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ABSTRACT The need for robotic agricultural automation has been driven by global population growth
and climate change. To efficiently evaluate and develop agricultural robots not limited to the growing
season, we developed a dynamics simulator that works fast on 3D point-cloud models of agricultural fields.
The point-cloud models have been widely used in recent agricultural research thanks to advances in aerial
photography technology. Therefore, the simulator can be easily applied to many agricultural fields. To
speed up the dynamics calculation on the dense point-cloud model, we developed a method to quickly
detect collision points using a grid table, and a method to calculate collision forces between the points
and robot meshes. The performance of the simulator was evaluated on an agri-field model (31 × 14 m2)
represented by 1.7× 106 points. The computation time of the simulation was 8.8 times faster than real time,
and the simulation accuracy compared to actual robot movements was ∼ 1 cm in Root Mean Square Error
(RMSE). The simulator in this study enables fast computation and accurate prediction of robot movements
on centimeter-resolution agri-field point-cloudmodels, supporting research on agricultural robots not limited
to the growing season.

INDEX TERMS Agribot, dynamics simulation, agricultural field, agricultural robot, point cloud.

I. INTRODUCTION
A. BACKGROUND
Global population growth and climate change causing
food supply shortages [1] require efficient, data-driven
precision agriculture [2]. Especially in Japan, the low food
self-sufficiency rate and labor shortage due to the aging
of farmers are serious problems [3]. Hence, automated
agriculture with robotics is urgently needed.

One reason making agricultural automation difficult is that
the growing season is limited. The growing season occurs
only a few times per year. Therefore, it takes many years to
develop, evaluate, and improve robots repeatedly.

Simulation is an effective tool to study agricultural robots
not limited to the growing season. In the field of agricultural
research, previous works on simulation include crop growth
modeling [4] and robot simulation tools [5], [6], [7].

The associate editor coordinating the review of this manuscript and

approving it for publication was Tao Liu .

B. PROBLEM
A problem with the existing simulation tools for agricultural
robots is the difficulty in directly handling point-cloud
field models. In recent agricultural research, the use of the
3D point-cloud data has become common thanks to the
popularization of aerial photography technology. However,
the existing dynamics engines plugged into the simulation
tools require mesh models.

A dedicated dynamics engine is required to efficiently
handle the point-cloud data due to the large number of points
as well as the different model formats. The field model used
in this work contained 1.7 × 106 points. The field size was
31 × 14 m2 with less than 2 × 2 cm2 resolution.
The 3D point-cloud models can be easily generated by

using commercial software [8] implementing Structure-from-
Motion (SfM) technology [9]. The technology is based on the
principle of triangulation using 2D aerial images. Thus, the
robot simulator specialized for the 3D point-cloud model can
be easily applied to many agricultural fields.
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FIGURE 1. High-Speed simulation technology and applications on 3D point-cloud models of agricultural fields generated from aerial images.

C. APPROACH
To efficiently perform simulations on the dense point-cloud
data, we developed the following two approaches:

1. Collision point retrieval near around the robot is
accelerated by tabling all points in a grid form.

2. Contact force is calculated by integrating the forces
between each point and the robot mesh without convert-
ing the point-cloud data to mesh data.

To evaluate the simulator, we conducted the following
three studies:

1. Evaluation of computational time and memory usage
required to compute a unit simulation time.

2. Evaluation of computational stability with respect to the
change of the simulation time step.

3. Evaluation of prediction error by comparing actual and
simulated robot positions.

Fig. 1 shows a conceptual diagram of this study. The
first step is to generate a 3D point-cloud model from aerial
images of the field using the SfM technology. Our simulator is
designed to work quickly on the 3D model. The applications
include data collection, learning, robot development and
performance evaluation regardless of the growing season.

The motivation of this research is to establish a fundamen-
tal technology to accelerate research on agricultural robots by
developing a simulator that operates at high speed on detailed
point-cloud models of arbitrary agricultural fields.

D. RELATED WORKS
To automate agriculture, robotization of agricultural machin-
ery (e.g., tractors) has been widely studied [10], [11], [12].
Agricultural machinery plays an important role in existing
agricultural systems. Therefore, its automation directly leads
to the automation of agriculture.

As a new element besides agricultural machinery, small
robots have been researched to perform automatic measure-
ments and weeding [13], [14], [15]. Unlike large agricultural
machines, small robots can enter the field late in the growing
season. Thus, they are expected to automate precise and
localized field management.

Aerial images from Unmanned Aerial Vehicles (UAV) and
satellites have been widely used in agriculture [16]. Deep

learning for image processing technology was used to predict
yields and diagnose soil conditions [17].

Unmanned Ground Vehicles (UGV) have also been used
to capture close-up images and to obtain three-dimensional
point-cloud data of the field [18]. Applications of UGV
include crop measurement using imagery and soil diagnosis
using soil sensors (e.g., soil penetration tester) [13], [14],
[15].

As an example of robotics research to improve agri-
cultural efficiency, we have developed a system to reduce
fertilizer use while maintaining yield through variable
fertilization [19] based on multi-point soil measurement by a
robot [20].

The use of robotic arms has become widespread in the
agricultural sector. Automating fruit harvesting with robotic
arms helps save labor in agriculture, as it is a labor-intensive
process usually performed manually. Applications of robotic
arm include eggplant [21] and apple harvesting [22].
To simulate the movement of these robots, the application

of existing robot simulation technology to agricultural
robots has been the subject of numerous studies [5]. The
existing dynamics engines allow real-time simulation of
general multi-joint robots consisting of tens of degrees of
freedom [23], [24], [25]. In the research field of agricultural
robots, SEARFS [6], CoppeliaSim [7] and Gazebo [26] are
the famous simulation tools using the dynamics engines.

These studies lacked the ability to efficiently handle 3D
point-cloud field models, which are commonly used in recent
agricultural research. In addition, there were few comparative
experiments between actual and simulated robot motions.
This paper addresses these issues.

The challenge of the simulator in this study is twofold: 1.
to achieve high speed operation on dense point-cloud data
(> 106 points) with centimeter resolution; and 2. to handle
contact with the environment represented by point-cloud
data instead of the triangular mesh data commonly used in
existing simulators. Our simulator is a new dynamics engine
specialized for robot simulation on point-cloud data.

E. ORGANIZATION OF THIS PAPER
Section II describes a fast robot simulation method on
agricultural fields represented by point-cloud data. The
method includes a collision detection method between
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TABLE 1. Symbols used in the simulation.

point-cloud data and robots, and a contact force calculation
method. In addition, the section also summarizes the robot
kinematics and dynamics calculation.

Section III evaluates the simulator. Three experiments were
conducted: 1. computational time and memory usage; 2.
stability of the simulation results with respect to changes
in simulation time step; and 3. comparison of actual and
simulated robot movement.

Section IV discusses, and Section V concludes.

II. METHOD
This section describes the symbols and algorithms used in this
paper. The methods for collision detection and contact force
calculation on point-cloud environments are summarized.
Furthermore, supplementary information on kinematics and
dynamics calculations is provided.

A. SYMBOLS AND ENTIRE ALGORITHM
The symbols used in this paper are summarized in Table 1.
ẋ is the derivative of x in time and ẍ is the second-order
derivative. xij denotes a j-th joint value seen from the i-th
joint. If the viewpoint coordinate i is the world coordinate
system (origin), it is written as xj omitting i.
The robot model is represented by convex triangular

meshes and the field model is represented by 3D point-cloud
data (Fig. 2). Non-convex shapes can be used by splitting
them into convex sub-shapes. Note that although a cylindrical
model is more computationally efficient for wheeled robots,
the mesh model is applicable to more general shapes and is
suitable for simulator evaluation.

FIGURE 2. Shape model of robot and agricultural field.

FIGURE 3. Computational flow of simulation.

Unique IDs are assigned to all joints, faces, and vertices to
be distinguished. In the algorithms, these IDs are accessed by
the following functions:
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Algorithm 1 Pseudo Code of Robot Simulation

Global variable: 1t , φ
1t: simulation time step.
φ: root link id.

Procedure: RobotSimulation()
1: while True do
2: Control() ## Section II-G
3: Simulation()
4: end while

Procedure: Simulation()
5: HardwareLimit(φ) ## Section II-F
6: ContactForce(φ) ## Section II-B,II-C
7: ForwardDyanmics(φ) ## Section II-E
8: ForwardKinematics(φ) ## Section II-D

Procedure: HardwareLimit(i)
9: if τi < −Amaxi kτ

i then τi = −Amaxi kτ
i end if

10: if τi > Amaxi kτ
i then τi = Amaxi kτ

i end if
11: if τi < (−Vmax

i − ωikω
i )k

τ
i /�i then

12: τi = (−Vmax
i − ωikω

i )k
τ
i /�i

13: end if
14: if τi > (Vmax

i − ωikω
i )k

τ
i /�i then

15: τi = (Vmax
i − ωikω

i )k
τ
i /�i

16: end if
17: for all k in CHILDREN(i) do
18: HardwareLimit(k)
19: end for

Procedure: ContactForce(i)
20: CheckContact(i) ## Algorithm 2
21: for all k in CHILDREN(i) do
22: ContactForce(k)
23: end for

Procedure: ForwardKinematics(i)
24: for all k in CHILDREN(i) do
25: FK(k , i)
26: end for
Procedure: FK(i, j)
27: pi = pj + Rjpji
28: Ri = RjRjie[aii×]qi

29: ai = Riaii
30: ci = Ricii
31: Ii = RiIiiRTi + mi[ci×][ci×]T

32: 1ui = pi × ai
33: 1ωi = ai
34: 1u̇i = uj × 1ωi + ωj × 1ui
35: 1ω̇i = ωj × 1ωi
36: ui = uj + 1uiq̇i
37: ωi = ωj + 1ωiq̇i
38: u̇i = u̇j + 1u̇iq̇i + 1uiq̈i
39: ω̇i = ω̇j + 1ω̇iq̇i + 1ωiq̈i

40: for all k in CHILDREN(i) do
41: FK(k , i)
42: end for

Procedure: ForwardDynamics(i)
43: FD1(i) ## calculate mass properties
44: ẍi = −

(
MA
i

)−1 xAi
45: for all k in CHILDREN(i) do
46: FD2(k , i) ## calculate acceleration
47: end for
48: FD3(i) ## integrate acceleration
49: pi = pi + (ui + ωi × pi)1t
50: Ri = e[ωi×]1tRi
51: ui = ui + u̇i1t
52: ωi = ωi + ω̇i1t
Procedure: FD1(i)
53: for all k in CHILDREN(i) do
54: FD1(k)
55: end for
56: P i = miui + miωi × ci
57: Li = mici × ui + Iiwi
58: Mi =

( miE −mi[ci×]
mi[ci×] Ii

)
59: zi =

(
−mig− f ei + ωi × P i

−mici × g− nei + ui × P i + ωi × Li

)
60: ṡi =

(
1ui
1ωi

)
61: s̈i =

(
1u̇i
1ω̇i

)
62: ζ Ti = ṡTi M

A
i

63: ιi =
(
ζ Ti ṡi

)−1

64: MA
i = Mi

65: zAi = zi
66: for all k in CHILDREN(i) do
67: MA

i = MA
i +

(
MA
k −MA

k ṡkζ
T
k ιk

)
68: zAi = zAi +

(
zAk +MA

k s̈k q̇k +MA
k ṡk (τk − ηk) ιk

)
69: end for
70: ηi = ζ Ti s̈iq̇i + ṡTi z

A
i

Procedure: FD2(i, j)
71: q̈i =

(
τi − ζ Ti ẍj − ηi

)
ιi

72: ẍi = ẍj + s̈iq̇i + ṡiq̈i
73: for all k in CHILDREN(i) do
74: FD2(k , i)
75: end for
Procedure: FD3(i)
76: qi = qi + q̇i1t
77: q̇i = q̇i + q̈i1t
78: for all k in CHILDREN(i) do
79: FD3(k)
80: end for
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1. ‘‘CHILDREN’’: returns the IDs of all child joints.
2. ‘‘FACES’’: returns the IDs of all faces.
3. ‘‘VERTICES’’: returns the IDs of all vertices.
All procedures are shown in Fig. 3 and Algorithm 1. The

‘‘Simulation’’ function is performed for each simulation time
step 1t . Its computation is a repetition of the following four
functions:
1. ‘‘HardwareLimit’’: limits the joint torques according to

the actuator model.
2. ‘‘ContactForce’’: detects collisions with the environ-

ment to calculate contact forces.
3. ‘‘ForwardDyanmics’’: calculates the joint angular accel-

erations of the robot from the contact forces and joint
torques by solving the equations of motion of the robot.

4. ‘‘ForwardKinematics’’: calculates the position and atti-
tude of each joint of the robot from the joint angles by
kinematical calculation.

The joint torques, which are the control input to the robot,
are calculated by the ‘‘Control’’ function. The ‘‘Control’’ and
‘‘Simulation’’ functions are repeated to simulate the robot
system.

The following sections explain each of the functions. The
formula derivations are summarized in Appendix A.

B. COLLISION DETECTION METHOD
We describe a method to quickly find collision points with

a robot in the point-cloud data of agricultural fields. The
overall procedure is shown in Algorithm 2. The algorithm is
used in the ‘‘ContactForce’’ function in Algorithm 1.
Due to the large number of points involved in a

centimeter-accurate field model, it is important to quickly
filter out points not colliding with the robot. For that purpose,
the field point cloud is divided into a grid form as shown in
Fig. 4. Only points within the projected area of the robot are
sufficient for collision calculations.

All points are arranged in 1x increments along the x-axis
with IDs assigned as x0, x1, x2, · · · . The following equation
holds for the i-th point:

xi = x0 + i1x (1)

Let xmin be the x-minimum value of the robot mesh
vertices, then its neighbor point ID (i) can be calculated as
follows:

i =
[
xmin − x0

1x

]
(2)

Note that [x] is the largest integer not exceeding x (i.e., the
Gaussian symbol).

The same calculation can be performed on the y-axis to
compute the bounding box of the projected region of the robot
mesh. The collision points can be obtained by checking the
collision for all points in the bounding box.

C. CONTACT FORCE CALCULATION METHOD
We model the collision between the ground and the robot
mesh using viscoelastic deformation to account for the

Algorithm 2 Collision Calculation Between the k-Th Joint
and the Field Point Cloud
Procedure: CheckContact(k)
1: f ek = 0,nek = 0
2: xmin, xmax , ymin, ymax = BoundingBox(k)
3: for all i ∈ ([ xmin−x0

1x ], [ xmax−x0
1x ]] do

4: for all j ∈ ([ ymin−y0
1y ], [ ymax−y0

1y ]] do
5: b0ijk = bijk , bijk = −∞

6: for all w in FACES(k) do
7: pcijk = RTk

(
pcij − pk

)
8: b = nTwk

(
pcijk − plwk

)
9: if b > bijk then

10: bijk = b
11: wijk = w
12: if b > 0 then break end if
13: end if
14: end for
15: CalcForce(i, j, k,wijk ) ## Algorithm 3
16: end for
17: end for

Procedure: BoundingBox(k)
18: xmin = ∞, ymin = ∞, xmax = −∞, ymax = −∞

19: for all w in FACES(k) do
20: for all v in VERTICES(w) do
21: if xmin > xv then xmin = xv end if
22: if ymin > yv then ymin = yv end if
23: if xmax < xv then xmax = xv end if
24: if ymax > yv then ymax = yv end if
25: end for
26: end for
27: return xmin, xmax , ymin, ymax

FIGURE 4. Collision detection between robot mesh and point cloud.

contact forces. As shown in Fig. 5, each point on the
ground is subjected to a force proportional to its penetration
distance and velocity into the robot link mesh. The integral
of the forces is used to calculate the force applied to the
robot.

The entire procedure is shown in Algorithm 3. The
algorithm is used in Algorithm 2.
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FIGURE 5. Contact force between robot mesh and point-cloud data.

Algorithm 3 Contact Force Calculation Between the w-Th
Mesh of the k-Th Joint and the i, j-Th Field Point Cloud
Procedure: CalcForce(i, j, k,w)
1: if bijk > 0 then
2: f hijk = 0, f vijk = 0 ## No collision
3: else
4: vcijk = −(uk + ωk × pcij)
5: nw = Rknwk
6: ||f vijk || = −kijbijk − dijnTwv

c
ijk

7: if ||f vijk || < 0 then ||f vijk || = 0 end if
8: f vijk = ||f vijk ||nw
9: if b0ijk > 0 then

10: pc0ijk = RTk (p
c
ij − pk )

11: f hijk = 0 ## No friction
12: else
13: pc0ij = pk + Rkpc0ijk
14: bhijk = (pcij − pc0ij ) − nTw(p

c
ij − pc0ij )nw

15: f hijk = −khijb
h
ijk − dhij(v

c
ijk − nTwv

c
ijknw)

16: if ||f hijk || > ||f vijk ||µij then

17: f hijk = ||f vijk ||µ
d
ij

f hijk
||f hijk ||

18: pc0ijk = RTk (p
c
ij − pk )

19: end if
20: end if
21: end if
22: f ek = f ek + (f vijk + f hijk )
23: nek = nek + pcij × (f vijk + f hijk )

From the geometrical relationship shown on the left side of
Fig. 5, the distance between a ground point and a robot mesh
can be calculated using the following equation:

bijk = nTwk
(
pcijk − plwk

)
(3)

If the distance is less than 0, the contact force due to
the collision is calculated. The force acting in the normal
direction of the contact surface is calculated as follows:

f vijk = ||f vijk ||nw

||f vijk || = −kijbijk − dijnTwv
c
ijk (4)

Then, we consider the horizontal force on the contact
surface (i.e., frictional force). If the distance in a previous
calculation (i.e., b0ijk ) is also negative, we can determine that a
slip movement is occurring due to successive collisions. The

FIGURE 6. Geometric relations between joints.

FIGURE 7. Dynamic balance between joints.

point where the last collision occurred is used as the origin
of the frictional force. The calculation of the horizontal force
toward the origin is as follows:

f hijk = − khijb
h
ijk − dhij(v

c
ijk − nTwv

c
ijknw)

bhijk =(pcij − pc0ij ) − nTw(p
c
ij − pc0ij )nw (5)

When a frictional force exceeds the static frictional force
||f vijk ||µij, the frictional force is headed by the dynamic
frictional force as follows:

f hijk = ||f vijk ||µ
d
ij

f hijk
||f hijk ||

(6)

Furthermore, the origin of the frictional force pc0ijk is
updated as follows:

pc0ijk = RTk (p
c
ij − pk ) (7)

D. KINEMATICS CALCULATION METHOD
The forward kinematics calculation is a procedure to calculate
the position and attitude of each joint from the joint angles.
From the geometric relationship shown in Fig. 6, the position
and attitude of the i-th joint is calculated as follows:

pi = pj + Rjpji
Ri = RjRjie[aii×]qi (8)

The overall procedure is shown in the ‘‘ForwardKinemat-
ics’’ function of Algorithm 1. By computing (8) recursively
from the parent link to the child links, the positions and
attitudes of all joints are obtained. The computational time
complexity is O(N ) for N -dof joints.

The velocity and acceleration of each joint can be
obtained similarly by the derivative of (8). The calculation
is supplemented in Appendix A-B.
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E. DYNAMICS CALCULATION METHOD
The forward dynamics calculation is a procedure to calculate
the acceleration of each joint from the contact forces and
joint torques. The procedure involves solving the equations
of motion of a multi-link system.

The equations of motion for rigid bodies are known to be
a balanced form of the derivatives of momentum with all
forces. As shown in Fig. 7, all forces acting on a multi-link
system include: internal forces with all connected joints (i.e.,
f i,ni,

∑
k − f k ,

∑
k − nk ); external forces due to contact

with the environment (i.e., f ei ,n
e
i ); and gravitational forces

(i.e., mig, ci × mig). Thus, the equations of motion take the
following form:

Ṗ i = f i −
∑

k
f k + mig+ f ei

L̇i = ni −
∑

k
nk + ci × mig+ nei (9)

It is possible to solve the equation for the acceleration in
O(N ) for N -dof joints by using Featherstone’s method [27].
The procedure is shown in the ‘‘ForwardDyanmics’’ function
of Algorithm 1. The formulas needed for the calculation are
summarized in Appendix A-C.

F. HARDWARE LIMITATIONS
In the following experiments, we used BrushLess Direct
Current (BLDC) motors as the robot actuators. The actuator
system includes two limitations on the amount of electric
current applied to the motors as follows:

−Amaxi ≤ Ai ≤ Amaxi

(−Vmax
i − Vi)/�i ≤ Ai ≤ (Vmax

i − Vi)/�i (10)

The first limitation is the maximum amount of current that
can flow through the motor driver. Another limitation comes
from the back electromotive force generated by the rotation
of the motor.

The torque and angular velocity of each joint are linearly
proportional to the current and voltage as follows:

Ai = τi/kτ
i

Vi = ωikω
i (11)

Thus, the current limitations (10) can be written as the
following torque limitations:

−Amaxi kτ
i ≤ τi ≤ Amaxi kτ

i

(−Vmax
i − ωikω

i )k
τ
i /�i ≤ τi ≤ (Vmax

i − ωikω
i )k

τ
i /�i (12)

G. CONTROL METHOD
We describe the ‘‘Control’’ function to calculate the actuator
input from the robot sensor information. Since the function
is independent of the simulation, the implementation of the
control system is not limited to the following.

In the following experiments, the weighted sum of the
sensor data derivatives is used as the target wheel speed as
follows:

q̇refi = θai + ψT θbi + ψ̇
T
θci + ψ̈

T
θdi (13)

TABLE 2. Computational speed and memory usage..

ψ is a vector consisting of the sensor data. The robot used
in the experiment is equipped with two RTK-GNSS antennas
to accurately measure the robot position and attitude. As the
sensor data, we used the error in position and direction from
a given target trajectory. The derivative of the sensor data was
calculated by taking the difference at each control cycle. θa−di
are the weights to calculate the target rotational speeds of the
wheels from the sensor data.

The target speeds are converted to wheel torques by PD
control as follows:

1τi = wp(q̇
ref
i − q̇i) − wd q̈i (14)

The parameters (θa−di ,wp,wd ) are constant values
adjusted in advance on the simulator.

III. EVALUATION
This section describes three experiments: 1. evaluating the
computational performance; 2. confirming the computational
stability with respect to the simulation time step; and 3.
comparing the robot movement in the simulation with that
in an actual field.

The algorithms were implemented in the C++ language.
The visualization of the robot and the field model was
implemented in Euslisp [28], a Lisp dialect specialized for
robotics research.

We used one CPU core (Intel(R) Core(TM) i7-10700K
CPU @ 3.80 GHz) and one RAM (DDR4, 32 GB,
3200 MHz). Parallel computing and GPU were not used.

We used Agrisoft’s Metashape(R) ver. 1.8 for 3Dmodeling
of the agricultural field. A drone was used to capture images
of a 31 × 14 m2 field from an altitude of 10 m to generate
point-cloud data with 2 × 2 cm2 resolution.

A. COMPUTATIONAL PERFORMANCE
The computation time and memory usage of the simulation
are shown in Table 2. We compared two simulations: with
and without ground. The latter simulated the free fall motion
of the robot.

The computational time was measured as the average time
of 10000 runs of the ‘‘Simulation’’ function (Algorithm 1).
The time was 114 us with the ground and 9 us without the
ground. The difference between the two times (105 us) was
the time needed for the collision calculation. Therefore, 100×
105/114 ∼ 92% was used for the collision calculation.

The memory usage was checked against the Resident Set
Size (RSS) of Linux. The memory was 2311 MB with the
ground and 158 MB without the ground. The difference
between the two (2153 MB) was the memory required for the
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FIGURE 8. Computational stability regarding the simulation time step.

point-cloud data. Therefore, 100 × 2153/2311 ∼ 93% was
used for the field model.

B. COMPUTATIONAL STABILITY WITH RESPECT TO THE
SIMULATION TIME STEP
The change of the Root Mean Square Error (RMSE) in the
simulation results when the simulation time step 1t is varied
is shown in Fig. 8. The error was calculated in the following
steps:

1. Change the simulation time step
1t ∈ {0.01, 0.1, 0.2, 0.5, 1, 2, 5, 10} ms.

2. Simulate the robot moving 2 m by straddling the ridge
and planted crops.

3. Sample the position of the moving robot at 20 Hz.
4. Calculate the RMSE of the sampled positions by

comparing the results with1t = 0.01 ms and the others.

The RMSE was 0.1 cm or less for the simulation time step
of less than 1 ms. The RMSE was greater than 0.9 cm for the
10 ms simulation time step. The simulation did not collapse
for all time steps.

C. COMPARISON OF ACTUAL DATA AND SIMULATION
To evaluate the predictive performance of the simulation,
we compared the results of the robot movements in the actual
field and in the simulation. The movements to be compared
were straight motions of 2 m. The locations were six areas in
the field as shown in Fig. 9 (Area 1 ∼ 6). The same control
system and parameters were used in the actual field and in the
simulation.

The positions of the actual robot were sampled at 10 Hz by
using the RTK-GNSS module [29]. The sampled positions
were compared with the simultaneous robot positions in the
simulation to calculate the RMSE. With the RTK-GNSS
module, the robot position can be measured with centimeter
accuracy at a low cost.

The coordinate system expressing the point-cloud model
could be associated with latitude and longitude because the
drone used to capture images of the agricultural field was
equipped with a similar RTK-GNSS module as the robot.
Thus, the simulation and the actual robot could use the same
coordinate system, allowing easy comparison of positions.

TABLE 3. Simulation accuracy compared to actual robot movements..

The latitude and longitude were converted to a rectangular
coordinate by using the PROJ library [30].

In order to start the simulation from the same position as
the actual robot, the initial position was determined in the
following three steps: 1. nine different initial positions were
generated by shifting the initial position of the actual robot
by 3 cm from left to right and back to front; 2. one second
simulation was performed from each initial position; and 3.
the one closest to the actual robot was used as the initial
position.

The ground contact parameters (e.g., viscoelasticity) were
unknown because the field model was generated from aerial
images. Therefore, we varied the viscoelasticity parameter to
the extent that the simulation did not collapse to investigate
the distribution of the RMSE. The minimum RMSE for each
area was ∼ 1 cm (average was 0.88 cm, minimum was
0.69 cm and maximum was 1.06 cm).

The results are shown in Fig. 10 and Table 3. The
vertical axis of Fig. 10 represents the ground stiffness
(k (h)ij ∈ {0.1, 0.2, · · · , 3}) and the horizontal axis represents

the ground viscosity (d (h)ij ∈ {0.005, 0.01, · · · , 0.3}). The

friction coefficient (µ(d)
ij ∈ {0.2, 0.3, · · · , 1.0}) with the

lowest RMSE was used to plot Fig. 10.

IV. DISCUSSION
We have developed a dynamics simulator that works fast on
3D point-cloud models of agricultural fields. The simulator
has the following advantages:

1. Immediate construction of simulation environments by
modeling arbitrary fields from aerial photographs.

2. Evaluation of robotmovement not limited to the growing
season allowing robot development, evaluation, and data
collection at any time.

The memory used by the simulation process was 2.3 GB
when a 31×14m2 agricultural fieldwasmodeled as 3D point-
cloud data with 1.7 × 106 points (Section III-A). Therefore,
a computer with 32 GB (> 23 GB) of memory can efficiently
collect data by running 10 or more simulations in parallel.

Simulation on larger fields will be possible by using virtual
memory function. On the Linux system, it is easy to use the
‘‘mmap’’ function to map file into memory. The memory
size used by the simulator will increase linearly with the
field size (i.e., 31 × 14/2.3 ∼ 189 m2/GB = 18.9 ha/TB).
However, the file access will slow down the computation.
Further research on the efficient use of virtual memory is
needed.

The computational time for a simulation time step
in the same simulation environment was about 114 us
(Section III-A). Therefore, 8.8 times faster simulation than
real time is possible if the simulation time step is 1 ms.
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FIGURE 9. Comparison of the robot movement in the actual field and simulation.

FIGURE 10. RMSE distribution between simulated and actual robot positions when the viscoelasticity of the ground is varied.

The advantage of real-time simulation is that human can
interactively check the results of the robot movements. This
allows for efficient robot motion generation and evaluation.

The advantage of simulating in more than real time is that
it allows for faster collection of teacher data for learning. Our
simulator can calculate 24×3600×8.8 = 760320 seconds of
robot movement per day. This means that a 10-second robot
movement can be simulated 76032 times.

To speed up the simulation, fast collision calculations are
important because 92 % of the computation time was spent
on collision calculations as shown in Section III-A. One idea
for speeding up is to parallelize the collision calculations.
Parallelization is easy because the collision calculation is
performed on points distributed on a grid.

In Section III-B, we examined the change in simulation
results when the simulation time step 1t was varied. For
1t ≤ 1 ms, the simulation results of the robot position were
almost unchanged. Therefore, by using 1t = 1 ms, we can
obtain fast and stable simulation results.

For 1t = 10 ms, the errors of the simulation results
were more than a factor of nine (RMSE> 0.9 cm). However,
the simulation calculation did not collapse. By sacrificing
accuracy, ten times faster calculations will be possible. Note
that more dynamic behavior may be difficult to simulate due
to divergence of the integral results.

The prediction error of the actual robot movement was
confirmed to be RMSE ∼ 1 cm by varying the stiffness
and viscosity of the ground (Section III-C). Therefore,
by learning driving control on this simulation for various
ground parameters, a robust control system can be obtained
for real environments.

The ground parameters with the lowest RMSE might
reflect the true values. It is an interesting future work to
compare the estimated and measured values of the ground
hardness. Since soil hardness is an important parameter for
crop growth, measurement with a soil penetration tester is
often necessary. Simulation of agricultural machines could
become a new soil penetration tester.
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The RMSE value is a performance baseline allowing easy
comparative experiments. The value can vary depending
on the experimental settings (e.g., driving distance and
trajectory). We evaluated 2 m straight driving movement.
However, in actual robot applications, longer driving with
non-linear trajectory is necessary.

The reason for using the short driving distance is to
obtain the simulation performance independent of ground
parameter errors by comprehensively changing the parame-
ters. As shown in Section III-C, we used 14400 parameter
combinations (i.e., 30 for k (h)ij , 60 for d (h)ij and 8 for µ

(d)
ij ). The

computation was completed in < 10 hours.
Steering motion is important as well as linear trajec-

tory because agricultural robot repeatedly moves between
furrows. The simulator can calculate the steering behav-
ior including wheel skidding and slipping. The evalu-
ation of the steering simulation is an important future
work.

The simulator in this paper is not limited to use with
specific robots. Dynamics calculation methods available for
general articulated robots are used. Convex triangular mesh
structure is used to represent the shape data of the robot. Non-
convex shapes can also be expressed by combining convex
sub-shapes. Thus, it can be used for wheeled robots, arm
robots and legged robots.

Fast calculation method considering ground and crop
deformation is a significant future work. Since our simulator
modeled the field using rigid bodies, soil deformation and
crop movement were ignored. Discrete Element Method
(DEM [31]) can be used to account for the movement of sand
particles and seeds.

The collision calculation was accelerated by arranging
the field point-cloud data into a two-dimensional grid map.
Although we used two dimensions because we assumed that
the model was generated from aerial photographs, the same
method can be extended to three dimensions. OctoMap [32]
is well known as a prior study that allows fast retrieval of
multiple resolutions of 3D point-cloud data.

Rendering technology is an important future work to
simulate robot behavior based on camera recognition. It may
be possible to generate an image as seen by the robot camera
from the colored point-cloud data.

V. CONCLUSION
In this paper, we have developed a dynamics simulator for
agricultural robots. The dynamics calculation was specialized
to handle dense 3D point-cloud field models which were
widely used in agricultural research thanks to recent advances
in aerial photography technology. Thus, the simulator can be
easily applied to many actual fields.

To speed up the retrieval of collision points, we used an
algorithm to table all points in a grid form. To calculate the
contact force, we integrated the force between each colliding
point and the robot mesh.

As results of the performance evaluation, the computation
time was 8.8 times faster than real time, and the Root Mean

Square Error between the driving trajectory of the robot in the
simulation and that of the actual field was ∼ 1 cm.
The simulation allows fast and accurate prediction of robot

movements by taking aerial photographs in any agricultural
field, and is available for robot development, modification,
and data collection not limited to the growing season.

APPENDIX A
FORMULAS USED IN THE SIMULATION
A. DEFINITION OF FORMULAS
1) DEFINITION OF ROTATION MATRIX
The matrix R that rotates an arbitrary vector around a unit
vector b by c radians can be defined as follows:

R = e[b×]c
=

∑
k

ck

k!
[b×]k (15)

[b×] is the outer product matrix of b, defined as follows:

b =

 b0
b1
b2

 , [b×] =

 0 −b2 b1
b2 0 −b0

−b1 b0 0

 (16)

For any vectors (a, b), the rotation matrix R has the
following form:

R (a× b) = (Ra) × (Rb) (17)

2) DEFINITION OF VELOCITY
Velocity vi and angular velocity ωi are defined as follows:

ṗi =vi
Ṙi =[ωi×]Ri (18)

From (15), we can see that the differential of the rotation
matrix R is the product of the outer product matrix of a vector
and R.

3) DEFINITION OF SPATIAL VELOCITY
To transform the equations of motion concisely, spatial
velocity is used. The definition of the spatial velocity is as
follows:

ui = vi − ωi × pi
u̇i = v̇i − ω̇i × pi − ωi × ṗi

= v̇i − ω̇i × pi − ωi ×
(
ui + ωi × pi

)
(19)

4) DEFINITION OF CENTER OF GRAVITY AND INERTIA
MATRIX
Let rj be the position vector of any point on a rigid body and
ρj be the mass of that point. The massmi, inertia matrix Ii and
center of gravity position ci of the rigid body link are defined
as follows:

mi =

∑
j
ρj, ci =

∑
jρjrj∑
jρj

, Ii =

∑
j
ρj[rj×][rj×]T (20)

A position fixed to a rigid body (e.g., center of gravity) and
its differential can be calculated as follows:

ci = pi + Ricii
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ċi = vi + ωi × Ricii
= ui + ωi × pi + ωi × Ricii
= ui + ωi × ci

c̈i = u̇i + ω̇i × ci + ωi × ċi
= u̇i + ω̇i × ci + ωi × (ui + ωi × ci) (21)

5) DEFINITION OF MOMENTUM AND ANGULAR
MOMENTUM
The definition of the momentum and angular momentum are
as follows:

P i =

∑
j
ρjṙj = miċi

= miui + miωi × ci

Li =

∑
j
ρjrj × ṙj

=

∑
j
ρjrj ×

(
ui + ωi × rj

)
=

(∑
j
ρjrj

)
× ui +

∑
j
ρjrj ×

(
ωi × rj

)
=

(∑
j
ρjrj

)
× ui +

∑
j
ρj

[
rj×

] [
rj×

]T
ωi

= mici × ui + Iiωi (22)

The differential of momentum and angular momentum can
be calculated using (20) as follows:

Ṗ i = miu̇i + miω̇i × ci + miωi × ċi
= miu̇i + miω̇i × ci + ωi × P i

L̇i = miċi × ui + mici × u̇i + Iiω̇i + İiωi
= mici × u̇i + Iiω̇i + ui × P i + ωi × Li (23)

B. FORWARD KINEMATICS
1) CALCULATION OF VELOCITY
Velocity and angular velocity can be defined recursively
using the values of the parent joint by differentiating (8) as
follows:

ṗi = ṗj + Ṙjpji
= vj + ωj × Rjpji
= vi

Ṙi = ṘjRjie[aii×]qi + RjRjiėaiiqi

= [ωj×]RjRjie[aii×]qi + [aiq̇i×]RjRjie[aii×]qi

= [(ωj + aiq̇i)×]Ri
= [ωi×]Ri (24)

(24) is based on the following equation:

RjRjiėaiiqi = RjRji
(
[aiiq̇i×]e[aii×]qi

)
= [

(
RjRjiaiiq̇i

)
×]

(
RjRjie[aii×]qi

)
= [aiq̇i×]RjRjie[aii×]qi (25)

2) CALCULATION OF ACCELERATION
Acceleration and angular acceleration can be defined recur-
sively using the values of the parent joint by differentiat-
ing (24) as follows:

v̇i = v̇j + ω̇j × Rjpji + ωj ×
(
ωj × Rjpji

)
ω̇i = ω̇j + ωj × aiq̇i + aiq̈i (26)

(26) is based on the following equation:

ȧi = Ṙjaii = ωj × Rjaii = ωj × ai (27)

(26) is transformed using the spatial velocity as follows:

ui = vi − ωi × pi
= vj + ωj × Rjpji −

(
ωj + aiq̇i

)
×

(
pj + Rjpji

)
= vj − ωj × pj − aiq̇i ×

(
pj + Rjpji

)
= uj +

(
pi × ai

)
q̇i

ωi = ωj + aiq̇i (28)

3) ARRANGEMENT OF FORMULAS
To organize the equation, the following symbols are
introduced:

1ui =pi × ai
1ωi =ai (29)

(28) can be arranged as follows:

ui =uj + 1uiq̇i (30)

ωi =ωj + 1ωiq̇i
u̇i =u̇j + 1u̇iq̇i + 1uiq̈i (31)

ω̇i =ω̇j + 1ω̇iq̇i + 1ωiq̈i

The differentials of (29) are calculated as follows:

1u̇i = ṗi × ai + pi × ȧi
=

(
vj + ωj ×

(
pi − pj

))
× ai + pi ×

(
ωj × ai

)
=

(
uj + ωj × pi

)
× ai + pi ×

(
ωj × ai

)
= uj × ai − ai ×

(
ωj × pi

)
− pi ×

(
ai × ωj

)
= uj × ai + ωj ×

(
pi × ai

)
= uj × 1ωi + ωj × 1ui

1ω̇i = ȧi
= ωj × ai
= ωj × 1ωi (32)

(32) relies on the following equation to hold for arbitrary
vectors a, b and c as follows:

a× (b× c) + c× (a× b) + b× (c× a) = 0 (33)
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C. FORWARD DYNAMICS
1) CALCULATION OF JOINT TORQUE
The joint torque is equal to the moment around the axis of
rotation as follows:

τi = aTi (pi × f i) + aTi ni
=1uTi f i + 1ωTi ni (34)

(34) relies on the following equation to hold for arbitrary
vectors a, b and c as follows:

aT (b× c) = cT (a× b) = bT (c× a) (35)

2) ARRANGEMENT OF EQUATIONS OF MOTION
To find the forward dynamics calculation algorithm, (9), (30)
and (34) are arranged as follows:

yi −
∑

k
yk =Mi ẍi + zi

∀k ẍk =ẍi + s̈k q̇k + ṡk q̈k
τi =ṡTi yi (36)

Here are the newly defined symbols:

ẍi =

(
u̇i
ω̇i

)
, yi =

(
f i
ni

)
, ṡi =

(
1ui
1ωi

)
zi =

(
−mig− f ei + ωi × P i

−mici × g− nei + ui × P i + ωi × Li

)
Mi =

(
miE −mi[ci×]

mi[ci×] Ii

)
(37)

3) CALCULATION OF THE FORWARD DYNAMICS
Featherstone [27] found that forward dynamics calculations
can be performed efficiently by formulating the following
equation:

yi = MA
i ẍi + zAi (38)

(38) can be calculated for τk as follows:

τk = ṡTk yk
= ṡTkM

A
k ẍk + ṡTk z

A
k

= ṡTkM
A
k ẍi + ṡTkM

A
k s̈k q̇k + ṡTk I

A
k ṡk q̈k + ṡTk z

A
k (39)

(39) can be solved for q̈k as follows:

q̈k =

(
τk − ζ Tk ẍi − ηk

)
ιk

ζ Tk = ṡTkM
A
k , ηk = ζ Tk s̈k q̇k + ṡTk z

A
k , ιk =

(
ζ Tk ṡk

)−1
(40)

From the above, the recursive expression forMA
i and zAi is

calculated as follows:

yi = MA
i ẍi + zAi

= yi −
∑

k
yk +

∑
k
yk

= Miẍi +
∑

k
MA
k ẍk + zi +

∑
k
zAk

= Miẍi +
∑

k
MA
k (ẍi + s̈k q̇k + ṡk q̈k) + zi +

∑
k
zAk

=

(
Mi +

∑
k
MA
k

)
ẍi + zi +

∑
k

(
zAk +MA

k s̈k q̇k
)

+

∑
k
MA
k ṡk

(
τk − ζ Tk ẍi − ηk

)
ιk

=

(
Mi +

∑
k

(
MA
k −MA

k ṡkζ
T
k ιk

))
ẍi

+ zi +
∑

k

(
zAk +MA

k s̈k q̇k +MA
k ṡk (τk − ηk) ιk

)
(41)

Therefore, the following holds:

MA
i = Mi +

∑
k

(
MA
k −MA

k ṡkζ
T
k ιk

)
zAi = zi +

∑
k

(
zAk +MA

k s̈k q̇k +MA
k ṡk (τk − ηk) ιk

)
(42)

Forward dynamics calculations can be computed in O(N )
by solving (42) and (40) sequentially.
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