improve accuracy. The detection
rule is then tested in the testbed to measure its effectiveness
in identifying attack logs. We created a firewall rule based on
a logical expression to see if each log sequence included the
keyword and checked whether it was detected appropriately
to check whether each attack log was detected based on the
output keywords. Rules simply applied based on the AND
or OR operator are inaccurate in attack logs because they
are similar to normal logs. So, we configured the rule to be
created using keywords in the testbed using a combination
of AND and OR operators. In this study, a rule combining
AND and OR operators was applied, resulting in the most
optimal accuracy and its combination. The testbed consists of
new attack sequences of the same type and provides rewards
based on the attack detection rate. This paper calculates the
reward value based on the detection results and the pre-trained
Seq2Seq model. Finally, the rule generation process provides
an optimal rule set for a specific attack sequence.

B. LSTM BASED SEQ2SEQ MODEL

This study’s reinforcement learning outputs predicted key-
words to generate an appropriate rule set for a specific attack.
Extracting keywords using simple reinforcement learning can
be time-consuming when optimizing the model. Moreover,
it’s important to verify that the trained model comprehends
the entire sentence and accurately extracts words. Therefore,
we utilized a sequence model to comprehensively learn and
analyze each sentence. Among sequential models, Recurrent
Neural Network (RNN) has the disadvantage that the length
of input and output values must be the same, is effective
only for relatively short sequences, and has a loss of

VOLUME 13, 2025

meaning due to long-term dependency problems. Therefore,
we constructed the Seq2Seq model using the LSTM.

Fig 4 shows the LSTM-based Seq2Seq model applied in
this study. The Seq2Seq model is a model that outputs a
target sequence for a source sequence [50]. The Seq2Seq
model consists of an encoder and a decoder. The Seq2Seq
encoder expresses sequence data as one fixed context vector,
and the Seq2Seq decoder outputs a new sentence based on the
expressed context vector.

h, = sigm(W™x, + W, 1) (13)

Following the equation 13, the Seq2Seq model calculates the
hidden states according to sequence x.

yi = Wh, (14)

As shown in equation 14, the decoder predicts the output
sequence y based on the hidden state.

T/
P(yh ~--,YT/|x1, "'a-xT) = Hp(ylh)’ylv ~~-,Yt71) (15)

t=1

The Seq2Seq model uses Equation 15 to predict an output
sequence by applying the same formula used for the input
sequence. In this equation, v is the context vector. Since
the Seq2Seq model constitutes a sentence as a unit, there
is an advantage in that the number of tokens in the input
sentence and the number of tokens in the output sentence may
be different. If a log sequence has extended sentence infor-
mation, the encoder of the Seq2Seq model may experience
information loss during compression; a bottleneck problem
may occur in which only part of the decoder’s sentence is
used for prediction. Therefore, we applied bahdanau attention
to focus on keywords in the log sequence for attacks. The
bahdanau attention helps to detect the attack log better than
the simple Seq2Seq model by focusing on a specific part of
the sentence [51]. Bahdanau attention is implemented based
on a parameter called ‘attention weight.” The model utilizes
attention weights to assess the significance of inputs, which
are then leveraged for making predictions. Attention weights
are calculated through the following equation:

First, using the current hidden state of the model compute
the attention weights #,, and the input X. To calculate the
attention weights, a dot product is performed between /4, and
every element in X. Afterward, a softmax function is applied.

a, = softmax(h! X) (16)

To calculate the attention context vector, we use the input and
the attention weights to find a weighted sum, which gives us
the value of ¢;.

= anx; (17)

To calculate the final hidden state of the model, we use the
previous hidden state (#;—1), the attention context vector (c;),

15357

IEEE Access

Y. Kim et al.: RL-Based Generative Security Framework for Host Intrusion Detection

softmax

Decoder

softmax

softmax

Decoder
LSTM

Decoder

context context
vector vector

FIGURE 4. The structure of LSTM-based Seq2Seq model.

Algorithm 3 Reinforcement Learning

Input: Input sequences X and ground-truth output sequences Y and pre-trained Seq2Seq model (7rg)

Output: Trained Actor-Critic model
0: procedure Training Steps

Initialize the pre-trained Seq2Seq model Vy, (s) as actor network
Initialize the pre-trained Seq2Seq model Oy, (s, a) as critic network

for Input sequences (X, Y) do
Get specific attack log N from X
for each time t € T do
Select action a; according to state s;

Calculate detection rate d; using the testbed

Update the model using 6 < 0 + aVyJ(0)
Update the state s; = s741
end for
end for
end procedure

Execute action a4, and receive reward r; and next state ;4|
Calculate the normalized rewards: r_normalized = (r; - min(r;)) / (max(r;) - min(r;) + €)
Calculate A(s;, a;) using the critic network following the equation 9

Get the base loss value base_loss = cross_entropy(Y , wp(X))
Calculate the loss value using custom loss function custom_loss = base_loss * (1 — « * r_normalized)
Calculate policy gradient in actor using advantage function following the equation 20

TABLE 4. Description of ADFA-LD dataset.

[Attacktype | Number of system call sequences | Description |
Adduser 91 Attackers tried to add new super user
Java-meterpreter 124 Java based Meterpreter
Hydra-FTP 162 Password brute force
Hydra-SSH 176 Password brute force
Meterpreter 75 Linux meterpreter payload
Web-shell 118 PHP file based webshell

and the current input (x;). This results in the computation of
h;. The LSTM expresses the hidden state as an equation.

h;, = LSTM(h—1. ¢t x;) (18)

C. REINFORCEMENT LEARNING
We used reinforcement learning to extract keywords for
specific attacks and develop an optimal set of rules. The

15358

process is based on A2C, configuring the optimal policy
based on critic feedback. The actor and critic networks
in A2C are composed of pre-trained Seq2Seq models.
In the case of an actor network, the probability 6 for the
action is calculated based on the pre-trained Seq2Seq for
extracting a specific keyword is obtained. The critic network
obtains value in state s;, s;+1 based on the pre-trained
Seq2Seq.

VOLUME 13, 2025

Y. Kim et al.: RL-Based Generative Security Framework for Host Intrusion Detection

IEEE Access

TABLE 5. Description of LID-DS 2021 dataset.

[Adacktype [Number of system call sequences | Description |
CVE-2012-2122 20.7 (million) Attackers repeatedly try to bypass authentication with the same incorrect password
CVE-2014-0160 1.9 (million) Attackers obtained sensitive information from process memory

CVE-2017-7529 1.3 (million)

Vulnerable integer overflow vulnerability

CVE-2018-3760 115.1 (million)

Information leak vulnerability in Sprockets

CVE-2019-5418 400.9 (million)

File content disclosure vulnerability in action view

CVE-2020-9484 223.6 (million)

Remote code execution in apache tomcat

Bruteforce 9.5 (million) Excessive authentication attempts
PHP_CWE-434 97.5 (million) Upload file with malicious type
SQL injection 96.2 (million) Improper SQL command

TABLE 6. Overall detection results on each log datasets.

[Dataset [Accuracy [Precision | Recall | Fl-score |
ADFA-LD 0.971 0.959 0.968 0.964
LID-DS 2021 0.958 0.999 0.939 0.965

TABLE 7. Anomaly detection results on LID-DS log datasets.

[Attacktype | Accuracy [Precision | Recall | Fl-score |
CVE-2012-2122 0.999 0.999 0.998 0.999
CVE-2014-0160 0.840 1.000 0.760 0.864
CVE-2017-7529 0.990 1.000 0.989 0.994
CVE-2018-3760 0.992 1.000 0.986 0.993
CVE-2019-5418 0.978 1.000 0.966 0.983
CVE-2020-9484 0.832 1.000 0.750 0.857

Bruteforce 1.000 1.000 1.000 1.000
PHP_CWE-434 0.999 0.999 0.999 0.999
SQL injection 0.999 1.000 0.999 0.999

TABLE 8. Anomaly detection results on ADFA-LD log datasets.

[Attacktype [Accuracy | Precision | Recall | Fl-score |
Adduser 0.959 0.917 0.926 0.921
Java-meterpreter 0.973 0.947 0.973 0.960
Hydra-FTP 0.995 0.995 0.989 0.994
Hydra-SSH 0.967 0.957 0.962 0.959
Meterpreter 0.976 0.978 0.980 0.979
‘Web-shell 0.960 0.959 0.980 0.969

Algorithm 3 represents the process by which reinforcement
learning creates a rule set. First, the actor and critic networks
are initialized based on the pre-trained Seq2Seq model. Then,
action a, is performed at each time step ¢ based on the attack
log N that constitutes the input set get We use reinforcement
learning to learn each keyword based on the reward and create
a rule set based on the keyword. The reward is compared
to the previously trained Seq2Seq model, ry, and the rule
set generated based on reinforcement learning is The reward
was calculated based on the detected malware log sequence
ro and the false positive value r3 generated by the rule set.
The equation 19 represents the reward calculation method in
A2C.

R=((03%r)+05%r)—02%r)+Rxy (19)

Each reward value was normalized to prevent one reward
from having too significant an impact. Additionally, we fol-
lowed the previously learned Seq2Seq guide but adjusted it to
avoid too much impact. This study calculated ratios of 30%,

VOLUME 13, 2025

50%, and 20%, respectively. Finally, a discount factor was
applied to the existing reward to weight the recent reward
further. In the critic network, calculate the advantage value
based on equation 9. The critic network is performed based
on the keywords and expected keyword values output through
the pre-trained Seq2Seq model. We configured the output
keyword based on the actor network into a detection rule
and calculated the detection rate d; of each attack payload in
the testbed. Then, we calculate the policy gradient based on
the calculated A(s;, a;) and d;. In order to use the detection
rate of how many attacks were caught using extracted
keywords when calculating policy gradient, we modified the
equation 10 and composed it as follows. The equation 20 is a
policy gradient calculation formula that applies the detection
rate.

T-1

VoJ (0) = E; [Z Vologmg(a;|si)diA(sy, ar)) (20)
=0

d; indicates whether the output keyword helps detect an
attack when calculating the policy gradient at each step. It is
composed of a value between 0 and 1. Finally, the model is
updated to create an optimal rule set from each attack log, and
the state is updated.

V. EXPERIMENTS

We verified that the proposed HIDS framework precisely
extracts keywords for attacks and creates an optimal rule set
based on the keywords. Based on the ADFA-LD, and LID-
DS 2021 datasets with various attack logs, we demonstrated
that the proposed framework creates an optimal rule set for
each attack and effectively detects the attack. In addition,
we confirmed that the rule set actually created from various
attack datasets detects the same type of attack.

A. DATASET

We utilized various datasets (ADFA-LD, LID-DS 2021) to
check whether the proposed framework creates an optimal
rule set for each attack.

1) ADFA-LD
ADFA-LD is a dataset composed of system call traces
through various scenarios on Ubuntu [52]. ADFA-LD dataset

15359

IEEE Access

Y. Kim et al.: RL-Based Generative Security Framework for Host Intrusion Detection

TABLE 9. Examples of rule set derived from CVE 2017-7529, LID-DS 2021 dataset.

\ Example of log sentence

[Example of generated rule set \

fd=20(<4t>172.24.0.5:38748->172.24.0.6:80)
res=342 data=Server: nginx/1.6.3...

sendfile > out_fd=20(<4t>172.24.0.5:38748->172.24.0.6:80)
in_fd=21(<f>/etc/nginx/html/index.html) offset=-623 size=21703

write < res=204 data= [alert] 110: *94 sendfile() failed

{172.17.0.5 A172.17.0.6} \/ {sendjile}

used an auditing utility called Auditd to generate system call
traces from specific processes.

Table 4 shows the information on the ADFA-LD dataset.
ADFA-LD dataset includes system call traces of different
types of attacks. Some of the attacks composed of the dataset
derived from new zero-day malware.

2) LID-DS 2021

The LID-DS 2021 dataset for host-based intrusion detection
systems consists of recently performed cyber attack methods
and scenarios [53]. The LID-DS 2021 dataset consists of
system call sequences generated on the host, and is labeled
as normal logs and malicious logs.

Table 5 shows the information on the LID-DS 2021 dataset.
The LID-DS 2021 dataset comprises 15 scenarios, 11 simple
attacks, and four complex attacks. This study performs
rule generation for specific attacks, so complex attacks are
excluded. We excluded overlapping CWE-434 attacks and
directory traversial attacks in dataset. Each dataset represents
a specific attack, and normal logs and malicious logs are
separated inside the dataset. To make the dataset smaller
and improve keyword extraction, we removed redundant log
sequences and eliminated unnecessary information such as
event time, event number, and CPU values. Since the LID-DS
dataset is less imbalanced than the existing one, we adjusted
the training: test ratio to 8:2 using an internal log sequence.

B. EVALUATION METRICS AND RESULTS

The Recall-Oriented Understudy for Gisting Evalua-
tion (ROUGE) method was used for summarization
research using existing reinforcement learning [54]. The
ROUGE method uses the n-gram technique to compare
human-generated summaries with model-generated sum-
maries and display them as numerical values. Identifying an
attack through a rule set can prove to be a daunting task for an
individual. Moreover, expressing it numerically can be highly
subjective. Therefore, we verified the detection results based
on the framework’s rule set and evaluated the framework’s
performance using precision, recall, and Fl-score. At this
time, True Positive (TP) means that the rule set detects an
attack, and True Negative (TN) does not detect a normal log.
False Positive (FP) means that the rule set detects normal logs
as attack logs, and False Negative (FN) means that it does not
detect attack logs. Metrics is expressed as follows.

Accuracy = P+ 1N 21)
YT TPYIN fFP1 EN

15360

TP

Precision = —— (22)
TP + FP
TP
Recall = —— (23)
TP + FN
Precision x Recall
F1-Score =2 x (24)

Precision + Recall

Table 6 demonstrates the accuracy for each dataset.
Our proposed framework showed sufficient performance
in various attack logs. In particular, it showed excellent
performance in the ADFA-LD dataset, which has a repetitive
structure.

Table 7 shows the detection result table when it is
performed based on each attack in the LID-DS dataset. The
proposed framework achieved an excellent accuracy of over
99% in brute force, SQL injection, password bypass attack,
and integer overflow. However, it showed relatively low
accuracy in memory leak or remote code execution attacks,
with an average of 83%. Notably, the proposed framework
showed confusion when the constructed log sequence was
similar to the normal or completely different. In summary, the
proposed framework showed an average detection accuracy
0f 95.8% in LID-DS 2021. As aresult, it was shown that most
attack logs can be detected based on the rule set generated by
the proposed framework.

Table 8 represents the detection result table for each attack
on the ADFA-LD dataset. The proposed framework showed
acceptable results when discovering repetitive word sets
within the log sequence. However, in the case of the ADFA-
LD dataset, repetitive word sets occurring in some attack log
sequences were similar to normal log sequences, affecting
accuracy.

VI. CONCLUSION AND FUTURE WORK

This paper utilizes reinforcement learning to develop an
optimal set of rules tailored to a specific attack. We used
a pre-trained LSTM based Seq2Seq model to initialize
reinforcement learning efficiently and performed loss calcu-
lation using cross-entropy and testbed so that reinforcement
learning does not deviate.

Notably, the rule set generated by the proposed framework
based on each attack included important keywords such as
the victim or IP address that each attack specifies. Table 9
shows a specific attack log and a rule set created based on
the attack log. The example shows that a rule set was created
based on the attacker’s IP address and the victim’s IP address.
The experiment shows that the proposed framework extracts
key keywords from attack logs and specifies attack targets.

VOLUME 13, 2025

Y. Kim et al.: RL-Based Generative Security Framework for Host Intrusion Detection

IEEE Access

For this reason, it was confirmed that new attacks performed
by specific attackers or new attacks derived from existing
attacks can also be detected. However, despite applying a
ground-truth answer, when the attacker’s attack fails and
cannot be distinguished from normal logs, the accuracy
is lowered, so there is a limitation that it is difficult to
distinguish some using only the combination of AND and
OR operators. Furthermore, the proposed framework showed
good performance, but there are some limitations. First,
a large amount of computation is required to process and
train based on the tremendous amount of system call log
sequences. In addition, considerable time is required to output
a rule set based on the proposed framework. The proposed
framework outputs an optimal rule set for a specific attack,
but an update is required if a new keyword occurs despite
the same attack type. Moreover, there is a problem with
the dataset gradually becoming biased depending on the
number of reinforcement learning updates. This study applied
reinforcement learning to each dataset and created a rule set
for each dataset. On the contrary, there was a problem: the
provided dataset became biased as the amount of learning
performed based on fixed learning data increased. In future
work, we will apply a lightweight and real-time update
method to the proposed framework.

REFERENCES

[1] H. Saleous, M. Ismail, S. H. AlDaajeh, N. Madathil, S. Alrabaee,
K.-K.-R. Choo, and N. Al-Qirim, “COVID-19 pandemic and the
cyberthreat landscape: Research challenges and opportunities,” Digit.
Commun. Netw., vol. 9, no. 1, pp. 211-222, Feb. 2023.

[2] W. Tounsi and H. Rais, “A survey on technical threat intelligence in the
age of sophisticated cyber attacks,” Comput. Secur., vol. 72, pp. 212-233,
Jan. 2018.

[3] L. Vokorokos and A. Baldz, “‘Host-based intrusion detection system,” in
Proc. IEEE 14th Int. Conf. Intell. Eng. Syst., May 2010, pp. 43—47.

[4] K. A. Jackson, Intrusion Detection System (IDS) Product Survey. Los
Alamos, NM, USA: Los Alamos National Laboratory, 1999.

[5] M. Ozkan-Okay, R. Samet, 0. Aslan, and D. Gupta, “A comprehensive
systematic literature review on intrusion detection systems,” IEEE Access,
vol. 9, pp. 157727-157760, 2021.

[6] J.H. Ring, C. M. Van Oort, S. Durst, V. White, J. P. Near, and C. Skalka,
“Methods for host-based intrusion detection with deep learning,” Digit.
Threats, Res. Pract., vol. 2, no. 4, pp. 1-29, Dec. 2021.

[71 J.Hu, “Host-based anomaly intrusion detection,” Handbook Inf. Commun.
Secur., vol. 2, pp. 235-255, Jan. 2010.

[8] J. Yu, W. Guo, Q. Qin, G. Wang, T. Wang, and X. Xing, “$AIRSS:
Explanation for deep reinforcement learning based security applications,”
in Proc. 32nd USENIX Secur. Symp., 2023, pp. 7375-7392.

[91 A. G. Barto, R. S. Sutton, and C. W. Anderson, ‘“Neuronlike adaptive
elements that can solve difficult learning control problems,” IEEE Trans.
Syst. Man, Cybern., vols. SMC-13, no. 5, pp. 834-846, Sep. 1983.

[10] A. Pal Singh and M. Deep Singh, “Analysis of host-based and network-
based intrusion detection system,” Int. J. Comput. Netw. Inf. Secur., vol. 6,
no. 8, pp. 41-47, Jul. 2014.

[11] M. R. Ayyagari, N. Kesswani, M. Kumar, and K. Kumar, “Intrusion
detection techniques in network environment: A systematic review,”
Wireless Netw., vol. 27, no. 2, pp. 1269-1285, Feb. 2021.

[12] M. Liu, Z. Xue, X. Xu, C. Zhong, and J. Chen, “Host-based intrusion
detection system with system calls: Review and future trends,” ACM
Comput. Surveys, vol. 51, no. 5, pp. 1-36, Sep. 2019.

[13] E. Besharati, M. Naderan, and E. Namjoo, “LR-HIDS: Logistic regression
host-based intrusion detection system for cloud environments,” J. Ambient
Intell. Humanized Comput., vol. 10, no. 9, pp. 3669-3692, Sep. 2019.

VOLUME 13, 2025

(14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

(22]

(23]

(24]

(25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

D. Park, S. Kim, H. Kwon, D. Shin, and D. Shin, “Host-based
intrusion detection model using Siamese network,” IEEE Access, vol. 9,
pp. 76614-76623, 2021.

S. Wang, Z. Wang, T. Zhou, H. Sun, X. Yin, D. Han, H. Zhang, X. Shi,
and J. Yang, “THREATRACE: Detecting and tracing host-based threats in
node level through provenance graph learning,” IEEE Trans. Inf. Forensics
Security, vol. 17, pp. 3972-3987, 2022.

T. Pasquier, X. Han, M. Goldstein, T. Moyer, D. Eyers, M. Seltzer, and
J. Bacon, ‘“‘Practical whole-system provenance capture,” in Proc. Symp.
Cloud Comput., Sep. 2017, pp. 405-418.

R.-H. Hwang, C.-L. Lee, Y.-D. Lin, P.-C. Lin, H.-K. Wu, Y.-C. Lai, and
C. K. Chen, “Host-based intrusion detection with multi-datasource and
deep learning,” J. Inf. Secur. Appl., vol. 78, Nov. 2023, Art. no. 103625.
H.-K. Bui, Y.-D. Lin, R.-H. Hwang, P.-C. Lin, V.-L. Nguyen, and
Y.-C. Lai, “CREME: A toolchain of automatic dataset collection for
machine learning in intrusion detection,” J. Netw. Comput. Appl., vol. 193,
Nov. 2021, Art. no. 103212.

N. Joraviya, B. N. Gohil, and U. P. Rao, “DL-HIDS: Deep learning-
based host intrusion detection system using system calls-to-image for
containerized cloud environment,” J. Supercomput., vol. 80, no. 9,
pp. 12218-12246, Jun. 2024.

Z.T. Sworna, Z. Mousavi, and M. A. Babar, “NLP methods in host-based
intrusion detection systems: A systematic review and future directions,”
J. Netw. Comput. Appl., vol. 220, Nov. 2023, Art. no. 103761.

A. Chawla, B. Lee, S. Fallon, and P. Jacob, “Host based intrusion
detection system with combined CNN/RNN model,” in Proc. ECML
PKDD Workshops, Jan. 2019, pp. 149-158.

I. Tahir and S. Qadir, “Machine learning-based detection of IoT
malware using system call data,” in Proc. 4th Int. Conf. Digit. Futures
Transformative Technol. (ICoDT2), Oct. 2024, pp. 1-8.

G. Kim, H. Yi, J. Lee, Y. Pack, and S. Yoon, “LSTM-based system-call
language modeling and robust ensemble method for designing host-based
intrusion detection systems,” 2016, arXiv:1611.01726.

S. Lv, J. Wang, Y. Yang, and J. Liu, “Intrusion prediction with
system-call Sequence-to-Sequence model,” I[EEE Access, vol. 6,
pp. 7141371421, 2018.

Y. Zhang, S. Luo, L. Pan, and H. Zhang, ““Syscall-BSEM: Behavioral
semantics enhancement method of system call sequence for high accurate
and robust host intrusion detection,” Future Gener. Comput. Syst., vol. 125,
pp. 112-126, Dec. 2021.

G. Sakarkar. (2021). Advance Approach for Detection of Dns
Tunneling Attack From Network Packets Using Deep Learning
Algorithms. [Online]. Available: https://gredos.usal.es/xmlui/bitstream/
handle/10366/147246/Advance_Approach_for_Detection_of DNS_Tu.
pdf?sequence=1

A. Zaboli, S. L. Choi, T.-J. Song, and J. Hong, “ChatGPT and other large
language models for cybersecurity of smart grid applications,” in Proc.
IEEE Power Energy Soc. Gen. Meeting (PESGM), Jul. 2024, pp. 1-5.

R. Dijkman and A. Wilbik, “Linguistic summarization of event logs—A
practical approach,” Inf. Syst., vol. 67, pp. 114125, Jul. 2017.

W.Meng, F. Zaiter, Y. Huang, Y. Liu, S. Zhang, Y. Zhang, Y. Zhu, T. Zhang,
E. Wang, Z. Ren, F. Wang, S. Tao, and D. Pei, ““Summarizing unstructured
logs in online services,” 2020, arXiv:2012.08938.

S. Locke, H. Li, T. P. Chen, W. Shang, and W. Liu, “LogAssist: Assisting
log analysis through log summarization,” IEEE Trans. Softw. Eng., vol. 48,
no. 9, pp. 3227-3241, Sep. 2022.

P. K. Mvula, P. Branco, G.-V. Jourdan, and H. L. Viktor, “Evaluating word
embedding feature extraction techniques for host-based intrusion detection
systems,” Discover Data, vol. 1, no. 1, p. 2, Mar. 2023.

S. Ghodratnama, A. Behehsti, and M. Zakershahrak, “A personalized
reinforcement learning summarization service for learning structure from
unstructured data,” in Proc. IEEE Int. Conf. Web Services (ICWS),
Jul. 2023, pp. 206-213.

J.D. Chang, K. Brantley, R. Ramamurthy, D. Misra, and W. Sun, “Learning
to generate better than your LLM,” 2023, arXiv:2306.11816.

H. Liang, X. Li, D. Xiao, J. Liu, Y. Zhou, A. Wang, and J. Li, ““Generative
pre-trained transformer-based reinforcement learning for testing web
application firewalls,” IEEE Trans. Dependable Secur. Comput., vol. 21,
no. 1, pp. 1-15, Jun. 2023.

K. Ren, Y. Zeng, Z. Cao, and Y. Zhang, “ID-RDRL: A deep reinforcement
learning-based feature selection intrusion detection model,” Sci. Rep.,
vol. 12, no. 1, p. 15370, Sep. 2022.

15361

IEEE Access

Y. Kim et al.: RL-Based Generative Security Framework for Host Intrusion Detection

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]
[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

Y.-F. Hsu and M. Matsuoka, “A deep reinforcement learning approach for
anomaly network intrusion detection system,” in Proc. IEEE 9th Int. Conf.
Cloud Netw. (CloudNet), Nov. 2020, pp. 1-6.

M. Malik and K. S. Saini, “Network intrusion detection system using
reinforcement learning techniques,” in Proc. Int. Conf. Circuit Power
Comput. Technol. (ICCPCT), Aug. 2023, pp. 1642-1649.

M. Lopez-Martin, B. Carro, and A. Sanchez-Esguevillas, “Application
of deep reinforcement learning to intrusion detection for supervised
problems,” Expert Syst. Appl., vol. 141, Mar. 2020, Art. no. 112963.

H. Studiawan, F. Sohel, and C. Payne, “Anomaly detection in operating
system logs with deep learning-based sentiment analysis,” IEEE Trans.
Dependable Secur. Comput., vol. 18, no. 5, pp. 2136-2148, Sep. 2021.

Y. Kim, G. Park, and H. K. Kim, “Domain knowledge free cloud-IDS with
lightweight embedding method,” J. Cloud Comput., vol. 13, no. 1, p. 143,
Sep. 2024.

J. Sun, Z. Xing, H. Guo, D. Ye, X. Li, X. Xu, and L. Zhu, “Generating
informative CVE description from ExploitDB posts by extractive summa-
rization,” 2021, arXiv:2101.01431.

P. Radhakrishnan and G. Senthil Kumar,
automatic text summarization techniques,”

vol. 4, no. 6, p. 855, Nov. 2023.

Z. Li, C. Huang, S. Deng, W. Qiu, and X. Gao, “A soft actor-
critic reinforcement learning algorithm for network intrusion detection,”
Comput. Secur., vol. 135, Dec. 2023, Art. no. 103502.

S. Yang, X. Duan, X. Wang, D. Tang, Z. Xiao, and Y. Guo, “Extrac-
tive text summarization model based on advantage actor-critic and
graph matrix methodology,” Math. Biosciences Eng., vol. 20, no. 1,
pp. 1488-1504, 2022.

J.-R. Jiang and Y.-T. Chen, “Industrial control system anomaly detection
and classification based on network traffic,” IEEE Access, vol. 10,
pp. 41874-41888, 2022.

R. Mihalcea and P. Tarau, “TextRank: Bringing order into text,” in Proc.
Conf. Empirical Methods Natural Lang. Process., Jul. 2004, pp. 404—411.
T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” 2013, arXiv:1301.3781.

X. Zuo, S. Zhang, and J. Xia, “The enhancement of TextRank algorithm
by using word2vec and its application on topic extraction,” J. Phys., Conf.
Ser., vol. 887, Aug. 2017, Art. no. 012028.

Y. Keneshloo, T. Shi, N. Ramakrishnan, and C. K. Reddy, ‘“Deep
reinforcement learning for Sequence-to-Sequence models,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 31, no. 7, pp. 2469-2489, Jul. 2020.

I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Proc. Adv. Neural Inf. Process. Syst., Jan. 2014,
pp. 1-10.

A.Dey, “Deep IDS: A deep learning approach for intrusion detection based
on IDS 2018,” in Proc. 2nd Int. Conf. Sustain. Technol. Ind. 4.0 (STI),
Dec. 2020, pp. 1-5.

G. Creech and J. Hu, “Generation of a new IDS test dataset: Time to
retire the KDD collection,” in Proc. IEEE Wireless Commun. Netw. Conf.
(WCNC), Apr. 2013, pp. 4487-4492.

M. Grimmer, T. Kaelble, F. Nirsberger, E. Schulze, T. Rucks,
J. Hoffmann, and E. Rahm. (2021). Lid-DS 2021. [Online].
Available: https://dbs.uni-leipzig.de/files/research/publications/2022-
9/pdf/CRITIS_2022_Extended_Abstract_LID-DS-2021.pdf

C.-Y. Lin, “ROUGE: A package for automatic evaluation of summaries,”
in Text Summarization Branches Out. Barcelona, Spain: Association for
Computational Linguistics, 2004, pp. 74-81.

“Machine learning-based
Social Netw. Comput. Sci.,

YONGSIK KIM received the M.S. degree from
the School of Cybersecurity, Korea University,
in 2024. His research interests include artificial
intelligence and anomaly detection.

15362

SU-YOUN HONG received the Ph.D. degree
in applied electronic engineering from Korea
Advanced Institute of Science and Technology,
in 2013. She is currently affiliated with LIG
Nex1 for cyber security. Her current research
interest includes the automated action of cyber-
threat/defense.

SUNGIJIN PARK received the B.S. degree in
cybersecurity from Ajou University, in 2020. He is
currently a Research Engineer with LIG Nex1. His
research interests include cyber threat intelligence,
Al security, and offensive.

HUY KANG KIM (Member, IEEE) received
the B.S. degree in industrial management, the
M.S. degree in industrial engineering, and the
Ph.D. degree in industrial and systems engineering
from Korea Advanced Institute of Science and
Technology (KAIST), in 1998, 2000, and 2009,
respectively. He founded A3 Security Consulting,
the first information security consulting company
in South Korea, in 1999. Also, he was a member
and the Last Leader of the KAIST UNIX Society

(KUS), the Legendary Hacking Group, South Korea. Currently, he is a
Professor with the School of Cybersecurity, Korea University. Before joining
Korea University, he was the Technical Director (TD) and the Head of the
Information Security Department, NCSOFT, from 2004 to 2010, one of the
most famous MMORPG companies in the world. His recent research interest
includes solving many security problems in online games based on the user

behavior analysis.

VOLUME 13, 2025

