
Received 23 December 2024, accepted 12 January 2025, date of publication 14 January 2025, date of current version 22 January 2025.

Digital Object Identifier 10.1109/ACCESS.2025.3529775

Integrating Human Learning Factors and
Bayesian Analysis Into Software Reliability
Growth Models for Optimal Release Strategies
CHIH-CHIANG FANG 1,2, LIPING MA1, AND WENFENG KUO1
1School of Information Engineering, Shanghai Zhongqiao Vocational and Technical University, Shanghai 201514, China
2School of Computer Science and Software, Zhaoqing University, Zhaoqing 526061, China

Corresponding authors: Liping Ma (malp@shzq.edu.cn) and Wenfeng Kuo (kuowf@shzq.edu.cn)

This work was supported in part by Guangdong Basic and Applied Basic Research Foundation; and in part by Guangdong Soft Science
Foundation, China, under Grant 2024A0505050040.

ABSTRACT This study presents a Software Reliability Growth Model (SRGM) that incorporates imperfect
debugging and employs Bayesian analysis to optimize the timing of software releases. The primary objective
is to reduce software testing costs while enhancing themodel’s practical applicability. A significant limitation
of traditional estimation techniques, such as MLE and LSE, is their challenge in accurately estimating
model parameters when historical data is limited. To overcome this issue, the proposed Bayesian approach
utilizes prior knowledge from domain experts and integrates available software testing data to predict both
the software’s reliability and associated costs. This method facilitates both prior and posterior analyses,
making it effective even in scenarios with limited data. The model also considers the efficiency of the
debugging process, which can be influenced by factors such as the testing team’s learning curve and human
error. By integrating these human elements and the intrinsic characteristics of the debugging process, the
model becomes more comprehensive and realistic. This results in parameter estimates that more accurately
represent real-world scenarios, making the model more intuitive for experts to apply. Additionally, the study
incorporates numerical examples and sensitivity analyses that provide essential insights for management.
These examples offer strategic guidance for software release decisions, assisting stakeholders in balancing
the trade-offs between testing costs, reliability, and release timing. To further enhance decision-making,
a computerized application system is proposed to help determine the optimal software release point. This tool
streamlines the process, ensuring a more efficient approach to addressing this critical challenge in software
development.

INDEX TERMS Bayesian analysis, imperfect debugging, NHPP, software reliability growth model.

I. INTRODUCTION
Software reliability is essential in the software
development lifecycle, as failures in computer systems can
lead to substantial financial losses or even catastrophic
outcomes. This is particularly relevant for technological
applications that directly affect system safety. Therefore,
ensuring software reliability poses a significant challenge in
these areas. In addition, effective management of software
testing and debugging costs necessitates a comprehensive

The associate editor coordinating the review of this manuscript and

approving it for publication was Diego Bellan .

understanding of the relationship between software relia-
bility and testing expenses over time. Within development
teams, software reliability is a critical factor that influences
decision-making processes. Historically, research in this area
has operated under the assumption that debugging can be
flawless, meaning that errors are completely resolved as soon
as they are identified. However, in practice, this is often not
the case. Debugging efforts may not fully eliminate errors,
and new issues can arise during the error correction process,
highlighting the challenge of imperfect debugging, which has
garnered increasing attention in recent years. As debugging
teams consistently address software defects, they gradually

11846

 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 13, 2025

https://orcid.org/0009-0008-7737-4701
https://orcid.org/0000-0002-9899-0609

C.-C. Fang et al.: Integrating Human Learning Factors and Bayesian Analysis Into SRGMs

enhance their skills, which enables them to identify and
resolve issues more quickly and effectively. Simultaneously,
many software reliability growth models (SRGMs) utilize the
non-homogeneous Poisson process (NHPP) as a foundational
framework for analyzing statistical patterns. This approach
has gained widespread recognition as an effective method for
capturing and predicting reliability improvements in software
systems over time [1], [3], [12], [20].

In most existing research, software reliability models are
predicated on the assumption of perfect debugging, wherein
errors are completely eliminated once detected. However,
this assumption is overly simplistic and fails to reflect real-
world conditions. In practice, software testers and debuggers
may inadvertently introduce new errors while rectifying pre-
vious ones. Consequently, recent studies have shifted their
focus toward models that incorporate imperfect debugging
within SRGMs. For example, Pham et al. [1] introduced a
comprehensive model of imperfect debugging that incorpo-
rates an S-shaped error detection rate. This model highlights
how the testing process evolves over time, with efficiency
improving dynamically due to a learning effect. This learn-
ing phenomenon is reflected in the varying rate at which
faults are detected. Singpurwalla and Willson [2] introduced
models that elucidate the uncertainty surrounding the soft-
ware failure process, noting that the parameters involved
are unobservable and should be modeled using prior distri-
butions that vary among individuals. Zhang and Pham [3]
developed a methodology for predicting field failure rates
by analyzing both system test data and field data using both
perfect and imperfect SRGMs. Kapur et al. [4] investigated
the optimal release timing problem under an imperfect debug-
ging scenario, addressing the distinct effects of perfect and
imperfect debugging on total software costs. Peng et al. [5]
introduced an imperfect debugging SRGM that incorpo-
rates testing effort allocation, utilizing logistic, Weibull, and
constant functions to represent the distribution of testing
resources over time. Wang et al. [6] expanded upon this by
applying a log-logistic function to model the process of fault
introduction within an imperfect debugging SRGM. Building
on these concepts, Wang and Wu [7] proposed a nonlinear
imperfect debugging model based on a NHPP, effectively
capturing the nonlinear behavior of fault introduction. Their
model was validated through experiments, demonstrating
strong performance in terms of both fitting accuracy and
predictive capability. Saraf and Iqbal [8] contributed to the
field by integrating two types of imperfect debugging and
change-point environments into a decision model designed
to optimize software release timing. Verma et al. [9] devel-
oped a cost model that incorporates imperfect debugging
into software release decisions, highlighting the necessity of
balancing debugging costs with customer satisfaction, par-
ticularly when determining appropriate software warranty
periods. Li et al. [10] introduced an SRGM that accounts
for testability growth efforts and delays in fault resolu-
tion to enhance the model’s goodness of fit. Bibyan [11]

presented an SRGM based on testing coverage, incorporat-
ing concepts such as change points, error generation, and
variable fault detection rates to address the irregularities in
fault observation and resolution processes. Yeh and Fang [12]
investigated the impact of environmental factors on software
testing, utilizing Brownian motion and stochastic differential
equations to establish confidence intervals for reliability and
cost metrics. These contributions have significantly expanded
the application of SRGMs by addressing imperfect debugging
in various contexts. However, most of the existing research
assumes that new software errors inevitably arise over time as
a natural aspect of the development process. In contrast, our
study shifts the focus to human factors, such as inexperience
and negligence among staff. We propose that these human
elements, particularly negligence, can be measured and quan-
tified to assess the effectiveness of software debugging. This
perspective provides a novel approach to understanding and
modeling imperfect debugging processes.

Additionally, most Software Reliability Growth Models
(SRGMs) rely on a substantial amount of historical data to
estimate model parameters using methods such as Maximum
Likelihood Estimation (MLE) or Least Squares Estimation
(LSE). However, when sufficient historical data is unavail-
able, traditional statistical methods become ineffective for
parameter estimation. In such cases, Bayesian statistical anal-
ysis presents a viable alternative, as it facilitates estimation
with limited data and incorporates expert judgment. Recent
research has applied Bayesian methods to SRGMs, with
Bai et al. [13] noting that Bayesian networks are particu-
larly well-suited for addressing complex, variable factors in
software reliability estimation. Pievatolo et al. [14] devel-
oped a Bayesian hidden Markov model to represent the
imperfect debugging process, utilizing a Gamma distribu-
tion as the prior for estimating model parameters. Aktekin
and Caglar [15] employed Markov Chain Monte Carlo
methods in conjunction with Bayesian techniques to assess
error detection rates. Similarly, Zhao et al. [16] proposed
a Bayesian-based SRGM designed to address uncertainties
in software reliability, taking into account both perfect and
imperfect debugging conditions. Wang et al. [17] employed
a Bayesian entropy Markov method to predict real-time soft-
ware reliability, estimating conditional probabilities through
Bayesian techniques. Insua et al. [18] developed Bayesian life
tests and accelerated life tests to optimize software reliabil-
ity decisions, incorporating software warranties to propose
cost-effective release strategies. Furia et al. [19] advocated
for the flexibility and effectiveness of Bayesian techniques
in analyzing software engineering data, while also acknowl-
edging the limitations of these methods. Tian et al. [20]
developed an imperfect debugging SRGM utilizing Bayesian
analysis, with the objective of identifying the optimal soft-
ware release point. Their model is intended to minimize
testing costs while enhancing its practical applicability.
Oveisi et al. [21] utilized machine learning and Bayesian
inference to improve prediction accuracy in software

VOLUME 13, 2025 11847

C.-C. Fang et al.: Integrating Human Learning Factors and Bayesian Analysis Into SRGMs

reliability, demonstrating through their experiments that
non-parametric models can surpass classical approaches.
Although these studies in the past emphasize the advantages
of Bayesian methods for estimating software reliability, they
frequently neglect to incorporate testing costs into software
release decisions, especially when considering opportunity
costs andminimum reliability thresholds. To address this gap,
our research enhances the Bayesian framework by integrating
practical considerations, thereby facilitating a more balanced
optimization of both reliability and cost in software release
strategies.

Based on the previous discussion, our study offers several
contributions over existing research:

(1) Traditional models often rely on parameters that are dif-
ficult for domain experts to interpret, making their evaluation
more challenging. In contrast, our proposed model addresses
this limitation by incorporating intuitive human factors such
as the learning curve, negligence, and the autonomy of debug-
ging teams.

(2) Our model not only provides deeper insights into the
phenomenon of imperfect debugging but also simplifies the
estimation process by converting it into a straightforward,
measurable coefficient.

(3) We propose a software release model that integrates the
required levels of software reliability into both preliminary
and subsequent analyses. This approach supports the devel-
opment of tailored testing strategies, enabling more efficient
manpower allocation and delivering a more precise assess-
ment of testing costs.

The remainder of this paper is organized as follows:
Section II outlines the development of the proposed model,
addressing aspects such as parameter estimation, model vali-
dation, and comparisons with existing models. In Section III,
we present a Bayesian analysis of the model, along with
a decision-making framework for determining the optimal
timing for software releases. Section IV emphasizes practical
applications and includes numerical examples to demonstrate
the model’s effectiveness. Finally, Section V concludes the
paper by summarizing key findings and providing recommen-
dations for future research directions.

II. MODELING SOFTWARE RELIABILITY GROWTH WITH
DEBUGGERS’ LEARNING AND NEGLIGENCE FACTORS
In recent years, statistical and stochastic methods have gained
widespread adoption in reliability engineering for both hard-
ware and software systems. Among these methods, the NHPP
has emerged as a particularly effective tool, leading to the
development of numerous software reliability growth mod-
els. Unlike the Homogeneous Poisson Process (HPP), the
NHPP allows the expected number of failures to vary over
time, providing greater flexibility for modeling software
reliability. To ensure that a system meets quality standards
prior to market release, comprehensive software testing
and debugging are essential. Software teams or companies
can evaluate and develop several viable testing strategies,
with decision-makers responsible for selecting the most

appropriate approach to optimize the testing process. Con-
sequently, it is essential for managers to understand how to
optimize system reliability through efficient resource alloca-
tion, balancing system stability with associated costs.

Within the NHPP framework, the software reliability
growth process is modeled as a counting process, represented
by {N (t) , t ≥ 0}. The probability of encountering N (t)
failures by time t is given by the following expression:

Pr (N (t) = k) =
[M (t)]k e−M(t)

k!
, k = 0, 1, 2, . . . (1)

Here, M (t) refers to the mean value function, which indi-
cates the cumulative number of errors detected within the
time interval [0, t] in the software or system. The mean value
function is connected to the intensity function λ(·) through
the following relationship:

M (t) =

∫ t

0
λ(x)dx (2)

Zhang and Pham [3] introduced a reliability metric that
allows software developers to evaluate and monitor the sys-
tem’s reliability and quality throughout the development
process. This reliability measure is expressed as:

R(x|t) = e−[M (t+x)−M (t)] (3)

This metric represents the probability that no errors will
be detected within the time interval [t, t + x], where x is
the operational time required to meet stability demands in
practical applications. It should be noted that increasing the
operational time typically decreases the reliability metric.
Additionally, as testing time approaches infinity, software
reliability will approach 1 (indicating a perfect system), but
in reality, pursuing a perfect system is impractical due to the
limitations of testing time and cost.

Figure 1 illustrates the research framework of the proposed
model. The research framework begin with Model Inference
for SRGM, which calculates the number of software errors
while considering factors such as debugging efficiency and
learning effects. When sufficient historical data is available,
Parameter Estimation is performed using LSE to fit and vali-
date the model’s accuracy. Conversely, in cases of insufficient
historical data, Bayesian Analysis is employed to estimate
the parameter ranges. This process utilizes Prior Probability
Distributions, based on expert knowledge, and updates them
with observed data to derive Posterior Probability Distribu-
tions, thereby enhancing accuracy. Regardless of whether
the data is sufficient or insufficient, the framework employs
a Cost Model for Determining Optimal Software Release
Timing. This cost model balances testing costs, reliability
requirements, and release schedules, aiding decision-makers
in determining the most appropriate time to release the
software.

The following sections will provide a detailed introduction
and explanation of the proposed model, following the struc-
ture of the research framework. Each component, including
Model Inference, Parameter Estimation, Bayesian Analysis,

11848 VOLUME 13, 2025

C.-C. Fang et al.: Integrating Human Learning Factors and Bayesian Analysis Into SRGMs

FIGURE 1. The research framework for the proposed model.

and the Cost Model for optimal software release timing, will
be discussed to clarify the model’s methodology and practical
applications.

A. BASIC MODEL DEVELOPMENT
The model inference section introduces the fundamental con-
cepts and mathematical reasoning behind the study. The
proposed model assumes that three primary factors influ-
ence the rate at which errors are detected: the autonomous
error-detection factor α of the testing staff, the learning fac-
tor η, and the negligence factor ϖ . Specifically, factor α
directly impacts the number of errors detected, while factor η
influences this number by learning from the cumulative error
patternM (t). Both factors α and η positively contribute to the
efficiency of error detection, whereas the negligence factor
ϖ has a negative impact, potentially leading to an increase in
new errors.

However, estimating these factors poses significant chal-
lenges in the absence of historical data, as statistical modeling
relies on an adequate dataset for accurate parameter estima-
tion. In such scenarios, Bayesian analysis proves invaluable,
forming a key component of the study framework. This
approach allows software developers to incorporate expert
insights into the prior analysis while simultaneously collect-
ing current data to perform a posterior analysis. By combining
these methods, the prior analysis can be refined, resulting in
more reliable and robust estimations.

Finally, cost analysis is a critical factor in evaluating vari-
ous software testing strategies. Developers must consider all
associated expenses to ensure that the desired improvements
in reliability are achieved within the project’s financial con-
straints, which constitutes the third component of the study
framework. In deriving the primary model, it is assumed that
the total number of software errors can be represented as
a function of testing time, denoted by A (t). This function
incorporates both the initial number of errors, a, and the

emergence of new errors due to the negligence factor ϖ .
Consequently, the total number of software errors increases
over time, as described by the following equation:

A (t) = a+ϖM (t) , (4)

The detection rate is a metric that quantifies the speed at
which errors are identified during the testing process. It is
represented by the following differential equation:

D (t) =
dM (t)

A (t)−M (t)
= α + ηF (t) . (5)

In this context, F(t) represents the cumulative fraction
of errors detected within the time interval [0,t], while
A (t)−M (t) refers to the remaining undetected errors at time
t . It is crucial for the parameters α and η in Equation (5)
to be non-negative, as this ensures they positively influence
the testing process. This condition indicates the presence of
a learning effect, which is dependent on the value of F(t).
Given that the cumulative error detection pattern is defined
as F (t) = M (t) /a, and the total error function is expressed
as A (t) = a+ϖM (t), Equation (5) can be reformulated as
follows:

D (t) =
dM (t)

a−(1−ϖ)M (t)
= α +

(η
a

)
M (t) . (6)

Using this, the mean value function M (t) can be derived
through differential equation methods, as shown below:

dM (t)(
α +

(η
a

)
M (t)

)
(a− (1 −ϖ)M (t))

= 1. (7)

The left side of the equation can be separated into the two
factions as follows:

ηdM (t)
(α (1 −ϖ)+ η) (aα + ηM (t))

+
(1 −ϖ) dM (t)

(α (1 −ϖ)+ η) (a− (1 −ϖ)M (t))
= 1. (8)

VOLUME 13, 2025 11849

C.-C. Fang et al.: Integrating Human Learning Factors and Bayesian Analysis Into SRGMs

By integrating both sides of the equation, the solution is
obtained as:∫ (

ηdM (t)
(α (1 −ϖ)+ η) (aα + ηM (t))

+
(1 −ϖ) dM (t)

(α (1 −ϖ)+ η) (a− (1 −ϖ)M (t))

)
dt =

∫
1 dt.

(9)

Since
∫ dξ (t)

ξ (t) dt = ln (ξ (t))+c, Equation (9) can be derived
and simplified in the following manner:

ln(aα + ηM (t))
η + α(1 −ϖ)

−
ln(a− (1 −ϖ)M (t))

η + α(1 −ϖ)
= t + c. (10)

To solve for M (t) by transforming exponential functions,
we first isolate it in Equation (10), and the form ofM (t)with
an unknown constant c is given by:

M (t) =
ae(α+η)(t+c)

− aαeαϖ (t+c)

(1 −ϖ) e(α+η)(t+c) + ηeαϖ (t+c) (11)

With the initial condition M (0)= 0 (indicating that no
errors have been detected at time t= 0), Equation (10) can
be simplified by removing the unknown constant. This leads
to the following expression:

M (0) =
ae(α+η)c − aαeαϖc

(1 −ϖ) e(α+η)c
+ ηeαϖc

= 0 (12)

Solving for the constant c in Equation (10), we find:

c =
ln (α)

η + α(1 −ϖ)
(13)

By substituting this constant back into Equation (11), the
full expression for M (t) is obtained (14), as shown at the
bottom of the page.

This equation represents the original form of the mean
value function, which estimates the average cumulative num-
ber of detected errors. Moreover, since eln(α) = α, the
expression forM (t) can be simplified to the following form:

M (t) =

(
eαϖ t

− e(α+η)t
)
aα

α+η
(1−ϖ)α+η

ηα
αϖ

(1−ϖ)α+η eαϖ t + (1 −ϖ)α
α+η

(1−ϖ)α+η e(α+η)t

(15)

Softwaremanagers often need to track the number of errors
detected at a specific time t to monitor the progress of the
testing phase. To accomplish this, the intensity function λ (t),
representing the rate of error detection, must be derived.
By taking the first derivative of M (t), the intensity function
\λ (t) is obtained (16), as shown at the bottom of the next
page.

The intensity function λ (t) represents the number of errors
detected at any given time t , enabling software managers

to identify when peak error detection occurs. Furthermore,
to evaluate debugging efficiency during the testing period,
software managers can use an indicator for practical mea-
surement. Zhang and Pham et al. [3] defined the detection
rate as (t) = dM (t) /(a−M (t)). However, in this study, the
remaining errors in the system at time t have been redefined
as A (t) − M (t), resulting in a revised expression for the
error detection rate: D (t) = dM (t) /(A (t) − M (t)). It is
important to emphasize that this error detection rate is a
strictly increasing function, indicating that the efficiency of
debugging improves as testing progresses over time.

B. BAYESIAN ANALYSIS IN THE ABSENCE OF ADEQUATE
HISTORICAL DATA
When there is a lack of sufficient historical data to estimate
the values of the unknown parameters α, η, and ϖ in the
debugging phase of a new project, a manager must find
alternative methods to estimate these parameters. This is
crucial for evaluating the testing efficiency and cost of the
new project in preparation for a software release. Addition-
ally, managers might consider various testing strategies based
on different allocations of human resources. However, these
strategies often cannot rely on similar historical datasets for
parameter estimation, rendering the use of the Least Squares
Estimation (LSE) method ineffective in such cases.

Fortunately, Bayesian statistical methods offer a solution
by allowing domain experts to provide initial estimates (prior
judgments) of parameter values, which can then be refined
using collected data. Bayesian analysis can be categorized
into two phases: (1) prior analysis and (2) posterior analysis.
While a prior analysis can be conducted beforehand, more
accurate estimations can be achieved through posterior anal-
ysis once data has been collected.

To perform the prior analysis, it is essential to define an
appropriate joint prior distribution that captures the uncer-
tainty of the parameters α, η and ϖ . For this analysis,
we assume that α and η follow a bivariate gamma distribution,
f (α, η), while ϖ follows a separate gamma distribution,
f (ϖ). The bivariate gamma distribution was introduced by
Schucany et al. [22] and Moran [23], specifically to address
challenges in reliability and bioinformatics. These distribu-
tions are applied here to define the joint prior distribution for
α, η and ϖ as (17) and (18), as shown at the bottom of the
next page.

Since f (α, η) is independent of f (ϖ), the joint prior dis-
tribution f (α, η,ϖ) is the product of f (α, η) and f (ϖ). The
term ρα,η represents the correlation coefficient between α and
η. Typically, since instinct debugging skills (α) often correlate
with strong learning abilities (η), the correlation coeffi-
cient ρα,η is positive in most scenarios. Figure 2 presents
the joint probability distribution f (α, η) under varying

M (t) =
ae(α+η)(t+lnα)/((1−ϖ)α+η))

− aαeαϖ (t+ln(α)/((1−ϖ)α+η))

ηeαϖ (t+ln(α)/((1−ϖ)α+η)) + (1 −ϖ)e(α+η)(t+ln(α)/((1−ϖ)α+η))
. (14)

11850 VOLUME 13, 2025

C.-C. Fang et al.: Integrating Human Learning Factors and Bayesian Analysis Into SRGMs

correlation coefficients ρα,η, illustrating the influence of dif-
ferent correlations on the shape of the joint distribution.

The Gamma and incomplete Gamma functions are defined
as follows: 0 [z] =

∫
∞

0 xz−1e−xdx and 0 [z0, z1, z2] =∫ z2
z1
xz0−1e−xdx respectively. In these equations, 8−1 [·]

refers to the inverse of the standard normal cumulative
distribution function. The scale parameters for α, η and
ϖ are represented by θα , θη and θϖ , respectively, while
their corresponding shape parameters are γα , γη and γϖ .
Although these scale and shape parameters cannot be directly
observed in practice, they can be estimated by experts based
on the statistical properties—such as the mean and standard
deviation—of α, η and ϖ . The relationships between the
scale and shape parameters and the statistical characteris-
tics are given by the following equations, based on experts’
judgment for E (α), σ (α), E (η), σ (η), E (ϖ) and σ (ϖ):

γα =
σ (α)2
E(α) , θα =

(
E(α)
σ (α)

)2
, γη =

σ (η)2

E(η) , θη =

(
E(η)
σ (η)

)2
,

γϖ =
σ (ϖ)2
E(ϖ) , and θϖ =

(
E(ϖ)
σ(ϖ)

)2
.

Furthermore, the expected mean value of total detected
errors, E [M (t)], and the expected conditional software reli-
ability, E[R|t)], in the prior analysis can be computed using
the following equations:

E [M (T)] =

∫
∞

0

∫
∞

0

∫
∞

0
M (T)f (α, η,ϖ) dϖdηdα

(19)

E [R(x|T)] =

∫
∞

0

∫
∞

0

∫
∞

0
R(x|T)f (α, η,ϖ) dϖdηdα

(20)

However, managers may not fully rely on the prior analysis
results and could decide to gather additional testing data to
refine their estimates. To obtain the mean value and software
reliability in the posterior analysis, it is first necessary to

derive the posterior distribution. According to the natural con-
jugate distribution property, the posterior distribution belongs
to the same family as the prior distribution. The posterior
distribution can be written as:

g
(
α, η,ϖ,1(n)

)
∝ f (α, η,ϖ)L

(
1(n)|α, η,ϖ

)
= Kf (α, η,ϖ)L

(
1(n)|α, η,ϖ

)
(21)

Here, L
(
1(n)|α, η,ϖ

)
represents the likelihood func-

tion of the NHPP based on the observed dataset 1(n)
=

{t1, t2, ..,tn}, and can be calculated as:

L
(
1(n) |α, η,ϖ

)
=

∏n

i=1
λ (ti)e−M(tn). (22)

The constant K is a normalizing factor that ensures the
posterior distribution integrates to 1, and it is determined by
the following equation:

K =
1∫

∞

0

∫
∞

0

∫
∞

0 f (α, η,ϖ)L
(
1(n) |α, η,ϖ

)
dϖdηdα

(23)

Once the posterior distribution is determined, the mean
value M (T) and the software reliability R(x|T) in the pos-
terior analysis can be calculated as:

E ′ [M (T)]

=

∫
∞

0

∫
∞

0

∫
∞

0
M (T)g

(
α, η,ϖ,1(n)

)
dϖdηdα (24)

E ′ [R(x|T)]

=

∫
∞

0

∫
∞

0

∫
∞

0
R(x|T)g

(
α, η,ϖ,1(n)

)
dϖdηdα (25)

It is important to note that calculating E ′ [M (T)] and
E ′ [R(x|T)] involves complex multidimensional numerical
integration, which may require the assistance of a computa-
tional engine to obtain results efficiently.

λ (t) =
dM (t)
dt

=

aα
α+η

(1−ϖ)α+η ((1 −ϖ)α + η)
(
(1 −ϖ)α

α+η
(1−ϖ)α+η + ηα

αϖ
(1−ϖ)α+η

)
e((1+α)ϖ+η)t(

(1 −ϖ)α
α+η

(1−ϖ)α+η e(α+η)t + ηα
αϖ

(1−ϖ)α+η eαϖ t
)2 (16)

f (α, η,ϖ) =

ϖ θϖ−1e

−

(
ϖ
γϖ

)
0[θϖ]γ θϖϖ√
1 − ρ2α,η

αθα−1ηθη−1e

−

(
α
γα

+
η
γη

)
0[θα]0[θη]γ

θα
α γ

θη
η

e
−

ρα,η8−1

1− 0
[
θα,

α
γα

]
0[θα]

2

+

ρα,η8−1

1− 0
[
θη,

η
γη

]
0[θη]

2

−2ρα,η8−1

1− 0
[
θα,

α
γα

]
0[θα]

8−1

1− 0
[
θη,

η
γη

]
0[θη]

2(1−ρ2α,η) (17)

f (α, η,ϖ) =

(
ϖ θϖ−1e

−

(
ϖ
γϖ

)
0[θϖ]γ θϖϖ

)(
αθα−1e−

α
γα

) (
ηθη−1e

−
η
γη

)(
3ρα,η

(
20
[
θα,0, αγα

]
0[θα]

− 1

)(
20
[
θη,0,

η
γη

]
0[θη]

− 1

)
+ 1

)
(
γ
θα
α 0[θα]

) (
γ
θη
η 0[θη]

) (18)

VOLUME 13, 2025 11851

C.-C. Fang et al.: Integrating Human Learning Factors and Bayesian Analysis Into SRGMs

FIGURE 2. The joint probability distributions f (α,η) with different correlations.

To incorporate cost functions into the prior analysis
and determine the optimal testing cost, software reliability,
and release timing, software engineers will develop several
alternatives for the project manager to evaluate based on
specific management needs. This process requires a detailed
assessment and estimation of both cost-related and model
parameters beforehand. Once these parameters are estab-
lished, the project manager can select the most cost-effective
option for the prior analysis. If the manager remains uncertain
about the outcomes of the prior analysis, they may collect
additional data from the ongoing testing process to further
refine their decisions. This leads to a posterior analysis,
which allows managers to reassess the situation and adjust
the software release schedule as needed based on the updated
insights.

C. COST MODELS FOR DETERMINING OPTIMAL
SOFTWARE RELEASE TIMING
Typically, a software development manager is interested
in determining the optimal time to stop testing in order
to minimize costs while meeting specific software quality
requirements. It is widely accepted that prolonged test-
ing results in more reliable software. However, extended
testing also leads to higher costs and may postpone the
opportunity to commercialize the software. Therefore, the
decision to release the software must be made with careful
consideration.

In this study, the total expected cost is divided into
several key components: setup cost, routine cost, error cor-
rection cost, risk cost, and opportunity cost. To facilitate both
prior and posterior analyses, two mathematical programming

models are proposed for alternative p:

Min E
[
TCp (T)

]
= SCp + GCpT +

∑V

v=0
ECv

pE [tr |ψv, τv] qvE
[
Mp(T)

]
+ RC

(
E
[
Ap (T)−Mp(T)

])κ1
+ OC(T)

Subject to : E
[
Rp (x |T)

]
≥ Rm. (26)

Min E ′
[
TCp (T)

]
= SCp + GCpT +

∑V

i=0
ECv

pE [tr |ψv, τv] qvE ′
[
Mp(T)

]
+ RC

(
E
[
Ap (T)−Mp(T)

])κ1
+ OC(T)

Subject to : E ′
[
Rp (x |T)

]
≥ Rm. (27)

For the cost model associated with alternative p, the terms
are defined as follows: SCp refers to the setup cost, which
includes the initial expenses and necessary preparatory work
for alternative p. E [·] and E ′ [·] represent the expected val-
ues in the prior and posterior analyses, respectively. GCpT
denotes the routine cost incurred over the testing period [0,T].
Software errors are categorized into three types: simple(s),
complex (c), and difficult (d), with each type requiring a dif-
ferent amount of correction time. In this study, we assume that
the proportion and correction time for each type of error can
be reasonably estimated. The correction times are modeled
using a truncated exponential distribution (Huang et al. [43]),
described as follows:

G(ψv, τv) = (1 − e−τv/ψv)
−1
ψ−1
v e−tr /ψv . (28)

qv represents the proportion of errors of type v in the software
system, while τv is the maximum allowable time to correct
an error of type v. The random variable tr corresponds to

11852 VOLUME 13, 2025

C.-C. Fang et al.: Integrating Human Learning Factors and Bayesian Analysis Into SRGMs

the actual time required to resolve an error, and ψv denotes
the parameter representing the expected time needed to fix
an error of type v. Consequently, the maximum correction
time for difficult errors will be longer than that for complex
or simple errors (τd > τc > τs). Based on these assumptions,
the expected correction time for an error of type v, given the
parameters ψv and τv, can be estimated using the following
equation:

E[tr |ψv, τv] =

∫ τv

0
Gy(ψv, τv)trdtr . (29)

Considering all the factors mentioned, the total cost of
error correction during the software testing process can
be expressed as:

∑
v EC

v
pE [tr |ψv, τv] qvE

[
Mp(T)

]
. In this

expression, ECv
p refers to the cost associated with correcting

errors of type v, while E [tr |ψv, τv] represents the expected
time required to fix these errors, given the parameters ψv and
τv. This formula encapsulates the cost implications of error
correction across various error types, accounting for their
respective proportions and time to resolution.

The risk cost is represented byRC
(
E
[
Ap (T)−Mp(T)

])κ1 ,
where κ1 is the risk aversion factor that influences how much
weight is placed on the risk associated with undetected errors
remaining in the system at time T . This risk cost is crucial
because the number of residual errors can have a direct impact
on the software’s reliability and performance once released,
affecting customer satisfaction and potentially increasing
long-term maintenance costs. The higher the risk aversion
factor, the more weight the manager places on reducing these
remaining errors.

Opportunity cost, denoted as OC(T), reflects the potential
loss of opportunities due to extended testing or delayed soft-
ware release. It can be expressed by the following equation:
OC(T) = ω0(ω1 + T)ω2 . In this equation, ω0 is the scale
coefficient, ω1 represents the intercept value, and ω2 deter-
mines the rate at which opportunity cost escalates over time.
This cost accounts for the impact of delaying the software
release, such as missed market opportunities, delayed rev-
enue, or a reduced competitive edge. As time progresses,
the opportunity cost increases, which incentivizes a timely
release to minimize lost opportunities.

In addition to these cost considerations, the manager must
ensure that the software reliability, Rm, meets or exceeds a
predefined minimum threshold to satisfy both internal man-
agement objectives and external client requirements. This
reliability constraint is critical to maintaining customer trust
and avoiding post-release issues that could lead to reputa-
tional damage or increased support costs.

Taking all of these factors into account—including error
correction costs, risk costs, opportunity costs, and reliabil-
ity constraints—the manager can apply two programming
models to evaluate various testing and release strategies.
These models enable the decision-maker to determine the
optimal timing for the software release, both in the prior
analysis (based on initial estimates) and in the posterior
analysis (refined with additional data gathered during the

testing phase). By balancing these costs and constraints,
the manager can make informed decisions that minimize
expenses while ensuring the software meets quality standards
and is released at the most advantageous time.

III. MODEL VERIFICATION AND DECISION PROCESS
A. PARAMETER ESTIMATION AND MODEL VALIDATION
The Least Squares Estimation (LSE) method is widely used
for estimating the parameters of the mean value function in
statistical modeling. This approach aims to minimize the sum
of squared errors, making it an effective tool for evaluating the
fitting accuracy of both the proposedmodel and other existing
models. Consider a dataset of n observed pairs, (t0,M0),
(t1,M1), (t2,M2),.., (tn,Mn), Mi represents the cumulative
number of detected errors at time ti. The total sum of squared
errors for this dataset can be expressed as:

Er(α, η,ϖ) =

∑n

i=1
(Mi −M (ti))2. (30)

To estimate the parameters α, η, and ϖ , the first-order
derivatives of Equation (29) with respect to each parameter
are taken and set to zero. Solving the resulting system of
equations provides the estimated parameter values:

∂Er(α, η,ϖ)
∂α

=
∂Er(α, η,ϖ)

∂η
=
∂Er(α, η,ϖ)

∂ϖ
= 0.

(31)

This approach allows the parameters to be determined by
solving the simultaneous equations. To assess the goodness
of fit of the proposed SRGM, publicly available datasets
were analyzed. The proposed SRGMwas also compared with
other existing imperfect debugging SRGMs to evaluate their
respective fitting performances. Table 1 lists the sources of
the four open datasets used for model validation, and Table 2
provides the mean value functions and error detection rate
functions for the imperfect debugging SRGMs examined.
This comprehensive comparison aids in determining how
effectively the proposed model performs relative to other
models in terms of accurately fitting the observed data.

TABLE 1. The source of the open datasets.

In this study, we assessed the performance of four differ-
ent models using mean squared error (MSE) and R-squared
(R-sq) as primary metrics to evaluate their accuracy in fitting
the data. Figures 2 illustrates the fitting results and parameter
estimates for each model and each data when applied to

VOLUME 13, 2025 11853

C.-C. Fang et al.: Integrating Human Learning Factors and Bayesian Analysis Into SRGMs

TABLE 2. Mean value functions and error detection rate functions for the
imperfect debugging SRGMs.

publicly available datasets. In addition to the fitted curves,
the figures also present the estimated parameter values. The
dashed lines surrounding the M (t) curve represent the 95%
confidence intervals, providing a visual representation of the
uncertainty in the estimates.

As demonstrated in Figure 3, the proposed model effec-
tively captures the trends in the nonlinear regression anal-
ysis, performing particularly well across multiple datasets.
In fact, in most cases, the proposed model outperformed
the other models in terms of fitting accuracy, with R-sq
values of 99.31%, 97.22%, 99.83%, and 99.20% for datasets
1 through 4, respectively. Pham’s model also exhibited strong
performance, especially in adapting to S-shaped and con-
cave datasets, as illustrated in Figure 3-Datasets (1,4). The
flexibility of this model allowed it to provide a robust fit in
various scenarios. However, as shown in Figure 3-Dataset (4),
Kapur’s model struggled with S-shaped data and appeared
better suited for datasets with exponential or concave pat-
terns. Despite this limitation, it still performed adequately on
datasets (2) and (3).
In contrast, Wang’s model, illustrated in Figure 3, per-

formed exceptionally well when applied to datasets (1)
and (2), achieving R-sq values of 99.43% and 98.81%,
respectively. The enhanced flexibility of Wang’s model can
be attributed to its incorporation of five parameters, compared
to the four parameters utilized by the other models. This addi-
tional parameter enables the model to adapt more effectively
to variations in the data. However, it is important to note that
while an increased number of parameters generally enhances
a model’s flexibility and adaptability, it does not necessarily
guarantee superior performance. In fact, despite having fewer
parameters, the proposed model remained competitive with
Wang’s model in terms of fitting accuracy, demonstrating that
a well-constructedmodel can yield excellent results evenwith
a reduced number of parameters.

Overall, the proposed model demonstrated superior per-
formance across all cases, consistently achieving high fitting

accuracy. In addition to its robustness, themodel’s parameters
are relatively straightforward and intuitive to interpret. This
clarity enables managers and practitioners to easily adjust the
model’s parameters to accommodate evolving testing scenar-
ios, ensuring that the model remains applicable and relevant
as new data emerges. Therefore, the proposed model not
only delivers exceptional fitting performance but also offers
practical flexibility for future adjustments.

B. PROCEDURE FOR DEALING WITH COST MODELS
While Section II-C introduces cost models that assist in
determining the optimal timing for software releases, the
application of these models necessitates a more detailed
solution process, particularly when addressing the expected
values involved in Bayesian analyses. These expected val-
ues are crucial for accurately evaluating the cost func-
tions; however, they pose a challenge because they cannot
always be expressed in closed mathematical forms. Conse-
quently, although the optimal functions (25) and (26) are
formulated within the framework of mathematical program-
ming, their solutions must be obtained through numerical
integration techniques. Specifically, some expected value
functions involved in these calculations do not have straight-
forward analytical solutions, rendering numerical methods
indispensable.

To address this issue, multidimensional numerical inte-
gration becomes essential, often in conjunction with a
high-performance computational engine to manage the com-
plexity and precision required for these calculations. The
expected values of E

[
Mp(T)

]
, E ′

[
Mp(T)

]
, E

[
Rp (x |T)

]
,

and E ′
[
Rp (x |T)

]
must be evaluated using these advanced

techniques. Once these expected values are obtained, they
facilitate the construction of cost curves for both the prior
cost function, E

[
TCp (T)

]
, and the posterior cost function,

E ′
[
TCp (T)

]
, at various points in time. These cost curves

provide a visual and analytical framework for understanding
how costs evolve over time, thereby guiding decision-makers
in determining the optimal release point for the software.

Figure 4 illustrates the flow chart for the Bayesian decision
process.

It is essential to emphasize the significance of the Bayesian
updating process in this context. Bayesian methods facilitate
an adaptive and dynamic adjustment of initial assumptions
or judgments (the prior) based on newly collected data. This
process involves continuously refining the prior distribution
by incorporating new data sets, with the posterior distribution
at any given stage serving as the new prior for future updates.
As new data is gathered, this iterative process enables ongo-
ing adjustments to the expected values and cost functions.
In practice, this means that the cost models evolve in tandem
with the software testing and development process, allowing
for real-time recalibration of the optimal release strategy. The
flow of this solution procedure, including the Bayesian updat-
ing mechanism, is illustrated in Figure 4, which provides a
clear depiction of how the optimal functions (25) and (26)
are addressed.

11854 VOLUME 13, 2025

C.-C. Fang et al.: Integrating Human Learning Factors and Bayesian Analysis Into SRGMs

FIGURE 3. The fitting results and parameters estimation.

By evaluating the cost curves generated through this pro-
cedure, the optimal software release time, denoted as T ∗,
can be identified. This T ∗ represents the ideal moment for
releasing the software to balance development costs, quality,
and market timing. The determination of T ∗ depends on the
shape and behavior of the cost curves, which can vary based
on the specific conditions of the software project. These con-
ditions lead to three distinct scenarios for the optimal release
time, each providing a different perspective on managing the
trade-offs between cost and software reliability.

Each of these cases will be discussed in detail below, pro-
viding insights into how they influence the decision-making
process regarding the software release. By examining these
various cases, a more informed and strategic decision can be
made—one that balances the necessity for thorough testing
with the constraints of time, budget.

Case I: In situations where the cost function E
[
TCp (T)

]
(or E′

[
TCp (T)

]
) exhibits a strictly increasing trend over

time, the optimal release time is determined by the moment
when the desired level of software reliability, denoted as Rm,
is first achieved. At this point, the release time is defined as
T = T(Rm), as illustrated in Case I of Figure 5. Although pure
theoretical models may suggest that the best release time is at
T ∗

= 0, this approach is impractical in real-world software

development environments. Releasing software at the very
beginning of the development cycle (T ∗

= 0) would over-
look the necessity of meeting baseline quality requirements.
Such a strategy would likely lead to significant quality issues
that could adversely impact user experience and tarnish the
software provider’s reputation, ultimately resulting in a loss
of customer trust. In practice, this scenario often arises when
the costs associated with potential software failures or risks
are deemed insignificant or negligible, leading to minimal
concern regarding testing.

Case II: If the cost function E
[
TCp (T)

]
(or E ′

[
TCp (T)

]
)

exhibits a strictly decreasing trend over time, the optimal
release time will occur after the point T (Rm), as illustrated
in Case II of Figure 5. In theory, extending the testing period
indefinitely would lead to continuously increasing reliabil-
ity, particularly as time approaches infinity. The rationale
is that prolonged testing facilitates the identification and
resolution of more issues, thereby enhancing software relia-
bility. However, this theoretical model does not align with the
practical constraints faced in the software industry. In prac-
tice, testing cannot be extended indefinitely due to limited
resources, including time, budget, and personnel. Further-
more, as the testing period extends, the benefits of additional
testing diminish, resulting in diminishing returns. Beyond a

VOLUME 13, 2025 11855

C.-C. Fang et al.: Integrating Human Learning Factors and Bayesian Analysis Into SRGMs

FIGURE 4. Flow chart for the Bayesian decision process.

certain threshold, the increase in reliability becomes marginal
compared to the resources expended on extended testing.
Therefore, in real-world scenarios, if the cost function no
longer demonstrates significant reductions after a specific
period, it becomes economically prudent to conclude testing
and release the software. Prolonging the release only incurs
unnecessary costs without substantial gains in reliability.
This situation is often observed when developers prioritize
reducing testing expenses without adequately considering the
opportunity costs associated with delayed market entry and
the potential loss of revenue or competitive advantage.

Case III: When the cost function E
[
TCp (T)

]
(or

E ′
[
TCp (T)

]
) exhibits a convex shape, the optimal release

time is identified as the point occurring after T (Rm) where
the total cost reaches its minimum value. This scenario is
visually represented in Case III of Figure 5. The convex
nature of the cost function indicates a complex relationship

between the duration of testing and the associated costs.
In the initial stages, extending the testing period leads to
a reduction in costs as issues are identified and resolved,
thereby enhancing reliability and decreasing the likelihood
of post-release defects. However, beyond a certain thresh-
old, the cost of testing begins to rise again. This increase
occurs because the benefits gained from extended testing no
longer outweigh the additional time, effort, and resources
being expended. As testing continues, the effort required to
identify and rectify remaining defects becomes increasingly
burdensome, resulting in higher costs. The optimal release
time in this scenario is the point at which the cost function
reaches its minimum, striking a balance between the advan-
tages of improved reliability from extended testing and the
escalating costs associated with prolonged testing duration.
This situation often arises when all relevant factors—such as
the risk of defects, opportunity costs of delayed release, and
testing efficiency—are carefully evaluated. By considering
these elements, decision-makers can arrive at a well-informed
conclusion regarding the ideal time to release the software,
optimizing both cost-effectiveness and product quality.

In summary, determining the optimal time to release soft-
ware is a complex decision that necessitates a thorough
analysis of the underlying cost functions across various sce-
narios. Each of the cases outlined above highlights how
different factors, such as testing duration, software reliability,
and associated costs, influence the timing of the release.
By understanding these dynamics, software development
managers canmake informed decisions that achieve an appro-
priate balance between ensuring product quality, controlling
costs, and meeting market demands. This careful equilibrium
is essential for maximizing the value of the software while
minimizing risks, ultimately leading to a successful product
release that satisfies both business objectives and customer
expectations.

C. DESIGN OF COMPUTERIZED IMPLEMENTATION
SYSTEM
To effectively address this programming problem, a com-
puterized application system is essential for guiding the
decision-making process and determining the optimal tim-
ing for software releases. To ensure the system operates
efficiently, several key components must be integrated into
its design. This study incorporates several key components,
including a specialized database, a model repository, a data
normalization module, a custom application programming
interface (API), and a powerful computation engine.

The database is utilized to store a diverse array of critical
information, including cost parameters, historical failure data
from various systems, and expert knowledge. Similarly, the
model repository is intended to house a range of software
reliability growth models (SRGMs) and the mathematical
models that underpin software release decision policies.
To ensure efficient storage and retrieval of information from
both the database and the model repository, a data normal-
ization mechanism is necessary to standardize inconsistent

11856 VOLUME 13, 2025

C.-C. Fang et al.: Integrating Human Learning Factors and Bayesian Analysis Into SRGMs

FIGURE 5. Cost functions for software testing in cases I, II, and III.

data formats. This can be accomplished through a data nor-
malization program module, which optimizes the processes
of storing and accessing data, thereby enhancing their effec-
tiveness and efficiency.

Additionally, solving the proposed models involves
advanced mathematical programming and numerical inte-
gration, which calls for a highly capable computational
engine. This engine can be developed internally by software
engineers or sourced from third-party providers, such as R
packages, Wolfram Research or Lingo Systems, to ensure the
necessary computational power and accuracy. To facilitate
seamless interaction between the designed system and the
computational engine, an API serves as the most effective
means of exchanging information, ensuring that the compu-
tational engine is utilized efficiently and conveniently. The
following sections will introduce the system design and pro-
vide detailed information on its implementation.

To enhance manageability, the system is organized into
two distinct subsystems. The first is the model management
system, which is specifically designed for software engineers,
domain experts, and testing personnel to efficiently manage
and maintain the database and model repository. The second
subsystem is the decision support system, which provides
decision-makers with the essential information required to
make well-informed choices. Within the model manage-
ment system, engineers begin by collecting historical data
from previous software testing projects and selecting suit-
able SRGMs while taking the cost structure into account.
This gathered data is then organized and stored in the
database through the model management system. Given that
the accuracy of test cost estimates is closely tied to the
efficiency of software testing, domain experts are instrumen-
tal in identifying which SRGM is most appropriate for the
specific project. To safeguard sensitive commercial infor-
mation, access to the system is strictly controlled, ensuring
that only engineers, domain experts, and technical managers
can interact with their respective subsystems. Additionally,
during the initial development phase, system programmers
establish programming models in the model repository,
excluding specific parameters to allow for adaptation to dif-
ferent projects as needed. This clear separation of subsystems
ensures secure and streamlined operations, enhancing the
overall effectiveness of software testing and decision-making
processes.

The decision support system is designed for use by upper
management decision-makers, providing comprehensive and
integrated information to enhance their decision-making pro-
cesses. The system can provide not only prior and posterior
analyses but also sensitive, risk, and various alternatives
tracking analyses. By leveraging the data stored in the
database and model repository, decision-makers can analyze
all relevant information and confidently arrive at optimal
decisions. However, due to the complexity involved in deter-
mining the best course of action, a computation engine may
be necessary. By utilizing theAPI, decision-makers can easily
access and employ various computational tools developed by
both internal and external programmers. Figure 6 presents
a visual representation of the system’s implementation
architecture.

IV. APPLICATION AND NUMERICAL ANALYSIS
Let us consider a scenario in which a software company has
successfully developed industrial engineering software. After
completing the intricate coding process, the project manager
is now responsible for creating a comprehensive software
testing plan and determining the optimal timing for the soft-
ware’s market release. Given the software’s complexity, it is
likely that numerous hidden errors are embedded within the
code. To address this challenge, the manager must carefully
allocate testing resources and assign skilled personnel to
perform the critical task of debugging.

In this context, estimating the number of software errors is
essential, and one effective method to achieve this is through
the application of an error seeding technique. This approach
allows the manager to gain a clearer understanding of the
potential errors that may exist in the software. To ensure that
the software meets industry standards and user expectations,
a minimum reliability threshold of 0.9 has been established.
The manager is responsible for ensuring that the software’s
quality exceeds this threshold before the product can be safely
released to the market.

To streamline the testing process, the software engi-
neers have proposed three distinct testing alternatives. Each
alternative presents a unique combination of cost and relia-
bility, necessitating that the manager thoroughly assess these
choices to identify the most appropriate one for the project.
However, the lack of historical data for parameter evaluation
poses a considerable challenge. To address this issue, the

VOLUME 13, 2025 11857

C.-C. Fang et al.: Integrating Human Learning Factors and Bayesian Analysis Into SRGMs

FIGURE 6. Computerized implementation architecture.

manager seeks the expertise of domain specialists, soliciting
their insights on critical parameters, including the expected
values and standard deviations for each alternative.

Following a comprehensive investigation and evaluation
conducted by both software engineers and domain experts,
detailed information about the three candidate testing alter-
natives has been compiled and is presented in Table 3. This
data will serve as a crucial resource for the manager in mak-
ing an informed decision that balances cost and reliability,
ultimately ensuring the software’s readiness for a successful
market release.

TABLE 3. Information of debugging costs and parameter estimations for
the three testing alternatives.

The three alternatives under consideration represent dis-
tinct staffing arrangements, eachwith its own implications for
the efficiency and cost-effectiveness of the software testing
process. The inclusion of more experienced team members
typically enhances the efficiency of the testing process;

however, this advantage is accompanied by higher salaries,
which must be carefully weighed against the associated ben-
efits. Therefore, the manager must assess which staffing
arrangement provides the optimal balance between efficiency
and cost.

Upon thorough analysis of the three alternatives, it is evi-
dent that Alternative 2 emerges as the most viable option.
In this scenario, the manager should plan for a testing period
of 5.6 weeks, resulting in a total cost of $539,075. How-
ever, if the goal is to enhance software reliability to exceed
0.95, it will be necessary to extend the testing duration to
6.2 weeks, which will subsequently increase the expected
cost to approximately $526,167. Detailed comparisons of the
three alternatives, including their associated costs, reliability
levels, and error detection rates, are presented in Table 4 and
illustrated in Figure 7.
Alternative 3, while capable of reducing the testing time to

4.8 weeks and achieving the minimum required reliability of
0.9, incurs a significantly higher total cost of $603,249. This
cost difference is substantial when compared to Alternative 2,
even though Alternative 3 offers a slightly higher detec-
tion rate. However, the mean value of errors detected in
Alternative 2 is comparable to that of Alternative 3, sug-
gesting that increasing testing resources and personnel may
not result in a proportional improvement in debugging effec-
tiveness. Therefore, the manager must carefully weigh the
trade-off between the additional costs and the marginal gains
in debugging efficiency. In conclusion, the analysis indicates
that merely increasing testing resources and staffing does not
ensure a significant enhancement in debugging outcomes.
The manager must carefully balance testing costs with soft-
ware quality to make the most informed decision.

11858 VOLUME 13, 2025

C.-C. Fang et al.: Integrating Human Learning Factors and Bayesian Analysis Into SRGMs

FIGURE 7. The comparisons among alternatives 1, 2, and 3 on error detection rate, Mean value, Risk cost, and
Expected total cost.

TABLE 4. Detection rate, Mean value, Expected total cost, Risk cost and reliability of alternatives 1, 2, and 3.

It is essential to acknowledge that the initial esti-
mates provided by domain experts may not always be
entirely accurate. If these early projections are not revised
to account for potential discrepancies, the manager risks
adopting a suboptimal testing strategy, ultimately miss-
ing opportunities for optimization. To facilitate more reli-
able decision-making, it is advisable to conduct a post
hoc analysis, adjusting the original testing plan as new
data emerges during the early stages of the testing
process.

In one instance, the manager, uncertain about the results of
the initial analysis, utilized data from the early testing phase
(1(n) = {0.007, 0.011, 0.018, 0.023, 0.027, 0.036, 0.042,
0.053, 0.060, 0.068, 0.079, 0.094}) to conduct a posterior
analysis. The results indicated that the original projections
were overly optimistic, as the actual debugging efficiency fell
short of expectations. Consequently, the manager extended
the testing period from 5.6 weeks to 6 weeks, resulting in an
increase in the total expected cost to $554,734. Figure 8 visu-
ally illustrates the differences between the prior and posterior

VOLUME 13, 2025 11859

C.-C. Fang et al.: Integrating Human Learning Factors and Bayesian Analysis Into SRGMs

FIGURE 8. The comparisons between the prior and posterior analyses on expected total cost and expected mean value.

FIGURE 9. The impacts of model’s parameters and related costs on error detection rate and expected
total cost.

FIGURE 10. Scatter plots and statistical confidence interval of expected total cost under standard deviations
α and η.

analyses, highlighting the changes in total testing costs and
the number of errors detected.

Moreover, given the possibility that domain experts might
misestimate key parameters—such as E [α], E [η], E [ϖ],
and ρα,β—during the prior analysis, the manager conducted

sensitivity analyses to understand how uncertainties in these
parameters could affect the results. The outcomes, illustrated
in Figure 10, demonstrate the impact of varying the model
parameters on the mean error detection rate, total testing cost,
and overall detection rate. The analysis revealed that changes

11860 VOLUME 13, 2025

C.-C. Fang et al.: Integrating Human Learning Factors and Bayesian Analysis Into SRGMs

in E [α] and E [η] have the most significant effect on total
costs and the error detection rate, emphasizing the necessity
for experts to carefully evaluate these parameters to avoid
costly errors and misguided strategies.

From a strategic perspective, enhancing the values of E [α]
and E [η] through initiatives such as on-the-job training or
the recruitment of more experienced personnel could improve
debugging efficiency. However, this approach would also
lead to an increase in overall testing costs. Therefore, the
manager must carefully evaluate the benefits of improving
factors α and η against the additional expenses incurred. Fur-
thermore, the correlation between factors α and η is crucial
for enhancing debugging performance. As illustrated in the
upper-left section of Figure 10, increasing the correlation
coefficient ρα,β significantly increases the number of errors
detected. In contrast, the influence of the negligent factor
ϖ is relatively minor, as variations in ϖ have little effect
on the detection rate. When considering factors related to
testing costs, it becomes evident that the cost per unit time
for correcting an error (ECp) is the most sensitive parame-
ter. Therefore, it is crucial for the manager to estimate this
value with a high degree of accuracy. The standard deviations
of other parameters, such as σ [α] and σ [η], also influence
the overall cost estimation. To address the uncertainty in
these estimates, a Monte Carlo simulation was employed
in this study to model the distribution of total testing costs
under varying σ [α] and σ [η] values. This simulation provides
the manager with a more comprehensive understanding of
the risks associated with parameter uncertainty. Figure 10
presents scatter plots of total testing costs (TCp(T)) under
95% confidence intervals (C.I.), illustrating that the range of
uncertainty is greatest during the middle stages of testing.
This increased uncertainty poses a challenge for the manager;
however, by anticipating a wide range of possible out-
comes, the manager can make more informed decisions and
preparations.

V. CONCLUSION
The primary objective of software reliability research is
to develop strategies that effectively identify and address
software bugs, thereby improving overall system reliability.
While traditional methods for estimating model parameters
often depend on extensive historical data, this approach
becomes impractical when such data is unavailable. In such
cases, alternative approaches like Bayesian analysis offer a
powerful and reliable solution. This research introduces a
software reliability growth model for imperfect debugging,
which accounts for both learning effects and negligence fac-
tors. By incorporating these elements, the model simplifies
the estimation process for domain experts while improv-
ing its usability and relevance. The application of Bayesian
analysis further enhances the model’s practicality, especially
in real-world situations where data is scarce or incomplete.
Our findings underscore the importance of the parameters
α and β, which indicate the effectiveness of the software
testing process. Enhancing these values through additional

training or by hiring experienced personnel can improve
testing efficiency; however, it also increases costs. Striking
a balance between these competing factors is vital for devel-
opers. Moreover, uncertainties in cost estimates are primarily
influenced by the error-detection process, making it imper-
ative for managers to consider this uncertainty in order to
effectively mitigate risks.

Additionally, during the testing process, discrepancies
may arise between expected and actual results. In such
cases, conducting a post-analysis and adjusting the test-
ing plan accordingly ensures alignment with real-world
conditions, thereby enhancing both reliability and cost
accuracy.

Future research could benefit from three promising direc-
tions. First, integrating a Non-Homogeneous Poisson Process
(NHPP) with covariates would enable more accurate relia-
bility predictions by considering additional factors such as
testing effort and resource allocation. Second, addressing
the time delays in error correction within reliability models
would provide a more realistic representation of testing con-
ditions. Lastly, incorporating change-point models to account
for shifts in debugging conditions would enhance adaptabil-
ity, particularly in dynamic testing environments, thereby
making the model more flexible and effective across various
scenarios.

REFERENCES
[1] H. Pham, L. Nordmann, and Z. Zhang, ‘‘A general imperfect-software-

debugging model with S-shaped fault-detection rate,’’ IEEE Trans. Rel.,
vol. 48, no. 2, pp. 169–175, Jun. 1999.

[2] N. D. Singpurwalla and S. P. Wilson, ‘‘Statistical analysis of software
failure data,’’ in Statistical Methods in Software Engineering. New York,
NY, USA: Springer, 1999, pp. 101–167.

[3] X. Zhang and H. Pham, ‘‘Software field failure rate prediction before
software deployment,’’ J. Syst. Softw., vol. 79, no. 3, pp. 291–300,
Mar. 2006.

[4] P. K. Kapur, D. Gupta, A. Gupta, and P. C. Jha, ‘‘Effect of introduction
of faults and imperfect debugging on release time,’’ Ratio Math., vol. 18,
pp. 62–90, Dec. 2008.

[5] R. Peng, Y. F. Li, W. J. Zhang, and Q. P. Hu, ‘‘Testing effort dependent
software reliability model for imperfect debugging process considering
both detection and correction,’’ Rel. Eng. Syst. Saf., vol. 126, pp. 37–43,
Jun. 2014.

[6] J. Wang, Z. Wu, Y. Shu, and Z. Zhang, ‘‘An imperfect software debugging
model considering log-logistic distribution fault content function,’’ J. Syst.
Softw., vol. 100, pp. 167–181, Feb. 2015.

[7] J. Wang and Z. Wu, ‘‘Study of the nonlinear imperfect software
debugging model,’’ Rel. Eng. Syst. Saf., vol. 153, pp. 180–192,
Sep. 2016.

[8] I. Saraf and J. Iqbal, ‘‘Generalized multi-release modelling of software
reliability growth models from the perspective of two types of imper-
fect debugging and change point,’’ Qual. Rel. Eng. Int., vol. 35, no. 7,
pp. 2358–2370, Nov. 2019.

[9] V. Verma, S. Anand, and A. G. Aggarwal, ‘‘Software warranty cost opti-
mization under imperfect debugging,’’ Int. J. Quality Rel. Manage., vol. 37,
no. 9/10, pp. 1233–1257, Dec. 2020.

[10] T. Li, X. Si, Z. Yang, H. Pei, and Y. Ma, ‘‘NHPP testability
growth model considering testability growth effort, rectifying delay,
and imperfect correction,’’ IEEE Access, vol. 8, pp. 9072–9083,
2020.

[11] R. Bibyan, S. Anand, A. G. Aggarwal, and A. Tandon, ‘‘Multi-release test-
ing coverage-based SRGM considering error generation and change-point
incorporating the random effect,’’ Int. J. Syst. Assurance Eng. Manage.,
vol. 14, no. 5, pp. 1877–1887, Oct. 2023.

VOLUME 13, 2025 11861

C.-C. Fang et al.: Integrating Human Learning Factors and Bayesian Analysis Into SRGMs

[12] C.-W. Yeh and C.-C. Fang, ‘‘Software testing and release decision at
different statistical confidence levels with consideration of debuggers’
learning and negligent factors,’’ Int. J. Ind. Eng. Comput., vol. 15, no. 1,
pp. 105–126, 2024.

[13] C. G. Bai, Q. P. Hu, M. Xie, and S. H. Ng, ‘‘Software failure prediction
based on aMarkov Bayesian network model,’’ J. Syst. Softw., vol. 74, no. 3,
pp. 275–282, Feb. 2005.

[14] A. Pievatolo, F. Ruggeri, and R. Soyer, ‘‘A Bayesian hidden Markov
model for imperfect debugging,’’ Rel. Eng. Syst. Saf., vol. 103, pp. 11–21,
Jul. 2012.

[15] T. Aktekin and T. Caglar, ‘‘Imperfect debugging in software reliability:
A Bayesian approach,’’ Eur. J. Oper. Res., vol. 227, no. 1, pp. 112–121,
May 2013.

[16] X. Zhao, B. Littlewood, A. Povyakalo, L. Strigini, andD.Wright, ‘‘Conser-
vative claims for the probability of perfection of a software-based system
using operational experience of previous similar systems,’’ Rel. Eng. Syst.
Saf., vol. 175, pp. 265–282, Jul. 2018.

[17] H. Wang, H. Fei, Q. Yu, W. Zhao, J. Yan, and T. Hong, ‘‘A motifs-
based maximum entropy Markov model for realtime reliability pre-
diction in system of systems,’’ J. Syst. Softw., vol. 151, pp. 180–193,
May 2019.

[18] D. R. Insua, F. Ruggeri, R. Soyer, and S. Wilson, ‘‘Advances in Bayesian
decision making in reliability,’’ Eur. J. Oper. Res., vol. 282, no. 1, pp. 1–18,
Apr. 2020.

[19] C. A. Furia, R. Torkar, and R. Feldt, ‘‘Applying Bayesian analysis guide-
lines to empirical software engineering data: The case of programming
languages and code quality,’’ ACM Trans. Softw. Eng. Methodol., vol. 31,
no. 3, pp. 1–38, Jul. 2022.

[20] Q. Tian, C.-W. Yeh, and C.-C. Fang, ‘‘Bayesian decision making of an
imperfect debugging software reliability growth model with consideration
of Debuggers’ learning and negligence factors,’’ Mathematics, vol. 10,
no. 10, p. 1689, May 2022.

[21] S. Oveisi, A. Moeini, S. Mirzaei, and M. A. Farsi, ‘‘Software reliability
prediction: A machine learning and approximation Bayesian inference
approach,’’ Qual. Rel. Eng. Int., vol. 40, no. 7, pp. 4004–4037, Nov. 2024,
doi: 10.1002/qre.3616.

[22] W. R. Schucany, W. C. Parr, and J. E. Boyer, ‘‘Correlation structure
in Farlie-Gumbel-Morgenstern distributions,’’ Biometrika, vol. 65, no. 3,
p. 650, Dec. 1978.

[23] P. A. P. Moran, ‘‘Statistical inference with bivariate gamma distributions,’’
Biometrika, vol. 56, no. 3, p. 627, Dec. 1969.

11862 VOLUME 13, 2025

http://dx.doi.org/10.1002/qre.3616

