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ABSTRACT Scheduling problems, which involve allocating resources to tasks over specified time periods
to optimize objectives, are crucial in various fields. This work presents hyper-heuristic applications for
scheduling problems, analyzing 215 peer-reviewed publications over the last decade. We categorize and
examine the prevailing strategies and configurations of hyper-heuristics, mainly focusing on their application
across diverse scheduling scenarios such as job shop, flow shop, timetabling, and project scheduling. Our
findings reveal a strong inclination towards selection and perturbative hyper-heuristics, with evolutionary
computation emerging as the most commonly employed technique in this context, particularly in job shop
and timetabling problems. Despite the robust development in hyper-heuristic methodologies, our analysis
indicates an under-representation of multi-objective optimization and a limited use of performance metrics
beyond makespan and tardiness. We also identify potential areas for future research, such as expanding
hyper-heuristic applications to underexplored industries and exploring less conventional performance
metrics. By providing a comprehensive overview of the current landscape and outlining future research
directions, we aim to guide and inspire ongoing innovations in scheduling problem research.

INDEX TERMS Combinatorial optimization problems, hyper-heuristics, job shop scheduling, scheduling
problems.

I. INTRODUCTION
By the end of 2023, the global population exceeded
8 billion, highlighting the urgent need for efficient resource
management in our consumer-driven world. The Cambridge
Dictionary defines efficiency as ‘‘the good use of time
and energy in a way that does not waste any.’’ This is a
principle essential to solving Scheduling Problems (SPs). SPs
involve allocating limited resources to tasks over time, aiming
to optimize one or more objectives, such as minimizing
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total operational time, reducing costs, or maximizing overall
efficiency [2].

There are three types of algorithms for tackling SPs:
exact algorithms, approximation algorithms, and heuristic
algorithms. Exact algorithms can find optimal solutions, and
some examples include depth-first search and breadth-first
search [3], [4]. However, as the problem grows (i.e., consid-
ering more resources and tasks), finding the optimal solution
in a feasible amount of time becomes nearly impossible.
Approximation algorithms, in contrast, produce solutions that
are guaranteed to be close to the actual optimum. They are
also considered fast, as they run in polynomial time [5]. For
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example, Lenstra et al. proposed a polynomial algorithm that
constructs a job-shop schedule shorter than twice the optimal
makespan [5].

Finally, heuristic algorithms produce feasible solutions in a
short period. However, such solutions are not guaranteed to be
close to any optima. Their strength, thus, comes from the fact
that they can be used to tackle larger problems due to their
simplicity [6]. Some sources include heuristic algorithms
within the category of approximation algorithms [7], [8],
[9], [10]. However, considering the specific characteristics
outlined earlier —that they are not guaranteed to provide
solutions close to an optimal value and their computational
efficiency in handling larger problems— we categorize
them separately. Furthermore, heuristic algorithms can be
classified as constructive and perturbative. Constructive
heuristics build a solution from scratch by sorting all tasks
according to some given rules. They also include dispatching
rules, for which some examples include the Service In
Random Order (SIRO), which schedules a task randomly,
and the Earliest Release Date first (ERD), which schedules
the task with the earliest release date. On the other hand,
perturbative heuristics modify an already existing solution.
Examples of these are local search methods, such as iterative
improvement [11], threshold accepting [12], and genetic
operators [13].

One way to improve heuristics is to use the so-called
Hyper-heuristics (HHs), which were introduced over 25 years
ago by Dezinger et al. [14], who described them as a heuristic
able to choose other heuristics. Therefore, they are also
within the category of heuristic algorithms. Since then, this
concept has been used to tackle various problems, including
scheduling problems. Recently, Fan et al. [15] investigated a
genetic programming-based HH for automatically designing
dispatching rules to solve the Dynamic Job Shop Scheduling
Problem (DJSP). In another work, Vela et al. went beyond the
traditional HH model and introduced the idea of a Squared
Hyper-Heuristic (SHH), i.e., a hyper-heuristic able to choose
other hyper-heuristics for solving job shop scheduling
problems [16]. Moreover, Song et al. proposed a hyper-
heuristic-based memetic algorithm to solve the distributed
assembly permutation flow-shop scheduling problem to
minimize the maximum completion time [17]. Although the
list of relevant works goes on and on, we omit a discussion of
them for the sake of brevity.

Over the years, many HH approaches have been used
to tackle scheduling problems. Hence, our motivation to
systematically review them. The work from Bagheri is an
example of a related systematic review, where the author
focused on the multi-factory scheduling problems [18].
Similarly, Sánchez et al. conducted a systematic review
of hyper-heuristic solvers for combinatorial optimization
problems [19]. In a broader scope, Abiodun et al. presented a
systematic review of emerging feature selection optimization
methods for optimal text classification [20]. There are many
more systematic reviews in the literature. However, none of
them focus on HHs to solve scheduling problems. Therefore,

this work aims to fill that gap by analyzing and evaluating the
publications from the last decade. Moreover, our systematic
review comprises a data collection stage that aims to answer
the following research questions:

1) According to the classification proposed by Burke et al.
[21], What kind of HHs have been implemented to solve
SPs?

2) What strategies have been used to refine HHs in the
context of SPs?

3) What types of SPs are currently being addressed using
hyper-heuristics?

4) Are single- or multiple-objective HHs more prevalent in
solving SPs?

5) Within the context of SPs: what sub-areas implement
hyper-heuristics?

6) What are the primary optimization objectives commonly
targeted in solving SPs using HHs?

The rest of this work is organized as follows: Section II
presents some concepts necessary to understand better the
analysis performed in this work. Section III explains the
methodology we followed. Section IV shows the resulting
data and analysis. Finally, Section V summarizes this work
and outlines future research paths.

II. FUNDAMENTALS
This section presents fundamental concepts about hyper-
heuristics and scheduling problems. Notwithstanding, we do
not cover basic computation concepts, e.g., NP-hard,
problem-constraints, and optimization. For an in-depth
description of computational theory, we refer the reader to [2],
[22], and [23].

A. HEURISTICS
Heuristics are low-level solvers that operate using previous
knowledge about the problem. Hence, they might contain
multiple rules and may include an adaptive nature [24].
Heuristics can be classified into two groups: perturbative
and constructive. On the one hand, the former modifies
an existing solution to the problem. For example, in a job
shop, a perturbative heuristic might take an already finished
schedule and switch the first two activities of the machine
with the largest makespan. On the other hand, constructive
heuristics build a solution from scratch. Therefore, a con-
structive heuristic begins with an empty schedule and allocate
activities with, e.g., the shortest processing times.

In terms of literature, some works stand out. For example,
Misir et al. studied the effect of low-level heuristics on the
performance of selection hyper-heuristics [25]. Moreover,
the literature also contains efforts to summarize heuristic
contributions. An early example is Blackstone’s work, which
surveyed and categorized dispatching rules for the JSSP [26].
More recently, Van Hoorn analyzed the current bounds on
benchmark instances for Job Shop Scheduling Problems
(JSSPs) [25]. Also, Branke et al. stated a review on automated
design of production scheduling heuristics [27].
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B. METAHEURISTICS
Metaheuristics (MHs) are high-level algorithms that do not
guarantee the discovery of an optimal solution but aim to
find suitable solutions within a reasonable time frame. They
mimic a natural phenomenon using an encoding scheme for
representing a solution and use different operators, such as
crossovers, mutations, selections, and swaps, to systemat-
ically alter the solution (i.e., they operate in the solution
space). To avoid becoming stuck at localminima, these search
operators aim to identify high-quality answers by diversifying
their search, intensifying their search, or exploring new
candidate solutions. Thus, an effective algorithm balances
intensification with diversification. Consequently, MHs are
adept at exploring complex, multi-modal landscapes common
in many real-world problems [28].

Most of the well-known metaheuristics are inspired
by nature. Yet, some have found inspiration in several
kinds of processes, such as those related to physics,
chemistry, social sciences, and sports, among others [29].
Genetic Algorithms (GA), Simulated Annealing (SA), and
Ant-Colony Optimization (ACO) are examples of nature-
inspired algorithms. In contrast, the Gravitational Search
Algorithm (GSA) is an example of a physics-based algorithm.
Furthermore, the Chemical Reaction Optimization (CRO)
algorithm and the Imperialist Competitive Algorithm (ICA)
are metaheuristics inspired by Chemistry and social dynam-
ics, respectively. For a deeper understanding of each MH,
we suggest reading the work by Ezugwu et al., who presented
a survey on these algorithms [29].
In addition, multi-objective algorithms are designed to

address problems involving multiple, often conflicting,
objective functions. Multi-objective MHs are specifically
tailored to generate a set of optimal solutions, known as
Pareto-optimal solutions. These solutions form the Pareto
front, which represents the trade-offs between the competing
objectives, where no other solution is superior in all objec-
tives simultaneously. A solution is considered Pareto-optimal
if no solution improves one objective without degrading
another [30], [31]. Some examples are Multi Objective
Genetic Algorithm (MOGA) by Murata and Ishibuchi [32],
Non-dominated Sorting Genetic Algorithm (NSGA-II) by
Deb et al. [33], Strength Pareto Archive Algorithm (SPEA2)
by Zitzler et al. [34], and Multi-Objective Evolutionary
Algorithm based upon Decomposition (MOEA/D) by Zhang
and Li [35].

C. HYPER-HEURISTICS
Hyper-Heuristics (HHs) were introduced in 1997 to describe
a system that combines several methods [14]. Notwith-
standing, the term was used to describe ‘‘heuristics to
choose heuristics’’ some years later [36]. HHs have been
used to tackle various problems through selection and
generation strategies. For example, Sim and Hart [37]
described an immune-inspired hyper-heuristic system that
produces new heuristics for the bin-packing and job-shop
scheduling problems. Nguyen et al. proposed a genetic

programming-based HH approach for three combinatorial
optimization problems, i.e., Max-SAT, one-dimensional bin
packing, and permutation flow shop [38]. Another example
is the Monte Carlo tree-search HH presented by Sabar
and Kendall [39], which evolves heuristics that work on
five problems: Max-SAT, one-dimensional bin packing,
permutation flow shop, traveling salesperson, and personnel
scheduling.

In addition to the definitions and examples mentioned
above, there are two broad classes of hyper-heuristics [21]:

• Generation: HHs create new rules or adaptive heuristics
for solving the problem instances.

• Selection: HHs pick heuristics from a set of existing
heuristics.

Moreover, since heuristics are also sorted into two
categories (i.e.,constructive or perturbative), we end up with
a broader classification for HHs: Generation Constructive,
Generation Perturbative, Selection Perturbative, and Selec-
tion Constructive [40]. Do note that such schemes for
representing HHs are constantly evolving. For example,
Burke et al. added a classification based on the feedback
obtained from the evolution of the problem solution [40]:

• Online Learning: The model learns while solving each
instance, and instances may arrive at different times.

• Offline Learning: The instances are given beforehand
and split into training and testing sets. Learning results
from continuously solving the training set, seeking to
improve the model after each solution.

• No Learning: There is no feedback from the problem
that guides the algorithm to adapt and improve.

It is relevant to mention that Drake et al. recently expanded
upon these categories, providing perspectives related to the
feedback, the number of objectives, and the way parameters
are set, among others [36].

D. SCHEDULING PROBLEMS
Scheduling is a decision-making process used regularly
in many manufacturing and service industries. It allocates
resources to tasks over given periods and aims to optimize one
or more objectives, i.e.,makespan, tardiness, and lateness [2].
Scheduling Problems (SPs) were initially labeled such as

manufacturing problems [41]. Nowadays, there are many
fields in which they are used. In healthcare, for example,
effective scheduling is essential for managing the allocation
of medical staff and equipment, directly impacting patient
care and hospital throughput. Universities rely on scheduling
to efficiently manage class timetables, examination peri-
ods, and facility utilization, facilitating smooth academic
operations. Additionally, in the entertainment industry, such
as film and television production, scheduling is crucial for
coordinating the availability of cast, crew, and locations to
ensure that productions are completed on time and within
budget. Furthermore, as industries continue to evolve and
new complexities arise, the development and refinement of

VOLUME 13, 2025 14985



A. Vela et al.: Hyper-Heuristics and SPs: Strategies, Application Areas, and Performance Metrics

scheduling techniques remain an ongoing area of research
and innovation.

Several studies have explored various scheduling prob-
lems. For example, Babou et al. addressed the Open Shop
Scheduling Problem (OSSP) by incorporating a preparation
phase distinct from the processing phase [42]. Recently,
Planinic et al. proposed a two-part simplification method to
address the bloating issue in evolving dispatching rules for the
Parallel Machine Scheduling Problem (PMSP) [43]. Further-
more, Habibi et al. [44] reviewed the Resource-Constrained
Project Scheduling Problem (RCPSP), evaluating 217 articles
published between 1980 and 2017. They categorized the
literature into four primary areas: characteristics, certainty,
objective function, and resources. Lastly, Escott et al. used
a transfer learning assisted Genetic Programming Hyper-
heuristic (GPHH) for solving the Dynamic Multi-Workflow
Scheduling Problem. They maintained performance and
diminished computational costs by applying transfer learning
to the genetic programming aspect of their hyper-heuristic
model [45].
The primary optimization objectives in scheduling prob-

lems typically focus on:
1) Minimizing Makespan: Reducing the total time

required to complete all tasks or jobs.
2) Minimizing Tardiness: Ensuring tasks or jobs are

completed by or before their due dates. Hence, this
metric only considers positive values for the difference
between a job’s completion and due dates. In other
words, for this metric, it is equivalent if a job finishes
with plenty of leeway or finishes in the nick of time.

3) Minimizing Lateness: Akin to the previous metric,
but also considering negative values. Hence, this metric
favors jobs that finish ahead of time.

These objectives drive the development of scheduling
solutions tailored to meet specific operational efficiencies
required in various industries [46]. Moreover, machine-based
SPs usually exhibit one or more of the following constraints:

• Precedence: An operation ol from job Jk cannot be
processed until the previous operation ol−1 has been
completed.

• Capacity: Each machine performs one activity at a time.
This means that each machine can only process a single
operation of a single job simultaneously.

• Non-Preemption: Operations must be completed once
started.

Following, we present the concepts of some of the most
relevant SPs.

1) JOB SHOP SCHEDULING PROBLEM
The Job Shop Scheduling Problem (JSSP) is an NP-hard
optimization challenge [47] with a set of jobs J =

{j1, j2, . . . , jk}, each consisting of a sequence of operations
O = {o1, o2, . . . , ol}. Such operations must be processed
on specific machinesM = {m1,m2, . . . ,mi}. Additionally,
each operation has a processing time pk,l that requires a

particular machine to complete without interruption. The
primary goal is typically to minimize the makespan, i.e., the
total time required to complete all jobs. Other less frequent
objectives aim to minimize tardiness or machine idle times.
The JSSP is highly applicable in manufacturing. It assigns
multiple tasks across various machines while optimizing
production efficiency and resource utilization. Due to its NP-
hard nature, exact solutions are computationally infeasible
for large instances, prompting heuristic and metaheuristic
approaches to find satisfactory solutions within reasonable
time frames [48].
Multiple kinds of Job Shop Scheduling Problems can

be classified according to different characteristics [49]. For
example, in the traditional JSSP, each operation must be
performed in a specific machine, and only one operation of
a given job can be performed at a time. The objective is to
find a schedule that minimizes the makespan. Figure 1 shows
a traditional JSSP instance distributed in two matrices (M
and P). In both matrices, rows represent jobs (from j1
to jk ) and columns represent operations (from o1 to ol).
M contains an allocation of machines (from m1 to mi)
to operations i.e., which machine should perform each
operation. P contains the information about the processing
time (pk,l ∈ P), i.e., the time each operation takes to
complete.

FIGURE 1. Illustrative example of a JSSP instance and the number of
variables it contains.

2) DYNAMIC JOB SHOP SCHEDULING PROBLEM
TheDynamic Job Shop Scheduling Problem (DJSSP) extends
the classical JSSP by incorporating elements that change
over time, e.g., jobs arriving over time, machine breakdowns,
or changes in job priorities [50]. This brings the problem
closer to reality and makes it more complex. For DJSSP,
there is set of jobs J = {j1, j2, . . . , jk}, which can be
either finite or not. Every job j has an arrival time αj, a due
date dj, and a weight wj, which specifies the importance
of the job. Besides, each job is comprised by sequences
of operations O = {o1, o2, . . . , ol}, where each operation
has its own due date αo and must be processed on specific
machines M = {m1,m2, . . . ,mi}. Moreover, the dynamic
nature provides an extra constraint: operation ok,1 can only be
scheduled once job jk has arrived at the job shop. The primary
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objective remains to minimize the makespan. Still, due to its
dynamic nature, objectives such as minimizing total tardiness
or maximizing responsiveness (quick adaptation to changes)
become equally meaningful.

The DJSSP finds significant application in industries
where production conditions are volatile and subject to
frequent change, such as manufacturing and logistics [51].
Given the problem’s complexity and NP-hard nature, solu-
tions typically rely on advanced heuristic and metaheuristic
methods, for they can adapt quickly to changes while provid-
ing feasible scheduling solutions. This can be attributed to the
disruptions, delays, and real-time scheduling adjustments.

3) FLEXIBLE JOB SHOP SCHEDULING PROBLEM
The Flexible Job Shop Scheduling Problem (FJSSP) is an
extension of the JSSP that introduces an additional layer
of flexibility in machine assignments for operations [52].
The core formulation remains: a set of jobs J =

{j1, j2, . . . , jk}, each consisting of a sequence of operations
O = {o1, o2, . . . , ol}. Nevertheless, unlike the traditional
JSSP where each operation is assigned to a specific machine,
in the FJSSP, each operation can be executed on any machine
from a given subset of machines M = {m1,m2, . . . ,mi}.
Machine constraints from JSSP are equally applied to this
problem. Moreover, common objectives include minimizing
both the makespan and the tardiness. However, the nature
of this variation leads to an extra objective: maximizing
machine utilization. Finally, this problem is relevant in
flexible manufacturing systems, where machines can perform
different operations. Another application relies on workshops
with pools of parallel machines, where multiple identical
machines can perform only one kind of operation.

4) DYNAMIC FLEXIBLE JOB SHOP SCHEDULING PROBLEM
The Dynamic Flexible Job Shop Scheduling Prob-
lem (DFJSSP) combines both the flexible nature of FJSSP
and the dynamic nature of DJSSP [53]. Therefore, it contains
a set of finite or undetermined jobs J = {j1, j2, . . . , jk},
where each job has an arrival time αj, a due date dj, and a
weight wj which specifies the importance of the job. Each job
consists of a sequence of operations O = {o1, o2, . . . , ol},
and each operation has a subset of available machines from
the set M = {m1,m2, . . . ,mi}. As in DJSSP, operation
ok,1 can only be scheduled once job jk arrives at the job
shop. The main objectives of DFJSSP are minimizing both
makespan and tardiness and maximizing machine utilization.
Health systems are highly relatable to DFJSSP, where there
is an undetermined set of patients (jobs) with different arrival
times (dynamic nature). Each patient needs a different set
of procedures (e.g., operations), which can be performed by
many identical machines (e.g., doctors).

5) FLOW SHOP SCHEDULING PROBLEM
The Flow Shop Scheduling Problem (FSSP) is a specialized
variant of the JSSP where each job has to get through

the same sequence of machines [54]. Therefore, it has a
set of jobs J = {j1, j2, . . . , jk}, where each job consists
of a sequence of operations O = {o1, o2, . . . , oi}, which
must be performed in a fixed set of machines M =

{m1,m2, . . . ,mi}. The sequential nature of this problem rests
in the distribution of machines, where machine mi has to
process operation oi, machine mi−1 has to process operation
oi−1, and so on. Although each jobmust be processed through
the same machine sequence, the processing times may vary.
The complexity of this problem is NP-hard for more than
two machines. However, for two machines, we can find
the optimal makespan in polynomial time using Johnson’s
rule [55]. Similarly to JSSP, the most common objective
of FSSP is to minimize the makespan. FSSP is present in
most assembly industries, where the final product follows a
sequential process [56].

6) PERMUTATION FLOW SHOP SCHEDULING PROBLEM
The Permutation Flow Shop Scheduling Problem (PFSSP) is
a variant of FSSP, where the sequence of jobs for the first
machine (m1) has to remain for all subsequent machines [12].
Consequently, PFSSP is represented by a set of jobs J =

{j1, j2, . . . , jk}, where each job consists of a sequence of
operations O = {o1, o2, . . . , oi}, carried out in a set
of machines M = {m1,m2, . . . ,mi} in sequential order
(see Section II-D5). Additionally, the distribution of jobs for
m1 is inherited by all machines. This constraint simplifies the
problem’s solution space. However, its complexity remains
unchanged (NP-hard) [57]. Similarly to FSSP, Johnson’s rule
applies to the case of two machines. The automotive industry
is an excellent example of an application area for PFSSP.

7) OPEN SHOP SCHEDULING PROBLEM
Open Shop Scheduling Problem (OSSP) is another variation
of the JSSP [48], but contrary to JSSP, in OSSP operations
are processed in arbitrary order, i.e., the precedence machine
constraint does not apply. This means that a set M =

{m1, . . . ,mi} of i machines process a set J = {j1, . . . , jk}
of k jobs, and that each job has l operations from o1 to
ol . An unfixed set of operations adds another decision layer
to the problem. Thus, the complexity increases to being
NP-hard even in the case of two machines [42]. A real-life
scenario of this problem is found in computing environments,
particularly in cloud or distributed computing, where tasks
may be processed on different servers or processors without
a predefined sequence.

8) PARALLEL MACHINE SCHEDULING PROBLEM
The Parallel Machine Scheduling Problem (PMSP) involves
assigning a set of jobs to parallel, identical, or non-identical
machines to optimize specific criteria, such as minimizing the
makespan [58]. The PMSP might seem similar to the FJSSP,
but the latter allows for different kinds of machines that may
or may not have replicas. Another key difference is that the
PMSP considers jobs as a whole, not as a set of operations.
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Thereupon, this problem can be modeled as follows: a set
J = {j1, . . . , jk} of k jobs that must be processed by a set
M = {m1, . . . ,mi} of i parallel machines. Each k job has a
known integer processing time pk and a known loading time
sl associated with a machine i (also called a setup). Such
setup is handled by a server, which may be one or more for
all machines, each with different availability; in some cases
this setup time is included in the processing time of each job.
Additionally, there are three variants of parallel machines [5]:

1) Identical machines: They have the exact same
capabilities.

2) Uniform machines: Machines have different capabili-
ties, usually determined by a speed factor that affects all
jobs.

3) Unrelated machines: Each machine-job pairing has its
unique processing time depending on the nature of each
machine.

The complexity of PMSP is NP-hard for all cases. However,
Kravchenko proposed a pseudo-polynomial algorithm for the
case of two machines where all setup times are equal to
one [43].

This problem formulation is easily seen in different areas
characterized by homogeneous tasks or uniform machine
functionalities. In the healthcare sector, optimized scheduling
of imaging equipment such as computed tomography (CT)
and magnetic resonance imaging (MRI) machines is crucial
for enhancing patient throughput and optimizing resource
allocation [59]. In manufacturing, parallel scheduling —
applied to identical machines performing similar assembly
tasks— significantly improves production line efficiency by
minimizing idle times and synchronizing output rates [60].
Similarly, effective scheduling algorithms distribute tasks
across multiple processors in computational tasks within data
centers, thereby enhancing computational output [61].

9) TIMETABLING PROBLEM
Timetabling Problem (TTP) is a combinatorial problem of
high interest in recent years [62]. It has been proven to be
NP-hard due to its many constraints and requirements [47].
There are several variants of timetabling, each one with
its specific mathematical formulation. However, a general
approach consists of a set of k events E = {e1, . . . , ek}, where
each event has a duration d from the set D = {d1, . . . , dk}.
Similarly, there is a set of i resources R = {r1, . . . , ri}.
All events from E must be scheduled over a set of spaces
S = {s1, . . . , sl} and a set of time-slots T = {t1, . . . , tn}.
The objective is to find an optimal allocation of the given
set of events (e.g., courses, exams, surgeries, and sports)
and resources (e.g., teachers, exam proctors, nurses, medical
doctors, and referees) over spaces (e.g., classrooms, operating
rooms, and sports fields) and time [63]. An optimal allocation
satisfies the following objectives:

• Resources attend only one event at a time.
• Events must be scheduled in spaces that meet its
requirements.

• Spaces can host only one event at a time.
• Resources attend only one event at a time.

Other objectives may be specific to the variant, e.g., schedule
preferences for resources, and minimimum empty time slots.
This challenge is expected to academic institutions such as
schools, colleges, or universities [64]. One type of TTP is edu-
cational timetabling, from which three main variations focus
on courses, examinations, and schools, respectively [65].
The course timetabling problem involves assigning a set of
courses to finite time slots and featured rooms [66]. Similarly,
in the examination timetabling problem, one must assign a
set of exams to a set of time slots and available rooms [67].
Other examples include the school timetabling [68] and staff
timetabling [69] problems. In 2010, Burke et al. conducted
a survey of search methodologies and automated system
development for examination timetabling [70]. Their work
comprehensively surveys various methodologies applied to
examination timetabling, including heuristic, MH, and HH
approaches.

10) PROJECT SCHEDULING PROBLEM
The Project Scheduling Problem (PSP) involves the allo-
cation of resources to tasks or activities that need to be
completed within a project to optimize certain performance
indicators such as minimizing the total project duration
(makespan), adhering to deadlines, or minimizing costs [71].
In the PSP, a project is denoted as a graph G = (N ,A),
where n = 0, 1, 2, . . . ,N + 1 is the node set of the project,
and there are N real activities [72]. Activity 0 and activity
n + 1 are the start and end dummy activities, respectively.
A is the set of arrows formed by the priority relationship
between activities. Each activity needs k = 1, 2, 3, . . . ,K
renewable resources. The duration of each activity and its
resource consumption are recorded as di and ri,k , respectively.
We can denote the project deadline as D, and the difference
between the project makespan and the deadline as E . The
objective is for E to be equal or less to zero so that the project
occurs in time or early completion. Otherwise, it incurs delay
damages.

11) RESOURCE-CONSTRAINED PROJECT SCHEDULING
PROBLEM
The Resource-constrained Project Scheduling Problem
(RPSP) is a variant of PSP with limited resources. Thus,
RPSP may be formulated as a graph G = (N ,A), with
the same definitions as for the PSP. Additionally, the RPSP
has a set R = {r1, . . . , rK } of K resources, where Rk
is the available amount of resource k . The objective is to
complete all activities, following all precedence and resource
constraints, while minimizing the difference between the
project makespan and the project deadline.

12) WORKFLOW SCHEDULING PROBLEM
The Workflow Scheduling Problem (WSP) involves arrang-
ing and managing tasks or activities within a workflow
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system to optimize specific performance metrics such as
throughput, execution time, or resource utilization [2].
A workflow is represented by a graph G = (V, E), where
V is the set of v nodes and E is the set of e edges that connect
nodes [73]. A node vi ∈ V represents a task ti, and a node
ei,j ∈ E represents precedence dependency between task ti
and task tj. Therefore, task tj can be executed until task ti is
finished. The weight of edge ei,j represents the transfer time
between ti and tj. The set P is the set of computing resources
for executing the tasks. The WSP is a somewhat simplified
version of project scheduling with no overall deadline. This
makes it suitable for many applications where optimizing
complex sequences of operations and enhancing efficiency
is critical. For instance, each patient encounter in healthcare
may be viewed as a distinct workflow, i.e., from initial
admission and diagnostic tests through surgeries and other
procedures. Managing these multiple and concurrent patient
workflows is essential for improving care quality and hospital
efficiency [59]. In the media production industry, workflow
scheduling orchestrates the logistics of film production,
coordinating crew availability and post-production processes
to streamline operations and reduce downtime [74]. Lastly,
workflow scheduling is implemented in manufacturing
to synchronize assembly lines and maintenance routines,
significantly enhancing production throughput and reducing
operational costs [75].

13) DYNAMIC WORKFLOW SCHEDULING PROBLEM
The Dynamic Workflow Scheduling Problem (DWSP) is
a more complex variant of the WSP, where the system
must adapt to changes, including new arrivals of finite or
undetermined workflows and variations in resource capacity,
e.g., processors breaking down. This problem is highly
present in computing environments, where workflows keep
arriving, and a server must allocate them to the available
processors. Similarly to the WSP, in the DWSP, a workflow
is represented by a graph G = (V, E), where V is the set
of v nodes and E is the set of e edges that connect nodes.
A node vi ∈ V represents a task ti, and a node ei,j ∈ E
represents the precedence dependency between task ti and
task tj. However, new tasks arrive, and resources from Pmay
vary over time [76].

III. METHODOLOGY
This work examines recent advancements in hyper-heuristics
within the context of scheduling problems, identifying
emerging research opportunities at their intersection.We ana-
lyze the current state of the art, extract critical features,
and align these findings with high-impact applications. Our
analysis begins with an overview of leading research topics
in scheduling problems and hyper-heuristics, focusing on
publications where hyper-heuristics is the primary strategy.
We systematically categorize all selected works to address
six fundamental research questions, identifying prevail-
ing trends and gaps and providing a qualitative analysis

of potential future research directions for hyper-heuristic
methodologies. Therefore, our methodology comprises three
phases:
1) Inclusion, search, and selection
2) Systematic classification
3) Analysis about trends and relations
This study is designed with a reproducible process, begin-

ning with a quantitative data collection and shifting towards
a deductive data analysis. Finally, our process led to 215 doc-
uments covering a 10-year window from 2012 to 2022.

A. INCLUSION, SEARCH, AND SELECTION
The initial phase of our research involves selecting publica-
tions. We start by conducting a broad literature search on
scheduling problems and Hyper-Heuristics (HHs), utilizing
Elsevier’s Scopus database. Our choice of Scopus is moti-
vated by several factors:
1) Comprehensive Coverage: Scopus provides a broad

overview of scientific research from different sources
worldwide, which is crucial for building the current state
of the art.

2) Analytical Capabilities: The platform offers built-in
analytical tools that facilitate the identification of
emerging trends.

3) Accessibility:We have access to the database thanks to
institutional subscriptions.

The query begins with several search equations involving
words like ‘scheduling,’ ‘hyper-heuristic,’ and ‘heuristic
algorithms.’ However, all iterations yielded a similar number
of results, and so we opted for a simple equation:

hyper-heuristics AND scheduling (1)

Such an equation returned 378 results, for which we
downloaded the corresponding metadata. Our inclusion
criteria were based on two primary parameters: publication
year and hyper-heuristics relevance. We limited our selection
to publications within ten years, from 2012 to 2022, to ensure
contemporary relevance. Subsequently, we meticulously
examined the titles and abstracts to assess the centrality of
hyper-heuristics in each study, keeping only those works
where hyper-heuristics were the primary focus. This rigorous
selection process yielded a dataset of 215 documents.

B. SYSTEMATIC CLASSIFICATION
The second phase of our research involves systematically
classifying the 215 selected works to address six specific
research questions. We employed a structured approach to
review each document, following this sequential order:
1) Abstract: Initial screening for relevance and key find-

ings.
2) Figures and Tables: Detailed examination of visual data

representations.
3) Results: In-depth analysis of the findings.
4) Methodology: Review of the research methods and

procedures.
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5) Conclusions: Summary of the results and implications
of the study.

We meticulously reviewed each section to ensure com-
prehensive coverage of the research questions. In some
cases, abstracts alone provided all the necessary information.
However, other documents required a thorough examination
in multiple sections. We continued this detailed review
process until all pertinent information was extracted or until
it was determined that the necessary data were unavailable,
in which case we noted the information as missing. The
following list contains the research questions that guided this
phase:

1) According to the classification proposed by
Burke et al. [21], what kind of HHs have been
implemented to solve SPs?

2) What strategies have been used to refine HHs in the
context of SPs?

3) What types of SPs are currently being addressed using
hyper-heuristics?

4) Are single- or multiple-objective HHs more prevalent in
solving SPs?

5) Within the context of SPs: what sub-areas implement
hyper-heuristics?

6) What are the primary optimization objectives commonly
targeted in solving SPs using HHs?

Each paper was analyzed and categorized into a six-fold
framework based on the answers to these questions. Note
that whenever a work tackled more than one type of
data, e.g., when tackling two or more scheduling prob-
lems, we counted it multiple times. The first research
question leverages the well-established classification system
by [21], which categorizes hyper-heuristics based on learning
approach, heuristic set, and heuristic type (detailed in
Section II-C).

The second question addresses complementary strategies
used alongside hyper-heuristics, such as metaheuristics,
systematic search algorithms, and learning algorithms. These
algorithms can be used for various purposes, such as the
training phase of a hyper-heuristic, creating new heuristics,
or modifying existing solutions, to name a few. We further
divided these into five sub-categories: evolutionary compu-
tation (genetic programming, genetic algorithms, and coop-
erative co-evolution algorithms), metaheuristics (excluding
those related to evolutionary computation), systematic search
algorithms (including Depth-First Search, Breadth-First
Search, and Greedy Search but excluding metaheuristics like
Simulated Annealing and Tabu Search), learning algorithms,
and other strategies, which are outside of the scope of the
previous ones, such as graph theory and Markov models.

The third question identifies the specific scheduling
problem each study addresses, such as job shop, flow
shop, workflow, or timetabling. Note that we categorized
variations of scheduling problems, such as workflow in
cloud computing and dynamic flexible job shop, according
to their primary components, i.e., as ‘workflow’ and ‘job

shop,’ respectively. The fourth question determines whether
the studies focus on single or multiple objective functions.
The fifth question explores each study’s application areas,
including sectors like manufacturing, healthcare, and cloud
computing. If the paper does not show an apparent field
of application, we assume it focuses on basic scientific
research. Lastly, the sixth question examines the optimization
objectives targeted by each work, such as makespan or
tardiness.

C. RELATIONS AND TRENDS
In this phase, we aim to detect underlying patterns and
relationships within our dataset. We employed a method-
ical approach to analyze the data pairwise. This involved
examining how different variables interact and their appli-
cation to various scheduling problems, such as specific
types of hyper-heuristics, e.g., selection, or generative. For
example, we assessed the frequency of combining selection
hyper-heuristics with constructive heuristics across different
studies.

Our analysis extended to evaluating how often certain
combinations appear, which provided insights into the most
used strategies currently employed in the field. Moreover,
we selected the most salient trends and applied statistical
tools and visualization techniques to understand these rela-
tionships better. This structured analytical approach enabled
us to understand the current landscape in hyper-heuristic
research as applied to scheduling problems. Our findings
are poised to inform future research directions, high-
lighting effective strategies and areas that require further
investigation.

IV. RESULTS
This section presents our findings. For readability, we pre-
serve the same structure from Section III.

A. INCLUSION, SEARCH, AND SELECTION
Using the search query hyper-heuristics AND
scheduling, we initially obtained nearly 400 results. After
we applied our inclusion criteria, we refined the dataset to
215 relevant entries. Our first data analysis focuses on the
number of publications per year, as shown in Figure 2. This
figure illustrates a growing trend in the volume of research,
peaking in 2019 with 35 manuscripts. This highlights the
research community’s interest in utilizing hyper-heuristics
as a tool for solving scheduling problems. Given their
intrinsic compatibility, we believe the growing interest in
hyper-heuristics (HHs) and scheduling problems (SPs) is
well-founded. Scheduling problems demand quick, practical
solutions, and hyper-heuristics are uniquely suited to deliver
these efficiently.

Following, we present key points about the more than
400 authors responsible for these publications. First, Figure 3
displays the top 12 authors by number of publications.
Notably, the leading author, Zhang M., has contributed
nearly 30 publications, averaging about three publications
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FIGURE 2. Behavior of yearly publications about hyper-heuristics
involved in solving scheduling problems over the last ten years.Red and
blue strokes are for the acquired data and their linear trend, respectively.

per year. In comparison, the second-ranked author, Mei
Y., has 19 publications, approximately one-third fewer than
Zhang M. Both these authors have collaborated in some
of the papers, and both primarily focused on Genetic
Programming-based Hyper-heuristics (GPHH) to address
various scheduling problems. For instance, in collaboration
with Yang et al. [77] they employed a GPHH methodology
to tackle the workflow problem, aiming to minimize over-
all costs and makespan while adhering to Service Level
Agreement (SLA) requirements. Conversely, together with
Zhang F. and Nguyen S., they adopted an evolutionary
multi-tasking approach to solving multiple dynamic, flexible
job shop scheduling problems using a GPHH method [53].
Moreover, they worked in a knowledge transfer approach
for implementing GPHHs in multiple problem domains,
including scheduling problems [78].

FIGURE 3. Top 12 authors in the number of published works from
2012-2022 in Scopus.

The third and fourth authors (Chen G. and Nguyen S.)
have 15 and 13 publications, respectively. Similarly to the
previous authors, they have extensively utilized Genetic
Programming-based Hyper-heuristics (GPHH). Additionally,

the following three authors, Özcan E., Ortiz-Bayliss J.C.,
and Amaya I., published between eight and ten articles
focusing on selection hyper-heuristics for various scheduling
problems. The remaining authors in the top 12 brandish seven
publications each [21], [36]. Looking at the affiliations of
these authors, half of them are affiliated with institutions in
New Zealand, including the top four.

Considering all authors, Figure 4 illustrates their distribu-
tion based on their publication output. We can easily see that
most authors have published only one paper. Notably, those
with between one and three publications account for over
90% of the total data.

FIGURE 4. Number of authors grouped by different publication outputs.
The x-axis represents different categories of publication output, while the
y-axis indicates the number of authors falling into each category.Note
that the last category groups the data shown in Figure 3.

The number of citations of each author is just as important
as their number of publications. Figure 5 provides the top
11 authors ranked by their citation numbers. There is a
notorious correlation between the number of publications
and the number of citations, as over 60% of the names
from this figure also appeared in Figure 3. Exceptions to
this trend, i.e., authors among the top in published articles
but not in citations, include Chen G., Park J., Ortiz-Bayliss
J.C., and Amaya I. Conversely, authors such as Qu R., Sabar
N.R., Ayob M., and Hildebrandt T., despite publishing fewer
than seven papers during the observation period, are among
the most cited. Additionally, we would like to highlight a
couple of notable contributors. ZhangM. is the leading author
in terms of both the number of publications and citations.
Kendall G., in contrast, has achieved nearly 350 citations with
just seven publications.

Finally, a closer look at these publications reveals that most
publications involve Victoria University in New Zealand,
which makes it the leading entity on the topic. It is followed
by the University of Nottingham in England and Tecnológico
de Monterrey in Mexico.

B. SYSTEMATIC CLASSIFICATION
We now jump to the data extracted from the papers, aiming
to answer the research questions laid out in Section III-B.
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FIGURE 5. Top 11 authors regarding the number of citations from
2012-2022 in Scopus.

The first research question addresses the classification of
hyper-heuristics. We observe how scientific reports distribute
over the three-fold classification of hyper-heuristics by
Burke et al. [21]. Figure 6 shows that most works do not
provide information about the training process of their
hyper-heuristics. However, from those that do, there has
been a slight preference for offline training methods. This
preference is reasonable, given that offline methods are
typically simpler and more stable. Notwithstanding, research
should aim towards online methods due to their greater
applicability to real-world scenarios. Similarly, the majority
of publications favor the selection of pre-defined heuristics
over the generation of new ones. Additionally, there is a
notable preference for perturbative heuristics, which are
featured in over 65% of the analyzed works. This trend is
logical given that many of these studies are grounded in
evolutionary computation, which incorporates perturbation
strategies to enhance solution quality.

FIGURE 6. Classification of the hyper-heuristics used across all the
215 reviewed papers, following a three-fold classification as proposed
by [21]. Learning refers to the learning process used to enhance the
hyper-heuristic.A heuristic set refers to how the hyper-heuristic uses
existing heuristics, and a heuristic refers to the nature of the available
heuristics.

The second research question aims to examine the strate-
gies used to power hyper-heuristics. Figure 7 depicts that

evolutionary computation, metaheuristics, search algorithms,
and learning algorithms are the most common complemen-
tary strategies, representing nearly 90% of publications.
Most publications employed these methods for generating
new heuristics or selecting the most effective heuristics
for specific scheduling problems, particularly evolutionary
computation and metaheuristics. The remaining 10% of
publications, classified as Other, include less common
strategies that appear in less than 1% of the works, such as
simple heuristics, graph theory, and Markov models.

FIGURE 7. Distribution of employed strategies for powering
hyper-heuristics to solve scheduling problems across 215 reviewed
papers from the last 10 years.

The third research question focuses on the distribution
of scheduling problems. Our systematic process identified
over 100 distinct scheduling configurations. This many SPs
come from adapting such a scheduling scheme to a specific
scenario, for example, hospitals, schools, industries, etc. For
the sake of simplicity, we grouped variations of the same
fundamental problem —like flexible job shop and dynamic
job shop— under a single category. Figure 8 shows that job
shop and timetabling are currently the first and second
most popular SPs targeted by HHs. Following these are flow
shop, project scheduling, and workflow. The
Other category encompasses SPs below ten publications,
including specialized areas like nurse rostering, movie scene
scheduling, and online scheduling. There is no surprise that
job shop, a standard within scheduling problems, continues
to be a primary focus of research.

The fourth research question examines the contrast
between single- andmultiple-objective-oriented publications.
Our analysis reveals that single-objective functions predom-
inate, representing 67% of the publications, as illustrated
in Figure 9. The predominance of single-objective publi-
cations in scheduling problem research can be attributed
to several factors. First, single-objective functions offer
simplicity and clarity, facilitating easier problem formulation.
Specifically, objectives like makespan are straightforward
and provide a clear metric to validate the feasibility of a
schedule. Additionally, multi-objective optimization exhibits
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FIGURE 8. Number of publications per type of scheduling problem in the
past 10 years.

methodological challenges, especially when developing new
heuristic methods, which may favor the less complex single-
objective approach.

The next question strives to find the most relevant
objectives. Figure 10 highlights the ones our system found
across all entries. In particular, makespan emerges as the
most preferred objective, appearing in nearly 50% of the
publications. This preference is well-founded, as makespan
provides a direct measure of a schedule’s total completion
time, a critical factor in many operational contexts. The
Other category encompasses less frequently used objec-
tives, such as idle time, decision time, and error percentage,
each below seven publications.

FIGURE 9. Distribution of documents in terms of the number of
objectives associated with the objective function used during the training
phase of the respective hyper-heuristic models.

Some studies on HH methods extend beyond theoreti-
cal research, demonstrating their application in real-world
scheduling challenges. The final research question aims to
identify the application areas targeted by each publication.
Figure 11 shows a visual summary of our findings, where
the size and frequency of words indicate the prevalence
of each area within the publications. While a significant
portion of the research remains theoretical, notable practical
applications are seen in manufacturing and cloud computing,
with 27 and 14 documents, respectively. Manufacturing
emerges as the predominant field for applying scheduling
solutions, largely due to the prevalence of JSS, a common
scenario in this sector. Healthcare, fog computing, and

FIGURE 10. Most used performance metrics across all the 215 reviewed
papers.

aviation follow the list in terms of publication. Still, each
of them only provide two entries. Thus, these applications
lag significantly behind manufacturing and cloud computing.
Additionally, fields like cloud computing, healthcare, and
aviation demand exceptionally precise scheduling to ensure
efficient operations. This underscores the critical need for
robust scheduling approaches that can handle the complex
requirements of these industries.

FIGURE 11. Most relevant applications across the analyzed papers.

C. RELATIONS AND TRENDS
This subsection highlights the most significant relationships
and trends identified in our analysis outside the research
questions. As stated in Section III-C, we examined data
points in pairs to discern patterns in the application of hyper-
heuristics. Our first standout involved the overlap of two
classifications of hyper-heuristics: heuristic set (selection
or generation) and heuristic classification (constructive or
perturbative). According to Figure 12 the predominant com-
bination involves selection hyper-heuristics with perturbative
heuristics, with the next most common being generation
hyper-heuristics paired with perturbative heuristics. The
dominance of the perturbative attribute across both con-
figurations can be largely attributed to the widespread use
of evolutionary computation methodologies, which rely on
perturbative strategies to evolve solutions progressively.
Similarly, in Figure 13, we show the relation between
HH classification and the type of SPs. A clear prefer-
ence emerges for perturbative over generative approaches,
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particularly noted in job shop and other scheduling domains.
This indicates that perturbative hyper-heuristics, which
refine solutions through iterative modifications, are highly
valued for enhancing solution quality within scheduling
environments. Furthermore, selection-based hyper-heuristics
dominate generation-based strategies, suggesting that when
an extensive pool of established heuristics is available,
selecting the optimal heuristic is more effective and compu-
tationally efficient than generating new ones. These trends
are consistent with the remaining scheduling problems:
flow shop, workflow, and project scheduling. However,
these specialized problems show fewer instances, hint-
ing at potential gaps in the literature regarding applying
current hyper-heuristic frameworks to these areas. More-
over, this analysis hints that expanding the application
of generative and innovative heuristic strategies could
address existing deficiencies and foster advancements in
the field, ultimately leading to more robust and versatile
scheduling solutions across a broader spectrum of real-world
applications.

FIGURE 12. Relation between two of the hyper-heuristic classifications
proposed by Burke et al. [21] over the examined documents.Selection or
generation determines whether a hyper-heuristic selects heuristics or
generates new ones. Perturbative or constructive dictates the nature of
the heuristic: a constructive heuristic builds a solution from scratch,
whereas a perturbative heuristic modifies an existing one.

FIGURE 13. Distribution of manuscripts based on the classical
grouping [21] and per scheduling problem.

As a second approach, we analyzed which algorithms are
often used in scheduling problems. Figure 14 shows that for
job shop (the most common scheduling problem), the pre-
ferred algorithms powering HHs are those within the scope of

FIGURE 14. Distribution of the techniques used for powering
hyper-heuristics, per scheduling problem, across all documents. The total
exceeds 215 because certain documents targeted more than one
scheduling problem.

FIGURE 15. Overlapping the performance metrics and the objectives
across all 215 papers. Totals do not add up to 215 because certain works
used more than one performance metric.

evolutionary computation. On the other hand, metaheuristics
and search algorithms are the preferred algorithms for
timetabling (the second most common scheduling problem).
For other scheduling categories, such as flow shop, project
scheduling, and workflow, the choice of complementary
strategies shows amore uniform distribution. Notably, project
scheduling predominantly utilizes evolutionary computation,
highlighting its suitability for the complex and dynamic
nature of project management tasks. Meanwhile, metaheuris-
tics dominate in the Other category, which encompasses
less frequently studied scheduling problems, indicating
their versatility and robustness in tackling a diverse array
of less conventional scheduling challenges. These results
suggest that algorithms within evolutionary computation and
metaheuristics pair appropriately with HHs, reflecting both
the adaptability and effectiveness of these computational
strategies in optimizing scheduling processes.

Finally, we analyzed the correlation between the optimiza-
tion objectives and their application within single or multiple-
objective environments. We identified whether specific
objectives were predominantly used in isolation or as part
of a broader, multi-objective optimization strategy. Figure 15
reveals that researchers apply single and multiple approaches
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at comparable rates for most objectives. However, makespan
is an exception, predominantly employed in single-objective
contexts. This preference likely stems from its widespread
acceptance as a comprehensive measure of efficiency in
scheduling problems, effectively demonstrating the success
of solutions when applied within hyper-heuristic frameworks.
Conversely, less common metrics such as performance score,
decision time, and earliness are rarely utilized independently,
indicating their limited applicability or specificity to certain
scheduling challenges.

V. CONCLUSION
This work has meticulously evaluated 215 publications
from 2012 to 2022, focusing on employing hyper-heuristics
to scheduling problems. Our analysis involved a detailed eval-
uation of various aspects, including hyper-heuristic model
classification, the complementary strategies employed, the
types of scheduling problems addressed, and their per-
formance metrics. Our findings not only underline the
prevalence of job shop scheduling and timetabling as
dominant research areas, which represent 45% of the
documents, but also highlight the typical use of selection
hyper-heuristics combined with perturbative heuristics. Evo-
lutionary computation has emerged as a leading strategy,
reinforcing its effectiveness in developing robust scheduling
solutions.

The analysis revealed a pronounced concentration of
research output from New Zealand, with significant con-
tributions from researchers like Zhang M., emphasizing
regional leadership in this domain. However, our review
identified notable gaps, particularly in the diversity of
hyper-heuristic configurations and the under-utilization of
specific performancemetrics like energy consumption. These
areas offer fertile ground for future research, potentially
driving advancements toward environmentally sustainable
scheduling practices.

Furthermore, the predominance of traditional performance
metrics, such as makespan and tardiness, alongside the
limited number of documents for industries like aviation,
education, and healthcare, suggests a critical avenue for
expanding the applicability of thesemethodologies. By bridg-
ing the gap between theoretical research and practical
applications, future studies could foster the development
of innovative hyper-heuristic approaches that cater to the
dynamic nature of modern scheduling needs.

In conclusion, while this field has seen considerable
advancements, the evolving complexity of scheduling prob-
lems across various industries calls for continued innovation
in hyper-heuristic strategies. Future research should aim
to explore underrepresented areas, employ a more com-
prehensive array of performance metrics, and strengthen
the connection between hyper-heuristic research and its
real-world applications. This direction promises to enhance
the efficiency and effectiveness of scheduling solutions
and broaden hyper-heuristics’ impact in solving real-world
problems.
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