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ABSTRACT The accurate prediction of failure boundaries in engineering applications is essential for
ensuring safety and reliability. Traditional methods often rely heavily on high-fidelity physical experiments
or numerical simulations, which are prohibitively expensive and time-consuming. In response to this
challenge, our research proposes an innovative multi-fidelity support vector classification approach that
leverages an abundant supply of low-fidelity data alongside a limited amount of high-fidelity data. This
combination significantly reduces modeling costs while maintaining or even enhancing predictive accuracy.
The key points of the proposed method include the design of a reasonable kernel function to effectively
describe the relationship between the input and output of multiple fidelities, and the determination of
the optimal hyperparameters. In addition, in practical engineering problems, real data often exhibit data
imbalance, leading to poor performance of the trained models. Our novel method addresses this limitation by
integrating a strategy for managing the data imbalance. By effectively treating data imbalance, our approach
significantly improves the classification and boundary prediction capabilities of the model. To validate our
method, we applied it to three distinct engineering problems: predicting the failure boundary of a zero
Poisson ratio structure, analyzing surge and choke boundaries in an axial flow compressor rotor, and tackling
a 31-dimensional simulation failure boundary prediction problem within the computational fluid dynamics
context of the same rotor. The results demonstrate that our multi-fidelity support vector classification method
not only effectively predicts boundaries in these practical scenarios but also outperforms alternative methods,
showing its potential as a powerful tool for engineers.

INDEX TERMS Boundary prediction, classification, imbalance data, compressor operating boundary.

I. INTRODUCTION
In engineering design, predicting the failure boundary is an
inevitable process aimed at exploring the boundary between
failure and safety limit states. To predict the failure boundary,
engineering design typically requires computation-intensive
and real-life experiments, which often consume a significant
amount of time and financial costs, such as exploring the
surge and choke boundary of compressors in the aircraft
engine design process [1], [2], [3], [4]. However, surrogate

The associate editor coordinating the review of this manuscript and

approving it for publication was Yiqi Liu .

models based on limited simulation or experimental data can
effectively overcome this drawback and have been widely
used in multiple engineering applications [5], [6], [7]. Several
common surrogate models are suitable for failure bound-
ary prediction, such as Gaussian process (GP) model [8],
response surface methodology (RSM) model [9], support
vector machine (SVM) model [10], and artificial neural net-
work (ANN) etc. [11].
Among the many surrogate models, SVM has a strong

capability to identify subtle patterns in complex datasets and
possesses good robustness and model generalization abil-
ity, making it suitable for addressing classification problems
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with small to medium sample sizes, nonlinearity, and high
dimensions [12]. Therefore, many scholars have conducted
research on the SVM models. Cervantes [13] discussed var-
ious applications of SVM models in multiple domains and
examined the prospects and limitations of SVM models. Liu
et al. [14] proposed an iterative l2-SVM model that achieved
dual-regularized SVM on high-dimensional datasets. This
method significantly reduces the computational complex-
ity of the model. Abe [15] proposed a fuzzy SVM model
for multilabel classification, defining a region with a rele-
vant membership function for each multilabel classification.
Yan [16] proposed a dual-bounded SVM model for binary
classification to solve a pair of quadratic programming prob-
lems. This method reduces the computational cost of SVM
models by utilizing the L1-norm distance measurement in
classification. Pradhan and Sameen [17] proposed an SVM
model with a rectified linear unit kernel to evaluate deep-
learning processes. Wu [18] developed an SVM model with
a deterministic and scalable histogram intersection kernel to
increase the training speed of SVM models.

However, the above-mentioned studies on SVM mod-
els all focused on single-fidelity models trained only with
single-fidelity information sources. When training surrogate
models with low-fidelity (LF) information sources, the sur-
rogate models are inaccurate although the modeling cost
is lower. In contrast, training surrogate models with high-
fidelity (HF) information sources can improve the accuracy
of surrogate models but at a higher cost. Therefore, it is
necessary to study methods that can fully utilize the advan-
tages of HF and LF data to achieve an optimal structure
at the same or lower cost. To address this issue, a multi-
fidelity surrogate (MFS) model based on HF and LF sample
points was developed [19]. The MFS model utilizes more
LF sample points than HF sample points to capture the
overall trend of the engineering system and correct it with
expensive HF data, thereby improving the accuracy of the
surrogate model while maintaining the same or lower cost of
sample data acquisition. Owing to its advantages, the MFS
model has attracted extensive research interest. Forrester [20]
extended the Kriging model to a multi-fidelity kriging model
by constructing a correlation matrix between the HF and
LF data. Liu and Wang [21] proposed an MFS model based
on an artificial NN and incorporated physics constraints to
reduce the required training data and enhance the prediction
accuracy. Song et al. [22] proposed an MFS model based on
polynomial response surface regression to improve its predic-
tion accuracy. Shi et al. [23] proposed anMFSmodel based on
support vector regression, describing the correlation between
LF and HF models in the mapped high-dimensional space.
Song et al. [24] introduced a radial basis function-based MFS
model to improve the accuracy and robustness of the model
with reduced sensitivity to the correlation between the LF
and HF models. Aydin et al. [25] proposed an MFS model
based on an ANN to reduce the computational cost of the
model.

Although many models are based on the MFS framework,
regression models are generally the most commonly used.
However, when it comes to predicting failure boundaries,
it becomes a binary classification problem, and regres-
sion models are often unsuitable for such tasks. Currently,
the multi-fidelity Gaussian process classification (MFGPC)
model is the only multi-fidelity classification model that
offers interpretability [26]. However, the MFGPC model
mainly uses an approximate inference method called the
Markov chain Monte Carlo method to predict classification
results, which is often time-consuming. No research has been
conducted on the multi-fidelity support vector classification
(MFSVC) model. To fill this gap, this study proposed an
MFSVCmodel. The model maps the HF and LF samples to a
high-dimensional feature space through a correlation kernel
function and then uses a linearmodel to construct the relation-
ship function between the input and output, thereby finding
the optimal decision boundary in the high-dimensional fea-
ture space.

Meanwhile, in engineering problems, the absence or dif-
ficulty of obtaining sample points may lead to imbalanced
training sets, making it difficult for most surrogate mod-
els to accurately capture the inherent characteristics of the
engineering system and effectively detect the corresponding
minority class samples. To address imbalanced data, many
scholars have proposed solutions for imbalanced data pro-
cessing. Onan [27] proposed an undersampling technique
based on consensus clustering to improve the accuracy of
surrogate models for imbalanced data. Camacho et al. [28]
applied a geometric oversampling algorithm to a regression
model and verified the effectiveness of balanced data pro-
cessing methods on the accuracy of convolutional neural
network models. Radwan [29] combined oversampling tech-
niques with threshold computation to balance the training
set and select the optimal classification boundary. Liu et al.
[30] combined oversampling and undersampling techniques
with SVM models to improve their predictive performance.
Tsai et al. [31] proposed an undersampling method that
combines cluster analysis and instance selection to improve
the classification effectiveness of classification models on
imbalanced data. Among many imbalanced data process-
ing methods, the synthetic minority oversampling technique
with the edited nearest neighbors (SMOTEENN) algorithm,
which combines oversampling and undersampling tech-
niques, effectively generates minority class samples without
losing useful information in engineering systems [32]. Fur-
thermore, the SMOTEENN algorithm is now systematic and
can be quickly applied to engineering systemswithout relying
on the user experience. Therefore, this study applied the
SMOTEENN algorithm to preprocess imbalanced datasets
to improve the accuracy of the MFSVC model under imbal-
anced data conditions.

To this end, this study first developed an MFSVC model.
Then, the SMOTEENN algorithm was incorporated into the
MFSVC method to improve the predictive performance of
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the MFSVC model with imbalanced data. Subsequently,
the performance of the proposed method was examined
using numerical problems and three practical engineering
problems. The advantages of this method are analyzed and
summarized in terms of accuracy compared with existing
methods.

The remainder of this paper is organized as follows.
Section II provides a detailed introduction of the proposed
method. In Section III, the effectiveness of the established
methods is validated using multiple numerical examples,
and the influence of the number of high-precision sample
points on the predictive performance of the MFSVC model
is studied. Section IV presents the experimental results of
the proposed method on three engineering problems and
compares themwith those of alternative methods. Finally, the
conclusions are presented in Section V.

II. PROPOSED METHODS
This section introduces an MFSVC model based on the SVC
model to address imbalanced datasets. This section intro-
duces the principles of the SVC model to better understand
the MFSVC model. Then, the establishment and strategy
to cope with the imbalanced data of the MFSVC model
are introduced. Finally, an implementation of the proposed
method is presented.

A. SUPPORT VECTOR CLASSIFICATION
The SVC model is a classification model based on the
Vapnik-Chervonenkis dimension theory and principle of
structural riskminimization [33]. It aims to determine the best
separating hyperplane with the maximum margin between
classes by mapping the data to a high-dimensional feature
space. To predict the failure boundary and classify it into
failure and safe domains, the classification model is con-
figured as a binary classification, which means that the
model outputs the labels y = {−1, 1}. Let a dataset D ={(
xi, yi

)
|i = 1, 2, . . . , n} consist of s features for n sample

points xi, each containing a binary classification label y =

±1. The SVC classification model is expressed as follows:

f (x) = ωT
· φ (x) + b (1)

where ϕ denotes the feature map, ω is the weight vector, and
b is a bias term. To obtain the optimal hyperplane, the follow-
ing quadratic programming (QP) problem is solved [34]:

8 (ω, ξ) = min
{
ωT

· ω/2 + C
∑n

i=1
ξi

}
(2)

subject to the constraint that all training samples are correctly
classified; that is, all training samples are placed on the
margin or outside the margin.

yi
(
ωT

· φ (xi) + b
)

≥ 1 − ξi, i = 1, . . . , n (3)

where ξi, i = 1, . . . , n is a nonnegative slack variable. The
first part of (2) represents weight decay, which is used to
regulate the size of weights and penalize overly large weights.
The second part represents the classification error of all the

training points. By minimizing (2), both the computational
complexity of SVC and the number of training errors can be
reduced. Parameter C is the regularization parameter defined
as the relative weight between the two terms. The constrained
QP problem defined in (2) and (3) is solved by the introducing
the Lagrange multipliers αi ≥ 0, i = 1, . . . , n and the
Lagrange function:

L (ω, b, ξ , α) = ∥ω∥
2 /2 + C

∑n

i=1
ξi

−

∑n

i=1
αi

{
yi
[
ωT

· φ (xi) + b
]

− 1 + ξi

}
(4)

According to QP optimization theory, (4) can be solved by
introducing the dual form of the problem:

max
α

W (α) = max
α

{
min
ω,b,ξ

L (ω, b, ξ , α)

}
(5)

where α denotes a Lagrange multiplier. The optimal solution
of (5) is obtained by minimizing the Lagrange function with
respect to ω, b, ξ and then maximizing the Lagrange function
with respect to αi. The optimal solution can be obtained by
setting the first derivative of (5) to zero:

∂L
∂ω

= 0 → ω =

n∑
i=1

αiyiφ (xi)

∂L
∂b

= 0 →

n∑
i=1

αiyi = 0

∂L
∂ξ

= 0 →

n∑
i=1

αi = C

∂L
∂αi

= 0 → −yi
[
ωT

· φ (xi) + b
]

+ 1 − ξi = 0,

i = 1, . . . , n (6)

Subsequently, by substituting (6) into (5), the problem
shown in (5) can be transformed into the following dual
problem:

max
α


n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyjK (xi, xj)

 (7)

and it should be maximized under the constraints:
n∑
i=1

αiyi = 0 and 0 ≤ αi ≤ C for i = 1, . . . , n. (8)

whereK (xi, xj) denotes the Radial Basis Function (RBF) ker-

nel function K
(
xi, xj

)
= exp(−

∑s
k=1 γ

∥∥∥xki − xkj
∥∥∥2). This

kernel function is commonly used in SVC, demonstrating
good performance for both large and small sample sizes,
and it has fewer parameters, which is why it was selected.
According to the result of the last term of (7), the training
vectors of the nonzero Lagrange multipliers, namely support
vectors (SV), can be obtained to describe the hyperplane.
To solve the QP problem mentioned above, a sequential
minimal optimization (SMO) algorithm was utilized [35].

16468 VOLUME 13, 2025



J. Luo et al.: Novel Multi-Fidelity Support Vector Classification Method

For easy understanding of the derivation for solving the
α and b values of the subsequent MFSVC model, a detailed
inference process is provided here. The SMO algorithm is a
heuristic algorithm that iteratively optimizes the solution of
a problem by selecting two α for optimization each time.
Because the constraint condition of α determines the accumu-
lation of its product with y equal to be zero, two optimizations
are needed at one time to preserve the constraint condition.
Let α1 and α2 be two initial feasible solutions. Using (6)
and (7), we can obtain the following:

max
α1,α2

W (α1, α2) = max
α1,α2

( α1 + α2 −
1
2
K (x1, x1) α2

1

−
1
2
K (x2, x2) α2

2 − α1α2y1y2K (x1, x2)

− α1y1
n∑
j=3

αjyjK
(
xj, x1

)
− α2y2

n∑
j=3

αjyjK
(
xj, x2

)
+ c ) (9)

subject to:

{
α1y1 + α2y2 = −

∑n

j=3
αjyj = ζ

0 ≤ αi ≤ C, i = 1, 2
(10)

where parameter c is the part that is independent of α1 and
α2 and is treated as a constant term in this optimization. The
parameter ζ is a constant. Using (1) and (10), (9) can be
transformed into a unary problem, and the partial derivatives
can be obtained as:

∂φ (α2)

∂α2
= (−y2y1 + 1 + K (x1, x1) ζy2 − K (x1, x1) α2

− K (x2, x2) α2 − y2K (x1, x2) ζ

+ 2K (x1, x2) α2 + y2v1 − y2v2) (11)

where vi =
∑n

j=3 αjyjK
(
xj, xi

)
. Let the partial derivative be

equal to 0 and be simplified to obtain the update equation of
parameter α:

α′

2 = α2 +
y2 {[f (x1) − y1] − [f (x2) − y2]}

K (x1, x1) + K (x2, x2) − 2K (x1, x2)
(12)

where parameter α′
i is an unconstrained updated Lagrange

multiplier. Parameter αi is an old Lagrange multiplier.
According to (11), by constraining the update equation,
we obtain

α′′

2 =


H if α′

2 > H
α′

2 if L ≤ α′

2 ≤ H
L if α′

2 < L

α′′

1 = α1 + y1y2
(
α2 − α′′

2
)

(13)

with

L =

{
max (0, α2 − α1) if y1 ̸= y2
max (0, α2 + α1 − C) if y1 = y2

H =

{
min (C,C + α2 − α1) if y1 ̸= y2
min (C, α2 + α1) if y1 = y2

(14)

where parameter α′′
i is a constrained updated Lagrange multi-

plier. The updated formula for the threshold b can be obtained
as follows:

b′

1 = −E1 − y1K (x1, x1)
(
α′′

1 − α1
)

− y2K (x2, x1)
(
α′′

2 − α2
)
+ b

b′

2 = −E2 − y1K (x1, x2)
(
α′′

1 − α1
)

− y2K (x2, x2)
(
α′′

2 − α2
)
+ b

b′′
=
b′

1 + b′

2

2
(15)

where parameter b′
i is the updated threshold. b represents

the initial set of the thresholds. b′′ is a compromise between
two updated thresholds. Parameter Ei = f (xi) − yi is the
model prediction error. The above process is iterated until the
growth rate of the model objective functionW (α) is less than
threshold e:

W
(
αt+1

)
−W

(
αt
)

W (αt)
< e (16)

whereW
(
αt
)
andW

(
αt+1

)
are the objective function results

for iterations t and t + 1, respectively. After obtaining the
optimal solutions αbesti and bbest , the decision boundary f (x)
is determined as follows:

f (x) =

n∑
i=1

αbest
i

yiK
(
xi, xj

)
+ bbest (17)

The kernel parameters γ and the regularization parameter
C are an input parameters for training the SVM models and
must be adjusted to achieve sufficient classification perfor-
mance. To separate the classification results into two classes,
the optimal decision function is obtained based on (10) for
the SVC model:

g (x) = sign (f (x)) = sign(
∑n

i=1
abest
i

yiK
(
xi, xj

)
+ bbest )

(18)

where sign is a signed function aimed at converting the output
of the function into y = ±1.

B. MULTI-FIDELITY SUPPORT VECTOR CLASSIFICATION
The improved MFSVC model, based on the SVC model,
is a classification model that utilizes multiple information
sources to analyze and combine data. It assumes the existence
of two information sources, each with a different evaluation
cost and fidelity. Label L represents a simplified and cheaper
information source, whereas the label H represents a more
accurate and expensive information source. The LF and HF
datasets are denoted as DL =

{(
xi, yi

)
|i = 1, 2, . . . , nL}

and DH =
{(
xi, yi

)
|i = 1, 2, . . . , nH }, respectively. It is

worth noting that both datasets have s number of features.
The MFSVC model aims to fuse the two datasets to provide
a better prediction of the separation boundary at the HF
level compared with single-fidelity models. To this end, the
auto-regressive model is adopted to establish the relationship
between the LF and HF functions [36]:

gL (x) = gL (x)
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gH (x) = ρgL (x) + δ (x) (19)

where the function gL(x) is the latent function of the input
and output of LF dataset DL . the function gH (x) is the latent
function of the input and output of the HF dataset DH . The
parameter ρ is a scalar that needs to be inferred and represents
the linear correlation between HF and LF function. And the
function δ (x) is designed to capture the prediction bias of
LF models at the HF sample sites. According to the basic
principles of the SVC model, the basic form of the MFSVC
model is defined as follows:

g (X) = sign

(nL+nH∑
i=1

αiYiKMF (xL , xH ) + b

)
(20)

where Yi is the response value of the support vector deter-
mined during the construction of the MFSVC. By compar-
ing (17) and (20), it can be concluded that the key of the
MFSVC model is to design a reasonable kernel function to
effectively describe the relationship between multi-fidelity
input data and output results. An isotropic covariance matrix
is established as follows:

KMF (xL , xH ) =

[
KLL KLH
KHL KHH

]
(21)

where

KLL = σLe
−

s∑
k=1

γL

∥∥∥xk,iL −xk,jL
∥∥∥2

(i, j = 1, . . . , nL)

KLH = ρσLe
−

s∑
k=1

γL

∥∥∥xk,iL −xk,jH
∥∥∥2

(i = 1, . . . , nL; j = 1, . . . , nH )

KHL = ρσLe
−

s∑
k=1

γL

∥∥∥xk,iH −xk,jL
∥∥∥2

(i = 1, . . . , nH ; j = 1, . . . , nL)

KHH = ρ2σLe
−

s∑
k=1

γL

∥∥∥xk,iH −xk,jH
∥∥∥2

+ σHe
−

s∑
k=1

γH

∥∥∥xk,iH −xk,jH
∥∥∥2

(i, j = 1, . . . , nH ) (22)

where parameter s is the dimension of the input data. TheKLL
and KHH models are designed to model each fidelity dataset
separately, whereas the KLH and KHL models account for
the intercorrelation between the two fidelity datasets. ρ, σL ,
σH , γL , and γH are hyperparameters that must be optimized
using an optimization algorithm to find the best separating
hyperplane. In the MFSVC model, the SMO algorithm is
also used to solve the QP problem. The SMO algorithm of
the MFSVC model is similar to that of the SMO algorithm
used in the SVC model mentioned above. Specifically, the
optimal αbesti and bbest of the MFSVC model are determined
iteratively, and the iterative equations are presented below:

α′

2 = α2 +
Y2 {[fMF (X1) − Y1] − [fMF (X2) − Y2]}

KMF (X1,X1) + KMF (X2,X2) − 2KMF (X1,X2)

α′′

2 =


H , α′

2 > H
α′

2, L ≤ α′

2 ≤ H
L, α′

2 < L

α′′

1 = α1 + Y1Y2(α2 − α′′

2 )

b′

1 = −E1 − Y1KMF (X1,X1)(α′′

1 − α1)

− Y2KMF (X2,X1)(α′′

2 − α2) + b

b′

2 = −E2 − Y1KMF (X1,X2)(α′′

1 − α1)

− Y2KMF (X2,X2)(α′′

2 − α2) + b

b′′
=
b′

1 + b′

2

2
(23)

where the parameters {H , L} in (23) are the same as those
in (14), but yi = Yi. After obtaining the optimal parameters,
the prediction for a new HF sample point can be obtained by

⌢ynew = sign

(nL+nH∑
i=1

αbest
i

YiK (X i, xnew) + bbest
)

(24)

where K (X i, xnew) is defined as follows:

K (X i, xnew)

=


ρσLe

−

s∑
k=1

γL

∥∥∥xk,iL −xknew

∥∥∥2

ρ2σLe
−

s∑
k=1

γL

∥∥∥xk,jH −xknew

∥∥∥2
+ σHe

−

s∑
k=1

γH

∥∥∥xk,jH −xknew

∥∥∥2
(i = 1, 2, . . . ,NL; j = 1, 2, . . . ,NH ) (25)

where NL and NH are the number of LF and HF samples in
SV.

In the MFSVC, θ = {C, ρ, σL , σH , γL , γH } is a hyperpa-
rameter that must be determined during the model construc-
tion step. To obtain the optimal classification hyperplane,
it is necessary to choose a classification metric as the train-
ing error indicator to optimize the various hyperparameters.
Choosing a training error metric to optimize the hyperparam-
eters of the model is crucial because it directly affects the
predictive performance of the model. A good training error
metric can improve the accuracy of the model classification
and analyze the input data as a whole. Here, the classification
model metric, accuracy (ACC), was selected as the training
error metric. The effect of the error metric on the perfor-
mance of theMFSVCmethod is presented in the next section.
Therefore, the optimization objective function of theMFSVC
model to determine the hyperparameters can be expressed as

θ̂ = max
θ

ACC(yH , ŷH ) (26)

where θ̂ is the hyperparameter result obtained by optimizing
the objective function. The function ACC(∗) is the classi-
fication performance metric function that is consists of the
training input value yH and predicted output value ŷH . For
the MFSVC, the ACC is calculated by

ACC
(
yH , ŷH

)
=

TP+ TN
TP+ TN + FP+ FN

TP=card (A) ,A =
{
y = 1

∣∣y ∈ ŷH ∧ y ∈ yH
}
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TN=card (B) ,B =
{
y = −1

∣∣y ∈ ŷH ∧ y ∈ yH
}

FP=card (C) ,C =
{
y = 1

∣∣y /∈ ŷH ∧ y ∈ yH
}

FN=card (D) ,D =
{
y = −1

∣∣y /∈ ŷH ∧ y ∈ yH
}

(27)

Simultaneously, it is crucial to use an optimization
algorithm to optimize various hyperparameters to obtain
the best classification hyperplane. Among numerous opti-
mization algorithms, the Genetic Algorithm (GA) is a
population-based metaheuristic algorithm based on the prin-
ciples of biological evolution [37], [38]. Compared with other
optimization algorithms, GA can evaluate multiple solutions
in the search space, making it easier to reach a global optimal
solution. Additionally, the algorithm is simple, versatile, and
widely applicable [39]. GA utilizes the concept of ‘‘sur-
vival of the fittest’’ by repeatedly applying genetic operators
to individuals in the population to generate new popula-
tions. The number of populations (M ), The representation
of individuals, selection process, crossover probability (CP),
mutation probability (Mp), iterations (N ), and fitness function
calculation are crucial in GA. Therefore, the GA is used to
optimize the hyperparameters of SVC andMFSVC to predict
the data, in which the GA parameter settings are given later.

C. TREATMENT OF IMBALANCE DATA
Imbalanced training datasets often result in decreased pre-
diction accuracy for classification models or difficulty in
capturing the correct distribution of minority classes. There-
fore, preprocessing of the training dataset is necessary
before training the model, which involves data balancing.
The SMOTEENN algorithm is a hybrid sampling algorithm
that overcomes the disadvantages of both oversampling and
undersampling. Firstly, it generates synthetic samples, which
helps achieve a balanced ratio in the dataset. The Edited Near-
est Neighbor algorithm (ENN) [40] is then used to eliminate
noisy samples, ensuring that the dataset is devoid of noise
and inconsistencies. By combining these two techniques,
the SMOTEENN algorithm effectively balanced the accurate
capture of minority class patterns and the preservation of
valuable information in the dataset.

In this paper, the synthetic samples are generated in the
following manner:

Xnew = Xi +
(
X∗
i − Xi

)
∗ rand (28)

where Xnew represents synthetic data, and its response value
y is the same as that of the minority class samples, Xi denotes
a selected minority class sample, X∗

i refers to one of the k-
nearest neighbors [41] fromXi, rand retains a random number
ranging from 0 to 1. The scheme of the ENN algorithm
is as follows: 1) An initial training dataset is established,
denoted as T, which needs to be edited in order to improve
its quality; 2) In each editing iteration, the k-nearest neighbor
algorithm is applied to each sample point x in the dataset T
and the samples that do not conform to the k-nearest neighbor
rule are discarded; (3) This process continues until no more

samples can be deleted. It is worth noting that the k value
in the k-nearest neighbor algorithm is a parameter that must
be specified beforehand. In this study, the k value of the k-
nearest neighbor algorithm was 3.

D. FLOWCHART AND IMPLEMENTATION
Unlike the SVC model, which can only use a single-fidelity
data source formodel training, thismodel utilizes two-fidelity
data sources to form a covariance matrix, thereby estab-
lishing an MFSVC model. To address the problem of data
imbalance caused by missing or difficult-to-obtain data in
various practical engineering problems, this model estab-
lishes an enhanced MFSVC model (EMFSVC) combined
with a data-balancing algorithm. This model introduces a
genetic algorithm to optimize the various hyperparameters of
the EMFSVC model to determine the optimal classification
hyperplane for the dataset. To facilitate comprehension of the
proposed method, its application in the field of engineering
statics is demonstrated and a flowchart is produced (see
Fig. 1). It can be noted that the model is mainly divided
into two parts: 1) The initial LF/HF sample points should
be generated in the DOE considering the design parameters
of the geometric model taken into account. Subsequently,
the sample points were used to establish the corresponding
geometric model and mesh it. The corresponding simulation
results were obtained through the application of simulation
calculations, with class labels assigned in accordance with
the magnitude of the simulation results. For example, when
the stress experienced exceeds the allowable stress and failure
occurs, the sample point can be labelled as 0, and conversely,
as 1. 2) Once all the sample points have been assigned class
labels, the SMOTEENN algorithm is applied to the LF and
HF sample points for resampling to obtain the training set.
Subsequently, the range of hyperparameter values and param-
eters for the GA are set, and the initial hyperparameters and
covariancematrix of theMFSVCmodel are determined based
on (20) and (21). The SMO algorithm was then utilized to
optimize these parameters, leading to the identification of the
optimal parameters {α, b} for the MFSVC model. The GA
was applied to optimize the hyperparameters of the MFSVC
model. This involves computing the training error metric of
the MFSVC model, which measures the difference between
the output yH of the training sample points and predicted
output ŷH . The EMFSVC model and the failure boundary
were ultimately obtained by determining the best individual
through GA optimization.

III. ANALYTICAL PROBLEMS
The prediction performance of the MFSVC and EMFSVC
models was verified and compared with the three classifica-
tion models through numerical examples in this section.

A. STEUP
To verify the effectiveness of the proposed method, analyt-
ical problems were first solved. The hardware and software
environment used in this experiment was as follows: (1)

VOLUME 13, 2025 16471



J. Luo et al.: Novel Multi-Fidelity Support Vector Classification Method

FIGURE 1. Flowchart of the EMFSVC model in the engineering problem.

Hardware environment: workstation with two Intel Xe-on
E5-2680 v4 processors and 128 GB memory. (2) Software
environment: Windows 10, Windows Subsystem for Linux 2,
MINICONDA3, g++. (3) Third-party packages: NumPy,
SciPy, Theano, pygpu, Pymc3, pyDOE, scikit-learn, mkl, and
imbalanced-learn. The python language was mainly used to
implement various models in this experiment, and multiple
numerical examples were used for research.1 This experiment
mainly studied the classification model, so the commonly
used evaluation indicators of the classification model were
precision (P), recall rate (R), and F1 score (F1) [42], [43],
[44]. The computational cost of the experiment was calcu-
lated using the time (T) spent on the model training.

P =
TP

TP+ FP

R =
TP

TP+ FN

F1 = 2 ×
P× R
P+ R

(29)

1The code to reproduce the experimental results can be found via
https://github.com/YouweiUSC/MFSVC

where TP is true positives, which is the number of data points
correctly classified from the positive class; TN is true nega-
tives, which is the number of data points correctly predicted
from the negative class; FP is false positives, which is the
number of data points classified to be in the positive class but
in fact belonging to the negative class; FN is false negatives,
which is the number of data points classified as negative but
in fact belonging to the positive class.

To verify the effectiveness and efficiency of the pro-
posed method, the following models were compared: (1) The
MFGPC model was chosen for comparison [26], as it is the
only multifidelity classification method reported in the open
literature. In addition, GPC was compared. For the construc-
tion of the GPC and MFGPC, a No-U-Turn sampler was
utilized. It uses a chain with a target acceptance probability of
0.95 and 0.99. The first 3000 sampling points were discarded
to adjust the sampler’s step size, and the last 1000 sam-
pling points were used for analysis. (2) The SVC model
was included for comparison to demonstrate the efficiency of
MFSVC in fusing the multi-fidelity data. SVC also utilizes
GA to optimize the hyperparameter {C, γ }. In this numerical
experiment, it was set that the cost of obtaining an expensive
function evaluation was five times higher than that of a cheap
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function evaluation, meaning that the multifidelity model was
composed of a dataset consisting of 10 expensive function
evaluations and 50 cheap function evaluations. By contrast,
the single-fidelity model is composed of a dataset consisting
of 20 expensive function evaluations. In addition, 1000 test
sample points were generated via Latin hypercube sampling
(LHS) and used to test model accuracy. Following the prin-
ciples of the GA, in this experiment, the hyperparameters
{C, ρ, σL , σH , γL , γH } of the MFSVC model are set as genes
in the population, and the fitness function (i.e., the training
error metric) is determined later. The ranges of the hyperpa-
rameters are {[0,500], [0,1], [0,1], [0,1], [0,10], [0,10]}. The
parameters of the GA were set to {M = 40, N = 10, Cp =

0.9, Mp = 0.1}
First, to determine the optimal training error metric for the

MFSVC model, the MFSVC model with each classification
evaluation index as the training error metric was trained in
numerical examples of balanced data. Subsequently, to verify
the effectiveness and efficiency of the MFSVC model, the
MFSVC model was compared with other algorithms using
balanced data. To validate the effectiveness of the proposed
method in imbalanced data, an imbalanced dataset was set up
with class proportions {1:9, 2:8, 3:7, 4:6} in the numerical
functions. Because precision engineering is expensive for
generating high-fidelity samples, it’s mostly small-sample
datasets. The minority classes in a high-fidelity dataset may
not exist or may not be able to satisfy the number of samples
required for resampling by the SMOTENN algorithm when
there is an extreme imbalance rate, so this experiment focused
on medium to high imbalance level dataset. The numerical
test functions used in this study are listed in Table 1.

B. RESULTS
1) INFLUENCE OF ERROR METRIC ON THE PERFORMANCE
OF MFSVC
Before comparing with other models, determining the error
measurement used in the determination of the hyperparame-
ters of the MFSVC model is one of the steps in construction,
because it directly affects the predictive performance of
the model. In this study, four classification indicators were
applied as error measurements to conduct experiments and
verify the accuracy of error measurement on the MFSVC
model. Taking four analytic problems as examples, a bal-
anced dataset was established for training, consisting of 50 LF
and 10 HF sample points, to reduce the impact of imbalanced
data on model accuracy during the training process. Ten runs
were performed to obtain the mean and standard deviation
(SD) of the performance metrics, which are summarized in
Table 2. The best results are shown in bold font. The boxplot
shown in Fig. 2 is further utilized to illustrate the performance
metrics over 10 independent runs on the Costabal problem.

From Table 2, it can be observed that when ACC is used
as the error measurement, the predictive performance of the
MFSVC model is generally better than that of the other three
metrics. In the Branin function, the classification indicator

TABLE 1. Numerical test functions.

FIGURE 2. Boxplot of multiple error metrics on MFSVC in the Costabal
function with balanced data.

{F1 = 0.987} of the MFSVC model with ACC as the train-
ing error metric was 0.065 times higher than that of the
MFSVC model with R as the training error measurement
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TABLE 2. Results of multiple error metrics on MFSVC in the numerical functions with balanced data.

{F1 = 0.922}. In the Failure 2 function, the variances of the
classification indicators {0.017, 0.037, 0.033} of theMFSVC
model with ACC as the training error measurement were
all smaller than the variances of the classification indicators
{0.018, 0.048, 0.044} of the MFSVC model with F1 as the
error measurement. In the Hartmann 3 function, the MFSVC
model demonstrates a better predictive performance because
it utilizes the ACC metric as the training error metric com-
pared to other metrics.

From the boxplot above, it can be seen that in the numer-
ical examples, the MFSVC model with ACC as the model
training error measurement has significantly better predictive
performance than the other three MFSVC models, and the
model’s robustness is also good. As shown in Figure 2, the
predictive performance indicators {P, R, F1} of the MFSVC
model with ACC as the error measurement were mainly
distributed between 0.90 and 0.95, while the predictive per-
formance indicators of the other threemodels were lower than
or equal to 0.90. Based on the above investigation, it can be
concluded that the MFSVC model with ACC as the training
error measurement has better predictive performance and
robustness. Therefore, ACC was used as the training error
measurement for both the MFSVC and SVC models in the
following experiments to ensure consistency in optimizing
the training error indicators of the models.

2) RESULT ON NUMERICAL FUNCTION WITH BALANCE DATA
After establishing the training error measurement, the pre-
dictive performance of each model was compared by using
multiple numerical examples to verify the effectiveness of the
MFSVCmodel. The sample point setting process is described
in the literature [26]. The single-fidelity model uses a dataset
consisting of 20 HF samples, and the dataset with 50 LF
samples and 10 HF samples was used in the construction of
the multi-fidelity model. Table 3 compares the performance
metrics of the compared methods with respect to the analytic
problems. The best results are shown in bold font.

According to the observations in Table 3, the classification
metrics {P, R, F1} of the MFSVC model were signifi-
cantly better than those of the other three classification
models. Although the cost of the MFSVC model increased
by tens of seconds or even approximately one hundred sec-
onds compared to that of the SVC model, it is still within
an acceptable range. Comparing the SVC model and the
MFSVC model, in the Hartmann 3 function, the evaluation
metric {F1=0.945} of the MFSVCmodel improved by about
14% compared to the evaluation metric {F1=0.824} of the
SVC model; in the Failure 2 function, the evaluation met-
ric {F1=0.932} of the MFSVC model also improved by
about 11% compared to the evaluation metric {F1=0.833}
of the SVC model. Comparing the MFSVC model and the
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TABLE 3. Results of multiple models in the numerical functions with
balanced data.

MFGPC model, in the Branin function, the evaluation metric
{F1=0.987} of the MFSVC model increased by 4% com-
pared to the evaluation metric {F1=0.948} of the MFGPC
model, and the cost T {85.496} of the MFSVC model also
decreased by approximately 65% compared to the cost T
{243.557} of theMFGPCmodel; in the Hartmann 3 function,
the classification metric {F1=0.945} of the MFSVC model
improved by 0.026 compared to the metric {F1=0.919} of
the MFGPC model, and the cost T {78.108} of the MFSVC
model also decreased by approximately 79% compared to
the T {378.700} of the MFGPC model. To demonstrate the
advantages of the predictive performance of the MFSVC
model intuitively, the predicted boundaries from the four clas-
sification models in the balanced data of the Branin function
are shown in Fig. 3.
From Fig. 3, it can be seen that the predicted boundary of

the MFSVC model is closer to the HF boundary than that
of the MFGPC model. Compared to the SVC model, the
predicted boundary of the MFSVC model can also better fit
the HF boundary trend. By summarizing the results of the
numerical examples in balanced data, it can be concluded that
in this numerical example experiment, the MFSVC model
has better predictive boundary performance than the SVC
and MFGPC models, the cost is also lower than that of the
MFGPC model, and the cost increase compared to the SVC
model is acceptable.

3) RESULT ON NUMERICAL FUNCTION WITH IMBALANCE
DATA
Through the above numerical experiments with balanced
data, the MFSVC model was verified to have better predic-
tive boundary performance than the other three classification
models. However, in practical situations, data are often dif-
ficult to obtain or miss, resulting in data imbalance, which
leads to a decrease in predictive accuracy or difficulty in
capturing the intrinsic characteristics of engineering systems
usingmost predictive boundarymodels. Therefore, EMFSVC
was developed in this study to solve the problem of imbal-
anced data. The effectiveness of EMFSVC was demonstrated
by comparing it with alternative classification models on
datasets with various imbalance ratios. After LHS sampling,
1000 sample points, 50 LF sample points, and 10 HF sample
points were chosen as a multi-fidelity dataset based on the
imbalanced ratio, and 20 HF sample points were selected
as a single fidelity dataset based on the imbalanced ratio.
For example, when the imbalance ratio was set to 1:9, the
single-fidelity dataset consisted of two HF sample points
with {y = 1} and 18 HF sample points with {y = −1}.
On the other hand, the multi-fidelity dataset consists of five
LF sample points with {y = 1} and 45 LF sample points
with {y = −1}, making a total of 50 LF sample points, one
HF sample point with {y = 1}, and nine HF sample points
with {y = −1}, resulting in a total of 10 HF sample points.
Table 5 summarizes the performance metrics of the compared
methods for analytic problems on imbalanced data. The best
results are bolded, and the second ones are underlined.

TABLE 4. Results of the multiple models in the Branin function with
imbalanced data.
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FIGURE 3. Result of multiple models in the Branin function with balanced data.

According to the above tables, the proposed method has
a better overall predictive performance than other models at
different imbalance ratios. In the Branin function, regardless
of the imbalanced ratio, the proposed method always has
better classification metrics {F1} than the other four clas-
sification models, and when the imbalanced ratio tends to
be balanced, the classification metrics {P, R} of EMFSVC
also become better than the other four classification models.
In the Failure 2 function, EMFSVC has a better classification
metric {F1} than the other models when the imbalance ratio
is low. In the Costabal function, regardless of the imbalanced
ratio, the EMFSVC always has a better classification metric
{F1} than the other classification models, and the same is
true in the Hartmann 3 function. The table also shows that
in some cases, the classification performance of EMFSVC
is not necessarily better than that of the other models. For
example, in the failure 2 function, when the imbalanced ratio
of the dataset was 4:8, the classification metrics {P=0.936,
R=0.915, F1=0.919} of the MFGPC model were better than

the classification metrics {P=0.933, R=0.914, F1=0.917} of
the EMFSVC. The reason may be that although the SMO-
TEENN algorithm can effectively handle class imbalance
problems to improve the predictive accuracy of the model,
when the distribution of the minority class samples is uneven
or overlaps, the SMOTEENN algorithm may generate noisy
data or mistakenly delete data, which leads to a decrease
in the predictive performance of the model. Overall, the
proposed method demonstrates better predictive performance
and stability compared to other models. To intuitively observe
the changes in the predicted boundaries of the EMFSVC
and other models in imbalanced data, the predicted boundary
results of the EMFSVC and MFSVC models in the Costabal
function are shown as an example in Fig. 4.

From Fig. 4, it can be observed that the predicted boundary
of the proposed method in imbalanced data is closer to the HF
boundary than the predicted boundary of the MFSVC model.
When the imbalance ratio is {1:9, 2:8}, the peak values of the
predicted boundary of the proposed method are close to the
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TABLE 5. Results of the multiple models in the Failure 2 function with
imbalanced data.

TABLE 6. Results of the multiple models in the Costabal function with
imbalanced data.

peak values of the HF boundary, and the valley values of the
predicted boundary of the proposed method are also close to

TABLE 7. Results of the multiple models in the Hartmann 3 function with
imbalanced data.

the valley values of the HF boundary. However, the predicted
boundary of the MFSVC does not exhibit the same trend as
that of theHF boundary and has significant differences.When
the imbalanced ratio is {3:7, 4:6}, the peak and valley values
of the predicted boundary of the proposed method are closer
to the peak and valley values of the HF boundary than the
predicted boundary of the MFSVC model.

In conclusion, in this numerical experiment, the proposed
method can effectively guarantee the predictive performance
of the classification model in imbalanced datasets and even
improve the predictive performance of the model. There-
fore, the proposed method can effectively predict the failure
boundary under the phenomenon of data imbalance and
address boundary problems in engineering experiments or
other application areas.

4) INFLUENCE OF THE SIZE OF HIGH-FIDELITY DATA
In numerical experiments, low-fidelity sample data are con-
sidered inexpensive and easy to obtain with negligible costs.
Therefore, this experiment only investigated the impact of
high-fidelity sample sizes on the proposed model in the
numerical experiments. To study the effect of the high-fidelity
sample size on the accuracy of the proposed model under
different functions, four numerical examples were used, and
the effect of the high-fidelity sample size on the accuracy
of the proposed method was studied. In this experiment, the
default low-fidelity sample size of 100was set, and the impact
of high-fidelity sample sizes {6, 10, 14, 18, 22, 30} on the pro-
posed method was analyzed. The accuracy of the model was
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FIGURE 4. Result of imbalanced data in the Costabal function. To better clarify the key differences between the predicted
boundary and the high-fidelity boundary, green solid lines have been added at the peaks and valleys of the boundary to
illustrate the distance between the lines.

tested using LHS sampling with 1000 test samples. Table 9
was obtained through training on numerical examples with
balanced data.

FIGURE 5. Results of the function with balanced data on the EMFSVC.

From the figures above, it can be observed that within
a certain range, as the number of HF samples increases,

the various classification indicators of the proposed method
fluctuate. When the number of HF samples reaches a certain
value and continues to increase, the various classification
indicators of the proposed method decrease or fluctuate, and
the upward trend may even approach zero. For example,
in Fig. 5(b), when the number of HF samples reached 18,
the various classification indicators of the model reached
their maximum; however, when the number of HF samples
continued to increase to 30, the various classification indi-
cators of the model decreased. As shown in Fig. 5(a), when
the number of HF samples increased to 18, the model’s
various classification measurements reached their maximum
values, after which the number of HF samples continued
to increase, and the model’s various classification measure-
ments started to fluctuate. To visually observe the influence
of HF samples on the proposed method, experiments were
conducted using the Failure 2 function, as shown in Fig. 6.
As shown in Fig. 6, when the number of HF samples was
less than 18, the predicted boundary of the proposed method
differed significantly from that of the HF boundary. When
the number of HF samples was 18, the predicted boundary
of the proposed method was closest to the HF boundary,
its predicted upper boundary did not intersect with the HF
boundary, and its predicted lower boundary had the same
trend as the HF lower boundary and was close in distance.
However, when the number of HF samples continues to
increase, although the proposed method’s predicted boundary
is close to the HF boundary, boundary crossing phenomenon
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FIGURE 6. The influence of HF sample number of the proposed method in the Failure 2 function.

between the predicted boundary and theHF boundary starts to
appear

In conclusion, in an imbalanced dataset, EMFSVC can
better predict the boundary and has better or more stable
performance in imbalanced datasets. In addition, the selec-
tion of the HF sample size directly affects the predictive
boundary performance of EMFSVC. An appropriate number
of HF samples can improve the classification accuracy of the
prediction model, while avoiding unnecessary costs.

IV. ENGINEERING EXAMPLES
In this section, three engineering problems, including the
prediction of the failure boundary of the zero Poisson ratio
structure and the safe operating boundary of the axial flow
compressor Rotor37 and the simulation failure boundary of
modeling the isentropic efficiency of the axial compressor
rotor Rotor37, are solved to verify the engineering capability
of the EMFSVC.

A. THE FAILURE BOUNDARY OF ZERO POISSON RATIO
STRUCTURE
EMFSVC was used to predict the failure boundaries of indi-
vidual units in zero-Poisson ratio structures. A geometric
model of the zero-Poisson ratio structure investigated in [45]

was adopted, as shown in Fig. 7. The geometric model and
design parameters of the unit cell of the zero-Poisson ratio
structure are shown in Fig. 8 and Table 10, respectively. The
structure was pressed using downward force. If the force is
larger than the threshold value, the structure is destroyed.
Therefore, predicting the safety boundary of the zero Poisson
ratio structure would be beneficial for engineering appli-
cations. According to the material used in Table 9, the
compressive yield strength σb of the zero Poisson’s ratio
structure was set to 250MPa in this experiment. Therefore,
the maximum failure stress of the zero-Poisson’s ratio struc-
ture was set to 250MPa in this experiment. Based on the
data in Table 10, a static structural simulation model was
constructed using the ANSYS software. A fine mesh model
with 33,420 cells was used as the HF model. Accordingly,
a coarse mesh model comprising 4,330 cells was used as
the LF model. The HF and LF models of a unit cell with
a zero Poisson ratio structure were analyzed using ANSYS
software, and the stress results in the X-axis direction were
obtained. The grids and simulation results of the LF and HF
simulations for the unit cell of the zero-Poisson ratio structure
are shown in Fig. 9 and Fig. 10, where the corresponding
simulation times of the HF and LF model were 34s and 5s.
Therefore, the cost ratio was 6.8, which was rounded off
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to 7. The multi-fidelity model was constructed based on a
dataset consisting of 10 HF and 70 LF samples. To make
a fair comparison, the single-fidelity model used a dataset
consisting of 20 HF samples with the identical cost of the
sample data to that of themulti-fidelitymodel. The proportion
of minority classes in the high-fidelity dataset is about 0.145,
whereas in the low-fidelity dataset, it is about 0.160. To test
the accuracy of the model, 1,000 samples were generated
using LHS and evaluated by HF simulation with a fine mesh
to obtain its associated responses.

FIGURE 7. Geometric model of zero Poisson ratio structure.

FIGURE 8. Geometric model of a unit cell of zero Poisson ratio structure.

By using the simulation results to create a dataset and train
multiple classification models, the prediction indicators of
the multiple classification models were obtained, as shown
in Table 9. From Table 9, it can be seen that in the prediction
of the failure boundary of the zero-Poisson-ratio structure,
EMFSVC’s prediction accuracy of EMFSVC is significantly
better than that of the other three classification models.
By comparing the MFGPC and GPC models, the cost of

TABLE 8. Design parameters of a unit cell of zero Poisson ratio structure.

building an MFGPC model increased by nearly five times.
The classification indicators of theMFGPCmodel {P=0.946,
R=0.921, F1=0.927} were all better than those of the GPC
model {P=0.912, R=0.823, F1=0.842}. A similar conclu-
sion can be drawn by comparing MFSVC and SVC models.
The modeling cost is about 144.49s of a MFSVC model,
which is 46.27s for an SVCmodel. In terms of predictive per-
formance, the MFSVC model performed better than the SVC
model. By comparing the MFSVC model and the MFGPC
model, it can be found that the MFSVC modelling cost of
MFSVC is 141.49s lower than that of the MFGPC model
242.20s. Meanwhile, the various classification indicators of
the MFSVCmodel are similar to those of the MFGPCmodel.
Furthermore, by comparing the proposed method and the
MFSVC model, it can be observed that EMFSVC’s cost is
301.86s, which is approximately 150 s higher than that of the
MFSVC model’s cost 141.49s. However, the cost was still
within the acceptable range. However, EMFSVC performed
better than MFSVC in terms of prediction accuracy, as the
classification indicators {P=0.982, R=0.989, F1=0.980} of
EMFSVC were improved by nearly 5% compared to the
classification indicators of the MFSVC model {P=0.932,
R=0.930, F1=0.928}. Based on the above comparisons,
it can be concluded that EMFSVC has the best predictive
performance for the failure boundary of the zero Poisson ratio
structure and can effectively predict the failure boundaries of
the problem.

TABLE 9. The results of each model for zero Poisson ratio structure.
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FIGURE 9. Mesh models of a unit cell of zero Poisson ratio structure.

FIGURE 10. Simulation result of a unit cell of zero Poisson ratio structure.

To visually understand the failure boundaries of the zero
Poisson ratio structures, 10,000 high-fidelity sample points
were used to approximate the true failure boundary of the
zero-Poisson-ratio structure, as shown in Fig. 11. It can be
noted that the area of the safe region is significantly larger
than that of the failure region. The predicted boundaries of the
five models are shown in Fig. 12. In MFGPC and GPC, the
models were unable to effectively predict the failure bound-
aries, with the predicted results {y} closely approaching 1.
However, inMFSVC and SVC,MFSVC is closer to the actual
boundary positions, whereas SVC is more in line with the
real boundary trend. It can be observed that EMFSVC, when
compared with the other models, predicts boundaries that
are much closer to the true boundary, indicating a better fit.
These results demonstrate that EMFSVC has good accuracy
and feasibility in predicting the failure boundaries of static
structures, and can compensate for the problem of decreased
predictive performance in classification models caused by
imbalanced real data.

B. THE SAFE OPERATING BOUNDARY OF AN AXIAL FLOW
COMPRESSOR ROTOR
To validate the application feasibility of the proposed model
in complex fluid machinery, the surge and choke boundaries

FIGURE 11. Simulation dataset of zero Poisson ratio structure.

of the compressor rotor Rotor37 [1] were predicted to com-
pare the accuracy of each model. An axial flow compressor
is a core component of an aeroengine. Its safe operation is
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FIGURE 12. Failure boundary of zero Poisson ratio structure.

crucial for the safety of the entire engine. If the compressor in
the engine experiences surging or blockage, it not only affects
the performance of the engine but also leads to damage and
reduces the engine’s lifespan. Hence, it is essential to predict
the surging and blockage boundaries of compressors. In this
experiment, the NUMECA software was used to analyze
the performance curve of Rotor37 at different speeds, and a
dataset was established based on the speed and pressure ratio.
The design parameters of the Rotor37 compressor are listed in
Table 10. Fig. 14 illustrates the 3-D view. The different speeds
of Rotor37 as a percentage of the initial speed were set to
[100%, 90%, 80%, 70%, 60%]. A finemeshmodel consisting
of 843093 cells was considered as the HF model. Therefore,
a coarse mesh model consisting of 364017 elements was used
as the LF model. Fig. 15 presents the mesh models of the HF
and LF models. The absolute pressure on the solid surface
of the compressor rotor is presented in Fig. 16, where the
corresponding simulation times of the HF and LF models
were 9 and 33 min, respectively. Therefore, the cost ratio is
3.66, which is rounded to 4. For the multi-fidelity models,
a dataset consisting of 10 HF samples and 40 LF samples was
used. For a fair comparison, the single-fidelity models used a
sample set with 20 HF samples. The proportion of minority
classes in the high-fidelity dataset is about 0.308, whereas in

the low-fidelity dataset, it is about 0.260. To test the accuracy
of the model, 200 HF sample points were used as the testing
sets.

TABLE 10. Design parameters of Rotor37 compressor.

Similar to the method used to verify the effectiveness
of EMFSVC on zero-Poisson-ratio structures, the Rotor37
dataset was used to train various models to obtain their
respective classification indicators, as shown in Table 13.

16482 VOLUME 13, 2025



J. Luo et al.: Novel Multi-Fidelity Support Vector Classification Method

FIGURE 13. Geometric model of rotor37 compressor.

FIGURE 14. Mesh models of the Rotor37 compressor.

From Table 13, it can be seen that in the surge and choke
boundary prediction dataset of the Rotor37 compressor,
EMFSVC’s prediction accuracy of the EMFSVC is sig-
nificantly better than that of the other three classification
models. Comparing the GPC with the MFGPC, the cost of
the MFGPC models increased by nearly 10 times compared
to the GPC, and the classification indicators of the MFGPC
model {P=0.504, R=0.710, F1=0.590} were the same as
those of the GPCmodel, indicating that the GPC andMFGPC
models in this experiment had poor predictive performance
on this dataset. Comparing the MFSVC model to the SVC

FIGURE 15. Simulation result of the Rotor37 compressor.

model, the classification measurements {P=0.853 R=0.822,
F1=0.796} of the MFSVC model were better than the clas-
sification measurements {P=0.849 R=0.808, F1=0.774} of
the SVC model, although the cost of the MFSVC model
increased by nearly twice that of the SVC model. By com-
paring the MFSVC model and the MFGPC model, it can be
found that while theMFSVCmodel has a cost of {T=119.50}
much lower than the MFGPC model’s cost of {T=311.26},
the various classification indicators of the MFSVC model
are improved by about 0.1 to 0.2 compared to the various
classification indicators of the MFGPC model. By compar-
ing the EMFSVC with the MFSVC model, it can be seen
that EMFSVC’s cost of EMFSVC {T=318.27} increases by
approximately 198 s compared to that of the MFSVC model
{T=119.50}, but the cost is still within an acceptable range.
However, the various classification indicators of EMFSVC
{P=0.913, R=0.910, F1=0.908} were improved by 7–14%
compared with the various classification indicators of the
MFSVC model {P=0.853, R=0.822, F1=0.796}. Based on
the above comparisons, it can be concluded that EMFSVC
has the best predictive performance for the surge and choke
boundary problem of the Rotor37 compressor and can effec-
tively predict the failure boundaries of the problem.

Similar to the previous description, to visually observe
the surge and choke boundaries of the Rotor37 compressor
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TABLE 11. The results of each model for the safe operating boundary of
axial flow compressor.

and the training effect of each model, a graphical represen-
tation of the relationship between the rotational speed and
pressure ratio of the compressor was obtained, and Fig. 17
was obtained. In Fig. 17, the distribution of the failure and
safe samples can be observed, indicating that the surge and
choke problem of Rotor37 is mainly due to the difficulty
in obtaining data samples. Moreover, the MFSVC and pro-
posed models were trained using the Rotor37 dataset, and
the surge and choke prediction boundaries were obtained,
as shown in Fig. 18. From Fig. 18, It can be seen that
the predicted surge and choke boundaries of the Rotor37
compressor by the EMFSVC are closer to the real bound-
aries of the Rotor37 compressor. In the case of MFSVC
and SVC, MFSVC provides a better representation of the
appearance of compressor surging and choking boundaries,
whereas SVC shows an overlap phenomenon in the predicted
boundaries. As forMFGPC and GPC, owing to the imbalance
in the data, the predicted probabilities of the models were
all close to one, leading to a less satisfactory prediction per-
formance. The experimental results obtained from predicting
the surge and choke boundaries of Rotor37 indicate that the
EMFSVC exhibits high accuracy and feasibility when used
to predict failure boundaries in fluid dynamics simulations.
This result is significant because it addresses the issue of
decreased predictive performance of classification models
caused by imbalanced datasets, which arise from the chal-
lenge of acquiring actual data.

C. THE SIMULATION FAILURE BOUNDARY OF MODELING
THE ISENTROPIC EFFICIENCY OF Rotor37
To verify the effectiveness of this method in higher-
dimensional engineering problems, it was applied to predict
the simulation failure boundary of the isentropic efficiency
modeling of the Rotor37. Simulation failure often results
from an ill-geometry or mesh, unstable or weak convergence
of the solver, etc. in computational fluid dynamics (CFD)
simulations [47]. With the advancement of computational
fluid dynamics (CFD) simulations and computers, optimiza-
tion design combining intelligent optimization algorithms
and CFD simulations has become popular in engineering
fields. However, owing to the existence of the simulation
failure, the iterative optimal search driven by the optimization
algorithm, such as Bayesian optimization, is often halted

FIGURE 16. Simulation dataset of zero Poisson ratio structure.

prematurely because of the missing responses of the infill
sample determined by the expected improvement criteria.
Therefore, determining the boundary of the simulation failure
region can be helpful for engineering optimization design.

Themain design specifications and 3D view of Rotor37 are
provided in the previous section and will not be introduced
here. The problem mainly involves the prediction of the
simulation failure boundary when simulating the isentropic
efficiency of a rotor under geometric deformation. The for-
mula for calculating the isentropic efficiency is:

f = ηc (x) (30)

with

ηc =
h2s − h1
h2r − h1

(31)

where h1 denotes the specific enthalpy of air at the inlet of
the rotor. The parameters h2s and h2r represent the specific
enthalpy of the gas at the outlet of the rotor during both
isentropic and actual compression processes. The parameter
x determines the shape of the blades. The parameters h1, h2s,
and h2r were mainly obtained from the results of CFD simu-
lations results, and the NUMECA software was mainly used
in this simulation. In this problem, the geometry definition
of the Rotor37 blade is composed of three blade sections and
the superposition principle, where each section is formed by
adding the thickness of the inlet side and pressure side to the
arc. Each section required nine parameters to determine the
profile shape, as shown in Fig. 18(a). The parameters β1 and
β2 in the figure represent the inlet and outlet blade angles, and
the parameters αtw and γca represent the trailing-edge angle
and sweep angle. tp1, tp2, ts1, ts2, and ts3 are the control points
for the pressure-side and suction-side thickness distributions.
In Fig. 18(b), the lines passing through the centroid of each
section are the stacking lines, which allow the profiles of the
middle section and the blade tip to move in the axial and
circumferential directions, known as stacking line sweep and
lean. Therefore, the blade shape was determined using the
31 parameters.
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FIGURE 17. The surge and choke boundary of the Rotor37 compressor.

To generate a multi-fidelity dataset, grid resolution was
used to distinguish between the HF and LF simulations, with
the grid division numbers for the LF and HF simulation
models being 312,077 and 799,185, respectively. In the isen-
tropic efficiency simulation process, the fluid computational
simulation was used to solve the Reynolds-averaged Navier-
Stokes equations, and the Spalart-Allmaras turbulence model
was utilized to resolve the turbulent flow. The LF andHF sim-
ulations were completed in about 5 and 12 min, respectively,
with a cost ratio of approximately 2. Therefore, a single-
fidelity dataset consisting of 400 HF sample points was
used. Correspondingly, the multi-fidelity dataset consisted
of 400 LF sample points and 200 HF sample points. The
proportion of minority classes in the high-fidelity dataset is
about 0.180, whereas in the low-fidelity dataset, it is about
0.260. To test the accuracy of the model, 10000 HF sample
points were used as the testing sets.

The respective classification metrics obtained by applying
the multi-fidelity and single-fidelity datasets to each classi-
fication model are listed in Table 14. From the table, it can
be seen that in GPC and MFGPC, the predictive boundary
performance of the MFGPC is better than that of the GPC.

The classification metric {F1=0.744} of MFGPC is nearly
30% higher than that of the classificationmetric {F1=0.568},
but correspondingly, the cost of the model also increases.
In SVC and MFSVC, the predictive boundary performance
of MFSVC was also superior to that of SVC. In MFGPC
and MFSVC, although the cost {T=2011.74} of MFSVC
is greater than the cost {T=1286.58} of SVC, it is much
smaller than the cost {T=37089.36} of MFGPC, and the
predictive performance {P=0.852, R=0.827, F1=0.752} of
MFSVC is better than the predictive performance {P=0.678,
R=0.824, F1=0.744} of MFGPC. In comparing EMFSVC
and MFSVC, although the cost {T=17262.75} of EMFSVC
is higher than the cost {T=2011.74} of MFSVC, it is lower
than the cost {T=37089.36} of MFGPC, and the classifica-
tion metric {F1=0.881} of EMFSVC is nearly 17% higher
than that of metric {F1=0.752}. From the above comparison,
it can be concluded that in the simulation failure boundary
of modeling the isentropic efficiency problem, the predictive
performance of EMFSVC is superior to that of other models,
and the cost of the model is lower than that of MFGPC.
Owing to the 31-dimension of the design space, the approx-
imated boundary from the 10000 HF simulations and the
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FIGURE 18. Geometric parameters for the parametric representation of the blade.

predicted boundaries of the five compared methods were not
illustrated.

TABLE 12. The results of each model for the simulation failure boundary
of modeling the isentropic efficiency.

In summary, the EMFSVC can construct more accu-
rate multi-fidelity models for failure boundary prediction in
engineering problems and demonstrate the effectiveness of
EMFSVC in high-dimensional engineering problems.

V. CONCLUSION
In this paper, an MFSVC model based on the SVC model
is proposed, and then the method is improved to deal with
imbalanced data. The influence of the optimization objec-
tive function on the determination of the hyperparameters of
the MFSVC/EMFSVC model was explored. To verify the
effectiveness of the MFSVC model, it was compared with
GPC, SVC, and MFGPC using several numerical examples
with balanced data. The numerical results demonstrate the
effectiveness of the MFSVC model for balanced data and

its ability to achieve higher accuracy than the other models.
In addition, to study the influence of the number of HF sam-
ples on the performance of the EMFSVC, each classification
model was compared in several numerical examples with
balanced data. The study revealed that increasing the number
of HF samples after reaching a certain quantity did not sig-
nificantly improve the accuracy of the EMFSVC. Therefore,
selecting an appropriate number of high-accuracy samples
can effectively reduce unnecessary costs while ensuring the
predictive performance of the proposed model.

Furthermore, it was compared with MFSVC, MFGPC,
GPC, and SVC in four imbalanced numerical examples
and three practical engineering examples. In the imbalanced
numerical examples, EMFSVC showed a better overall pre-
dictive performance than the other models. In the case of
extremely imbalanced datasets, EMFSVC can improve the
prediction accuracy by approximately 9% compared with
MFSVC. In the three engineering examples, EMFSVC out-
performed other boundary prediction models, especially in
the prediction of the surge and choke boundaries of the
compressor rotor, where the prediction performance was
improved by nearly 14% compared to MFSVC. Although
EMFSVC can improve classification performance in imbal-
anced data problems, its computational cost will increase
compared to MFSVC, and may even be the same as MFGPC.
Therefore, it is still worth exploring how to effectively reduce
the computational cost of EMFSVC and ensure its predictive
performance in imbalanced data problems. In the future,
we plan to combine cost-sensitive learning or active learning
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with the proposed method and validate its predictive perfor-
mance under more challenging data scenarios.
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