
Received 24 December 2024, accepted 13 January 2025, date of publication 17 January 2025, date of current version 23 January 2025.

Digital Object Identifier 10.1109/ACCESS.2025.3530974

Rethinking Exploration and Experience
Exploitation in Value-Based Multi-Agent
Reinforcement Learning
ANATOLII BORZILOV 1,2, ALEXEY SKRYNNIK1,2,3, AND ALEKSANDR PANOV 1,2,3
1Federal Research Center ‘‘Computer Science and Control’’ of the Russian Academy of Sciences, 117312 Moscow, Russia
2Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
3AIRI, 121170 Moscow, Russia

Corresponding author: Anatolii Borzilov (borzilov.av@gmail.com)

This work was supported by the Ministry of Science and Higher Education of the Russian Federation under Project 075-15-2024-544.

ABSTRACT Cooperative Multi-Agent Reinforcement Learning (MARL) focuses on developing strategies
to effectively train multiple agents to learn and adapt policies collaboratively. Despite being a relatively new
area of research, most MARL methods are based on well-established approaches used in single-agent deep
learning tasks due to their proven effectiveness. In this paper, we focus on the exploration problem inherent in
many MARL algorithms. These algorithms often introduce new hyperparameters and incorporate auxiliary
components, such as additional models, which complicate the adaptation process of the underlying RL
algorithm to better fit multi-agent environments. We aim to optimize a deep MARL algorithm with minimal
modifications to the well-known QMIX approach. Our investigation of the exploitation-exploration dilemma
shows that the performance of state-of-the-art MARL algorithms can be matched by a simple modification of
the ϵ-greedy policy. This modification depends on the ratio of available joint actions to the number of agents.
We also improve the training aspect of the replay buffer to decorrelate experiences based on recurrent rollouts
rather than episodes. The improved algorithm is not only easy to implement, but also aligns with state-of-the-
art methods without adding significant complexity. Our approach outperforms existing algorithms in four of
seven scenarios across three distinct environments while remaining competitive in the other three.

INDEX TERMS Exploration, multi-agent reinforcement learning, value based methods.

I. INTRODUCTION
Multi-Agent Reinforcement Learning (MARL) is an emerg-
ing field in artificial intelligence that aims to develop robust
strategies for training multiple agents to learn and adapt
their policies collaboratively [1], [2]. MARL methods are
designed for both antagonistic and cooperative problems.
Both formulations require taking into account the actions of
other agents, and most practical applications also work under
conditions of partial observability, where information about
the goals and actions of other agents is not fully known.

Notable examples ofMARL success include its application
to complex tasks such as autonomous driving, where multiple

The associate editor coordinating the review of this manuscript and

approving it for publication was Qiang Li .

vehicles must coordinate to navigate, as demonstrated by the
Nocturne framework [3]. Examples of important applications
of the multi-agent paradigm include IMP-MARL, which
provides a platform for evaluating the scalability of coopera-
tive MARL methods responsible for scheduling inspections
and repairs of specific system components to minimize
maintenance costs [4]. Another example, MATE addresses
target coverage control challenges in real-world scenarios
by presenting an asymmetric cooperative-competitive game
with two sets of learning agents, cameras, and targets,
each with opposing goals [5]. These successes highlight
MARL’s potential for solving real-world problems that
require coordinated action among multiple agents.

Despite these successes, even for tasks that are close
to real-world applications, MARL algorithms are often

13770

 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 13, 2025

https://orcid.org/0009-0000-7032-7314
https://orcid.org/0000-0002-9747-3837
https://orcid.org/0000-0002-1899-2808

A. Borzilov et al.: Rethinking Exploration and Experience Exploitation in Value-Based MARL

TABLE 1. List of notations.

tested in game-like environments. For example, the StarCraft
Multi-agent Challenge (SMAC) and SMACv2 simulators are
based on the strategy game StarCraft II,1 in which teams
of agents work together to defeat opposing groups [6], [7].
Similarly, research in Google Football demonstrates the
applicability of MARL to complex, dynamic tasks [8].
Although relatively new, MARL methods often leverage
basic techniques from single-agent deep reinforcement
learning tasks due to their proven success.

One of the key challenges in designing MARL algorithms
is to account for stochasticity in the set of experiences from
the environment on which the agent is trained. In addition
to changes in the agent’s own policy, which updates the
distribution of observations it receives, the policies of other
agents change dynamically. This leads to difficulties in
adapting classical statistical learning methods, including
neural networks, toMARL problems. Another core challenge
in MARL is the exploration problem, which becomes
increasingly difficult in complex scenarios that require
sophisticated cooperation amongmultiple agents. Agents risk
falling into local optima, preventing them from acquiring the
complex strategies needed to solve the problem. While the
common approach to exploration in value-based MARL is
the ϵ-greedy strategy [9], a variety of novel methods, such
as MAVEN [10] and SMMAE [11], focus on coordinated
exploration.

In our paper, we focus on the popular value-based method
called QMIX [12]. This method has become the theoretical
and technical foundation for many MARL approaches [11],
[13], [14], [15], [16]. First, we investigate how the exploration

1StarCraft and StarCraft II are trademarks of Blizzard EntertainmentTM.

strategy of value-based methods can be improved and
propose a simple approach based on the number of available
joint actions. Second, we examine the implementation of
experience exploitation, which is often not well-articulated
in the literature. We address how to effectively sample data
from the replay buffer for methods using recurrent networks.
These networks are vital in MARL, as they allow agents to
retain historical information essential for decision-making
in partially observable environments typical of multi-agent
systems.

To summarize, we make the following contributions:
Contribution 1: We propose a novel exploration strategy

for value-based methods, which leverages the number
of available joint actions, improving the exploration-
exploitation trade-off.
Contribution 2: We analyze the under-explored area of

experience exploitation in value-based MARL methods,
specifically focusing on how to effectively sample data from
the replay buffer when recurrent networks are used.
Contribution 3: We extensively study our proposed

modifications on two benchmarks, SMAC and POGEMA,
demonstrating that our approach achieves comparable or
even superior results to state-of-the-art value-based MARL
methods.

The paper is organized as follows: Section II outlines
the background of multi-agent reinforcement learning field,
Section III provides a review of related literature, Section IV
describes the methodology, and Sections V, VI details the
experimental setup and results.

II. BACKGROUND
This paper addresses the problem of multi-agent cooper-
ative tasks, formalized as decentralized partially observ-
able Markov decision process (Dec-POMDP) tuple G =
⟨S,A,U ,P, r,Z ,O, n, γ ⟩. State s ∈ S describes the complete
state of the environment at the moment. At each timestep
each agent a ∈ A ≡ 1, . . . , n chooses an action ua ∈ U ;
chosen actions of all agents form a joint action u ∈ U ≡ Un.
These actions result in environment transition to a new state
according to the transition function P(s′|s, u) : S ×U × S →
[0, 1], at each timestep t . The rewards are given according to
the reward function r(s,u) : S × S → R, which is shared by
all agents, and γ ∈ [0, 1) is a discount factor.
At each timestep, each agent a receives an individual

observation za ∈ Z according to the observation function
O(s, a) : S × A → Z . Each agent maintains an
action-observation history τ a ∈ T ≡ (Z ×U)∗, on which the
agent’s policy πa(ua|τ a) : T × U → [0, 1] is conditioned.
The joint policy π associated with an action-value function
Qπ (st ,ut) = Est+1:∞,ut+1:∞[Rt |st ,ut], where Rt =∑
∞

i=0 γ irt+i represents the discounted return. The training
objective is to find the optimal action-value function.

DQN [17] is a popular algorithm for single-agent tasks,
which learns agent’s action-value function. For multi-agent
tasks, we learn the joint action-value function Qtot (τ t ,ut , θ),
where τ ∈ T is a joint action-observation history and θ are

VOLUME 13, 2025 13771

A. Borzilov et al.: Rethinking Exploration and Experience Exploitation in Value-Based MARL

network parameters. During learning, the replay buffer D,
consisted of tuples (τ t ,ut , rt , τ t+1), is utilized. Thus, the
network parameters θ will be learned by the TD error:

L(θ)=E(τ t ,ut ,rt ,τ t+1)∼D

[
r + γ max

ut+1
Qtot (τ t+1, at+1, θ−)

]2
,

(1)

where θ− are the parameters of the target network that are
periodically updated with θ .

One of the core issues of cooperative MARL is that simul-
taneous learning of multiple agents induces non-stationarity
of the environment. That leads to the problem that decen-
tralized learning of multiple agents is unstable. To address
this issue and improve training stability under non-stationary
conditions, the centralized training with decentralized exe-
cution (CTDE) paradigm was introduced. According to
this approach, the execution is decentralized, which means
that each agent a chooses actions according to its local
action-observation history τ a. Despite that, the training is
centralized, and during training the learning algorithm has
the access to the state s of the environment. In order to allow
each agent a to participate in a decentralized execution, it is
important to assert that:

argmax
u

Qπ (s,u)

= (argmax
u1

Q1(τ 1, u1) . . . argmax
un

Qn(τ n, un)) (2)

One of the popular methods to solve the problem is
QMIX [12]. This method is a variant of DQN [17] for
multiagent tasks, and is based on the ideas of VDN [18]. For
each agent, QMIX uses a DRQN network to calculate the
individual value function Qa(τ a, ua). These networks receive
the current observation as input at each timestep. QMIX
then employs a mixing network, which takes the outputs of
the agents’ networks as input and produces the total value
Qtot (τ ,u). The weights of the mixing network are generated
by a hypernetwork based on the current state and are non-
negative. The use of non-negative weights in the mixing
network ensures that ∂Qtot

∂Qa
>= 0,∀a ∈ A, which in turn

guarantees condition (2).

III. RELATED WORK
The exploration-exploitation dilemma in MARL is closely
related to similar challenges in deep RL. Many techniques
originally developed for single-agent settings have been
adapted for MARL. For instance, curiosity-driven explo-
ration, a method that enhances the exploration process, has
been effectively integrated into MARL to manage complex-
ities arising from multiple interacting agents. Additionally,
tools such as replay buffers and recurrent neural networks are
employed to better handle and utilize data collected during
agent interactions. However, while these adaptations improve
exploration and data utilization, they do not directly address
the non-stationarity problem inherent in MARL. Below,
we provide an overview of such techniques in single-agent RL

and their application in MARL, highlighting their strengths
and limitations in the multi-agent context.

A. EXPLORATION IN MARL
The exploration problem is a well-studied topic in rein-
forcement learning. Bootstrapped DQN [19] learns several
separate Q-value functions, and at the beginning of each
episode samples one of these functions. Then, the agent
follows the greedy policy for that sampled function. This
way, the method allows the agent to use temporally-extended
exploration during the whole episode. ϵz-greedy [20] mod-
ifies the ϵ-greedy method, and instead of sampling single
actions, it samples options of actions, which agent follows
for the number of steps that is sampled according to the
distribution z. Another approach is to use an intrinsic
reward to direct the exploration process. ICM [21] adopts
an inverse model to extract features out of inputs that
ignore uncontrollable aspects of the environment, and then
uses the prediction error of these features as an intrinsic
reward. VIME [22] uses Bayesian neural networks to
approximate environment dynamics and then maximizes the
information gain about the agent’s belief of environment
dynamics. VDM [23] models the stochasticity in dynamics
to enhance predictions and computes the intrinsic reward
using the environmental state-action transitions probabilities.
RND [24] computes the exploration bonus based on state
novelty, which is estimated by distilling a fixed randomly
initialized network into another one. State marginal match-
ing technique [25] (SMM) learns a policy to match its
state marginal distribution with a target state distribution.
NGU [26] computes intrinsic reward based on two com-
ponents: exploration bonus for lifelong novelty, which is
computed using RND, and episodic novelty bonus. To com-
pute the episodic novelty bonus, it uses episodic memory,
which contains all the visited states in the current episode.
Then, it encourages the agent to visit as many different
states as possible during a single episode. Agent57 [27],
being based on NGU, also learns a family of policies with
different degrees of exploration and exploitation. It uses
an adaptive meta-controller to choose from these policies,
which allows to control the intensity of exploration during
the training process. Instead of exploring novel states,
SMiRL [28] tries to minimize a surprise from new states,
thus developing behavior that decreases entropy. Such an
approach allows the learning agent to develop meaningful
skills in unstable environments, where unexpected events
happen on their own.

Generally, multi-agent methods try to adopt existing
single-agent approaches for exploration. LIIR [29] uses an
individual intrinsic reward for each agent, which allows
the agents to be stimulated differently. The parameters of
intrinsic rewards are learned using the centralized critic to
maximize the team reward. EMC [30] utilizes a curiosity
module, which is trained to predict individual Q-values of
agents. These prediction errors are used as additional intrinsic
rewards. Wang et al. [31] introduce two methods that are

13772 VOLUME 13, 2025

A. Borzilov et al.: Rethinking Exploration and Experience Exploitation in Value-Based MARL

based on measuring of the interactions between agents to
compute intrinsic rewards: EITI uses the mutual informa-
tion between agents’ trajectories, and EDTI quantifies the
influence of an agent on expected returns of other agents.
MAVEN [10] uses a latent variable, which is generated by
a hierarchical policy, to perform coordinated exploration
in different modes. Then, MAVEN maximizes the mutual
information between the observed trajectories to achieve
diverse behavior.

CMAE [32] utilizes restricted space exploration and
shared goals. It first explores goals from a low-dimensional
restricted space and then trains exploration policies to reach
these goals, which represent under-explored states. This
method showed significant improvement in sparse-reward
environments. SMMAE [11] enhances exploration in two
different ways. Firstly, it introduces an intrinsic reward based
on SMM. Secondly, it uses adaptive exploration, and bases
each agent’s probabilities of choosing random actions on
correlation between agents. It predicts the actions of each
agent based on other agents’ observations to measure the
correlation between them and increases the probability of
choosing random actions if the correlation is too high.

B. EXPERIENCE EXPLOITATION IN MARL
While classic algorithms during training process replay
whole episode sequences, it may create number of practical
issues because of varying episode length and correlated states
in trajectories. To solve this issue, R2D2 [33] trains on
sequences of transitions of fixed length, which overlap by
half of their length and never cross boundaries of the episode.
Though that method allows to overcome some issues, which
are created by learning on the whole episodes, it also creates
an issue of necessity to properly initialize hidden recurrent
states during training. R2D2 introduces two strategies to solve
this issue: storing the recurrent state in replay buffer, and
using ‘‘burn-in’’ phase during training, i.e. using the first half
of the training sequence only for initialization of the recurrent
states, and apply the training objective to the second half of
the sequence.

Number of methods also utilizes prioritized experience
replay (PER) [34]. Ape-X [35] suggests to use the absolute
TD error for experience priorities. R2D2 [33] and R2D3 [36]
use the mixture of the maximum absolute TD error and the
mean TD error in the sequence.

Most works focused on modifying experience replay
consider the single-agent domain, though some adopt this
concept for multi-agent tasks. MAC-PO [37] uses weights
for weighted error and samples training transitions with a
uniform distribution. Reference [38] adopts PER for multi-
agent tasks, but without recurrence, setting priorities for
each transition. Number of methods, like QMIX [12] and its
derivatives [10], [11], [13], sample for training uniformly full
episodes. To the best of our knowledge, there are no works
that consider modifying experience replay to use fixed-length
sequences for training MARL approaches, with or without
prioritization.

IV. METHOD
This section outlines the key methodological advancements
introduced in our research to enhance exploration and training
efficiency in reinforcement learning. The scheme of the
proposed approach is sketched in Figure 1. We first present a
novel modification to the traditional ϵ-greedy policy, where
the exploration probability is dynamically adjusted based on
the count of available joint actions.

Following this, we describe our enhanced replay buffer
strategy designed to improve the training process’s efficiency
and stability. Instead of relying on full episodes, we utilize
overlapping sequences of fixed length, allowing for more
effective learning across episode boundaries.

A. MODIFICATION OF ϵ-GREEDY POLICY
As ϵ-greedy policy uses a constant value of a probability
of choosing random actions ϵ, it may be hard to adapt the
exploration degree to the current environment situation. The
number of available to agents actions may vary in some
environments, and the number of agents may change during
the episode as well. The varying number of the available joint
actions leads to the necessity of dynamically adaptation of the
exploration extent in order to properly explore environment
states.

In contrast to ϵ-greedy policy, where a constant value of ϵ is
used, we compute the exploration probability ϵ using the
available actions count.We assume that themore joint actions
U are available, the more intense exploration it is required
to find the optimal strategy. According to that reasoning,
we introduce the following way to compute the value of ϵt :

ϵt = tanh(α ·
√
log(|Ut |)) (3)

where |Ut | is a count of the available joint actions at the step t;
α is a constant hyperparameter. Also, we set minimum and
maximum boundaries ϵmin and ϵmax , so that ϵt would always
stay in reasonable limits.

Scaling the value of ϵt on available joint actions count may
allow adapt exploration intensity to the current state. In some
environments, like SMAC [6], number of actions, available
to agents, may greatly vary.

B. REPLAY BUFFER ENHANCEMENT
Replay buffer D consists of a fixed number of episodes’
steps D. Instead of training on full episodes, we train using
sequences of steps of fixed length m, in order to decrease the
dependency of the learning process on the episodes length.
These sequences aren’t restricted by episodes boundaries and
may contain steps of different episodes. At the beginning of
each train iteration, recurrent state is initialized to zero. The
first half of each sequence is used for the initialization of the
recurrent state, and the training objective is only applied to
the second half of a sequence. If a sequence contains parts of
different episodes, at the step of switching between episodes
the recurrent state is zero initialized again. This approach
helps decorrelate experiences during training, resulting in
more diverse and representative training data. As a result,

VOLUME 13, 2025 13773

A. Borzilov et al.: Rethinking Exploration and Experience Exploitation in Value-Based MARL

FIGURE 1. The scheme of the modified QMIX approach presents three alternating phases of learning:(a) This phase highlights how data is presented in
the replay buffer. For each state, the tuple consists of agents’ observations. For clarity, additional information stored in the replay buffer-such as rewards,
episode termination and truncation flags, selected actions, and action masking-is excluded. Unlike the original QMIX approach, our modifications involve
sampling data slices across multiple episodes (rather than training on entire episodes). This forms a batch of a specific length, consisting of two parts: a
warming-up sequence (used to better initialize the recurrent network’s hidden state ht) and a training sequence (used for actual training). (b) A batch of
fixed size is sampled from the replay buffer and used to train the joint value function Qtot via hyper-networks through the mixing network. This process
also optimizes the agent networks using the global environment state, following the CTDE paradigm. Each agent has its own observation, but all agents
share the same network weights. (c) This phase describes how the Replay Buffer is filled with new experiences. It also highlights our extension to the
ϵ-greedy policy, where ϵ is adjusted based on the number of available joint actions |U t | for the entire team population, as described in equation (3).

correlations in the training data are mitigated, improving the
stability and generalization of the learning process. Also,
to decrease dependency on the environment, we run train
iterations after the constant number of rollout time-steps
performed.

The process of insertion of data in replay buffer is
described in Algorithm 1. As we sample a new episode of
length T , we need to store it in replay bufferD. Themaximum
amount of transitions that we store in D is D, so, if the size
of D exceeds that limit, we remove the oldest transitions.

We sample training sequences following the Algorithm 2.
As we train the network on batches of size B, we uniformly
choose B starting indices. Then, for each sampled index i

we put in batch B a sequence which consists of m transitions
starting from index i up to index i + m. If the value
i+ m exceeds the capacity of D, we select in the sequence
transitions from i up to the last transition stored in D, and
select the rest of transitions starting from the index 0 to fill
the sequence up to the size m.

V. EXPERIMENTAL SETUP
In this section, we present the detailed description of
the environments used for the evaluation of the proposed
modifications and overall setup description. We con-
sider three environments: SMAC [6], SMACv2 [7] and
POGEMA [39], [40].

13774 VOLUME 13, 2025

A. Borzilov et al.: Rethinking Exploration and Experience Exploitation in Value-Based MARL

Algorithm 1 Inserting Transitions in Replay Buffer
Input: List of transitions D, buffer size D
Output: List of transitions D

1 Sample transition tuples ρ ←{(
st , rt

{(
zat , u

a
t , z

a
t+1

)
|a = 1, . . . , n

})
|t = 0, . . . ,T − 1

}
for each step t = 0, . . . ,T − 1 do

2 if size(D) = D then
3 D← D[1 :] // Pop oldest index
4 end
5 D← concat(D, ρt)
6 end

Algorithm 2 Sample Transitions From Replay Buffer
Input: List of transitions D, sequence size m, batch

size B
Output: Batch of transitions B

1 B← () // Initialize batch as an
empty list

2 while size(B) < B do
3 i ∼ U(0, size(D)− 1) // Randomly sample

starting index of a sequence
4 if i+ m < size(D) then
5 b← D[i : i+ m]
6 else
7 b← concat(D[i :],D[: size(D)− i])
8 end
9 B← concat(B, b)
10 end

We use the QMIX [12] algorithm as the base method for
the proposed modifications. Our implementation is based
on PyMARL [6]. Following SMMAE [11], we changed
RMSProp [41] optimizer with Adam [42] optimizer with
default hyper-parameters.

At the beginning of training, we linearly anneal ϵ

from 1.0 to 0.05 over 50,000 steps. For methods without
the replay buffer modification, the buffer size is set to
5,000 episodes, and after sampling a new episode from the
environment, we select a batch of 32 episodes for training.
For methods with the replay buffer modification, for every
128 steps sampled from the environment, we select a batch of
64 sequences for training. Each sequence is 128 steps long,
with 64 steps used for the ‘‘burn-in’’ phase and the remaining
64 steps used for training. In the POGEMA environment, the
replay buffer size is set to 1,000 episodes or 800,000 steps.
The agents’ network architecture is the same as that of QMIX,
with a GRU [43] recurrent layer having a 64-dimensional
hidden state. The target network is updated every 200 training
episodes for methods without the replay buffer modification,
and every 10,000 steps for methods with the replay buffer
modification. The complete hyper-parameters setup is shown
in Table 2.

TABLE 2. The hyper-parameters of proposed modifications and base
version of QMIX algorithm.

The hyperparameters of QMIX, SMMAE, QPLEX [13]
andWQMIX [16] were selected based on their default imple-
mentations. Hyperparameters, specific for our approach,
including the value of α, the ϵmin and ϵmax , the sequence
length and the target update interval, were determined
through preliminary experiments. We selected the value of
α within the range of 0.01 to 0.05, the sequence length
from 16 to 256, the target update interval from 2,500 to
40,000, ϵmin was set to 0.05, and ϵmax was chosen from a
range of 0.1 to 0.5.

A. SMAC AND SMACv2 ENVIRONMENTS
SMAC [6] benchmark is focused on micromanagement task
of the popular game StarCraft II, where each unit is controlled
by a different agent in order to defeat the opponent army
controlled by a game’s build-in scripted AI. The game is
considered won if agents managed to defeat every enemy
unit within the time limit, and the quality metrics is win rate.
Initially, following SMMAE [11], we selected three scenarios
for the experiments on SMAC: 6h_vs_8z, 2c_vs_64zg, and
corridor. However, for 6h_vs_8z, we observed that the agent
learned to exploit the reward system. The enemies had
shields that regenerated over time, and under the standard
settings in SMAC, agents were rewarded for regeneration
of enemies’ shields as if it were damage. As a result,
it was more advantageous for agents to damage the shields
and then retreat out of the enemies’ line of sight, which
lead to low win rate. As it was a known issue, which
wasn’t planned to be fixed,2 we decided to replace the map

2https://github.com/oxwhirl/smac/issues/72

VOLUME 13, 2025 13775

A. Borzilov et al.: Rethinking Exploration and Experience Exploitation in Value-Based MARL

FIGURE 2. Screenshot examples of SMAC scenarios from the StarCraft II game: (left) Corridor; (middle) 2c_vs_64zg; (right) MMM2. In all scenarios, the
red units are controlled by RL agents, while the blue units are controlled by the game’s built-in AI. The RL agents are trained jointly during learning but
make independent decisions during testing, following the centralized training, decentralized execution paradigm.In the Corridor scenario, the
RL-controlled zealots must coordinate their movement towards the lower left corner of the map, where a narrow corridor is located. This positioning
allows them to defeat a large number of zerg units. In the 2c_vs_64zg scenario, the RL agents control two colossus, exploiting the units’ ability to
traverse high ground to defeat a large number of zergs. In the MMM2 scenario, a group of 2 marauders, 7 Marines, and 1 Medivac, controlled by RL
agents, attempt to defeat a larger group consisting of 3 marauders, 8 Marines, and 1 Medivac.

FIGURE 3. Illustration of a random POGEMA maps with a size of 16 × 16 and a population of 16 agents. The agents are represented as
colored filled circles, and their targets are shown as circles of the same color. Each agent has a single, unique target. The first image
shows the task from the agent’s perspective, where the rectangular area represents the field of view. e study a lifelong scenario, in which
an agent, upon reaching a target, is immediately assigned a new one. POGEMA is a challenging environment that requires high
generalization abilities from RL algorithms, as the placement of obstacles can vary. During testing, we used scenarios different from the
training set.

6h_vs_8z with a map MMM2, which is also considered to be
‘‘super-hard’’. Figure 2 includes screenshots of the selected
maps. The version of StarCraft II used for the evaluation
is SC2.4.10 (B75689).

Among the chosen scenarios the total number of actions of
each agent varied from 18 to 70, and number of agents varied
from 2 to 10. Given that, the maximum theoretical amount of
unique joint actions is 1810, though in actual experiments lots
of actions are often unavailable.

While SMAC remains a popular benchmark, it has
limitations, such as fixed starting positions and unit types.
It has been shown [7] that certain methods can learn only
sequences of actions, disregarding observations, yet still
solve some SMAC scenarios. To address these limitations, the
SMACv2 [7] environment was introduced. SMACv2 utilizes
procedural content generation, allowing agents trained with
these methods to achieve better generalization and solve a
wider range of scenarios.

We selected three SMACv2 scenarios for evaluation:
zerg_10_vs_11, protoss_10_vs_11, and terran_10_vs_11.

For these scenarios, we used the default parameters, including
unit type distributions and starting positions, as described in
the original SMACv2 publication.

B. POGEMA ENVIRONMENT
POGEMA [39] is a grid-based multi-agent pathfinding
environment where multiple agents must navigate to their
respective goals, with each goal considered reached when
an agent steps on it. The task of decentralized multi-agent
pathfinding is particularly challenging, as highlighted by
several specialized methods [44], [45], [46], [47], [48], [49].
The example of POGEMA environment is shown in Figure 3.
We consider the LifeLong scenario, where when an agent

accomplishes its goal, a new goal is set for it. There are
obstacles present on the map, and agents cannot pass through
a cell occupied by another agent, which necessitates adopting
cooperative behavior to maximize rewards. We use random
generated maps for training, which means that the agents’
training goal is not to memorize the map, but to be able
to adapt to a new layout and find the way to the goal

13776 VOLUME 13, 2025

A. Borzilov et al.: Rethinking Exploration and Experience Exploitation in Value-Based MARL

FIGURE 4. Comparison of the mean test win rate of proposed modifications with QMIX and SMMAE algorithms on SMAC. QMIX-RB-P
stands for QMIX with replay buffer and exploration policy modifications; QMIX-RB stands for QMIX with replay buffer modification, and
QMIX-P stands for QMIX with exploration policy modification. Plots show the mean and 95% confidence interval across five runs. For the
corridor scenario, algorithms with enhanced exploration – QMIX-P, QMIX-RB-P and SMMAE – have better performance compared with
QMIX; replay buffer modification also improves the results, and the best performance is achieved by QMIX-RB-P. For the 2c_vs_64zg
scenario, replay buffer modification leads to worse performance, and the other algorithms have similar results. In the MMM2 scenario,
QMIX-RB-P has the steepest learning curve, with similar final performance across algorithms.

on an unknown map. The quality metric used is throughput,
i.e., the ratio of the number of the accomplished goals (by all
agents) to the episode length.

For this experiment, we do not consider the exploration
policy modification as it depends on the current number
of available actions, which is constant for POGEMA
environment – this means that the usage of the modified
exploration policy would still result in a constant value of ϵ.

VI. EXPERIMENTAL RESULTS
In this section, we present our experimental results on
SMAC [6] and POGEMA [39] benchmarks. As we study
the effectiveness of QMIX [12] method with the proposed
modifications of the exploration policy and replay buffer,
we consider the version of QMIX with both of the modifica-
tions, QMIXwith only replay buffer modification, andQMIX
with only exploration policymodification. The source code of
these methods is available at.3

A. COMPARISON ON SMAC
To study the impact of the modified exploration policy
and replay buffer modification, we experiment on different
SMAC [6] scenarious, and compare results with QMIX [12]
and SMMAE [11]. Here, SMMAE is a specialized approach
that enhances the exploration abilities of QMIX. We also
conduct ablation experiments to study the impact of each
algorithm modifications separately, and here the QMIX ver-
sionwith replay buffermodification is called hereQMIX-RB;
QMIX version with exploration policy modification is called
QMIX-P, and QMIX with both of these modifications is
QMIX-RB-P.

Following [11], we use in our experiments QMIX with
Adam optimizer with default hyperparameters. ϵ anneal time
is 50000 steps, and the exploration hyperparameter α is set
to 0.04 for corridor and 0.02 for 2c_vs_64zg and MMM2.

3https://github.com/tolyan3212/re-qmix

The results of the experiments on SMAC are shown
in Figure 4. On a super-hard scenario corridor poor QMIX
results compared to other algorithms indicate that additional
exploration significantly increases learning performance.
SMMAE and QMIX with adaptive ϵ achieve similar results,
and QMIX with both modifications has slightly better
performance. On a hard scenario 2c_vs_64zg a replay
buffer modification results in worse learning performance,
meanwhile QMIX, QMIX with modified exploration policy
and SMMAE achieve the similar results. We believe that the
performance decrease of the replay buffer modification in
this scenario may be due to inappropriate hyperparameters,
as we did not adjust the parameters of the replay buffer
modification for this specific scenario. On a super-hard
scenario MMM2 an algorithm with both exploration policy
and replay buffer modifications have a slightly steeper
learning curve, though the final winning rates of algorithms
are almost identical.

Comparison of the proposed algorithm with SMMAE,
which uses additional attention-based and VAE modules to
enhance exploration, shows that it’s possible to achieve the
similar exploration effectiveness with a simple in terms of
computation and implementation modification of ϵ-greedy
policy.

B. ADDITIONAL COMPARISON ON SMAC
We also conducted comparison of the proposed modifica-
tions with state-of-the-art value-based MARL algorithms,
as QPLEX [13] and WQMIX [16], which are not enhance
idea of QMIX further in other way.

The results are presented in Figure 5. The implementation
of QPLEX algorithm used in experiments was provided by
the repository ,4 and the implementation of WQMIX was
provided by the repository.5

4https://github.com/wjh720/QPLEX
5https://github.com/hijkzzz/pymarl2

VOLUME 13, 2025 13777

A. Borzilov et al.: Rethinking Exploration and Experience Exploitation in Value-Based MARL

FIGURE 5. Comparison of the mean test win rate of proposed modifications with state-of-the-art MARL algorithms QPLEX and WQMIX
on SMAC. QMIX-RB-P stands for QMIX with replay buffer and exploration policy modifications; QMIX-RB stands for QMIX with replay
buffer modification, and QMIX-P stands for QMIX with exploration policy modification. Plots show the mean and 95% confidence
interval across five runs. The corridor scenario proved to be too challenging for the QPLEX and WQMIX algorithms. In the 2c_vs_64zg
scenario, CW-QMIX performed relatively close to QMIX-RB and QMIX-RB-P, and QMIX-P with QPLEX showed the best results. In the
MMM2 scenario, QPLEX showed the worst results, CW-QMIX has a slightly worse performance compared to QMIX-RB and QMIX-P, while
QMIX-RB-P and OW-QMIX achieved the best results.

FIGURE 6. Comparison of the mean test win rate of the proposed modifications with the QMIX and SMMAE algorithms on SMACv2.
QMIX-RB-P represents QMIX with replay buffer and exploration policy modifications, QMIX-RB represents QMIX with the replay buffer
modification, and QMIX-P represents QMIX with the exploration policy modification. The plots display the mean and 95% confidence
interval across five runs. On zerg_10_vs_11, algorithms with the replay buffer modification demonstrate significantly better performance
compared to other algorithms. On protoss_10_vs_11, the results of all algorithms differ insignificantly. On terran_10_vs_11, algorithms
with the replay buffer modification show slightly better performance than those without it, while the exploration policy modification
slightly reduces performance; consequently, the QMIX-RB algorithm achieves the best results.

According to the results, the corridor map proved to be
challenging for both QPLEX and WQMIX algorithms to
solve during the training period. QPLEX showed competitive
results on the 2c_vs_64zg map but underperformed on
the MMM2 scenario. OW-QMIX performed similarly to
QMIX-RB-P on MMM2 and had a steep learning curve on
the 2c_vs_64zg map, although its final results on that map
were worse than those of QPLEX and QMIX-P. Overall,
CW-QMIX demonstrated slightly lower performance com-
pared to the other algorithms.

In summary, while algorithms such as QPLEX and
WQMIX may outperform QMIX with the proposed mod-
ifications on certain scenarios, their performance is less
stable across various scenarios, and these methods struggle to
succeed in more challenging scenarios, such as the corridor.

C. COMPARISON ON SMACv2
To further investigate the impact of the proposed mod-
ifications, we conducted experiments in the SMACv2

environment, comparing our approach with QMIX and
SMMAE. For this purpose, we selected three SMACv2
scenarios: zerg_10_vs_11, protoss_10_vs_11, and ter-
ran_10_vs_11, using the default configuration. As outlined
in the previous sections, QMIX with the replay buffer
modification is abbreviated as QMIX-RB, QMIX with the
exploration policy modification as QMIX-P, and QMIX with
both modifications as QMIX-RB-P.

The evaluation results on SMACv2 are shown in Figure 6.
The selected scenarios are asymmetric, meaning the enemy
has additional units, placing the agents at a disadvantage.
Consequently, these scenarios are particularly challenging
for the algorithms. On zerg_10_vs_11, QMIX, QMIX-P,
and SMMAE perform relatively similarly, while the algo-
rithms with the replay buffer modification (QMIX-RB and
QMIX-RB-P) demonstrate significantly better performance.
On protoss_10_vs_11, the performance of all algorithms
is relatively similar. On terran_10_vs_11, the modified
replay buffer slightly improves results, while the modified

13778 VOLUME 13, 2025

A. Borzilov et al.: Rethinking Exploration and Experience Exploitation in Value-Based MARL

exploration policy slightly reduces performance. SMMAE
performs comparably to QMIX, and the best performance on
this scenario is achieved by QMIX-RB.

In summary, algorithms with increased exploration, such
as SMMAE, QMIX-P, and QMIX-RB-P, without specific
parameter adjustments, perform the same or worse than their
counterparts using the plain epsilon-greedy policy (QMIX
and QMIX-RB). This suggests that the exploration enforce-
ment provided by SMMAE and the modified exploration
policy is too aggressive for the SMACv2 environment, where
the default epsilon-greedy policy provides sufficient explo-
ration. Conversely, the replay buffer modification improves
performance in the zerg_10_vs_11 and terran_10_vs_11 sce-
narios, while having minimal impact on protoss_10_vs_11.

D. COMPARISON ON POGEMA
To further study the impact of the replay buffer modification,
we conduct experiments on POGEMA environment with
large episode length of 1000 steps and with batch size 64. The
goal of that experiment is to simulate the situation, when the
environment’s episodes are very large and contain an amount
of information which is hard to process during the training.

FIGURE 7. Comparison of the mean average throughput on POGEMA with
large episodes. QMIX-RB stands for QMIX with replay buffer modification;
QMIX-ET stands for QMIX with early training start. Plots show the mean
and 95% confidence interval across five runs.QMIX-RB starts quickly
improving its performance from the beginning of training, achieving the
best results. QMIX-ET has a steeper learning curve compared to QMIX, but
it still takes a lot of time to achieve competitive results. Please note that
the average throughput can exceed 1.0.

We compared QMIX with proposed replay buffer modifi-
cation with other two versions of QMIX: one is a usual QMIX
implementation, where training starts when enough episodes
are sampled to form a full batch of the given size. The second
version of QMIX has no restrictions on the start of training,
so that training starts right after the first episode was sampled,
but with each next sampled episode the batch size is increased
up to 64. The results of that comparison are shown in Figure 7.
In this experiment, we use QMIXwith standard parameters

in an environment featuring long episodes. This leads to
poor training performance because a large amount of data

TABLE 3. The average throughput of the trained models was evaluated
on random POGEMA environment maps with varying agent counts.
Throughput was averaged over 500 episodes for each method. QMIX-ET
refers to QMIX with an early training start, QMIX-RB denotes QMIX with
replay buffer modifications. The QMIX-RB algorithm demonstrated better
performance across all scenarios.

is sampled for each batch. We attempted to address this
issue by removing the limitation on the number of sampled
episodes in the replay buffer, but the results were still worse
compared to proposed QMIX-RB approach. In contrast,
our algorithm demonstrated strong performance without
task-specific parameter tuning, highlighting its reduced
dependency on environment characteristics such as episode
length. This suggests that the proposed replay buffer modi-
fication simplifies hyperparameter selection, including batch
size, by mitigating episode length dependence.

We also evaluated the trained models on random maps
with varying agent counts to test their generalization ability.
The evaluation results are presented in Table 3. Initially,
as the number of agents increases, the average throughput
also increases because more agents are available to reach
their goals. However, when the number of agents becomes
too high, the map becomes overcrowded, making it more
difficult for agents to reach their goals, leading to a decrease
in throughput. Across all scenarios, QMIX-RB demonstrates
better performance, indicating that it has learned to generalize
more effectively.

VII. CONCLUSION AND LIMITATIONS
In this paper, we have investigated the impact of a modified
exploration policy and replay buffer modification in the con-
text of cooperative MARL, using the SMAC and POGEMA
environments as benchmarks. Our results show that these
modifications can significantly improve the performance
of the QMIX algorithm without introducing significant
complexity. Across seven different scenarios in three distinct
environments, our proposed approach outperforms other
algorithms in four scenarios while remaining competitive
in the other three. Our enhancements provide a streamlined
alternative to complex MARL methods, achieving results
comparable to state-of-the-art methods with minimal changes
to the original algorithm, thereby simplifying the adaptation
process for diverse multi-agent environments.

A promising direction for future research is the study
of prioritized replay buffers for MARL, with our proposed
modification serving as a potential first step in this area.
Additionally, we see large-scale MARL setups-where agents

VOLUME 13, 2025 13779

A. Borzilov et al.: Rethinking Exploration and Experience Exploitation in Value-Based MARL

train for over 1 billion steps in the environment-as an
underexplored area within the community.

A potential limitation of our work is the reliance on the
centralized training and decentralized execution paradigm,
which may be restrictive in settings where full state
information is unavailable or the state space is large. While
our current approach does not explicitly use local views,
it can be adapted to decentralized settings by leveraging local
agent actions, making it flexible for broader applications.
Additionally, our replay buffer modification can be used
independently of CTDE and is compatible with decentralized
approaches like Independent Q-Learning.

A further limitation is the lack of formal theoretical
guarantees regarding the exploration component. This could
be addressed by framing the exploration process as a
multi-armed bandit problem, where the number of available
arms changes at each time step. While this theoretical
perspective could provide more rigorous guarantees, fully
developing it within the scope of this paper would be
challenging.

REFERENCES
[1] C. Yu, A. Velu, E. Vinitsky, J. Gao, Y. Wang, A. Bayen, and Y. Wu,

‘‘The surprising effectiveness of PPO in cooperative multi-agent games,’’
in Proc. Adv. Neural Inf. Process. Syst., vol. 35, 2022, pp. 24611–24624.

[2] A. Skrynnik, A. Yakovleva, V. Davydov, K. Yakovlev, and A. I. Panov,
‘‘Hybrid policy learning for multi-agent pathfinding,’’ IEEE
Access, vol. 9, pp. 126034–126047, 2021. [Online]. Available:
https://ieeexplore.ieee.org/document/9532001/

[3] E. Vinitsky, N. Lichtlé, X. Yang, B. Amos, and J. Foerster, ‘‘Nocturne:
A scalable driving benchmark for bringing multi-agent learning one step
closer to the real world,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 35,
Jan. 2022, pp. 3962–3974.

[4] P. Leroy, P. G. Morato, J. Pisane, A. Kolios, and D. Ernst, ‘‘IMP-
MARL: A suite of environments for large-scale infrastructure management
planning via Marl,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 36,
Jan. 2023, pp. 1–11.

[5] X. Pan, M. Liu, F. Zhong, Y. Yang, S.-C. Zhu, and Y. Wang, ‘‘MATE:
Benchmarking multi-agent reinforcement learning in distributed target
coverage control,’’ in Proc. Int. Conf. Adv. Neural Inf. Process. Syst.,
vol. 35, 2022, pp. 27862–27879.

[6] M. Samvelyan, T. Rashid, C. Schroeder de Witt, G. Farquhar, N. Nardelli,
T. G. J. Rudner, C.-M. Hung, P. H. S. Torr, J. Foerster, and S. Whiteson,
‘‘The StarCraft multi-agent challenge,’’ 2019, arXiv:1902.04043.

[7] B. J. Ellis, S. Moalla, M. Samvelyan, M. Sun, A. Mahajan, J. Foerster, and
S. Whiteson, ‘‘SMACv2: An improved benchmark for cooperative multi-
agent reinforcement learning,’’ in Proc. Adv. Neural Inf. Process. Syst.,
vol. 36, Jan. 2022, pp. 1–16.

[8] Y. Song, H. Jiang, H. Zhang, Z. Tian, W. Zhang, and J. Wang, ‘‘Boosting
studies of multi-agent reinforcement learning on Google research football
environment: The past, present, and future,’’ 2023, arXiv:2309.12951.

[9] J. Hao, T. Yang, H. Tang, C. Bai, J. Liu, Z. Meng, P. Liu, and
Z. Wang, ‘‘Exploration in deep reinforcement learning: From single-agent
to multiagent domain,’’ 2021, arXiv:2109.06668.

[10] A.Mahajan, T. Rashid, M. Samvelyan, and S.Whiteson, ‘‘MAVEN:Multi-
agent variational exploration,’’ in Proc. Adv. Neural Inf. Process. Syst.,
vol. 32, Jan. 2019, pp. 1–20.

[11] S. Zhang, J. Cao, L. Yuan, Y. Yu, and D. Zhan, ‘‘Self-motivatedmulti-agent
exploration,’’ in Proc. Int. Conf. Auto. Agents Multiagent Syst., Jan. 2023,
pp. 476–484.

[12] T. Rashid, M. Samvelyan, C. S. de Witt, G. Farquhar, J. Foerster, and
S. Whiteson, ‘‘Monotonic value function factorisation for deep multi-
agent reinforcement learning,’’ J. Mach. Learn. Res., vol. 21, no. 1,
pp. 7234–7284, Jan. 2020.

[13] J. Wang, Z. Ren, T. Z. Liu, Y. Yu, and C. Zhang, ‘‘QPLEX: Duplex dueling
multi-agent Q-learning,’’ in Proc. Int. Conf. Learn. Represent., Jan. 2020,
pp. 1–7.

[14] H. M. R. U. Rehman, B.-W. On, D. D. Ningombam, S. Yi, and G. S. Choi,
‘‘QSOD: Hybrid policy gradient for deep multi-agent reinforcement
learning,’’ IEEE Access, vol. 9, pp. 129728–129741, 2021.

[15] K. Son, D. W. Kim, W. J. Kang, D. E. Hostallero, and Y. Yi, ‘‘QTRAN:
Learning to factorize with transformation for cooperative multi-agent
reinforcement learning,’’ in Proc. Int. Conf. Mach. Learn., Jan. 2019,
pp. 5887–5896.

[16] T. Rashid, G. Farquhar, B. Peng, and S. Whiteson, ‘‘Weighted QMIX:
Expanding monotonic value function factorisation for deep multi-agent
reinforcement learning,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 33,
Jan. 2020, pp. 10199–10210.

[17] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, ‘‘Human-level control through
deep reinforcement learning,’’ Nature, vol. 518, no. 7540, pp. 529–533,
2015.

[18] P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. Zambaldi,
M. Jaderberg, M. Lanctot, N. Sonnerat, J. Z. Leibo, K. Tuyls, and
T. Graepel, ‘‘Value-decomposition networks for cooperative multi-agent
learning based on team reward,’’ in Proc. Int. Conf. Auto. Agents
Multiagent Syst., vol. 3, Jul. 2018, pp. 2085–2087.

[19] I. Osband, C. Blundell, A. Pritzel, and B. Van Roy, ‘‘Deep exploration
via bootstrapped DQN,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 29,
Feb. 2016, pp. 1–11.

[20] W. Dabney, G. Ostrovski, and A. Barreto, ‘‘Temporally-extended ϵ-greedy
exploration,’’ 2020, arXiv:2006.01782.

[21] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell,
‘‘Curiosity-driven exploration by self-supervised prediction,’’ in
Proc. Int. Conf. Mach. Learn., 2017, pp. 2778–2787.

[22] R. Houthooft, X. Chen, Y. Duan, J. Schulman, F. D. Turck, and
P. Abbeel, ‘‘VIME: Variational information maximizing exploration,’’ in
Proc. Adv. Neural Inf. Process. Syst., vol. 29, Jan. 2016, pp. 1–16.

[23] C. Bai, P. Liu, K. Liu, L.Wang, Y. Zhao, L. Han, and Z.Wang, ‘‘Variational
dynamic for self-supervised exploration in deep reinforcement learning,’’
IEEE Trans. Neural Netw. Learn. Syst., vol. 34, no. 8, pp. 4776–4790,
Aug. 2023.

[24] Y. Burda, H. Edwards, A. Storkey, and O. Klimov, ‘‘Exploration by random
network distillation,’’ in Proc. Int. Conf. Learn. Represent., Jan. 2018,
pp. 1–14.

[25] L. Lee, B. Eysenbach, E. Parisotto, E. Xing, S. Levine, and
R. Salakhutdinov, ‘‘Efficient exploration via state marginal matching,’’
2019, arXiv:1906.05274.

[26] A. P. Badia, P. Sprechmann, A. Vitvitskyi, D. Guo, B. Piot,
S. Kapturowski, O. Tieleman, M. Arjovsky, A. Pritzel, A. Bolt, and
C. Blundell, ‘‘Never give up: Learning directed exploration strategies,’’ in
Proc. Int. Conf. Learn. Represent., Jan. 2020, pp. 1–17.

[27] A. P. Badia, B. Piot, S. Kapturowski, P. Sprechmann, O. Vitvitskyi,
Z. D. Guo, and C. Blundell, ‘‘Agent57: Outperforming the Atari human
benchmark,’’ in Proc. Int. Conf. Mach. Learn., vol. 1, Jul. 2020,
pp. 507–517.

[28] G. Berseth, D. Geng, C. Devin, N. Rhinehart, C. Finn, D. Jayaraman,
and S. Levine, ‘‘SMiRL: Surprise minimizing reinforcement learning in
unstable environments,’’ in Proc. Int. Conf. Learn. Represent., Dec. 2019,
pp. 1–18.

[29] Y. Du, L. Han, M. Fang, J. Liu, T. Dai, and D. Tao, ‘‘LIIR: Learning
individual intrinsic reward in multi-agent reinforcement learning,’’ in
Proc. Adv. Neural Inf. Process. Syst., vol. 32, 2019, pp. 1–9.

[30] L. Zheng, J. Chen, J. Wang, J. He, Y. Hu, Y. Chen, C. Fan, Y. Gao, and
C. Zhang, ‘‘Episodic multi-agent reinforcement learning with curiosity-
driven exploration,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 34,
Jan. 2021, pp. 3757–3769.

[31] T. Wang, J. Wang, Y. Wu, and C. Zhang, ‘‘Influence-based multi-agent
exploration,’’ in Proc. Int. Conf. Learn. Represent., Jan. 2019, pp. 1–12.

[32] I.-J. Liu, U. Jain, R. A. Yeh, and A. G. Schwing, ‘‘Coopera-
tive exploration for multi-agent deep reinforcement learning,’’ in
Proc. Int. Conf. Mach. Learn., Jan. 2021, pp. 6826–6836.

[33] S. Kapturowski, G. Ostrovski, J. Quan, R. Munos, and W. Dabney,
‘‘Recurrent experience replay in distributed reinforcement learning,’’ in
Proc. Int. Conf. Learn. Represent., Sep. 2018, pp. 1–12.

13780 VOLUME 13, 2025

A. Borzilov et al.: Rethinking Exploration and Experience Exploitation in Value-Based MARL

[34] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, ‘‘Prioritized experience
replay,’’ 2015, arXiv:1511.05952.

[35] D. Horgan, J. Quan, D. Budden, G. Barth-Maron, M. Hessel,
H. van Hasselt, and D. Silver, ‘‘Distributed prioritized experience
replay,’’ 2018, arXiv:1803.00933.

[36] T. Le Paine, C. Gulcehre, B. Shahriari, M. Denil, M. Hoffman, H. Soyer,
R. Tanburn, S. Kapturowski, N. Rabinowitz, D. Williams, G. Barth-
Maron, Z. Wang, N. de Freitas, and W. Team, ‘‘Making efficient
use of demonstrations to solve hard exploration problems,’’ 2019,
arXiv:1909.01387.

[37] Y. Mei, H. Zhou, T. Lan, G. Venkataramani, and P. Wei, ‘‘MAC-PO:
Multi-agent experience replay via collective priority optimization,’’ 2023,
arXiv:2302.10418.

[38] Y. Wang and Z. Zhang, ‘‘Experience selection in multi-agent
deep reinforcement learning,’’ in Proc. IEEE 31st Int. Conf. Tools
Artif. Intell. (ICTAI), Nov. 2019, pp. 864–870.

[39] A. Skrynnik, A. Andreychuk, A. Borzilov, A. Chernyavskiy, K. Yakovlev,
and A. Panov, ‘‘POGEMA: A benchmark platform for cooperative multi-
agent navigation,’’ 2024, arXiv:2407.14931.

[40] A. Skrynnik, A. Andreychuk, K. Yakovlev, and A. I. Panov, ‘‘POGEMA:
Partially observable grid environment for multiple agents,’’ 2022,
arXiv:2206.10944.

[41] T. Tieleman, ‘‘Lecture 6.5-rmsprop: Divide the gradient by a running aver-
age of its recent magnitude,’’ COURSERA, Neural Netw. for Mach. Learn.,
vol. 4, no. 2, p. 26, 2012.

[42] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
2014, arXiv:1412.6980.

[43] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, ‘‘Empirical evaluation
of gated recurrent neural networks on sequence modeling,’’ 2014,
arXiv:1412.3555.

[44] A. Andreychuk, K. Yakovlev, A. Panov, and A. Skrynnik, ‘‘MAPF-
GPT: Imitation learning for multi-agent pathfinding at scale,’’ 2024,
arXiv:2409.00134.

[45] Y. Wang, B. Xiang, S. Huang, and G. Sartoretti, ‘‘SCRIMP: Scalable com-
munication for reinforcement- and imitation-learning-based multi-agent
pathfinding,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS),
Oct. 2023, pp. 9301–9308.

[46] A. Skrynnik, A. Andreychuk, K. Yakovlev, and A. I. Panov, ‘‘Decen-
tralized Monte Carlo tree search for partially observable multi-agent
pathfinding,’’ in Proc. AAAI Conf. Artif. Intell., Jan. 2023, vol. 38, no. 16,
pp. 17531–17540.

[47] A. Skrynnik, A. Andreychuk, K. Yakovlev, and A. I. Panov, ‘‘When
to switch: Planning and learning for partially observable multi-agent
pathfinding,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 35, no. 12,
pp. 17411–17424, Dec. 2024.

[48] A. Skrynnik, A. Andreychuk, M. V. Nesterova, K. Yakovlev, and
A. I. Panov, ‘‘Learn to follow: Decentralized lifelong multi-agent
pathfinding via planning and learning,’’ in Proc. AAAI Conf. Artif. Intell.,
vol. 38, Jan. 2023, pp. 17541–17549.

[49] G. Sartoretti, J. Kerr, Y. Shi, G. Wagner, T. K. S. Kumar, S. Koenig, and
H. Choset, ‘‘PRIMAL: Pathfinding via reinforcement and imitation multi-
agent learning,’’ IEEE Robot. Autom. Lett., vol. 4, no. 3, pp. 2378–2385,
Jul. 2019.

ANATOLII BORZILOV received the M.S. degree
in computer science from MIREA–Russian Tech-
nological University, Moscow, Russia, in 2024,
and the Ph.D. degree from Moscow Institute of
Physics and Technology, Moscow.

Since 2023, he has been a Junior Researcher
with the Cognitive Dynamic System Laboratory,
Moscow Institute of Physics and Technology,
focusing on reinforcement learning and multi-
agent systems.

ALEXEY SKRYNNIK received the M.S. degree
in computer science from Rybinsk State Aviation
Technical University, Rybinsk, Russia, in 2017.
He defended his Ph.D. thesis in the field of arti-
ficial intelligence and machine learning, in 2023.

Since 2021, he has been a Senior Researcher
with the AIRI Institute, Cognitive AI Systems
Laboratory. His current research interests include
reinforcement learning, learning and planning, and
multi-agent systems.

ALEKSANDR PANOV received the M.S. degree
in computer science from Moscow Institute of
Physics and Technology,Moscow, Russia, in 2011,
and the Ph.D. degree in theoretical computer
science from the Institute for Systems Analysis,
Moscow, in 2015.

Since 2010, he has been a Research Fellow
with the Federal Research Center ‘‘Computer
Science and Control,’’ Russian Academy of Sci-
ences. Since 2018, he has headed the Cognitive

Dynamic System Laboratory, Moscow Institute of Physics and Technology.
He authored three books and more than 100 research articles. In 2021,
he joined the research group on neurosymbolic integration with the Artificial
Intelligence Research Institute. His academic interests include behavior
planning, reinforcement learning, embodied AI, and cognitive robotics.

VOLUME 13, 2025 13781

