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ABSTRACT With the development of autonomous vehicle operation, vehicle-to-vehicle (V2V)
communication plays an increasingly important role. However, in high-speed mobile environments, the
channel has fast time-varying, which significantly decreases the property of channel estimation. On the
other hand, the frame structure of the IEEE 802.11p standard contains a few number of pilots and a large
pilot interval, which is not sufficient to track the rapidly changing channel environment accurately. In recent
years, deep learning has been widely used for channel estimation. However, these methods typically perform
poorly in high-speedmobility scenarios or have excessively high computational complexity. To alleviate such
issues, this study proposes a channel estimation method by combining the sparrow search algorithm (SSA)
and gated recurrent unit (GRU). In addition, this paper adds the attention mechanism to GRU to improve the
robustness of the model. The computer simulation results confirm that, compared to traditional schemes, the
proposed estimator can achieve a lower bit error rate (BER) and normalized mean squared error (NMSE).
At the same time, the computational complexity of the algorithm has been reduced to some extent, allowing
the estimator to complete the channel estimation faster. This study provides a useful reference for optimizing
neural networks and thus improving the performance of channel estimators.

INDEX TERMS Vehicle-to-vehicle, channel estimation, SSA, GRU, attention, IEEE 802.11p.

I. INTRODUCTION
Vehicle communication technology plays a crucial role
in modern intelligent transportation systems [1], [2], [3],
[4]. Accurate and efficient vehicle communication tech-
nology promotes information exchange between vehicles
and improves transportation safety, efficiency, and conve-
nience [5]. However, the dual selective nature of vehicular
channels, especially the rapid changes in high mobil-
ity scenarios, makes channel estimation a challenging
task.

To enhance vehicular communications, researchers have
extensively explored channel assignment and coordination
techniques. Prior work has explored improving vehicular
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communications through channel assignment and coordina-
tion. For instance, the adaptive multi-channel assignment
and coordination (AMAC) scheme [6] introduces an adaptive
multi-channel allocation approach, which leverages channel
state information (CSI) to reduce congestion and improve
overall network performance. Johari et al. [7] proposed a
channel assignment method based on the Markov model,
improving resource utilization and reducing transmission
collision. While channel assignment strategies are critical
for resource management and interference mitigation, they
have inherent limitations in addressing the dynamic nature of
the vehicular communication environment. Even with opti-
mal channel selection, vehicular communication channels’
rapidly changing channel conditions, including fading, noise,
and interference, remain challenges that channel assignment
cannot overcome alone.
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In vehicular communication, channel estimation is a
crucial aspect, and its accuracy directly affects the communi-
cation quality and the success of data transmission. Channel
estimation schemes in vehicular communication scenarios,
especially for the IEEE 802.11p standard, fall into two main
categories. The first category is the scheme that modifies
the IEEE 802.11p [8] standard for channel estimation.
For example, Nagalapur et al. [9] adds complementary
training symbols to IEEE 802.11p frames to improve the
pilot density and solve the unreasonable pilot distribution
problem. Kim et al. [10] proposed a mid-amble aided channel
estimation method, which improves the accuracy of the
estimation but has the disadvantage that excessive training
sequences reduce the spectral efficiency. The second category
is a channel estimation scheme that retains the IEEE 802.11p
standard. In order to solve the problem of a low number
of pilots in the IEEE802.11p standard, authors of [11],
[12], and [13] utilize the data pilot aided (DPA) method
for channel estimation. The core idea is to estimate the
current channel by using the previously estimated data signals
as data pilots. However, since this is an iterative process,
the error in the previous estimation is gradually amplified,
thus affecting the accuracy of the subsequent estimation.
Fernandez et al. [14] utilizes the idea of decision feedback to
propose a spectra temporal averaging (STA) scheme, which
performs smoothing in the time and frequency domains
to improve the channel estimation performance. However,
the scheme is based on the iterative update of decision
feedback, and the update parameters are difficult to obtain
accurately. To solve the above problem, Zhao et al. [15]
proposes a constructed data pilot (CDP) scheme using the
channel correlation property between adjacent data symbols,
which determines whether to update the channel or not by
judging the reliability of the channel frequency response
(CFR). Based on the CDP method, Kim et al. [16] proposes
a time-domain reliability test frequency-domain interpolation
(TRFI) scheme that performs well in high-order modulation
schemes and high-mobility environments. The former of the
above two methods lack robustness in high-mobility moving
environments, while the latter relies on assumptions for
many of its processes and has poor practical applicability.
Previous research has shown that, in the face of complex
vehicular communication channels, traditional algorithms
usually find it difficult to adapt to the rapidly changing
channel environment.

In recent years, machine learning has been utilized
successfully in a number of fields. Among them, capabilities
such as strong generalization and ease of application of
deep learning methods make them suitable for integration
into communication systems. For example, to solve the
nonlinear distortion problem in communication systems, [17]
proposes a method to implicitly estimate the CSI and directly
recover the transmitted symbols via deep neural networks
(DNN). On the other hand, [18] first performs initial feature
extraction using a conventional linear model, and then further
performs channel estimation via a shallow neural network

to keep the nonlinear distortion. This proves that neural
networks are more robust in non-ideal states, but simple
neural networks are difficult to meet the communication
environment of complex vehicular communication networks.
HE et al. [19] proposed a channel estimation method based
on a convolutional neural network (CNN) and showed
that the deep learning method could significantly improve
the performance compared with the traditional algorithm.
However, since channel information is essentially sequential,
natural language processing (NLP) methods that are more
adept at dealing with sequential problems would be better
suited to the channel detection problem [20], [21], [22].
Gizzini et al. [23] proposed a channel detector based on a long
short-term memory unit (LSTM), proving the advantage of
LSTM over DNN in high mobility environments. However,
LSTM usually needs to improve with large-scale training
datasets and offers limited improvement in accuracy in
high-speed scenarios. Pan et al. [24] proposed a network
combining a multilayer perceptron network (MLP) and
LSTM, achieving superior results. However, at the same
time, the computational complexity was greatly increased.
Similarly, Zhou et al. [25] proposed a channel prediction
model combining CNN and LSTM for the high-speed railway
communication environment with more complex channel
conditions. Experimental results show that the composite
model can indeed achieve higher prediction accuracy com-
pared to a single model. Still, the computational complexity
also increases exponentially, which is unacceptable for vehi-
cle communication channels with real-time requirements.
In contrast, Yin et al. [26] and Unnisa et al. [27] use heuristic
algorithms to optimize the network model, which improves
the efficiency of the model without increasing its complexity.
However, these methods have been validated mainly in
low-speed or static environments. They may lack sufficient
ability to cope with the fast time-varying characteristics of
the channel in high-mobility environments. The convergence
speed and computational resource requirements still need to
be further optimized for real-time V2V communication in
practice.

In order to make the LSTM-MLP estimator more concise
and improve the performances such as BER and NMSE, this
paper proposes an estimator based on the gated recurrent unit
optimized by attention mechanism for channel estimation.
In addition, a sparrow search algorithm is used to optimize the
GRU network to further improve the accuracy and generality
of the model. By utilizing GRU to correct the errors in
the DPA process, the proposed method effectively improves
the performance of channel estimation in high-mobility
environments while reducing the computational complexity.
The contributions of this paper are summarized as follows:
1) We introduce a novel channel estimation approach

that combines metaheuristic algorithms with neural
network techniques to enhance estimation accuracy in
high-mobility vehicular environments. Unlike conven-
tional deep learning-based estimators, which often suf-
fer from high computational complexity, our approach
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TABLE 1. List of symbols and definitions.

leverages the strengths of metaheuristic optimization
to refine neural network performance. This integration
allows the model to adapt efficiently to the rapidly
changing nature of vehicular channels while reducing
computational demands, making it particularly suited
for real-time V2V applications.

2) We develop a two-stage channel estimation scheme,
where the offline training phase optimizes model param-
eters using extensive data, while the online estimation
phase achieves real-time performance through pre-
trained models. By separating training and estimation,
our method minimizes the processing load during real-
time operations, making it efficient for practical V2V
systems. Simulation results show that our proposed
method outperforms conventional and state-of-the-art

TABLE 2. List of abbreviations used in the paper.

estimators in high-mobility scenarios, offering a reliable
and low-complexity solution for modern V2V commu-
nication systems.

The rest of this paper is organized as follows: Section II
describes the IEEE802.11p standard, the DPA process, and
the structure of the GRU. The details of the proposed SSA-
GRU-Att estimator are elaborated in Section III. Section IV
gives the performance comparison results of the proposed
method with other estimators, and finally, Section V con-
cludes this paper. Symbols, definitions, and abbreviation are
given in Table 1 and Table 2.

II. SYSTEM MODEL
A. IEEE 802.11P STRUCTURE
IEEE 802.11p, derived from IEEE 802.11a, changes the
frequency band in which the system is located in the range
of 5.0 GHz to 5.9 GHz and the bandwidth from 20 MHz
to 10 MHz to overcome inter-symbol interference caused by
increased multipath delay in the automotive communications
environment. As shown in Fig. 1, each packet consists of a
preamble, a signal field, and a data field. The signal field
conveys the packet information, and the data field carries
the payload containing the data symbols. Its physical layer
is based on OFDM technology with 64 subcarriers per
OFDM symbol. which includes 4 pilot subcarriers, 12 null
subcarriers, and 48 data subcarriers.

The received signal y(n) of theOFDM-based IEEE 802.11p
system in the time domain through the fading channel is
described as

y(n) =

L−1∑
l=0

h(n, l)x(n− l) + w(n), (1)

where h(n, l) is the time-varying multipath impulse response,
L refers to the paths’ number, and w(n) stands for the
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FIGURE 1. IEEE 802.11p packet structure. (Adapted from [24]).

Gaussian white noise with a noise variance of σ 2. In [16],
it has shown that the Doppler shift of the V2V channel is
not sufficient to cause serious inter-carrier interference (ICI)
problems. Therefore, in this work, the effect of ICI is ignored.
After removing the cyclic prefix at the receiver side and
applying the discrete Fourier transform, the signal that is
received in the frequency domain is expressed as

Y (k) =
1

√
N

N−1∑
n=0

ynej2πnk/N

= X (k)H (m) +W (m), (m = 0, 1, . . . ,N − 1) (2)

where Xm is the frequency-domain transmit signal, Hm
is the channel frequency response, Wm represent the
frequency-domain form of the noise, andN is the subcarriers’
number. For the k-th subcarrier, the m-th symbol in a frame,
Eq. (2) can be written as

Ym(k) = Xm(k)Hm(k) +Wm(k). (3)

B. CHANNEL ESTIMATION METHOD BASED ON DPA
The signal propagation environment is intricate and complex
in vehicular wireless communication scenarios, so the
channel has an obvious multipath effect. At the same time,
both the transmitter and receiver are in high-speed motion,
which also induces a Doppler shift in the signal. In the frame
structure of the IEEE 802.11p standard, the number of pilots
is limited and fixed. Ifmore pilots are inserted, the structure of
the IEEE 802.11p standard will be damaged, and the spectral
efficiency will be affected, which leads to the fact that the
traditional channel estimation schemes can hardly achieve
satisfactory results in vehicular communication scenarios.
In order to solve the above problems, the channel estimation
scheme of DPA has been widely researched, and its core idea
is to estimate the channel frequency response at the current
moment by treating the OFDMdata symbols after demapping
at the previous moment as the pilot.

The first step is to compute the initial channel estimate
using the least squares (LS) algorithm based on the two long

training symbols in the preamble:

H̃0(k) =
YT1 (k) + YT2 (k)

2XT (k)
, (4)

where XT (k) is the training symbol in predefined preamble,
YT1 (k) and YT2 (k) represent the received signals in frequency-
domain. For the first OFDM symbol received, equalization is
performed according to the initial channel estimate H̃0(k):

D1(k) =
Y1(k)

H̃0(k)
. (5)

Then, the equalized symbols are demapped to obtain the
transmit symbol correction value:

X̂1(k) =

{
Q[D1(k)] if k ∈ Kd
XT (k) if k ∈ Kp,

(6)

where Kd and Kp represent the data subcarrier and the pilot
subcarrier, respectively. Q(·) denotes the operation of demap
to the nearest constellation point. The channel response
estimate for the first OFDMsymbol is then re-estimated using
the LS algorithm by considering X̂1(k) as the pilot at the
current moment:

H̃1(k) =
Y1(k)

X̂1(k)
. (7)

By analogy, for the i-th received OFDM symbol Yi(k),
the channel response estimate H̃i−1(k) of the i − 1-th
OFDM symbol is used for equalization, and the channel
estimate is calculated. As the DPA process iterates, the
error generated by the estimation of the previous symbols
is gradually amplified, which affects the estimation of the
subsequent symbols, thus constraining the accuracy of the
channel estimation.

C. GATED RECURRENT UNIT NETWORK
Since the error propagation problem severely constrains the
accuracy of DPA channel estimation, GRUs are used to
correct errors in the DPA process. Each GRU unit includes
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FIGURE 2. Training process and structure of the proposed channel estimator.

an update gate zt and a reset gate rt , and the parameters
of each GRU unit are shared; That is, the neural network
parameters are the same at every time step. The GRU network
can hold the previous inputs in order to predict the channel
state information at the next moment. The principle of the
GRU unit is expressed as [28]:

zt = σ (Wz · [ht−1, xt ] + bz)

= σ (Wzhht−1 +Wzxxt + bz), (8)

rt = σ (Wr · [ht−1, xt ] + br )

= σ (Wrhht−1 +Wrxxt + br ), (9)

h̃t = tanh(Wh · [rt ⊙ ht−1, xt ] + bh)

= tanh(Whh(rt ⊙ ht−1 +Whxxt ) + bh), (10)

ht = ht−1 ⊙ zt + h̃t ⊙ (1 − zt ), (11)

where σ stands for sigmoid,W and bmean the weight matrix
and bias learned through training. rt and zt refer to reset
gate and update gate, ht and h̃t means the hidden state and
candidate hidden state at moment t , respectively.⊙ represents
Hadamard product, and tanh is the activation function.

The reset gate controls how much of ht−1 flows into h̃t .
Specifically, if the value of rt approaches 0, it implies that
most of the hidden state from the former step is discarded. The
opposite means that most of the hidden state is retained. Thus,
the reset gate can ignore historical information irrelevant
to the current prediction information.

The update gate controls how much ht−1 and xt flow into
ht . The larger the value of zt , the more ht−1 flows into
ht . Conversely, more xt flows into ht . If the value of the
update gate has been close to 1 since many time steps ago,
then it can be approximated that this historical information
has been preserved and passed on to the current time step.
This facilitates capturing long-term dependencies in the time
series.

III. PROPOSED SSA-GRU-ATTENTION ESTIMATOR
As mentioned earlier, traditional channel estimation algo-
rithms are no longer applicable in high-speed environments.

In order to solve this problem, this paper proposes a
high-speed channel estimation method that utilizes the
powerful capabilities of GRU to process sequence data that
tracks changes in the channel.

A. NETWORK ARCHITECTURE
The proposed method is divided into two stages. Firstly,
as shown in Fig 2(a), this work trains the proposed network
using a sufficient amount of channel data collected, and the
network parameters are tuned using SSA so that the network
learns the channel features adequately. This process is called
offline training. Then, this work feedbacks the OFDM
subframe-sized channel matrix into the trained network
and continuously predicts the CSI, which is called online
estimation. Putting the training process offline makes full use
of large datasets and high-performance computing resources
and greatly reduces the burden of computation and delay
during online estimation, ensuring real-time and reliable
estimation. The proposed network consists of multiple GRU
units connected in series, and its structure is shown in
Fig 2(b).

The data flow of the proposed GRU estimator can be
seen in Fig 3. The input data and channel estimation are
described in detail below. The input of the proposed network
is a subframe-sized CSI matrix H ∈ RT×L , and the GRU
processes the data of only one symbol at each time step. The
GRUnetwork requires time-series data as inputs, sowe utilize
Eq.4 to get the initial channel frequency response.

According to the DPA process, the received signal of the
i-th OFDM symbol is equalized through the initial channel of
the i− 1-th OFDM symbol accordingly:

Di(k) =
Yi(k)

H̃i−1(k)
, (12)

then the i-th OFDM symbol can be written as:

X̂i(k) =

{
Q[Di(k)] if k ∈ Kd
XT (k) if k ∈ Kp.

(13)
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FIGURE 3. Data flow of the proposed GRU network.

Then, the initial channel response estimate for the k-th
subcarrier of the i-th symbol can be expressed as:

H̃i(k) =
Yi(k)

X̂i(k)
. (14)

Since the channel data are complex signals, the data must
be preprocessed before being fed into the proposed neural
network. The channel’s real and imaginary parts are extracted
separately, and then these two parts are connected into a
tensor as an input to the network. Thus, the input to the neural
network is T sequences of length 2L.

The proposed network uses past and current information to
estimate the current CSI. Thus, for channel estimation, there
is an input for each time step of the GRU network. The input
of the i-th GRU unit is denoted as:

xi =

{
hGRUi−1 (k) if k ∈ Kd
hi−1(k) if k ∈ Kp,

(15)

where hGRUi−1 and hi−1 represent the CSI predicted by GRU
and the CSI predicted by LS at the previous time step,
respectively. Kd and Kp represent the data subcarrier and
the pilot subcarrier, respectively. After that, xi is handled by
GRU:

hGRUi = GRU (xi, 2), (16)

where 2 represents all the parameters in the GRU.
In vehicular communication models, due to the fluctuating

nature of CSI over time, the traditional GRU assigns the
same weight to each feature in the model, which may
lead to an uneven distribution of weights to features that
have a greater impact at different stages, which may
degrade the model performance. Therefore, by combining the
attention mechanismwith the GRU network, the probabilistic
allocation properties of the attention mechanism can be
utilized to assign higher weights to valid information and
reduce the impact of redundant information.

As can be seen from the figure, the output of the GRU
hidden layer is used as the input of the attention layer, which

is calculated as follows:

Et = tanh(WthGRUi + bt ), (17)

where Et denotes the value of the probability distribution of
attention determined by the hidden layer state vector hGRUi at
moment t;Wt , bt denote weights and bias, respectively. Then
the attention weight value Si of Et can be expressed as:

Si =
eEt∑i
j=0e

Et
. (18)

Subsequently, the obtained Si is multiplied with its
corresponding input dimension hGRUi to obtain the output
value of the attention mechanism:

ri =

i∑
j=0

SihGRUi . (19)

The final output is then reshaped into two T × L matrices
as the real and imaginary parts of the final estimate. This step
uses a fully connected layer to convert all hidden states into
channel response estimates:

Ĥ = Wri + b, (20)

whereW , ri, and b denote theweightmatrix, hidden state after
redistribution of weights by the attention mechanism, and
bias vector, respectively. Ĥ is the final result of the channel
estimation derived from the model.

B. TRAINING
Since the proposed network consists only of GRU units,
the overall objective of the task is directly optimized
without sub-module or stage training during the training
process. Therefore, the final training results of the network
are susceptible to the combination of hyperparameters.
To alleviate this problem, this paper uses SSA to optimize
the parameter settings of LSTM and GRU during offline
training, which outperforms existing algorithms in terms of
search accuracy, convergence speed, stability, and avoidance
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of local optimization. In particular, it exhibits superior global
optimization capabilities in complex solution environments
[29], [30].

The SSA algorithm takes inspiration from the process of
sparrow predation. Individuals called finders are responsible
for finding food, the ultimate optimization target, and
directing followers. Vigilantes are responsible for scouting
for predators and alerting the population to avoid them.
At each iteration, a fitness function is used to calculate each
individual’s fitness, where a high fitnessmeans that it is closer
to the optimal or better solution. The responsibilities of each
individual also change depending on the fitness value. When
the number of iterations is maximized, the individual with the
highest fitness is regarded as the optimal solution [19]. The
sparrow population matrix can be written as:

X =


x11 x21 . . . xd1
x12 x22 . . . xd2
...

...
. . .

...

x1n x2n . . . xdn

 , (21)

where x represents the individual sparrows, d refers to the
number of hyperparameters to be optimized in the neural
network, and n means the sparrows’ number. The population
fitness matrix is expressed as follows:

Fx =


f (

[
x11 x21 . . . xd1

]
)

f (
[
x12 x22 . . . xd2

]
)

...

f (
[
x1n x2n . . . xdn

]
)

 , (22)

where f (·) denotes the fitness function of the individual spar-
row. During the search process, highly adapted individuals
become finders. They can prioritize searching a larger range
of targets and approaching them, thus further guiding the
whole group closer to the target. In each iteration, the finders
are updated according to the following equation:

x t+1
i,d =

{
x ti,d · (1 + Q) if R < VT
x ti,d + Q if R ≥ VT ,

(23)

where x t+1
i,d refer to the position of the i-th individual in the

d-th dimension of the population in the t + 1-th generation;
Q is a standard normally distributed random number; R refer
to a uniform random number in [0, 1], and VT refer to the
vigilance threshold, which value in [0.5, 1.0]. R ≥ VT means
the vigilant has detected a predator, and all individuals must
be reset to a safe position. We can randomly generate the
location of the vigilantes by using the following formula:

x t+1
i,d =

{
x ti,d + β · (x ti,d − xbti,d ) if fi ̸= fg
x ti,d + β · (xwti,d − xbti,d ) if fi = fg,

(24)

where β is a random number that conforms to a standard
normal distribution, xw is the current worst sparrow position,
and xb is the current best sparrow position. fi and fg represent
the present individual and global optimal fitness, respectively.
That is, if the individual is currently in the best position,

TABLE 3. Network training parameters.

it will escape to a random position between the best and worst
positions. Otherwise, it will flee to a random position between
the current and best positions. At R < VT , when no predator
is detected, the follower will gradually move closer to the
finder and potentially become a new finder via the following
formula:

x t+1
i,d =xbti,d+

1
D

D∑
d=1

(rand {−1, 1}· (
∣∣xbti,d − x ti,d

∣∣)), (25)

where xb is the best position of the individual in the
population, D is the number of columns of the matrix A
in the original equation. The matrix A is a 1 × D matrix
where each element is a random −1 or 1. Upon reaching the
maximum iteration limit, the individual with the maximum
global fitness among all is considered the optimal group
of GRU hyperparameters. Table 3 shows the final training
parameters.

IV. SIMULATION
This paper compares CNN [32], LSTM [23], SSA-LSTM,
GRU [33], SSA-GRU, and the proposed SSA-GRU-Att
estimator simulation results, where the SSA-LSTM and SSA-
GRU estimators are improved according to Ref. [23] and Ref.
[33]. Two main types of V2V channel models are generally
used: geometry-based channel models and tapped delay line
models (TDL). Although the geometric model describes the
V2V channel characteristics more accurately, the complexity
is excessive. In contrast, the TDLmodel can roughly describe
the V2V channel characteristics with lower complexity [31],
so the TDL model is introduced. Two classical scenarios
are selected for the channel model: 1) Vehicle-to-Vehicle
Same Direction With Wall (VTV-SDWW), which indicates
that the channel between vehicles traveling on a highway
is separated by a wall and is suitable for highly dynamic
vehicular environments. The Doppler shifts are fd = 550 Hz
and fd = 1100 Hz, representing speeds of 100 km/h and
200 km/h, respectively. 2) Vehicle-to-Vehicle Urben Canyon
(VTV-UC) describes a roadway with high-rise buildings
or canyons on both sides. The vehicle speed is 48 km/h,
equivalent to fd = 250Hz. A frame size of 20 OFDM symbols
is used for simulation. The main parameters of the simulation
environment are summarized in Table 4.
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FIGURE 4. VTV-SDWW vehicular channel model simulation results.

TABLE 4. Simulation parameters.

A. BER AND NMSE PERFORMANCE
Fig. 4 illustrates each model’s BER and NMSE performance.
We can find that LSTM and GRU-based estimators out-
perform CNN-based estimators. This is because the NLP

approach is more advantageous when dealing with sequential
problems. The CNN estimator, on the other hand, is affected
by the error substrate and performs poorly in the high SNR
region. It can be found that in the lower SNR region, the BER
performance of all methods is similar. This is due to the fact
that under low SNR conditions, the effect of noise on the
system performance is dominant and the noise component
in the received signal is significantly enhanced, resulting
in difficulties for the receiver to accurately demodulate the
transmitted signal.

Meanwhile, it can be found that SSA-LSTM is better than
LSTM in the high SNR region. In Fig. 4(a), the LSTM
and GRU estimator optimized by the SSA algorithm can
outperform the LSTM and GRU estimator by 9 dB and
3 dB of gain in a high-speed environment in terms of
SNR at BER = 3 × 10−3. This proves the effectiveness
of SSA for neural network optimization. Moreover, the
SSA-GRU estimator outperforms the SSA-LSTM in the
entire SNR region, which can be explained by the GRU’s
higher training efficiency, resulting in a stronger ability to
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FIGURE 5. VTV-UC vehicular channel model simulation results.

FIGURE 6. MACs used by each estimator for channel estimation.

learn channel temporal correlations. In addition, The SSA-
GRU-Att estimator outperforms the SSA-GRU estimator by
3 dB of gain in terms of SNR at BER = 10−4. This
demonstrates the ability of the model to better focus on
relevant channel state information and improve the quality
of the feature representation, which is particularly important
for dealing with rapidly changing channel conditions in high-
mobility scenarios.

Fig. 4(c) illustrates the BER performance of each model at
higher speeds. Compared to the relative speed of 100km/h, all
the estimators have some degree of performance degradation,
which is due to the fact that with the increase of the Doppler
frequency shift, the channel varies more drastically in time
and at the same time the frequency expansion leads to
more serious inter-signal interference (ISI). In contrast, the
proposed SSA-GRU and SSA-GRU-Att estimators are able
to outperform the SSA-LSTM estimator by 4db gain at
BER = 10−3. This is due to the fact that LSTM employs
long-term memory, so the estimation results for the current
channel are affected by channels estimated earlier. As the
speed increases, the channels at consecutive OFDM symbols
may become uncorrelated, which can impair the performance
of the LSTM estimator even more. However, the SSA-GRU-
Att estimator still has better BER performance than other

deep learning-based schemes, which indicates that the SSA-
GRU-Att estimator can capture the temporal correlation of
the channel better and thus performs better in highly dynamic
environments.

Fig. 4(b) and Fig. 4(d) illustrate the NMSE performance of
each estimator. From the simulation results, the LSTM-based
and GRU-based estimators perform similarly, but all of
them outperform the CNN-based estimator, which demon-
strates that NLP-based methods have a better understanding
of channel conditions, allowing for more efficient signal
processing. Whereas estimators other than the CNN-based
estimator perform close, this is due to the fact that the
loss function is based on NMSE and the model prefers to
minimize the error overall. Despite the NMSE proximity, the
difference in BER suggests that the models differ in their
ability to capture the complex characteristics of the channel
and dynamically adjust their estimation strategies. As for
the very high mobility scenario, the performance of each
model tends to be similar, but the SSA-GRU-Att estimator
exhibits lower NMSE values, which indicates its better error
control ability in dealing with highly dynamic environments.
Meanwhile, the SSA-GRU-Att estimator also exhibits lower
NMSE values at lower signal-to-noise ratios, indicating that
it performs better in noisy situations.

Fig. 5 shows the BER performance of each estimator for
different modulation methods in the VTV-UC channel. It can
be found that the SSA-LSTM, SSA-GRU, and SSA-GRU-
Att estimators achieve similar performance in low-mobility
scenarios due to the negligible effect of Doppler interference
in low-mobility scenarios. However, in the high SNR region,
SSA-GRU-Att has a higher potential. For 16QAM and
64QAM, the proposed estimator outperform the SSA-LSTM
estimator about 5 db gain at BER = 10−4 and BER =

2 × 10−3, respectively. This demonstrates that the attention
mechanism can enhance the model’s ability to capture
channel state information.

B. COMPUTATIONAL COMPLEXITY ANALYSIS
This section presents a detailed computational complexity
analysis of the channel estimation scheme. Since a large num-
ber of computations in all estimators are multiplicative and
additive operations, multiply-accumulate operation (MAC) is
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TABLE 5. MACs and execution time used by each estimator for channel
estimation.

used to evaluate the computational complexity of eachmodel.
In addition to this, the execution times of the individual
estimators are compared.

Since LSTM-based and GRU-based estimators estimate
each symbol individually, CNN-based estimators process
the whole frame simultaneously. The simulation results
are based on the estimation for the entire OFDM frame.
Figure 6 and Table 5 show the overall complexity of each
estimator as well as the complexity of each layer, and the
execution time of each estimator, respectively. It can be
found that the CNN-based channel estimator requires a large
number of MACs because the convolutional layers involve
a large number of convolutional operations. In addition,
it is difficult to find a good balance of complexity and
performance for LSTM-based channel estimators. This is
because LSTMs have additional gating mechanisms and
separate memory cells, which, while making LSTMs more
powerful in capturing long-time dependencies, also increases
the computational complexity. In contrast, the proposed SSA-
GRU-Att channel estimator ensures better reliability with
relatively low computational complexity.

V. CONCLUSION
In this paper, we propose an optimization method based
on GRU and SSA for channel estimation in vehicular
communication and incorporate an attention mechanism to
filter redundant information and improve accuracy. Exper-
imental results validate the effectiveness of this approach,
showing improved channel estimation accuracy and reduced
complexity. Limitations include the lack of real V2V testing
and the performance in very high-speed scenarios that
still need further investigation. Although the computational
complexity has been reduced, further consideration needs to
be given to deployment on resource-limited vehicle terminals.
Future work will aim to validate the model in real V2V
scenarios and enhance its adaptability to complex channels
with strong multipath effects or severe interference.
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