IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 10 December 2024, accepted 8 January 2025, date of publication 15 January 2025, date of current version 23 January 2025.

Digital Object Identifier 10.1109/ACCESS.2025.3530269

== RESEARCH ARTICLE

Emphasizing the Early Phases of the Software
Development Process Before Deploying
Smart Contracts

JUAN-CARLOS LOPEZ-PIMENTEL ', CAROLINA DEL-VALLE-SOTO "', (Senior Member, IEEE),
LEONARDO J. VALDIVIA™, AND RAUL MONROY 2

IFacultad de Ingenierfa, Universidad Panamericana, Zapopan, Jalisco 45010, Mexico
2Escuela de Ingenierfa y Ciencias, Tecnolégico de Monterrey, Atizapan de Zaragoza, Mexico City 52926, Mexico

Corresponding authors: Juan-Carlos Lépez-Pimentel (clopezp@up.edu.mx) and Rail Monroy (raulm @tec.mx)

This work was supported in part by the Universidad Panamericana under Grant UP-CI-2024-GDL-14-ING, and in part by the Universidad
Panamericana-Amazon Web Service under Grant 023579852268.

ABSTRACT Immutability is one of the main characteristics of Blockchain. However, most software
development is not static. This dilemma, among others, has caused a new branch of blockchain-oriented
software engineering. This paper emphasizes the importance of the early phases of software development
before deploying blockchain-based software. It follows case-based research to illustrate the implications
of smart contracts designed in the early phases without including all requirements. The paper presents a
digital identity case designed within a microservice architecture. We show two stages: an initial design
and an upgrading requirement, which causes considerable changes in the architecture. The case is analyzed
from three different perspectives: 1) Economic, finding that re-deploying smart contracts does not implicate
considerable cost; 2) Computational perspective, finding that it generates various implications: smart contract
purpose duplication, storage wastage, failure to recognize the original smart contract, cascade dependency
repercussion, and migration problems; and 3) Interconnected effect, a simple change, required for upgrading
smart contracts, generates broad collateral repercussions in both on-chain (within the blockchain) and
off-chain.

INDEX TERMS Blockchain, software-development, smart contract, upgrading.

I. INTRODUCTION

Blockchain has revolutionized the digital world and pro-
voked a new branch of software engineering known as
blockchain-oriented software engineering [1], [2]. Inclusive
subbranches about the software engineering testing stage
have been studied [3]. Developing a blockchain software
application can be challenging. Usually, it requires, among
other things, a solid understanding of different paradigms
of programming languages, cryptography, networking, dis-
tributed systems, and especially smart contracts. Yet software
engineers could be proficient, they still require specialized
tools for analyzing, designing, developing, and testing smart
contracts [1], [2]. To make an analogy about deploying

The associate editor coordinating the review of this manuscript and

approving it for publication was Antonio Piccinno

smart contracts within a blockchain network is like cre-
ating hardware devices: if your hardware device contains
errors or limited functionalities, upgrading it is impossible,
SO you must implement a new version to replace the old
one.

The following question arises: Why do we need to empha-
size the early phases of software development when building
blockchain applications? The following list describes some
hypothetical arguments: a) smart contracts are immutable;
one cannot just patch them easily if a bug or a vulnerability
is found in the deployment phase; b) many smart contracts
store and operate on critical and valuable assets (cryptos,
NFTs); c¢) smart contracts offer transparency on public
blockchains and are freely accessible; d) A smart contract
is critical back-end code executed within a blockchain and
requires interoperability with other software or systems.

© 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

13628 For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 13, 2025

https://orcid.org/0000-0002-7844-3261
https://orcid.org/0000-0002-0272-3275
https://orcid.org/0000-0001-7545-7441
https://orcid.org/0000-0002-3465-995X
https://orcid.org/0000-0003-1561-7073

J.-C. Lopez-Pimentel et al.: Emphasizing the Early Phases of the Software Development Process

IEEE Access

The previous points make it highly attractive for malicious
users to find an active or a passive attack. For example,
even if the communication channel is secure or blockchain
interoperability software [4] is surgically well designed,
the system could be at risk if smart contracts contain
vulnerabilities; this has been shown in [5], where financial
losses due to smart contract attacks have been reported to
increase annually since 2016. Therefore, the early phases in
the software development process, especially when including
blockchain applications, are critical due to either smart
contracts’ vulnerabilities or upgrading. Both cases imply
changes in the smart contracts involved.

The application of the software development life cycle to
smart contracts has attracted the attention of the research
community. Some researchers have focused on evaluating
and validating the quality of smart contracts within the
development life cycle process [6], others on the challenges,
techniques, and tools that blockchain-based applications
face in the testing stage within software development [7],
and some others on the need to standardize development
processes due to the difficulty in updating or solving bugs
when releasing a new software version involving smart
contracts [8]. Other researchers have focused on reviewing
the literature on smart contract design from the perspective
of software engineering [8], a few have studied formal
verification [9], and others have tried to understand the
nature of smart contract vulnerabilities [10]. Finally, due to
the importance of designing smart contracts without flaws,
some researchers have focused on proposing tools to find
vulnerabilities in smart contracts [11], [12], [13], [14], [15],
[16], [17], [18], [19], [20], [21], [22], [23], [24]. Updating
and upgrading smart contracts is a challenging task due to the
immutability characteristic of blockchain. One evidence of
the importance of this critical task is that some investigations
have addressed this area [25], [26], [27], [28], [29], [30], [31],
[32].

Updating or upgrading smart contracts not only affects
the blockchain part but also has collateral effects in the off-
chain architecture. To highlight this and the importance of the
early phases of software development in blockchain-based
software, this research follows a case-based study [33] to
illustrate the implications of poorly designed or incorrect
smart contracts. To do that, the paper presents a digital
identity case designed within a microservice architecture.
It analyzes the case from three different perspectives, namely:
a) economic, via Ether currency, finding that redeploy-
ing smart contracts does not implicate considerable cost;
b) computational, finding that it yields lots of issues: smart
contract purpose duplication, storage wastage, failure to
recognize the original smart contract, cascade dependency
repercussion, and migration problems, and c) interconnected
effect, finding that upgrading smart contracts involves more
than just modifying the contract itself; it has broad and
interconnected effects that impact both on-chain (within the
blockchain) and off-chain (external systems connected to the
blockchain) entities.

VOLUME 13, 2025

The following list shows the main contributions of this
paper:

1) Providing higher certainty about the smart contracts’
upgrading implications in the off-chain and the
blockchain part to the software developer community;

2) Providing how a simple upgrading process gener-
ates high implications in the off-chain part when a
blockchain application is designed within a microservice
architecture;

3) Alistof challenges that stem when an upgrading process
is required once smart contracts have already been
deployed;

4) An analysis of the economic repercussions of upgrading
smart contracts concludes that a single, smart contract
replacement is inexpensive.

The rest of this paper is organized as follows. Section II
presents the background of this research, such as smart
contracts and blockchain applications in the software devel-
opment process, and also emphasizes the importance of early
and late phases of software development when including
blockchain technology. Section III presents a digital identity
case based on microservice architecture and technical details
in the off-chain and blockchain; this section emphasizes
the specific part where a software engineer has to deal
with smart contracts. Next, Section IV sets an upgrading
scenario and the technological consequences in the off-
chain part. Section V exposes some challenges of upgrading
smart contracts. Then, Section VI explains the economic
consequences of updating and upgrading smart contracts
once they have been deployed. We discuss our research in
section VII and draw our conclusions in Section VIII. Lastly,
in Section IX, we formulate a list of questions to address
future research.

Il. BACKGROUND AND RELATED WORK

The importance of setting a rigorous development process
while building blockchain applications has been reflected in
the literature. This section starts explaining about blockchain
and smart contracts; then, it gives a view of blockchain
applications in the software development process. Our
literature review considers two crucial elements: a) the
importance of testing smart contracts and how this relates to
vulnerability detection, and b) the challenge associated with
upgrading smart contracts.

A. BLOCKCHAIN AND SMART CONTRACTS
Blockchain is a distributed database, where information is
allocated in blocks. Each block is chained with the previous
one by adding a hash address of the previous block, among
other metadata, establishing a chain stored in a ledger. The
distribution arises between different computers, called nodes,
establishing a consensus algorithm to keep the same ledger
locally.

Blockchain was initially developed to support Bitcoin [34];
however, over time other cryptocurrencies arose. An example
of this is Ethereum [35], which, together with Bitcoin, is one

13629

IEEE Access

J.-C. Lopez-Pimentel et al.: Emphasizing the Early Phases of the Software Development Process

of the most successful cryptocurrencies. Ethereum introduced
smart contracts, becoming one of the most sought-after
technologies [36], [37].

Smart contracts refer to computer instructions stored
within a block at a specific blockchain network address. They
contain attributes and methods that can be treated similarly
to classes in object-oriented programming. A modification
in one attribute, whether directly or via the methods, results
in a transaction identified with an address. Each transaction
is stored in one of the blocks, which means that a set of
transactions forms each block. One of the main characteristics
of the blockchain network is that transactions cannot be
erased.

B. BLOCKCHAIN APPLICATIONS IN SOFTWARE
DEVELOPMENT

The software development process refers to the steps used
to create software applications. These steps might include
requirements analysis, planning, design, implementation,
testing, deployment, maintenance and support; depending of
the methodology, one iterates over these previous steps till
a stop criterion is met. Developing blockchain applications
consists of treating smart contract development as a rigorous
engineering process with a strong focus on the first phases
to ensure a contract’s reliability, security, and functionality
before it is deployed to a blockchain network. We refer to the
early phases of software development such as requirements
analysis, planning, design, implementation, and testing,
leaving the rest deployment, maintenance and support for the
production stage.

Sanchez-Gomez et.al. [6] reviewed the Software Devel-
opment Life Cycle applied to the smart contract design and
testing phase. They found a shortage of methodology for
evaluating and validating the quality of the smart contract
development life cycle process, namely: that software devel-
opers might implement smart contracts with serious bugs
that may appear after deployment. They suggested that the
scientific community should promote model-based testing
because model-based software engineering makes it possible
to find errors; this task is not simple since smart contract
design requires expert knowledge of business, transactions,
security, etc.

Lal and Marijan [7] carried out a study on the challenges,
techniques, and tools that blockchain-based applications face
in the testing stage within software development, finding that
the key component requiring extensive and rigorous testing is
smart contracts and that tools encompassing the whole stack
do not exist yet, since testing these technologies requires
multiple domains.

Vacca et al. [8], highlighted that smart contracts and
blockchain applications are being developed through
non-standard software life-cycles, and those delivered
applications can hardly be updated or bugs resolved by
releasing a new software version.

13630

C. ON THE IMPORTANCE OF SMART CONTRACT TESTING
AND VULNERABILITY DETECTION

Waseem et al. [38] studied the testing phase in microservices
architecture-based applications, concluding that, although
many researchers work in this area, it is still a challenging
process.

Singh et al. [9], reviewed the literature (35 research
papers) focused on the smart contracts’ formal verification.
They found that the most common techniques were theorem
proving, symbolic execution, and model-checking. These
techniques were mainly used to verify the smart contracts’
security properties and functional correctness. They con-
cluded that applying formal methods to smart contract
verification is still in an infant domain; as it matures, formal
methods can help solve and mitigate many vulnerabilities as
they have been carried out in other domains.

Vacca et al. [8], made a literature review of 96 articles
from 2016 to 2020 on software engineering, aiming at current
problems in smart contracts and blockchain application
development. They concluded that further investigation is
required to understand how to apply traditional testing tech-
niques to blockchain-oriented software; methods to measure
specific code metrics, enabling code optimization; guidelines
for developers (even a new programming language) to
simplify the creation and understanding of smart contracts;
and patterns to prevent developers from falling into the most
common attacks.

Bhardwaj et al. [39], reviewed the literature (38 works)
related to Blockchain and Security Testing from 2016 to 2019,
finding some gaps: a) a new blockchain and a penetration
testing classification are required; b) blockchain transactions
latency issues; c) legal regulations are still required;
d) cyber risks and privacy; and e) scalability. So, they
created a penetration testing framework for smart contracts
and decentralized applications and compared it with manual
penetration testing, detecting missing vulnerabilities not
reported during the regular testing process. Thus, they
remarked that the testing stage is crucial since blockchain
has irreversible transactions.

Zhou et al. [10], studied 13 vulnerabilities in Ethereum
smart contracts and their countermeasures, finding the
nonexistence of a uniform definition of vulnerabilities;
sometimes, the same bugs could appear in the literature with
different names.

Derived from the importance of designing smart contracts
free of flaws, some researchers have focused on proposing
tools focused on finding vulnerabilities in smart contracts:
Sereum [11], SmartCheck [12], Osiris [13], NPChecker [14],
MadMax [15], ContractWard [16], sfuzz [17], SMARTEM-
BED [18], DEFECTCHECKER [19], MODNN [20], [21],
ContractCheck [22], ReenRepair [23] and Solvent [24].
SmartCheck, DEFECTCHECKER, ContractWard, sFuzz,
SMARTEMBED, MODNN and ContractCheck tools seem
more generalized in terms of coverage of vulnerabilities.
In contrast, tools such as NPChecker, MadMax, Osiris,

VOLUME 13, 2025

J.-C. Lopez-Pimentel et al.: Emphasizing the Early Phases of the Software Development Process

IEEE Access

Sereum, ReenRepair and Solvent are focused on some more
specific categories of vulnerabilities.

D. ON UPGRADING SMART CONTRACTS

Immutability is one of the most important characteristics
of blockchain. Consequently, it also makes updating smart
contracts impossible, even when vulnerabilities have been
found. Like all source programming code, smart contracts are
error-prone. Therefore, software developers might question
the updating or upgrading options. An upgradeable smart
contract is a contract that incorporates upgrading approaches
proposed by the community and is designed specifically for
possible upgrading [32].

There are two general approaches for upgrading patterns
developed by researchers to achieve upgradability on the
Ethereum platform: data segregation patterns and proxy
patterns. Wohrer and Uwe, [25] introduced a data segregation
pattern, which suggests that a contract should be written
as two separate sub-contracts; a data contract and a logic
contract. Upgradability is achieved by upgrading the logic
contract without touching the data contract. The problem
is whether the data contract must be updated in this case.
The other approach uses a proxy contract to overtake the
ownership of storage addresses of all versions of a given
contract. Any call to the target contract would be redirected
to the proxy contract, which will send all transactions to
the same address it controls and achieve the upgradability
goal. Three practices for upgrading smart contracts using
proxy contracts are: ERC-1822 [26], ERC-2535 [27], and
ERC-3448 [28]. The problem, in general, with this approach
is whether the proxy contract must be updated and what will
happen with the old smart contracts that are not already part
of the storage addresses of the proxy smart contract.

Bui et al., [29] addressed the upgradability problem in
Ethereum, finding that none of them have any security
control to defend against typical attacks. They proposed a
framework called The Comprehensive-Data-Proxy pattern,
which uses data segregation on the top of the proxy
pattern. Salehi et al. [30] also analyzed approaches addressed
to the smart contract upgradability problem in Ethereum.
They developed a measurement mechanism for finding
the number of upgradeable contracts found on Ethereum
using upgrade patterns; they found 8,225 upgradeable proxy
contracts.

OpenZeppelin is a library for guiding the design of secure
smart contracts, providing several patterns for implementing
upgradability [40], being proxy patterns one of its stellar
suggestion [41]. Amri et al. [42] reviewed the OpenZeppelin
upgradeable patterns and compared them from different
aspects, such as cost, performance, and security. However,
they have suggested to conduct more evaluations in terms of
performance, throughput, latency, and code complexity.

Chen et al. [31], focused on smart contracts software
maintenance after smart contracts have been deployed. They
argued that Ethereum blockchain contains many instances of
smart contracts with vulnerabilities (maybe for copy-paste

VOLUME 13, 2025

practices). They conducted a literature review of papers
published from 2014-2020. Like other researchers, they
concluded that the smart contract ecosystem must still be
improved; for example, friendly tools to debug, test, and audit
smart contracts are still required.

Even though previous strategies have been proposed to
deal with the upgradeable problem and the proxy pattern
remains the most widely used upgradeable approach, not
all specialized developers apply it, and the truth is that
once they are deployed, obsolete smart contracts prevail
in the blockchain. The case presented in the following
section aims to emphasize the early phases of the software
development process before deploying smart contracts rather
than to improve previous approaches. In addition, we show
that changing smart contracts on the blockchain triggers
significant ripple effects within the blockchain ecosystem
and in the architecture that relies on the old smart contract,
which needs to be reconfigured or updated to ensure
proper integration with the new version of the smart
contract.

Ill. THE CASE OF STUDY AND THE PROPOSED

ARCHITECTURE
This section justifies the choice of microservice architecture

and briefly describes such architecture. Later, it explains
our digital identity case and how it has been adapted to the
microservice architecture.

A. SOFTWARE DEVELOPMENT ARCHITECTURES
Monolithic architecture is a way to build software as a
unit, where a central server has several responsibilities
and does mostly everything. This architecture is still valid
for small projects, but when organizations grow, it is not
enough [43]. Microservice architecture is an alternative since
it offers modularity, scalability, distributed development,
and integration of heterogeneous and legacy systems [44].
While monolithic systems provide simplicity and ease of
development, the microservice architecture design remains
challenging, and it has become the leading design for cloud-
native systems [45]; since it provides other benefits, such as
better flexibility and independent deployment, [46].

Serverless architecture has become a new trendy topic
when designing cloud-native systems. Unlike microservices,
serverless architecture disregards management and server
configuration [47]. Serverless is easier to manage and scales
automatically, while microservices offer more control and
flexibility over infrastructure. However, each architecture has
advantages under different scenarios [47].

Furthermore, the benefits of using microservices architec-
ture are confirmed from practitioners’ point of view [48].

The software development process in the microservice
architecture is not easy; its design, monitoring, and testing are
more complex because it might be constituted for multiple
nodes and technologies [49]. However, this distribution
allows us to insert the blockchain part as a node and to make
an analysis in detail.

13631

IEEE Access

J.-C. Lopez-Pimentel et al.: Emphasizing the Early Phases of the Software Development Process

B. MICROSERVICE ARCHITECTURE

In microservice architecture, a system is built as a collection
of small, loosely coupled, independent services that com-
municate with each other over a network. Each service is
designed to perform a specific function and can be developed,
deployed, and scaled independently. This architecture permits
adding technical components such as: a) an API gateway,
which makes implementation and management simpler and
more consistent [50]; b) containers, ensuring portability and
consistency across environments, it is where services are
implemented; c) storing information, each service might have
its own database and d) network communication.

Figure 1 illustrates a general distributed software archi-
tecture divided into five entities: i) the user interacting
from a personal computer; ii) the user interface, being
accessed by the user, that obtains services from the back-end;
iii) the API gateway, receiving and emitting requests by
the user interface; iv) the services, obeying the requests of
the API gateway and accessing directly to a smart contract
within a blockchain node; and v) The blockchain node that
contains the smart contracts. The network communication
between these parts uses TLS/SSL over the secure hypertext
transfer protocol (HTTPS). From the users’ perspective, the
architecture can be divided into two parts: front and back-
end [51]. The front end involves the first two entities, and the
back-end the rest.

C. THE DIGITAL IDENTITY CASE

The example presented here is related to digital identity,
defined as the online or digital version of a person’s identity. It
includes personal information that can be used to identify
a person, such as his complete name, email, address, date
of birth, social media profiles, social security number, etc.
In today’s digital world, our secure online identity is essential.
Digital identity can access various Internet services, such
as financial information, medical records, emails, social
networks, etc. More and more, our lives move online,
and protecting our digital identity is becoming increasingly
important. Digital identity information is commonly stored in
traditional databases using encryption mechanisms to provide
confidentiality, integrity, and replication processes to provide
availability, among others. However blockchain technology
is used under the argument that it offers some key reasons:
1) Removes the need for intermediaries; ii) Reduces the risk
of failures; iii) Ensures transparency; iv) Offers immutability;
v) Reduces risks of fraud and tampering.

In the architecture was added a microservice called Digital
Identity where the end user can obtain personal data, as shown
in Figure 2. Additionally, the CURP microservice was added
to complement the digital identity. CURP is a Spanish
abbreviation of Unique Population Registration Code; it
individually registers all people residing in Mexico, nationals
and foreigners, and Mexicans living in other countries [52].
As you can see, the figure is compounded by six entities.
The two first entities belong to the Front-End (User and User

13632

Interface). The rest of the entities belong to the Back-End
(API Gateway, Digital Identity, CURP, and the Blockchain
part). The figure also shows the technologies used during
implementation in the bottom right part. The architecture was
mounted on the Docker platform.

D. TECHNICAL DETAILS IN THE ARCHITECTURE

1) OFFCHAIN DETAILS

Offchain, in our architecture, refers to all software technology
out of the blockchain. It includes the User Interface (UI),
API Gateway, Digital Identity, and CURP microservices. The
blockchain details are left for the following subsection.

The UI shows different options depending on the offered
services, as shown in Table 1. Columns Get and Set refer
(marked with x) if it is possible to consult or store such data
in the microservice, respectively.

TABLE 1. Digital identity and CURP services specifying if the service
corresponds to reading (get) or writing (set).

Services Digital Identity CURP
Get | Set Get | Set
name X X X
flastName
mlastName
day

month

year
dateCreation
key

entity
dateRegistration

ikl E ki kel
ikl E ki kel

ik Rl Rl Rl

tal

Rk B R R R R K R R R

Table 2 shows the technologies used in each entity over the
operating system and the Node.js Web Server. Digital Identity
and CURP microservices interact with the blockchain using
Web3.js library. This library acts as a bridge between the
microservices (coded in Node.js) and the blockchain network.
It permits sending and consulting transactions. Furthermore,
Web3.js can be used for large-scale deployments of smart
contracts by carefully handling nonces, gas management, and
rate limits to ensure successful execution.

2) BLOCKCHAIN DETAILS

We create an instance installing Ganache CLI technology. It is
a fast and customizable blockchain emulator. It allows you to
make calls to the blockchain without the overhead of running
an actual Ethereum node. Transactions are mined instantly.
Inside Ganache two smart contracts were implemented,
details in the following two subsections.

3) SMART CONTRACT OF DIGITAL IDENTITY

Figure 3 shows, in the left part, a smart contract coded in
Solidity Programming Language [53]. The contract (called
Dldentity) includes attributes such as name, father and
mother’s last name, and date of birth. The smart contract
is deployed by calling its constructor method and passing
the respective attributes. The figure shows, in the right part,

VOLUME 13, 2025

J.-C. Lopez-Pimentel et al.: Emphasizing the Early Phases of the Software Development Process

IEEE Access

Users ~ HTTPS HTTPS HTTPS D
) API
* Tokenizer «—» User Interface |« > < >
* Viewer Gateway
|
Blockchain Node
Front-End Back-End

FIGURE 1. A general microservice architecture specifying two general parts: Front-end and Back-End.

/\ Blockchain
CURP
User APT Node 1
e
Interface Gateway Ubuntu
User o Node Node
Ubuntu Ubuntu %
Digital
Browser -
Identity Solidity
Node Ganache
Ubuntu Ubuntu ESPECIFIC VERSIONS:
* Docker version v4.14.0
* Ubuntu 18.04 bionic
DOCker « Node Version 10.15
+ Solidity 8.22

Native Operating System: Windows 10

+ Ganache CLIv7.9.2
e——@ HTTPS

FIGURE 2. The implemented architecture based on microservices. Front-End: browser and the user interface; and the Back-End: the rest.

TABLE 2. Off-chain technologies used in the architecture.

Layer User Interface API Gateway DIdentity [CURP
Framework Express, Jade Express API Gateway Express
Language programming | JavaScript JavaScript (NodelS) JavaScript (NodeJS)
Connectivity HTTP library, AJAX | HTTP library Web3.js
Additional Technology HTML, CSS YAML

a cloud, denoting the blockchain part and where the smart
contract instances have been deployed; blue rectangles show
three instances of Dldentity. Each instance shows its smart
contract address (at the top) and the attributes’ data (at the
below).

4) EXTENDING DIDENTITY WITH THE CURP

With the CURP smart contract, we show how the previous
smart contract might be extended without modification. To do
this, the CURP case exemplifies it.

You can see in Figure 4 an example of a CURP smart
contract. The figure shows the use of Dldentity smart
contract; you can see in line 13, how an address of DIdentity is
required. Functions of lines 19, 22, and 25 return the complete
name, and the rest return the other attributes of DIdentity
smart contract. The right part of the figure illustrates an
example of an instance deployed in the cloud blockchain.

IV. UPGRADING: OFFCHAIN REPERCUSSION
Blockchain applications include other parts such as the

user front-end (presentation logic), the business logic, the
data access logic, and whether it is interconnected with
other systems. These parts will also be affected if changes

VOLUME 13, 2025

in the smart contracts are required. Let us illustrate the
repercussions of upgrading smart contracts with an example
in this section.

A. UPGRADING SCENARIO

We set a simple scenario in which an attribute was omitted in
the initial design previously shown in Table 1. The attribute
was called gender. Table 3 shows the type of access each
microservice should hold. This new attribute is included in
the initial design, which involves a list of changes in the
blockchain and off-chain parts, which will be analyzed next.

TABLE 3. Specifying the ugrading service requirement gender in digital
identity and CURP services.

Services | Digital Identity CURP
Get | Set Get | Set
gender X X X

B. CHANGES IN THE OFF-CHAIN PART

In follow-up to the technologies used to develop the
microservices presented previously in Table 2, now Table 4
will describe the changes required for the new requirement.

13633

IEEE Access

J.-C. Lopez-Pimentel et al.: Emphasizing the Early Phases of the Software Development Process

// SPDX-License-Identifier: jclopezpimentel
pragma solidity 8.8.22;

1

2

3

4 contract DIdentity{

5 string public name;
6 string public flLastName;
7

8

2]

string public mLastName; 0x000...000001
uintlé public day; 0 . . .
uint16 public month; {luan, Lopez, Pimentel, 1,1,1979}
18 uintlé public year;
11 // it contains the date the contract was created
12 uint public dateCreation=8;
13 0x000...000002
14 constructor(string memory _name, string memory _flLastName, {Carlos, Pimentel, Ledn, 1,2,1980}
15 string memory _mLastName, uintlé _day, uwintlé _month,
16 uintle _year) {
17 name = _name;
18 fLastName = _flLastMame; 0x000...000003
19 mLasthame = _mlasthame; {Ise, Gonzélez, Ledn, 12,2,1981}
28 day = _day;
21 month = _month;
22 year = _year;
23 dateCreation = block.timestamp;
24 }
25}

FIGURE 3. Smart contract digital identity (in Solidity Programming Language) and three instances.

TABLE 4. Involved off-chain technologies affected in the upgrading example.

Technologies Change description

User Express, Jade, HTML, CSS | Changes in the view of the user
Interface JavaScript Adding new field validation

HTTP library, AJAX Sending and Getting the answer of the request
API Gateway | YAML Adding three new routes: 1 post and 2 get
DIdentity JavaScript (NodelS) Adding two new routes: post and get

Web3.js Adding a consult and a post to the blockchain
CURP JavaScript (NodelS) Adding a new route: get

Web3.js Adding a new access to the blockchain

As you can see, adding a simple attribute to the initial design
implies a high repercussion.

One of the main characteristics of microservices architec-
ture is the design of entities that are independent of each other.
However, we have noted that our upgrading process involved
a series of changes listed as follows:

i Number of microservices: in our case, there were only
two microservices, and one of them, CURP, depends
on Digital Identity, causing dependency. Because of
that, identifying the appropriate boundaries for breaking
down the application into microservices can be difficult.
Deciding which functionalities should belong to each
service requires careful consideration to avoid creating
coarse-grained or too fine-grained services. For exam-
ple, would it be better to add a new microservice for the
new requirement shown in Table 37

ii Different technologies: as you can see in table 4, each
entity has its technology; coincidentally, some of them
are repeated, but they could be completely different.

iii Re-testing: it involved testing individual services in
isolation and testing across various services, mainly
when some services depend on others. In addition,

13634

it involved testing the user interface and the API gateway
again.

Software upgrading in the off-chain part might be tedious,
but it is part of the software development cycle. Although
complex, it does not hold the immutability characteristic that
blockchain poses. The following section details it.

V. IMPLICATIONS FOR UPDATING OR UPGRADING

SMART CONTRACTS
In software terms, updates provide patches and improve

the program’s performance. Upgrades refer to new software
versions that bring new functions, tools, and significant
improvements. From an economic point of view, the update
is free, while the upgrade is not. However, in the case
of blockchain, the immutability characteristic when smart
contracts are deployed represents a main challenge in their
updating and upgrading process. Some examples include
bug fixes, improving security and performance, adapting
compatibility, new features, etc. Updating methods in smart
contracts have no implications in the off-chain part, only in
the blockchain. As long as upgrading attributes or methods
in smart contracts entail changes in both off-chain and
blockchain, the focus of this paper.

VOLUME 13, 2025

J.-C. Lopez-Pimentel et al.: Emphasizing the Early Phases of the Software Development Process

IEEE Access

1 // SPDX-License-Identifier: jclopezpimentel

2 pragma solidity e.8.22;

3 import "./DIdentity.sol";

4 contract Curp{

5

6 DIdentity public videntity;

7 string public key;

8 string pu entity;

Q uint public registration=e;
1@
p |
12 constructor(DIdentity _identity, string memory _key, string memory _entity) {
13 videntity = DIdentity(_identity);
14 key = _key;
15 entity = _entity;
16 registration = block.timestamp;
17 }
18
19 function getName() public view returns(string memory) {
2e return (videntity.name());
21)
22 function getFLastName() public view returns(string memory) {
23 return (videntity.fLastName());
24 }
25 function getMLastName() public view returns(string memory) {
26 return (videntity.mLastName());
27 }
28 function getDay() public view returns (uint16){
29 return (videntity.day());
30 ¥
31 function getMonth() public view returns (uint16){
32 return (videntity.month());
33 }
34 function getYear() public view returns (uintl6){
35 return (videntity.year());
36 3
37}

Ox7EF2... DBCB47

{luan, Lopez, Pimentel, 9,1,1979}

(0x000...0000A1

FIGURE 4. Smart contract CURP (in Solidity Programming Language) and one instance.

Upgrading new requirements as shown in Table 3 raises
the question previously formulated: would it be better to add
a new microservice implicating the creation of a new smart
contract that could be linked to the already created smart
contracts? Or would it be better to upgrade the previous
smart contracts? We have chosen the path for the second
question, not claiming it’s the best, but necessary for our
study. Our goal is to show its implications when an empirical
upgrading process is developed and design patterns are not
being considered, as we will describe next.

A. CHALLENGE OF UPDATING OR UPGRADING SMART
CONTRACTS

Typically, smart contracts are unchangeable once deployed.
This immutability characteristic means they cannot be
updated or upgraded, although this brings new risks if
vulnerability issues or new requirements arise.

Figure 5 illustrates an upgraded smart contract version of
Dldentity, so-called DldentityV2. This new version is very
similar but adds the new attribute, gender (lines 9, 15, and
20 to note the difference). This new version exemplifies
when changes are required because a specification was not

VOLUME 13, 2025

considered in the initial design; in this case, a new required
attribute is required.

Figure 6 shows instances of the smart contracts DIdentity
and DldentityV2. In the figure, blue rectangles illustrate
instances of DIdentity shown previously in figure 3, and green
rectangles illustrate instances of DIdentityV2.

Figure 6 can help us to explain the importance of designing
correctly and completely smart contracts, which we argue as
follows:

1) Purpose duplication: Smart contract DldentityV2 is
a new and extended version of DlIdentity; as you can
see, the deployed smart contracts, embedded in the
blockchain, store the logic and data encapsulated like
a virtual object that can be located using their contract
address. Making a mistake (or an omission) in its
design stage would imply creating a new one and its
respective instance in the blockchain. All this means
generating more instances and then smart contract
purpose duplication. See green instances for blue ones.

2) Storage wastage: Replacing a smart contract is not a
simple task; it will also require knowing all implied
transactions and replicating it in the new one or

13635

IEEE Access

J.-C. Lopez-Pimentel et al.: Emphasizing the Early Phases of the Software Development Process

3)

1 // SPDX-License-Identifier: jclopezpimentel

2 pragma solidity ©.8.22;

3

4 contract DIdentityv2{

5

6 string public name;

7 string public flLastName;

8 string public mLastName;

9 | bool public gender; //true will be man and false woman
10 uint16 public day;

11 uint16 public month;

12 uint16 public year;

13 uint public dateCreation=8; // it contains the date the contract was created
14

15 constructor(string memory _name, string memory _flLastName, string memory _mLastName,
16 uintlé _day, uint16 _month, uintlé _year) {
17 name = _name;

18 fLastName = _flLastName;

19 mLastName = _mLastName;

20 |gender~ = _gender; //true will be man and false woman

21 day = _day;

22 month = _month;

23 year = _year;

24 dateCreation = block.timestamp;

25 }

26}

FIGURE 5. DIdentityV2: a new version on the previous D/dentity smart contract.

0x000...000001

{Juan, Lépez, Pimentel, 1,1,1979}

0x000...000007

0x000...000004

{luan, Lopez, Pimentel, 1,1,1979, true}

{luan, Lopez, Pimentel, 1,1,1979, true}

0x000...000002

{Carlos, Pimentel, Leén, 1,2,1980}

0x000...000003

{Ise, Gonzalez, Ledn, 12,2,1981}

0x000...000005

{Carlos, Pimentel, Ledn, 1,2,1980, true}

0x000...000006

{Ise, Gonzalez, Ledn, 12,2,1981, false}

FIGURE 6. Smart contracts duplication deployed in the blockchain with the same purpose, showing storage wastage and

originality troubles.

only replicating the last state of the older contract.
Independently of the option, the older deployed smart
contract cannot be erased, causing storage wastage. In
our example, green instances were replicated, and blue
instances caused storage wastage.

Legitimacy: How to avoid creating two or more
instances of smart contracts linked to the same identity?
See the orange instance contract in the figure with
address 0 x 000...00007 containing the same data of
0 x 000...00001 and 0 x 000...00004. The question

13636

4)

here is, which contract address is the original? and what
is a copy? Maybe checking the timestamp attribute could
help to bow for the first one created. However, it is
required to trust in another instance that would be storing
the original and trusty smart contract address.

Cascade dependency repercussion: The problem is
incremented when not only Videntity is involved. As you
can remember, CURP smart contract also uses VIdentity
in line 13, binding a strong repercussion because now
CURP smart contract would also have to be modified

VOLUME 13, 2025

J.-C. Lopez-Pimentel et al.: Emphasizing the Early Phases of the Software Development Process

IEEE Access

(see figure 7 in the code section); and by consequence
more duplication, as you can see in the figure, at the
bottom part.

5) Migration: This is a critical process. It requires
knowing all states and the ownership executor of the
old smart contracts to generate a new version. This new
version must consider different aspects such as cost,
complexity of the smart contracts, data (whether critical
or not), and a new testing plan to avoid security risks.

After listing the challenges that arise when upgrading
already deployed smart contracts, the next section will
provide an economic analysis of this process. This will help
determine whether the cost of upgrading smart contracts
might be a significant factor in deciding against using
blockchain.

VI. ECONOMICAL ANALYSIS: UPGRADING THE SMART

CONTRACTS
This section analyzes the economic impact generated by

upgrading the case presented previously. It shall evaluate the
individual cost generated by each smart contract; then, It shall
analyze the cost implications if deployed in a country like
Mexico with 137.2 million inhabitants. Finally, the individual
upgrading cost generated by each smart contract and the
collective upgrading cost considering the current Mexican
inhabitants.

A. INDIVIDUAL COST OF THE SMART CONTRACTS

This section details the data and accounts used to deploy
the smart contracts. It shows each transaction cost of the
smart contracts’ attributes and methods after a deployed or
consulting execution. Data d1 has been used to deploy smart
C(intract DlIdentity:

"name": "Juan Carlos",
"flLastName": "Lopez",
"mLastName": "Pimentel",
"day": "9",

"month": "1",

"year": "1979"

}
The user account was:
A_1="0xAb8483F64d9C6d1ECFIb849Re677dD3315835¢ch2"
After deployment, the resulting contract address was:
S_1="0x7EF2e0048£5bAeDe046£6BF797943daF4ED8CB4T"

Then, d2 was used to deploy smart contract CURP:
a2 ={
"identity":"0x7EF2e0048f5 ...
"key" :"0xAb8483F64d9 ...
"entity":"Chiapas"

943daF4EDSCB47",
77dD3315835¢cb2",

The contract address generated after deployment was:
S_2 = "0x9bF88fAe8CF8BaB76041c1db6467E7Hb370977dD7"
Finally, the following smart contract addresses were

generated when VldentityV2 and CURPV2 were deployed:
S_3 = "O0xA831F4e5dC3dbF0e9ABA20d34C3468679205B10A"
S_4 = "0xB302F922B24420£3A3048ddDC4E2761CE37Ea098"

VOLUME 13, 2025

Tables 5 to 8 show the transaction costs carried out
after deployment and executing a consulting process in
each attribute and method. For the tables, column Executor
indicates who has executed the transaction (a user account or
a contract address); column Operation’s type shows the type
of transaction deployment or consulting; column Method or
attribute shows the attribute name or method being executed;
finally, the last two columns show the transaction cost: User
presents the cost when it is executed by a user account address
(inserting the smart contract in the blockchain); and Column
Contract shows the cost when an attribute or method is
consulted.

As you can see in all tables, deploying a smart contract
to the blockchain is overly expensive compared with only
executing a simple consulting process. On the other hand,
in table 6 by consulting method getName(), smart contract
CURP has to access to DIdentity, meaning indirect access;
thereby, the cost is upper than those only accessing to one
contract. This is similar to the other methods in the same
situation, as shown in figure 8. three The formula of the
transaction cost is:

TransactionCost = gasUsed x gasPrice

The transaction costs of Tables 5 to 8 were generated
using the Remix Integrated Development Environment (IDE).
The gasPrice was 1. This means that each calculated
transaction cost was equal to the gas used. The transaction
cost was denominated in Wei, which refers to the smallest
denomination of ether (ETH), the currency used on the
Ethereum network: 1 ether (ETH) equals 1 x 10'8 Wei.

B. COST DEPLOYING CURP SMART CONTRACT
CONSIDERING MEXICAN INHABITANTS
This section shows the transaction costs generated to deploy
the CURP smart contract and the costs generated by con-
sulting. Note that to execute this contract, it is also required
to execute DlIdentity. Then, we execute a calculation to
determine the total cost, considering the Mexican inhabitants.
The following abbreviations will express some costs
obtained from Tables 5 and 6.
Cpy, it is the deploying cost of DIdentity obtained
from table 5.
Cpc, it is the deploying cost of CURP obtained
from table 6.
Cic, it is the deploying cost of DIdentity and CURP
obtained from:

Cic = Cpr + Cpc
In this case:
Cic = 1,216,351 W eis

Let Cc be a CURP’s consulting cost. If we consider a user
consulting each attribute and method of its CURP:

n
ZEZ(TCi
i=1

13637

IEEE Access

J.-C. Lopez-Pimentel et al.: Emphasizing the Early Phases of the Software Development Process

Ox7EF2... DBCB47
{luan, Lépez, Pimentel, 9,1,1979}

OxA831... 05B10A

{luan, Lépez, Pimentel, 9,1,1979, true}

0xB302...7Ea098

{0xA831... 05B10A, LOPJ790109HCSPMNOS,
Chiapas, getName(),getLastName, ...,
getSex(), ..., getYear()}

3 | // SPDX-License-Identifier: jclopezpimentel

2 pragma solidity @.8.22;

3 import "./DIdentityVv2.sol”;

4 contract Curpv2{

5

6 DIdentityV2 public videntity;

7 string pu < key;

8 string public entity;

9 uint public registration=e;

10

31

12 constructor(DIdentityv2 _identity, string memory _key, string memory _entity) {
13 |videntity = DIdentityV2(_identity);

14 key = _key;

15 entity = _entity;

16 registration = block.timestamp;

17 }

18

19 function getMame() public view returns(string memory) {
2e return (videntity.name());

21)

22 function getFLastName() public view returns(string memory)
23 return (videntity.fLastName());

24 }

25 function getMLastName() public view returns(string memory)
26 return (videntity.mLastName());

27)

28 function getGender() public view returns (bool){

29 return (videntity.gender());

ET:) }

33 function getDay() public view returns (uintl6){

32 return (videntity.day());

33 H

34 function getMonth() public view returns (uint16){

35 return (videntity.month());

36 }

37 function getYear() public view returns (uint16){

38 return (videntity.year());

39

40 }

FIGURE 7. CURP version 2 (left part) and the repercussion (right part): double duplication, showing instances of DIdentity-Curp smart contracts and

DidentityV2-CurpV/2.

TABLE 5. Transaction costs of smart contract Didentity.

TABLE 6. Transaction costs of smart contract Curp.

Operation’s | Method or Transaction cost Operation’s | Method or Transaction cost
Executor | type attribute User Contract Executor | type attribute User Contract
Ay Deploying Constructor 463841 Aq Deploying Constructor 752510
S1 Consulting dateCreation 2469 Sa Consulting key 3479
S1 Consulting name 3412 S Consulting entity 3434
S1 Consulting fLastName 3435 Sa Consulting vIdentity 2745
S1 Consulting mLastName 3457 Sa Consulting registration 2425
S Consulting day 2488 Sa Consulting getName() 9873
Ef Consulting month 2517 S Consulting getFLastName() 9962
S1 Consulting year 2583 Sa Consulting getMLastName() 9939
Sa Consulting getDay() 7958
Sa2 Consulting getMonth() 8031
then, it adds: Sa Consulting getYear() 8140
10
D Ce; = 65,986 W eis o
P obtaining:

Considering both the deployment of DIdentity and CURP;
and all costs of the CURP’s consulting attributes and
methods:

n
Ccpg&c = Cic + z Cc;

i=1

13638

Cepgc = 1,282,337 W eis

Let M be the number of Mexicans being 137.2 million,! and
considering an instance by each Mexican, the total deployed

L At the time the paper was written.

VOLUME 13, 2025

J.-C. Lopez-Pimentel et al.: Emphasizing the Early Phases of the Software Development Process

IEEE Access

Transaction Costs

12000
10000
8000
6000
4000
2000

name I
day
year N

fLastName
mlLastName N
month

dateCreation

Didentity

key I

entity I

videntity .
getName() III———
getDay() IEE—
getMonth() I
getYear() I

registration .

getFlLastName() I
getMLastName() I

CURP

FIGURE 8. Transaction costs of smart contracts Didentity and CURP omitting their deploying costs.

cost:
Cr =Ccpgc XM
it was:
Cr = 175, 936, 636, 400, 000 W eis

it is equal to 0.0001759366364 Ethers. Taking into account 1
Ether equals 3825.73 USD? the amount C7 would be
0.67 USD. Considering blockchain’s benefits, we conclude
that having all Mexican CURPs in a blockchain platform
is not expensive. three However, it is important to consider
that the gas price unit in our calculus was 1. The gas price
in Ethereum is highly variable and depends on network
congestion, which we have not considered.

C. THE UPGRADING COST OF RE-DEPLOYING CURPV2
CONSIDERING MEXICAN INHABITANTS

This section obtains the costs implicated by adding the
upgrading process as exposed in section IV. Although the
first version of smart contract CURP differs only by the new
attribute for the second version, each consulting transaction
cost might differ. As you can compare it in Tables 6 and 8, for
example, attribute entity are equals, but attribute videntity are
different. Thereby, it is impossible to calculate the personal
migration cost Cpys with the following simple formula:

Cpy = 2% Cepgc) + Centi

being Cc, 41 the new attribute.
Instead, the personal migration cost Cpyy is calculated such
as the sum of the old smart contracts costs and the new one:

Cpy = Cepgc + ch&C

2Exchange rate calculated at https://www.coinbase.com/converter/eth/usd
on June 5th, 2024.

VOLUME 13, 2025

Therefore, Cc/D&C is calculated similarly to Ccpgc,
as follows:

n+1
Cepge = Cic2 + Y, Cc]

i=1
where Cjc3 is the cost generated when deployed DIdentity V2
and CURPV2, obtained from:

Cic2 = Cpp2 + Cpca

there, Cpj2 and Cpca are the cost generated when Dldenti-
tyV2 and CURPV2 were deployed respectively.
So, the upgrading cost might be broken down as follows:
Cpjo = 489,725
Cpcy = 822,577
Cico = 1,312,302

n
> Ccj =174, 167
i=1
Cchec = 1,386, 469
Cpy = 2, 668, 806

The Mexican migration cost Cys considering M (the number
of Mexicans) is abstracted in the following formula:

Cy =Cpy xM
Cy = 366, 160, 183, 800, 000

equal to 0.0003661601838 Ethers.

Again, taking into account 1 Ether equals 3825.73 USD?
the amount Cy; would be 1.40 USD. With this, we conclude
that the upgrading spend for re-deploying CURPV2, consid-
ering Mexican inhabitants, is not expensive according to the
current exchange. In other words, if the economic aspect of

3Exchange rate calculated at https://www.coinbase.com/converter/eth/usd
on June 5th, 2024.

13639

IEEE Access

J.-C. Lopez-Pimentel et al.: Emphasizing the Early Phases of the Software Development Process

TABLE 7. Transaction costs of smart contract DidentityV2.

Operation’s | Method or Transaction cost

Executor | type attribute User Contract
Ay Deploying Constructor 489725

S3 Consulting dateCreation 2448
S3 Consulting name 3412
S3 Consulting fLastName 3457
S3 Consulting mLastName 3479
S3 Consulting day 2539
S3 Consulting month 2514
S3 Consulting year 2561
S3 Consulting gender 2532

TABLE 8. Transaction costs of smart contract CurpV2.

Operation’s | Method or Transaction cost

Executor | type attribute User Contract
Aq Deploying Constructor 822577

Sa Consulting key 3479
Sa Consulting entity 3434
Sy Consulting vldentity 2767
S4 Consulting registration 2425
Sa Consulting getName() 9873
Sa Consulting getFLastName() 9984
Sy Consulting getMLastName() 9983
Sa Consulting getDay() 8009
Sa Consulting getMonth() 8028
Sa Consulting getYear() 8140
S4 Consulting getGender() 8045

upgrading smart contracts is a concern, then it should not be,
according to our results three and the gas price we set in the
Remix IDE.

VIl. DISCUSSION
This section discusses the upgrading case developed through-

out the paper from two focuses: Off-chain and Blockchain.
Before that, we will give some assumptions that were not part
of our scope.

A. DELIMITATION
To delimit this research, the following list describes some
assumptions out of the scope of this paper:

o Consensus algorithm: we worked on the existing
consensus algorithm implemented on the Ethereum
network. Any update or upgrade in this aspect was not
considered.

o Secure blockchain: we left out the reliability and safety
of the blockchain network. We assumed it was free of
attacks, so we disregarded any possible update in the
mining process.

o Security between microservices: security is a crucial
aspect of a system, but our analysis did not include
possible vulnerabilities in the interaction between
microservices and smart contracts.

o Tunneling: we assumed tunneling privacy communica-
tion in our architecture using HTTPS. We assumed this
protocol was free of attacks. Any update would not affect
the upgrades of smart contracts.

o Exclusively in the system development: We did
not include updates or upgrades in the system and
programming software; it was the technologies over

13640

which the software was mounted or developed,
respectively.

o Excluding practitioner costs: it excluded the human
resource cost generated for making the changes in the
blockchain and the off-chain.

o Exclusively smart contract deployment: the study of our
economic analysis primarily focuses on the perspective
of smart contracts’ deployment. Additional costs (e.g.
gas fee optimizations, batching transactions) were not
considered.

B. OFF-CHAIN PART: MICROSERVICE ARCHITECTURE
Software development is an iterative process. Updating and
upgrading is an active part of this cycle. Changes in the
first steps will have major repercussions compared to later
stages, especially if implemented in a microservice approach.
As follows, we state our analysis:

o High repercussion: although one of the philosophies
of the microservice architecture is that each service
is independent of the others, we have demonstrated
high complexity, even when making simple changes.
For example, a simple upgrading, as described in
Section 1V, involved identifying various affected parts:
microservices, the API gateway, and user interfaces.

o Specialist: if these parts were developed with different
technologies and programming languages, then upgrad-
ing implies having specialists with different knowledge
and profiles. Additionally, it is required to add the
blockchain specialist.

« Version controls: each part might have various version
controls, complicating their administration.

« Off-chain processing delegation: delegating processing
and validation tasks within the microservices is highly
recommended. On the one hand, it could avoid unnec-
essary cost transactions in the blockchain; on the other,
it could prevent an upgrading process in smart contracts
deployed in private blockchains.

« Re-testing: for security issues, it is required to execute
the testing stage again, from individual services in
isolation and testing across various services, mainly
when some services depend on others. Testing can
be complex and time-consuming but highly required.
Stress testing (multiple concurrent requests) is highly
recommendable; we have found bugs while executing
transactions to the smart contracts that, with simple
requests, were not found.

« Handling data: blockchain applications require storing
data via off-chain and blockchain; it can be more
complex, especially when dealing with data consis-
tency, transactions, and inter-service communication.
For example, where must the user’s addresses be stored?

C. UPGRADING ANALYSIS ON THE BLOCKCHAIN PART
Immutability is one of the more important characteristics
of blockchain. However, it also makes patching or updating

VOLUME 13, 2025

J.-C. Lopez-Pimentel et al.: Emphasizing the Early Phases of the Software Development Process

IEEE Access

smart contracts impossible, even when vulnerabilities have
been found or poorly designed. Like all source programming
code, smart contracts are error-prone, or perhaps software
developers might want to extend their features. The impor-
tance of designing correctly and completely smart contracts
is argued as follows:

1) Purpose duplication: a bug or an omission in their design
stage would imply creating and deploying new smart
contracts and causing the old ones to fall into disuse and
stay in the blockchain.

2) Storage wastage: if a new smart contract substitutes
another, the older one cannot be erased; storage wastage
will occur, especially when the new one must implement
all states of the older one. We coincide with Chen et al.
[31], who comment that many dead smart contracts
are already unused but add noise to the Ethereum
blockchain.

3) Legitimacy: if a blockchain system contains two or more
smart contracts with the same purpose, how do we know
which is the original? In this case, an external instance
will be required to store the original smart contract
address.

4) Cascade dependency repercussion: some smart contracts
extend or use attributes or methods of other smart
contracts. A cascading repercussion exists if the latter
is modified because all dependent smart contracts must
be modified.

5) Validations within smart contracts: delegating validation
tasks within the microservices is highly recommended
instead of doing everything within the smart contracts.
However, smart contracts must include their validation
to avoid negative impacts when implementing microser-
vices with errors.

6) Migration: the consequences of migrating new smart
contracts after deployment can vary depending on the
specific context and the nature of the migration. Here
we mention some potential consequences:

e Migration data integrity: as shown, when smart
contracts are involved in an updating or upgrading
procedure, they may require transferring data to
the new attributes, which can be error-prone or
introduce potential risks related to data integrity
and consistency. It is possible to have two scenarios
when migrating smart contracts: a) completely,
it is required to know all states of the previous
smart contracts to generate the new version, and b)
partially, the complexity, in this case, is to identify
exactly what parts will be migrated.

e Executor: it must be considered the permissions of
the smart contracts to be migrated to consider who
can execute the new smart contracts and how to
obtain the list of all transactions to replicate it in
case that is required.

e Migration cost: migrating smart contracts typi-
cally involves transaction fees on the blockchain

VOLUME 13, 2025

network; these fees can vary and may be significant
or not (as shown in Section VI), but they must be
considered.

e Migration complexity: as shown with the smart
contract examples, migration can be complex,
especially if there are dependencies or interactions
with other smart contracts (e.g., DIdentity and
CURP). Ensuring its correct migration process
requires careful planning and re-testing process.

VIil. CONCLUSION

This paper provides higher certainty about the smart
contracts’ upgrading implications in the off-chain and the
blockchain part to the software developer community, and
organizations that could constantly be undecided if adopting
or not blockchain technology without assessing whether it is
truly suitable. For example, a simple upgrading process when
designing a blockchain application within a microservice
architecture generates high implications in the off-chain and
the blockchain parts that should be considered.

When developing blockchain-based software engineering
consists of treating smart contract development as a rigorous
engineering process with a strong focus on requirements
analysis, planning, design, implementation, and testing (early
phases). These phases ensure the smart contracts’ reliability,
security, and functionality before deploying them to a
blockchain network. Even so, sometimes their design could
omit some attributes and/or methods that could impact
enormously in the blockchain part and the off-chain, as we
have discussed in Section VII, therefore and due to the
immutable nature of blockchain technology, the use of
upgrading design patterns is recommended.

However, our first experiments showed that the economic
costs are not so high when smart contract re-deployment
is caused by changing a simple attribute and involves only
a few smart contracts. The previous argument is supported
by an experiment with two smart contracts that required
to be upgraded; it was deployed considering 137.2 million
instances three and the gas price fixed to 1 unit. Note that
our upgrading procedure did not follow any design pattern
(as those mentioned in Section II-D); however, analyzing and
comparing the costs considering design patterns would help
to determine the difference for or against when using these
strategies.

IX. FUTURE DIRECTIONS
Blockchain technology requires more study in some areas
of software development to become consolidated and widely
used. So, based on our research, the next step will be to
question how software and system engineers deal with the
topics we have discussed. Furthermore, we give for each
question a citation of recent works addressing these research
directions.

Based on the analysis of Sections IV and V:

o Migration cost: what are the complete migration costs

considering offchain costs and other costs out of

13641

IEEE Access

J.-C. Lopez-Pimentel et al.: Emphasizing the Early Phases of the Software Development Process

transaction deployments, such as gas fee optimization
and batching transactions, or those considering pattern
design?, see [54].

Security issues: what are the most common potential
attacks within smart contracts that can be avoided from
the off-chain part?, see [55].

Based on the analysis of Section V:

o Purpose duplication: how to clean the noise of having

smart contracts in disuse on the blockchain?, see [31].

o Legitimacy: what are the mechanisms for knowing the

original smart contract when having more than one for
the same objective in the blockchain?, see [56].

o Migration process: what are the main mechanisms for

executing automated migration in partial or complete
states? How does it affect permission restrictions while
considering a migration process? Smartmuv is a tool
addressing lightly this issue [57].

Although our findings, Section VI, show that the economic
costs were not so high, they were grounded on a case study.
Comparing the upgrade costs in scenarios following the
pattern design, as shown in [54], and fluctuations in the gas
price would complement our findings.

REFERENCES

(1]

[2]

[3]

[4]

[5]

[6]

[71
[8]

[91

[10]

[11]

[12]

S. Porru, A. Pinna, M. Marchesi, and R. Tonelli, ‘‘Blockchain-oriented
software engineering: Challenges and new directions,” in Proc. IEEE/ACM
39th Int. Conf. Softw. Eng. Companion (ICSE-C), May 2017, pp. 169—-171.
A. Al-Ashmori, S. Basri, P. D. D. Dominic, A. Muneer, Q. Al-Tashi, and
Y. Y. Al-Ashmori, “Blockchain-oriented software development issues: A
literature review,” in Proc. 5th Comput. Methods Syst. Softw. Eng. Appl.
Inform., in Lecture Notes in Networks and Systems, Z. P. Radek Silhavy,
Petr Silhavy, Eds., Cham, Switzerland: Springer, Jan. 2021, pp. 48-57.

S. Reddivari, J. Orr, and R. Reddy, ““Blockchain-oriented software testing:
A preliminary literature review,” in Proc. IEEE 47th Annu. Comput.,
Softw., Appl. Conf. (COMPSAC), Jun. 2023, pp. 974-975.

A. Augusto, R. Belchior, M. Correia, A. Vasconcelos, L. Zhang, and
T. Hardjono, ““SoK: Security and privacy of blockchain interoperability,”
in Proc. IEEE Symp. Secur. Privacy (SP), May 2024, pp. 3840-3865.

H. Chu, P. Zhang, H. Dong, Y. Xiao, S. Ji, and W. Li, “A survey on
smart contract vulnerabilities: Data sources, detection and repair,” Inf.
Softw. Technol., vol. 159, Jul. 2023, Art. no. 107221. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0950584923000757
N. Sanchez-G6émez, J. Torres-Valderrama, J. A. Garcia-Garcia,
J.J. Gutiérrez, and M. J. Escalona, “Model-based software design
and testing in blockchain smart contracts: A systematic literature review,”
IEEE Access, vol. 8, pp. 164556-164569, 2020.

C. Lal and D. Marijan, “Blockchain testing: Challenges, techniques, and
research directions,” 2021, arXiv:2103.10074.

A. Vacca, A. Di Sorbo, C. A. Visaggio, and G. Canfora, ‘A systematic
literature review of blockchain and smart contract development: Tech-
niques, tools, and open challenges,” J. Syst. Softw., vol. 174, Apr. 2021,
Art. no. 110891.

A. Singh, R. M. Parizi, Q. Zhang, K.-K.-R. Choo, and A. Dehghantanha,
“Blockchain smart contracts formalization: Approaches and chal-
lenges to address vulnerabilities,” Comput. Secur., vol. 88, Jan. 2020,
Art. no. 101654.

H. Zhou, A. Milani Fard, and A. Makanju, “The state of Ethereum smart
contracts security: Vulnerabilities, countermeasures, and tool support,” J.
Cybersecurity Privacy, vol. 2, no. 2, pp. 358-378, May 2022.

M. Rodler, W. Li, G. O. Karame, and L. Davi, “Sereum: Protecting existing
smart contracts against re-entrancy attacks,” 2018, arXiv:1812.05934.

S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev,
E. Marchenko, and Y. Alexandrov, “SmartCheck: Static analysis of
Ethereum smart contracts,” in Proc. IEEE/ACM 1st Int. Workshop Emerg.
Trends Softw. Eng. Blockchain (WETSEB), May 2018, pp. 9-16.

13642

(13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

(25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]
(34]

(35]

C. F. Torres, J. Schiitte, and R. State, “Osiris: Hunting for integer bugs
in Ethereum smart contracts,” in Proc. 34th Annu. Comput. Secur. Appl.
Conf., Dec. 2018, pp. 664-676.

S. Wang, C. Zhang, and Z. Su, “Detecting nondeterministic payment
bugs in Ethereum smart contracts,” in Proc. ACM Program. Lang., vol. 3,
Oct. 2019, pp. 1-29.

N. Grech, M. Kong, A. Jurisevic, L. Brent, B. Scholz, and Y. Smaragdakis,
“MadMax: Analyzing the out-of-gas world of smart contracts,” Commun.
ACM, vol. 63, no. 10, pp. 87-95, Sep. 2020.

W. Wang, J. Song, G. Xu, Y. Li, H. Wang, and C. Su, “ContractWard:
Automated vulnerability detection models for Ethereum smart contracts,”
IEEE Trans. Netw. Sci. Eng., vol. 8, no. 2, pp. 1133-1144, Apr. 2021.

T. D. Nguyen, L. H. Pham, J. Sun, Y. Lin, and Q. T. Minh, “SFuzz: An
efficient adaptive fuzzer for solidity smart contracts,” in Proc. ACM/IEEE
42nd Int. Conf. Softw. Eng., Jan. 2020, pp. 778-788.

Z. Gao, L. Jiang, X. Xia, D. Lo, and J. Grundy, ‘‘Checking smart contracts
with structural code embedding,” IEEE Trans. Softw. Eng., vol. 47, no. 12,
pp. 2874-2891, Dec. 2021.

J. Chen, X. Xia, D. Lo, J. Grundy, X. Luo, and T. Chen, “DefectChecker:
Automated smart contract defect detection by analyzing EVM bytecode,”
IEEE Trans. Softw. Eng., vol. 48, no. 7, pp. 2189-2207, Jul. 2022.

L. Zhang, J. Wang, W. Wang, Z. Jin, C. Zhao, Z. Cai, and H. Chen, “A
novel smart contract vulnerability detection method based on information
graph and ensemble learning,” Sensors, vol. 22, no. 9, p. 3581, May 2022.
L. Zhang, J. Wang, W. Wang, Z. Jin, Y. Su, and H. Chen, “Smart contract
vulnerability detection combined with multi-objective detection,” Comput.
Netw., vol. 217, Nov. 2022, Art. no. 109289.

X. Wang, S. Tian, and W. Cui, “ContractCheck: Checking Ethereum smart
contracts in fine-grained level,” IEEE Trans. Softw. Eng., vol. 50, no. 7,
pp. 1789-1806, Jul. 2024.

R. Huang, Q. Shen, Y. Wang, Y. Wu, Z. Wu, X. Luo, and
A.Ruan, “ReenRepair: Automatic and semantic equivalent repair of
reentrancy in smart contracts,” J. Syst. Softw., vol. 216, Oct. 2024,
Art. no. 112107. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0164121224001523

M. Bartoletti, A. Ferrando, E. Lipparini, and V. Malvone, “Solvent:
Liquidity verification of smart contracts,” 2024, arXiv:2404.17864.

M. Wohrer and U. Zdun, “Design patterns for smart contracts in
the Ethereum ecosystem,” in Proc. IEEE Int. Conf. Internet Things
(iThings) IEEE Green Comput. Commun. (GreenCom) IEEE Cyber, Phys.
Social Comput. (CPSCom) IEEE Smart Data (SmartData), Jul. 2018,
pp. 1513-1520.

G. Barros and P. Gallagher. (2019). Erc-1822: Universal Upgradeable
Proxy Standard (uups). Accessed: Sep. 21, 2024. [Online]. Available:
https://eips.ethereum.org/EIPS/eip-1822#motivation

N. Mudge. (2020). Erc-2535: Diamonds, Multi-facet Proxy. Accessed:
Sep. 21, 2024. [Online]. Available: https://eips.ethereum.org/EIPS/eip-
2535

Pinkiebell. (2021). Erc-3448: Metaproxy Standard. Accessed:
Sep. 21, 2024. [Online]. Available: https://eips.ethereum.org/EIPS/eip-
3448#motivation

V. C. Bui, S. Wen, J. Yu, X. Xia, M. S. Haghighi, and Y. Xiang,
“Evaluating upgradable smart contract,” in Proc. IEEE Int. Conf.
Blockchain, Dec. 2021, pp. 252-256.

M. Salehi, J. Clark, and M. Mannan, “Not so immutable: Upgradeability
of smart contracts on Ethereum,” in Proc. Int. Workshops Financial
Cryptography Data Security (FC), vol. 13412. Cham, Switzerland:
Springer, 2023, pp. 539-554.

J. Chen, X. Xia, D. Lo, J. Grundy, and X. Yang, “Maintenance-related
concerns for post-deployed Ethereum smart contract development: Issues,
techniques, and future challenges,” Empirical Softw. Eng., vol. 26, no. 6,
p. 117, Nov. 2021.

1. Qasse, M. Hamdaqa, and B. P. J6nsson, “Smart contract upgradeability
on the Ethereum blockchain platform: An exploratory study,” 2023,
arXiv:2304.06568.

R. K. Yin, Case Study Research: Design and Methods, vol. 5. Newbury
Park, CA, USA: Sage, 2009.

S. Nakamoto and A. Bitcoin, “Bitcoin: A peer-to-peer electronic cash
system,” Bitcoin, vol. 4, no. 2, p. 15, 2008.

G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum Project Yellow Paper, vol. 151, pp. 1-32, Jan. 2014.
[Online]. Available: https://ethereum.github.io/yellowpaper/paper.pdf

VOLUME 13, 2025

J-C.

Lopez-Pimentel et al.: Emphasizing the Early Phases of the Software Development Process

IEEE Access

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

D. Macrinici, C. Cartofeanu, and S. Gao, “Smart contract applications
within blockchain technology: A systematic mapping study,” Telematics
Informat., vol. 35, no. 8, pp. 2337-2354, Dec. 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0736585318308013

E. Negara, A. Hidayanto, R. Andryani, and R. Syaputra, “Survey of
smart contract framework and its application,” Information, vol. 12,
no. 7, p. 257, Jun. 2021. [Online]. Available: https://www.mdpi.com/2078-
2489/12/7/257

M. Waseem, P. Liang, G. Marquez, and A. D. Salle, “Testing microservices
architecture-based applications: A systematic mapping study,” in Proc.
27th Asia—Pacific Softw. Eng. Conf. (APSEC), Dec. 2020, pp. 119-128.
A. Bhardwaj, S. B. H. Shah, A. Shankar, M. Alazab, M. Kumar,
and T. R. Gadekallu, “Penetration testing framework for smart contract
blockchain,” Peer-Peer Netw. Appl., vol. 14, no. 5, pp.2635-2650,
Sep. 2021.

OpenZeppelin. (2024). Proxy Upgrade Pattern. Accessed: Oct. 4, 2024.
[Online]. Available: https://docs.openzeppelin.com/upgrades-
plugins/1.x/proxies

OpenZeppelin. (2024). Proxies. Accessed: Oct. 4, 2024. [Online].
Available: https://docs.openzeppelin.com/contracts/4.x/api/proxy

S. A. Amri, L. Aniello, and V. Sassone, “A review of upgradeable
smart contract patterns based on OpenZeppelin technique,” J. Brit.
Blockchain Assoc., vol. 6, no. 1, pp. 1-8, Mar. 2023. [Online]. Available:
https://eprints.soton.ac.uk/491646/

R. Chen, S. Li, and Z. Li, “From monolith to microservices: A dataflow-
driven approach,” in Proc. 24th Asia—Pacific Softw. Eng. Conf. (APSEC),
Dec. 2017, pp. 466-475.

D. Jaramillo, D. V. Nguyen, and R. Smart, “Leveraging microservices
architecture by using Docker technology,” in Proc. SoutheastCon,
Mar. 2016, pp. 1-5.

V. Bushong, A. S. Abdelfattah, A. A. Maruf, D. Das, A.Lehman,
E. Jaroszewski, M. Coffey, T. Cerny, K. Frajtak, P. Tisnovsky, and
M. Bures, “On microservice analysis and architecture evolution: A
systematic mapping study,” Appl. Sci., vol. 11, no. 17, p. 7856, Aug. 2021.
J. Christian, Steven, A. Kurniawan, and M. S. Anggreainy, ‘“Analyzing
microservices and monolithic systems: Key factors in architecture,
development, and operations,” in Proc. 6th Int. Conf. Comput. Informat.
Eng. (IC2IE), Sep. 2023, pp. 64—69.

C.-F. Fan, A. Jindal, and M. Gerndt, “Microservices vs serverless: A
performance comparison on a cloud-native Web application,” in Proc. 10th
Int. Conf. Cloud Comput. Services Sci., 2020, pp. 204-215.

X. Zhou, S. Li, L. Cao, H. Zhang, Z. Jia, C. Zhong, Z.Shan,
and M. A. Babar, “Revisiting the practices and pains of microservice
architecture in reality: An industrial inquiry,” J. Syst. Softw., vol. 195,
Jan. 2023, Art. no. 111521.

M. Waseem, P. Liang, M. Shahin, A. D. Salle, and G. Marquez, “Design,
monitoring, and testing of microservices systems: The practitioners’
perspective,” J. Syst. Softw., vol. 182, Dec. 2021, Art. no. 111061.

S. Gadge and V. Kotwani. (Aug. 2018). Microservice Architecture: Api
Gateway Considerations. GlobalLogic Organisations. [Online]. Available:
https://www.globallogic.com/wp-content/uploads/2017/08/Microservice-
Architecture-API-Gateway-Considerations.pdf

I. Odun-Ayo, M. Ananya, F. Agono, and R. Goddy-Worlu, “Cloud
computing architecture: A critical analysis,” in Proc. 18th Int. Conf.
Comput. Sci. Appl. (ICCSA), Jul. 2018, pp. 1-7.
CURP-DOF. (2024). Diario Oficial De La
Accessed: Jan. 24, 2024. [Online]. Available:
mx/index.php?year=1996&month=10&day=23#gsc.tab=0
S. Authors. (2024). Solidity. Accessed: Jan. 31, 2024. [Online]. Available:
https://docs.soliditylang.org/en/v0.8.24/

A. Benedetti, T. Henry, and S. Tucci-Piergiovanni, A comparative gas cost
analysis of proxy and diamond patterns in EVM blockchains for trusted
smart contract engineering,” in Proc. Int. Workshops Financial Cryp-
tography Data Security (FC). Cham, Switzerland: Springer, Nov. 2024,
pp. 207-221.

I. M. Ali and M. M. Abdallah, “On off-chaining smart contract runtime
protection: A queuing model approach,” IEEE Trans. Parallel Distrib.
Syst., vol. 35, no. 8, pp. 1345-1359, Aug. 2024.

T. Kim, Y. Jang, C. Lee, H. Koo, and H. Kim, “Smartmark: Software
watermarking scheme for smart contracts,” in Proc. IEEE/ACM 45th Int.
Conf. Softw. Eng. (ICSE), May 2023, pp. 283-294.

Federacion.
https://dof.gob.

VOLUME 13, 2025

[57] M. Ayub, T. Saleem, M. Janjua, and T. Ahmad, *‘Storage state analysis and
extraction of Ethereum blockchain smart contracts,” ACM Trans. Softw.
Eng. Methodol., vol. 32, no. 3, pp. 1-32, Jul. 2023.

JUAN-CARLOS LOPEZ-PIMENTEL received the
master’s and Ph.D. degrees in computer science
from Tecnolégico de Monterrey, Campus Estado
de México, and the degree (Hons.) in engineering
in computer systems from the Institute of Technol-
ogy, Tuxtla Gutiérrez, in 2001.

Currently, he is a Professor-Researcher with the
Universidad Panamericana, Campus Guadalajara.
He has extensive experience in teaching, research,
and coordination of research projects. He has been
a Teacher at several universities in levels of bachelor’s, master’s, and Ph.D.
in Mexico. More than 20 articles were published. He has participated in
more than ten research projects. He is part of Mexican National System of
Researchers Level 1. His research includes include blockchain, computer
security, and distributed systems.

CAROLINA DEL-VALLE-SOTO (Senior Member,
IEEE) was born in Medellin, Colombia. She
received the bachelor’s degree in electronics
engineering with a thesis on “Design and con-
struction of a photon counting system,” the
master’s degree (Hons.) in science in electronics
engineering (telecommunications) with a thesis
named “Development of a P2P network with
DNS security,” and the Ph.D. degree (Hons.) in
information technology and communications, with
a doctoral dissertation titled “Design, implementation and comparison of a
new routing protocol for Wireless Sensor Networks.”

Currently, she is the Head of the Engineering Computer Academy,
Universidad Panamericana, Guadalajara, Mexico. In addition, she directs
and coordinates the master’s in cybersecurity with the Graduate Engineering
Department, Universidad Panamericana. She is a Titular D Researcher
Professor and she belongs to the National System of Researchers, Level 1.
She is the author of more than 90 articles indexed in the Scopus citation
report.

LEONARDO J. VALDIVIA received the M.S.
degree in telecommunications engineering and the
Ph.D. degree in embedded systems. After spending
= three years working on software for the automotive
_ sector, in 2013, he started working for the railway
’ sector, specifically in safety and security inte-
gration. Currently, he is a Professor-Researcher
with the Universidad Panamericana, Campus
Guadalajara. He is part of Mexican National
System of Researchers Level 1. His research

interests include embedded systems and blockchain applications.

4

RAUL MONROY received the Ph.D. degree
in artificial intelligence from Edinburgh Uni-
versity, in 1998, under the supervision of
Prof. Alan Bundy. He has been in computing with
Tecnolégico de Monterrey, Campus Estado de
Meékxico, since 1985. There, he is currently a (Full)
Professor and he has founded a research group
in advanced artificial intelligence. His research
interests include the design and development of
novel machine learning models, which he often
applies in the domains of cyber security and public security. He is a member
of the CONACYT-SNI Mexican Research System, ranked 3 (top). He is
a fellow of Mexican Academy of Sciences and Mexican Academy of
Computing.

13643

