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ABSTRACT The recent rise in relevance and diffusion of Artificial Intelligence (AI)-based systems and the
increasing number and power of applications of AI methods invites a profound reflection on the impact
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of these innovative systems on scientific research and society at large. The Universal Scientific Education and
Research Network (USERN), an organization that promotes initiatives to support interdisciplinary science and
education across borders and actively works to improve science policy, collects here the vision of its Advisory Board
members, together with a selection of AI experts, to summarize howwe see developments in this exciting technology
impacting science and society in the foreseeable future. In this review, we first attempt to establish clear definitions
of intelligence and consciousness, then provide an overview of AI’s state of the art and its applications. A discussion
of the implications, opportunities, and liabilities of the diffusion of AI for research in a few representative fields of
science follows this. Finally, we address the potential risks of AI to modern society, suggest strategies for mitigating
those risks, and present our conclusions and recommendations.

INDEX TERMS Artificial intelligence, scientific research, science ethics, computer science, physics, medicine,
psychology, mathematics, geography, agriculture.

I. INTRODUCTION
A. THE FUTURE OF INTELLIGENCE
Thanks to a series of groundbreaking discoveries in exo-
planetology, during the past thirty years we have gradually
come to realize that planets similar to our own, where
we may speculate that there be a significant possibility
of emergence of carbon-based life forms such as those
inhabiting Earth, are relatively common, with more than ten
thousand candidates cataloged as of January 3, 2024.1 Indeed,
a handful of such candidates have already been identified
within 120 light years of distance from us, and their number
keeps growing as we improve our detection technologies.
A recent estimate combining data from Kepler and Gaia
missions using Bayesian inference [1] assesses in the range of
0.17 to 0.83 the number of planets in the habitable zone with
masses between 1.0 and 1.75 Earthmasses and orbital periods
around stars of type F, G, or K between 237 and 500 days
(see Fig. 1). Even though affected by significant uncertainties,
these numbers imply that several billion earth-like planets
exist in our galaxy alone.

FIGURE 1. Inferred occurrence rate density (Γ⊕) of habitable-zone
planets estimated by various studies. Displayed posterior densities for
orbital periods of 237-500 days and different radius ranges refer to radii
Rp = 1 − 1.75 R⊕ (where R⊕ is the Earth radius) in solid black, and
Rp = 0.75 − 1.5 R⊕ in dotted black. Reprinted from [1].

On the other hand, geological studies indicate that planet
Earth formed about 4.6 billion years ago [2], when it with-
stood gradual accretion through gravitational interactions

1A comprehensive list is in https://exoplanets.nasa.gov/discovery/
exoplanet-catalog/

from a disk of debris in orbit around our early Sun. Although
less precisely, geological rock records indicate that only four
billion years later did pluricellular life start to flourish on
it [3], when a wealth of different creatures progressively
inhabited its seas and later its lands. On such a time scale,
the emergence of biological intelligence —which we here
generically associate with biological life forms endowed with
acquired self-awareness and entertaining communication and
craftsmanship skills2—is a very recent phenomenon and
might constitute only a brief parenthesis in the history of our
planet. In light of the above considerations, the Fermi paradox
(the contrast between the high probability of life emergence
and the absence of its evidence, famously introduced by
Enrico Fermi to question the hypothesis of widespread life
in the universe) appears to have no objection to this line of
reasoning.

When considering the universe from the point of view
of its intelligence content, armed with estimates of the
number of habitable Earth-like planets and knowledge of
what happened on our planet until now, we are forced to
assess what phenomena have the potential to cause mass
extinctions. Many reasonably well-understood events of
cataclysmic nature, from collision with asteroids and comets
to solar flares, super-volcano eruptions, or nearby supernovae
explosions, as well as slower evolutionary processes such as
planetary motion instabilities, should then be assessed for
their expected rates, which contribute to reduce the expected
duration of our life span as a species, while also providing
possible ‘‘restart’’ conditions to make the environment more
suitable for life evolution. One must add several potential
anthropogenic occurrences to those phenomena, including
nuclear or biological warfare, climate change, and ecological
collapse.

In the category of anthropogenic threats of relevance,
an emerging one is the willful or serendipitous generation
of artificial general intelligence (AGI), which develops
goals of its own which are misaligned with the survival of
humanity [4], [5]. A wealth of scientific fiction novels and
movies have considered such a dystopian scenario, which,
however, remains a highly speculative and hypothetical one,

2A more detailed discussion of the meaning of the term ‘‘biological
intelligence’’ is offered in Sec. II.

15994 VOLUME 13, 2025

https://exoplanets.nasa.gov/discovery/exoplanet-catalog/
https://exoplanets.nasa.gov/discovery/exoplanet-catalog/


T. Dorigo et al.: Artificial Intelligence in Science and Society: The Vision of USERN

whose likelihood is impervious to estimation; we leave it
aside here, as we will come back to it in more detail infra
(Sec. V and Sec. VI). Yet even at the level at which we know it
today, and in parallel to its offer of tremendous opportunities
for progress, artificial intelligence (AI) is already a potential
contributor to significant existential risks for humankind: for
instance, its vicious use for the pollution of the information
ecosystem with falsehood, undermining the basis of trust
among individuals and nations and the concept/process of
people electing their national leaders based on personal
beliefs and preferences (since the opinion of people can
be systematically biased using closed-loop AI systems and
Internet-wide platforms). Various other consequences of the
technological advancements in applied AI that have already
taken place similarly constitute clear and present dangers
today; we will examine them in the second half of this
document (Sec. IV, Sec. V, and Sec. VI).

The probability of anthropogenic catastrophes is generally
agreed to be much larger than that of natural extinction-level
events and, therefore, contributes more significantly to
reducing the expected life span of intelligent life on Earth,
but it is harder to estimate. We can still summarize the
situation by saying there is qualitative evidence that the rate
of catastrophic phenomena is significant. This makes the
lifetime of our species bounded from above.

Barring the possible yet arguably unlikely achievement
of widespread colonization of nearby habitable planets by
human beings, which would make intelligent life signif-
icantly more robust to global existential threats of both
anthropogenic and natural origins, and using inductive
reasoning in assuming that the history of our planet is not
too uncommon, we must therefore come to terms with the
idea that biological intelligence might be a comparatively
rare occurrence in the universe: billions of Earth-like planets
exist, yet the existence of intelligent life forms is likely only
an ephemeral phenomenon on each of them. A different
conclusion may instead be reached on AGI. In the past
few decades, we have been lulled to perceive the rise in
non-biological intelligence as a slow process by sitting on the
initially linear-looking slope of what could soon manifest as
an exponential curve. From the development of the theoretical
underpinnings of AI in the first half of the twentieth century
to the coming of age of powerful computers toward the end
of the millennium, and then from the rise of smartphones to
today’s widespread AI systems, we were given the time to
get accustomed to each new advancement without suffering
a cultural shock. However, things are bound to change very
soon, as the exponential trend in AI capabilities, diffusion,
and overall impact on society are all becoming manifest.
This has also revitalized discussions that experts have been
having off and on for over sixty years about the possibility
of creating AGI systems endowed with self-consciousness
and general capabilities that would quickly transcend human
intelligence, and it has also brought a wealth of argu-
ments to those who argue about the likelihood of that
scenario.

Although the topic is still controversial, the most poignant
question today appears not if but when AGI systems will
be produced. While opinions still differ widely, the majority
view seems to be today that, whether it will be in 20 or
50 more years, AGI will arise on Earth: it has started to feel
like an evolutionary necessity whose fuel is the enormous
empowerment and profit it would guarantee to its creators and
owners. And since AGI may be able to transcend most of the
existential risks that biological intelligence is subjected to and
is vastly more fit to endow itself with the means to become an
interplanetary phenomenon, it is certainly not unreasonable to
conclude –using again the hypothesis that Earth be a typical
planet– that the most common substrate of intelligence in the
universe is artificial, and not biological.

Despite its speculative nature, we deem the above obser-
vation highly significant, as it alone provides a substantial
reason to view the future of artificial intelligence with
heightened interest and concern: it is a phenomenon with
a potentially transformative impact on different scales of
space and time. This insight underscores the necessity for
intensified scrutiny and engagement with AI developments.
While we believe AI to be a logical and inevitable outcome
of human evolution, how such a development unfolds remains
partly within our control. Therefore, the consequences of our
actions at this critical juncture are undeniably enormous.

B. RECENT IMPACTS OF ARTIFICIAL INTELLIGENCE
Over the past decade, we have witnessed many disruptive
advancements in the capabilities of automated systems that
display intelligent behavior.3 In Sec. IV and V of this article
we describe in detail the impact these systems have had
on scientific research and our society, respectively. Here,
to introduce the topic, we may single out the one among these
developments that is perhaps the most surprising, besides
being the most recent: the advent of large language models.
In the matter of a couple of years, these systems have made
a transition from being a topic of experimental research
to settling as a centerpiece that fills an enormous void
in the space of computer applications, effectively offering
themselves as go-to oracles capable of providing detailed and
relevant answers to almost any conceivable query. The impact
that large language models are having in scientific research
is highly significant, to the point that their assistance in the
writing of scientific articles has turned from being a joke to
becoming an acceptable, formally disciplined practice.4

The acceleration that artificial intelligence has displayed
over the past few years is most evident in market-driven
applications, where it is powered by the enormous profits
that the development of new AI systems may obtain; this
is causing concern over the lack of relevant regulations.
The situation is more controllable in scientific research

3For a careful discussion and assessment of what can be qualified as such,
see Sec. II.

4E.g., many journals today explicitly request authors to declare whether
their work has been produced with the help of large language models—
implying that the practice is acceptable as long as it is made manifest.
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due to two factors acting as regulatory brakes on applying
new AI technologies. Firstly, progress is slowed by the
absence of substantial funding sources that drive profit-
oriented research. Secondly, many research areas that could
withstand rapid acceleration and paradigm shifts, such as
biology, medicine, and genetics, are under strict scrutiny
by supervisory bodies. This results in the innovation rate
aligning with these fields’ characteristic approval cycles. The
situation is, however, complex, as these bodies are not acting
at a global level, and their power is limited. Under these
circumstances, monitoring the situation by looking into the
reality of public research across scientific disciplines appears
crucial. Such a survey may inform us of better ways to handle
the future challenges ahead of us. As a paradigm, we mention
the recently issued EU Artificial Intelligence Act (from now
on ‘‘AI Act’’), the world’s first comprehensive AI law [6],
which starts addressing issues that will become more and
more relevant in the coming years.

C. ABOUT THIS WORK
In this document, the production of which was organized
by the Universal Scientific Education and Research Network
(USERN),5 we offer our views on thematter by discussing the
implications of the current state of affairs in the development
of AI for humankind, focusing in particular on scientific
research, where we cover some of the most relevant areas
of developments with our collective expertise as researchers.
The purpose of this work is twofold. First, we wish to offer
a state-of-the-art survey on using AI tools for research. For
this purpose, we examined a selected and representative set of
scientific disciplines, considering the transformations already
brought about by introducing AI techniques and forecasting
their future evolution. Additionally, this text aims to spark a
broad discussion on the opportunities and challenges posed
by AI algorithms and systems in scientific research and
human society by discussing their virtuous and nocuous
or malignant uses. We do this with the long-term goal of
bringing the topic to greater attention within the scientific
community and keeping it firmly under scrutiny.

The article was written by surveying the advisory board
of USERN, which comprises 600 scientists in 22 disciplines.
The goal was to identify a team of experts who could provide
an overview of the ongoing developments in AI and their
impact on different disciplines (from a user perspective).
The authors were asked to examine the challenges and
opportunities that AI developments bring to their field of
expertise and to summarize them in subsections of the
manuscript. We then collaborated on these drafts to reach
a consensus on the topics they covered. Special attention
was given to identifying specific risks that AI developments
may introduce in scientific research, as we believe we are
well-positioned to make these assessments and that this is a
valuable goal for our work.

5The Universal Scientific Education and Research Network,
https://usern.org

We begin in Sec. II to establish definitions of intelligence
and the related question of self-consciousness. In Sec. III
we provide an overview of AI’s state of the art and discuss
potential future developments in several application areas.
In Sec. IV we discuss the implications of AI for scientific
research in a few selected fields. In Sec. V we consider the
potential risks of AI to modern society, the strategies we
might employ to mitigate those risks, and the benefits of
its virtuous use for humanity and the environment. Finally,
we present our conclusions and recommendations in Sec. VI.

II. DEFINITIONS OF INTELLIGENCE AND CONSCIOUSNESS
Before addressing the status and issues of artificial intelli-
gence in science and society, we need to agree on what we
mean by intelligence. The term is highly overloaded, as it may
refer to a large number of different and independent abilities
and competencies; indeed, its exact definition has kept
generations of scholars entertained [7], including attempts
at quantitative definitions indeed focusing on the extent to
which an agent can be successful across a complex set of
different competences [8].

A. INTELLIGENCE
For this work, we may agree that, in general, intelligence
is the ability to solve problems. From a biological point of
view, the environment poses various problems to organisms,
from finding a nest to face a predator, from orienting
in space to finding a mate [9]. Thus, we can expect
the evolution of adaptive specializations in the realm of
intelligent abilities. This is because the logical demands
associated with different problems could imply a certain
degree of functional incompatibility. Consider, e.g., the
logical demands related to spatial learning in food-storing
birds as opposed to learning the features of the mother hen
and siblings by imprinting. The latter must be limited to
exposure to a specific period in life (critical period) and must
be resistant to forgetting. Otherwise, the young animal would
risk learning about inadequate objects or forgetting about the
features of the mother and siblings [10], [11]. Food-storing
birds, however, must not exhibit the same constraints in
learning. Otherwise, there would be limitations to the places
where food caching can be done depending on the period, and
if memory would resist forever, it would prove impossible to
erase the memory of the particular location of a food cache
even when it has already been used, and it is now empty.

On the one hand, it is apparent that these functional incom-
patibilities, which are relative to the coherent constraints
associated with a particular kind of problem more than to
its implementation in a specific kind of substance, should be
adhered to by any type of intelligence, biological or artificial.
On the other hand, it is important to stress that there are also
classes of problems for which we can expect no specialization
but rather common and shared mechanisms [12]. As an
analogy, artificial intelligence methods increasingly rely on
massive, curated experiences, general pattern recognition
algorithms, and modularized methods. Generalized adaptive
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processes are the case for associative, non-associative, and
relational learning mechanisms, whose role is to allow
an organism to figure out the causal structure of an
environment in terms of either statistical regularities in the
sequence of appearance of single events (habituation and
sensitization), in the temporal relationship between two or
more recurring events (Pavlovian and operant conditioning),
or in the semantically and culturally attributed relations
among events (multidimensional relational reasoning) [13].
Indeed, evidence suggests that biological organisms rely on
similar neurobiological processes for these various forms
of intelligent behavior. Leaving aside the question of the
possible development of artificial intelligent systems from
completely different substrates and with different bootstrap-
ping mechanisms, one can reasonably assume that any form
of artificial intelligence should also rely on similar and shared
principles for non-associative, associative, and relational
learning.

Considering the above understanding, Pei Wang’s
approach in his paper ‘‘On Defining Artificial Intelligence’’
[14] argues that intelligence, whether in humans or artificial
systems, fundamentally entails adaptation with insufficient
knowledge and resources. Wang stresses that the primary
marker of intelligence is not just problem-solving per se
but the ability to adapt to new and changing environments
with limited information and capabilities. This perspective
aligns with the biological examples provided, where different
species evolve distinct cognitive strategies to handle their
unique environmental challenges. Yet, all exhibit a form of
adaptiveness that is central to intelligence.

Further, Wang proposes that any system exhibiting intel-
ligence —whether organic or synthetic— must inherently
operate under conditions of uncertainty and resource con-
straints. This notion resonates with the adaptive special-
izations observed in biological organisms, as each species’
intelligence is shaped not just by the problems they solve
but by how they optimize their cognitive processes within
the limits of what is biologically feasible for them. Similarly,
in artificial systems, this means designing algorithms that
do not merely solve tasks but continuously learn and adjust
to new data under the practical constraints of time and
computational power.

Wang’s conceptualization of intelligence also underscores
the importance of a system’s capacity to handle novel
situations without pre-encoded solutions. This flexibility is
crucial in biological and artificial contexts and is achieved
through mechanisms that allow ongoing learning and adap-
tation rather than relying solely on hardcoded inflexible
rules. Therefore, in creating artificial intelligence, it becomes
imperative to develop systems that can dynamically learn
from their environment in a manner analogous to biological
systems, which continuously adapt through evolutionary
pressures.

Thus, integrating Wang’s theoretical framework into our
understanding of intelligence may provide a more robust
model that bridges the divide between biological and

artificial systems. It suggests that the core of intelligence
lies in the adaptive capacity to utilize limited resources
and knowledge to navigate and optimize within a complex,
changing environment. This holistic view can guide future
research and development in artificial intelligence to focus
not just on specific tasks but on creating systems capable of
general adaptability and learning, reflecting the true essence
of intelligent behavior observed in nature.

Moreover, considering the principles of evolutionary
optimization processes in AI development, we see that
biological and artificial systems traverse a space of emergent
phenomena driven by fundamental interactions. Biological
evolution, for instance, has led to the emergence of phe-
nomenal experiences which we still do not fully understand.
Similarly, computing substrates possess emergent properties
thatmay arise from complex interactionswithin hardware and
software components. These properties can be nearly orthog-
onal to the abstract logic processes typically utilized, leading
to unexpected behaviors that are not directly programmed.

The limits of these emergent phenomena remain unknown,
posing both opportunities and risks. Evolutionary optimiza-
tion in AI could potentially design behaviors that emerge
from interactions beyond deterministic information process-
ing. These processes may exploit unknown properties of the
computational substrate, leading to behaviors that are not
predictable or controllable using traditional methods. Such
emergent behaviors could result in forms of decision-making
or problem-solving abilities that we cannot fully understand
or anticipate, posing significant risks to safety, security, and
ethical standards.

Indeed, AI systems’ autonomy (and sometimes adap-
tiveness) are elements also included in legal texts. Most
notably, both the AI Act and the Organisation for Economic
Cooperation and Development (OECD) [15] characterize AI
systems as being machine-based systems that use inference
to generate output from input and can influence their
environment; they also show (and, in particular, according
to article 3 of the EU AI Act, are actually ‘‘designed to
operate with’’) varying degrees of autonomy and (possibly)
adaptiveness after deployment. Both organizations consider
autonomy as the ability to behave independently and operate
without human intervention. At the same time, adaptive-
ness refers to the system’s ability to continue evolving
post-deployment due to its direct interactions with input and
data.

The ability of an AI system to operate and modify its
behavior independently of human instructions has become an
object of attention by policymakers because of its ethical and
legal implications, mostly revolving around human agency,
autonomy, human oversight, accountability, and liability.
Ultimately, if the core of intelligence lies in adapting to
scarce information or capabilities, it is only proper that the
regulation should account for these developments. Indeed,
the (both moral and legal) responsibility for possible harmful
effects on individuals or society, as well as the value-laden
choice of which decision-making role to attribute to artificial
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intelligence systems [16] (including for which specific
purposes and in which sectors), rests with humans [17].

B. CONSCIOUSNESS
Consciousness is a polysemic word, but here we shall
consider it as ≪phenomenal experience≫ [18], i.e., that it
feels something to have mental states such as pain, seeing
red, or smelling lavender [19], which is also usually referred
to as the≪hard problem≫ of consciousness [20]. So defined,
awareness or ‘‘knowing’’ is a more evolutionarily continuous
process based on the relative ability to respond to oneself
and the internal and external environment and the regularities
within and between them [21]. Various sensory and cognitive
systems are relevant to awareness of that kind.

It is important to stress that not all cognitive activities
need to be conscious. The issue of how and why humans
and other organisms (or possibly artificial machines) do have
consciousness cannot be equated with their having cognition;
whatever sophisticated this cognition may be [22] and [23].
There is plenty of evidence that advanced forms of cognition
can be observed in the absence of consciousness [24], [25].
On the ethical side, note that we do not deny the possession
of consciousness to human beings who, because of severe
acquired or inherited disabilities, would appear unable of
even the most elementary forms of cognitive activities [26].
Thus, the issue of consciousness in AI should be considered
separately from evidence of how much intelligence there is
in AI.

There is no agreement on the mechanisms underlying
consciousness or the proper localization of its neural
correlates. Some prominent theories, such as the Global
Neuronal Workspace Theory (GNWT) [27] argue for a major
participation of the parts of the brain that enable cognition,
i.e., the frontal areas of the cortex, whereas others, such
as the integrated information theory (IIT) [28], claim that
consciousness would depend on brain areas involved in
perception, i.e., the more posterior areas of the cortex. These
theories are sometimes called ‘‘front-of-the-brain’’ versus
‘‘back-of-the-brain’’ theories. However, neither of them
adequately addresses the issue of phenomenal experience.
GNWT maintains that a reduced subset of the information
we constantly process unconsciously would be selected to
pass through a bottleneck into a conscious ‘‘workspace;’’
there, the information would be integrated and broadcasted
to other brain areas to make it globally available for
decision-making and learning [29]. This theory does not
address how conscious experience arises, which is mainly
centered on cognitive access by attention. IIT, on the other
hand, starts with five axioms about consciousness, namely
that consciousness (1) is intrinsic to the entity who has it;
(2) its composition is structured; (3) it is information-rich;
(4) it is integrated rather than reducible to components; and
(5) it is exclusive of other experiences. Then, the proponents
of the IIT theory tried to develop mathematical descriptions
to fit those axioms, but basically, the theory seems to deal
with a measure of information rather than with phenomenal

experience per se; criticisms have also been raised as to its
mathematical parts; e.g., see [30] and [31].

Other scholars pointed to sub-cortical mechanisms for
consciousness, in particular concerning pain [32], [33], [34],
[35], [36], [37] or about active movement with feedforward
mechanisms mediated by efference copies to distinguish
sensory stimulation impinging on an animal surface from
that occurring by self-motion [38], [39], [40], [41], [42].
These latter hypotheses would agree with the possibility
that consciousness could be observed in animals without a
mammalian cortex, such as birds —see [43], [44], and [45];
or even in organisms with quite different neural organization,
such as insects or invertebrates in general [46], [47].

These kinds of theories appear of particular interest for
AI, for they insist on the idea that to have consciousness,
a body is needed, and that initial forms of consciousness
should be represented by bodily reactions to stimulation
(for instance, in the format of efference copies allowing
distinction between ‘‘what is happening to me’’ and ‘‘what
is happening out there’’; see e.g., [41], [42]). If correct,
these views suggest that embodiment (more specifically,
the development of bodily reaction to sensory stimulation)
would be more important than possessing symbolic cognitive
abilities to develop an artificial consciousness.

1) EXPLANATORY GAP OF THE MIND-BODY PROBLEM
The heart of the problem of consciousness is the issue
of subjective experience and awareness, which is differ-
ent from possession of cognitive abilities. It is difficult,
if not impossible, to offer a non-circular definition between
these three terms (subjective experience, awareness, and
consciousness). Despite this difficulty, it is evident that
conscious beings know what it feels like to be conscious. The
subjective experience of what it is like to be in a particular
consciousness state (which is referred to as the qualia of
consciousness) cannot be reduced to the activity of the
physical elements (networks of nerve cells in the brain) that
enable it. This seemingly intractable mind-body problem is
famously illustrated in Nagel’s 1974 essay ‘‘What is it like to
be a bat’’ [48]. Chalmers [20] later described this as the hard
problem responsible for a gap between the physical world
and subjective experience. No theories of consciousness have
been able to address this so-called explanatory gap, and some
do not even acknowledge it. As this applied to AI, however,
a review of theories of consciousness becomes especially
interesting when they imply evolutionary and experiential
processes modeled in curated exposure to exemplars. Thus,
theories of consciousness that fail to be specific about the
kinds of evolutionary processes involved cannot readily be
used by AI methods to address consciousness per se. We will
review several theories before examining them in that light.

2) STATES OF CONSCIOUSNESS
It is widely accepted that consciousness is not a singular
entity. Instead, it encompasses various states, particularly
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concerning experiential content, though not necessarily in
the presence or absence of experience. These states can be
categorized into twomain types: global states and local states.
Global states, or levels, pertain to an organism’s subjective
experience and are linked to arousal and behavioral respon-
siveness variations. Examples include wakefulness, dream-
ing, and sedation. On the other hand, local states pertain to
specific conscious perceptions, emotions, or thoughts, often
called conscious contents. These local states can be detailed at
varying levels of specificity, from basic perceptual elements
(e.g., the color red) to objects (e.g., a rose) or to comprehen-
sive multimodal perceptions (e.g., the beauty of a red rose).

3) SELFHOOD
One of the most remarkable features of the human species
is the concept of the self and its ability to project and
conceptualize itself in space and time. The self is a subset of
local states of consciousness, encompassing the experience
of selfhood, which includes emotions, intentions, volition,
free will, body ownership, explicit autobiographical memory,
and more. Self-consciousness, or the conscious awareness
of the self, requires advanced cognitive abilities, including
language, cultural understanding, cooperation, and empathy.
The capacity to attribute mental states to others (known as the
theory of mind) necessitates distinguishing between the self
and the non-self.

The self is a highly complex construct. In his Principles
of Psychology, William James (1890/1983) posited that
self-awareness implies that the self acts as both object and
subject, with an aspect of the self that knows (the knower) and
an aspect that seeks to be known. The latter is called the Me-
self, and the former the I-self. Aspects of the I-self include
self-awareness, self-agency (ownership of one’s thoughts and
behaviors), self-coherence (perceiving oneself as a stable
entity), and self-continuity (perceiving oneself as the same
person over time). James identified aspects of the Me-self as
the material Me, the spiritual Me, and the social Me, noting
that different social settings give rise to multiple social Me’s.

Building on this foundation, we propose at least two
aspects of the self: the core self, which is the relatively
stable perception of one’s persona, and the social self, which
is more context-dependent and influenced by social role
expectations [49]. This distinction is more than theoretical,
as it provides new ways of understanding and treating
emotional disorders associated with adaptations of the core
self or the social self. As it applies to AI, if selfhood involves
an acquired form of perspective-taking or meta-cognition,
it may be essential to train large language models to respond
to their problem-solving processes from a perspective or point
of view rather thanmerely curating correct answers generated
by humans.

4) PHENOMENAL AND FUNCTIONAL PROPERTIES OF
CONSCIOUSNESS
It is essential to distinguish between the phenomenal and
functional properties of consciousness. The phenomenal

properties refer to the experiential aspects of consciousness
(the qualia or the subjective experience of what it is like
to be conscious). In contrast, the functional properties
relate to the role that conscious mental states play in
an organism’s cognitive processes. This functional aspect
includes teleological functions (those shaped by evolution)
and dispositional functions (the role a process plays within
a larger system). For instance, consciously perceiving a red
rose involves various potential functions, such as the ability
to interact with it in multiple ways (e.g., touching, smelling,
picking, painting, or stepping on it). Depending on the
context, this may lead to the formation of an episodic memory
of the event and enable the generation of a verbal report about
the experience. While these properties are definitionally
helpful, they do not give clear guides on approaching the
problem of consciousness in AI.

5) GLOBAL WORKSPACE THEORIES
Global Workspace Theories (GWTs) are modeled on the
blackboard architecture of AI, where the blackboard serves
as a central resource for specialized processors to share and
receive information. For instance, being conscious of a red
rose signifies a relationship betweenmy cognitive system and
the object (the rose), which may be selected for further verbal
or nonverbal processing after that. I might smell the rose and
remark, ‘‘Look at that beautiful rose.’’ The perception of the
rose becomes conscious and globally accessible because the
information can trigger a range of actions and thoughts.

The fundamental concept of GWTs is that sensory
information gains access to consciousness when it is ‘‘broad-
cast’’ within an extensive neuronal workspace that spans
higher-order cortical association areas, particularly empha-
sizing the prefrontal cortex [50]. This global workspace is
accessible through a nonlinear network ‘‘ignition,’’ where
recurrent processing amplifies and sustains neuronal repre-
sentations [51]. Once ignited, signals are amplified, allowing
them to enter the workspace and thus become conscious.

Conscious mental states are globally available to a
wide range of cognitive processes, including attention,
evaluation, memory, and verbal report [27]. That way,
conscious states guide behaviors and cognitions in a flexible,
context-dependent way and are related to specific cogni-
tive processes, especially attention and working memory.
Consciousness and working memory are intimately related
because attended working memory items similarly use the
global workspace [50]. Once again, GWTs appear to help
define the problem space but not to refine it with an eye
toward AI methods.

6) INTEGRATED INFORMATION THEORY (IIT)
IIT proposes that consciousness should be understood in
terms of a complex system’s cause-effect power, resulting
in integrated information. The degree of consciousness
(and integrated information) can be quantified as phi (8),
which measures how much information a system generates,
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compared with its parts independently. IIT assumes con-
sciousness is widely distributed throughout nature, including
in many non-biological systems, and might even occur in
systems as simple as cell phones or computers [52], [53].
This approach seems to contradict philosophical arguments,
including Searle’s Chinese room thought experiment (see
infra), and, in essence, ‘‘defines away’’ the problem of
consciousness without solving it.

7) HIGHER ORDER THEORIES OF CONSCIOUSNESS
Global availability is just one aspect of consciousness [54].
Another key aspect is the cognitive system’s self-referential
capacity to monitor its processing, often called meta-
cognition. Meta-cognition involves forming internal repre-
sentations of one’s knowledge and abilities. This higher-order
level of processing differentiates it from first-order theories
like GWT, leading to the term higher-order theories (HOTs).

HOTs propose that a mental state becomes conscious
through these meta-representations, which target other rep-
resentations. For example, the meta-representation ‘‘I am
conscious of the red rose’’ refers to another representation
(the rose), and this meta-representation constitutes conscious
awareness. HOT has been applied to various domains,
including visual experiences [55], emotional states like
anxiety [56], and perceptual decisions [57]. HOTs emphasize
anterior cortical regions, particularly the prefrontal cor-
tex [58]. According to HOTs, some contents may remain
non-conscious or unconscious if they are not the targets of
appropriate meta-representational states. In contrast, other
contents are necessarily conscious if accompanied by the
right meta-representations.

HOTs rarely address global states of consciousness or the
functions of consciousness [59]. Unlike many other theories,
however, HOTs do appear to directly affect AI systems by
suggesting that a second-order process of self-curation of
exemplars may be key to generalized AI. In other words,
it may not merely be the feedback of knowing when thinking
is correct in its outcomes that is key; it is more being able
to self-generate that feedback from a consistent perspective
or point of view and apply it to the process of the problem-
solving itself. This kind of bi-phasic approach [21] has only
recently begun to be modeled in AI learning systems, and it
is not yet known if it will produce more rapid progress.

C. CONSCIOUSNESS IN HUMANS, ANIMALS, AND AI
1) CONSCIOUSNESS IN ANIMALS
If we include the phenomenal aspect of the conscious qualia
(i.e., what it is like to be conscious) in the definition of
consciousness, it is impossible to ascertain whether animals
are conscious. Inferring the experiential state of an animal
based on its overt behavior results in anthropomorphism.
Indeed, animals, humans, and AI share aspects necessary
for consciousness, such as perception, attention, memory,
etc. However, none of these aspects and processes alone or

in combination necessarily result in a conscious experience,
as defined earlier.

As noted by Dehaene et al. [54], thirsty elephants can
determine the location of the nearest water hole and move
straight to it from a distance of up to 50 km [60]. This
amazing feat combines several skills to integrate information,
including smell, sight, memory, etc. Nest-building behaviors
in birds are similarly complex tasks that may appear to a
human observer as a thoughtfully planned and future-oriented
behavior to achieve a specific goal. However, even the most
complex future-oriented set of behaviors in animals can
be explained through evolutionary selection and retention.
We are not birds, and we cannot rule out the possibility that
birds are consciously aware of their actions, worrying about
their offspring, calculating the time it takes to complete the
nest in relation to the shift in the seasonwhile looking forward
to the task completion.We are humans, which is what humans
would do and feel if we were birds. But we are not birds. And
we are not elephants. We are humans.

The pronounced frontal cortex is an evident distinctive
feature of the human brain, and there is good evidence
to suggest that it supports the capacity for multimodal
convergence and integration of cognitive processes. A com-
parison between humans and nonhuman primates identified a
distinctly human component in the ventrolateral frontal pole
and showed differences in interregional interactions within
the ventral lateral frontal cortex in the two species [61].
There is also evidence to suggest that the complexity of the
pyramidal cell phenotype in the prefrontal cortices is uniquely
linked to human cognitive processing [62]. Additionally,
humans possess circuits in the inferior prefrontal cortex for
verbally formulating and reporting information to others. The
relevance of such neurobiological data to consciousness is
an object of active research, and progress in this area as it
occurs may indirectly impact the issue of consciousness in
AI systems.

Human language is often considered one of the most
evident signs of conscious perception because information
has reached this level of mental representation [54]. As is
true for specific brain structures and circuits, although
language may not be required for conscious perception and
processing, the emergence of language may have resulted in
a considerable increase in speed, ease, and flexibility. For
example, damage to the primary visual cortex can lead to a
phenomenon called blindsight. Patients with this neurological
disorder report being blind in the affected visual field.
Although they can localize visual stimuli in their blind field,
they cannot report them.

2) AI AND CONSCIOUSNESS
Examining the role of artificial intelligence (AI) is helpful
to clarify the boundary conditions of human consciousness.
Consciousness is not reducible to an information processing
system operating on formal symbols (a strong version of
functionalism), as illustrated by John Searle’s classic Chinese
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room thought experiment. Imagine an English-speaking
person who does not know the Chinese language being
alone in a room. In this room is an English instruction
manual for processing any incoming information. The person
then receives some Chinese characters through a slot in the
door and is asked to process them according to the English
instruction manual to produce other Chinese characters as
output. Given enough time, the person will be able to
make the output based on the instruction manual without
understanding any of the content of the Chinese writing.
Based on the generated output, an outside observer who
knows Chinese will mistakenly assume a Chinese speaker is
in the room.

Just like human operators in the Chinese room, computers
have been able to use syntactic rules following instruc-
tions to manipulate symbols. Still, they arguably did not
‘‘understand’’ the meaning of those symbols. With that
evidence, it might be concluded that the human mind is
not simply a computer-like computational or information
processing system, disproving what Searle termed strong
AI. However, the recent development of deep learning,
large language models, and, in general, of systems with
super-human capabilities to organize, translate, interpret text,
write computer code on demand, and other complex tasks
puts those conclusions to severe testing. Notwithstanding, the
above example illustrates the difference between two types
of information processing computations: the selection of
information for global broadcasting (which is accomplished
by the English speaker in the Chinese room) and the
self-monitoring of those computations. Only the latter is
associated with a subjective experience (the qualia of
consciousness); whether that is something we can generate
with AI is a topic of the present debate.

III. STATE OF THE ART OF AI SYSTEMS IN FLAGSHIP
TASKS AND PERSPECTIVES
In the previous section, we provided an overview of the
complexity of defining consciousness, which is a central issue
when considering artificial intelligence and the means we
possess to understand its nature and limits. Recently, the
emergence of Large LanguageModels (LLM) has brought the
question of whether we can associate a form of consciousness
with these systems. The answer at present is no, but given
the fast development these systems are undergoing and the
plans –and a natural evolution of AI research focusing on
LLMs– of enhancing them with sensory inputs and memory,
the question will resurface soon, significantly hardened and
complexified. In this section, we discuss these areas of AI
development.

A. LARGE LANGUAGE MODELS, TEXT GENERATION AND
PROCESSING
Understanding and producing natural language has been one
of the primary goals of AI for several good reasons. Firstly,
it is widely agreed that language is the hallmark that makes
humans unique among all other animal species, and it is

the means through which our most advanced intelligence is
expressed [63], [64], [65], [66], [67]. Furthermore, the idea
from which AI then emerged, the famous article by Alan
Turing [68], proposed linguistic conversation as the best arena
in which to exercise –and eventually accredit– intelligence
to a computer. This is why recent neural models, capable
of successfully processing and producing natural language
with remarkable similarity to humans, have generated a
significant sensation. The performance of these models was
also surprising, considering that just a few years earlier,
approaching human language proficiency seemed like an
unattainable chimera. Furthermore, an even more advanced
form of language -the ability to build mathematical models
and make predictions about the future evolution of complex
systems- is where the front line of AI research has now
moved. Given the strong economic incentive for success in
that area, it is not far-fetched to predict breakthroughs shortly.
However, rather than considering future developments,
we discuss the state of the art in language processing below.

1) TRADITIONAL NATURAL LANGUAGE PROCESSING AND
ARTIFICIAL NEURAL NETWORKS
The enterprise to process natural language with comput-
ers (Natural Language Processing, NLP) began as early
as the 1950s, with attempts to translate text involving
notable pioneers such as Warren Weaver and Yehoshua
Bar-Hillel. Early software for translating from Russian to
English, like GAT-SLC (Georgetown Automatic Translation
- Simulated Linguistic Computer) and SYSTRAN (System
of Translation), was developed [69]. These early attempts
revealed the subtle complications that separate the sequence
of symbols in a written text from its meaning. They
highlighted the infeasibility of machine translation without a
thorough understanding and formal framing of the countless
complications of human language.

In the 1960s, an essential contribution in this direction
was made through the mathematical treatment of syntax
initiated by Chomsky [70], [71]. His work enabled the
automatic derivation of the syntactic structure of simple
sentences [72], [73], [74] and early attempts at basic
language understanding [75]. Over the subsequent half
century, NLP made remarkable progress, expanding the
modeling of natural language to multiple aspects such as
proposition semantics [76], anaphora resolution [77], lexical
semantics [78], and discourse representation [79]. However,
integrating these pieces into a single system capable of
processing language seemed impossible.

When artificial neural networks gained popularity in AI
towards the end of the 1980s, intensive research developed
on their use for natural language modeling [80], [81], [82],
[83], [84], [85]. The neural approach radically differs from
NLP as it eschews Chomsky’s theoretical framework and
subsequent linguistic theories. The direction is radically
empiricist, designing models that directly learn aspects of
language from examples. The results aroused considerable
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interest in the cognitive and psychological field. However,
the scope of these models was drastically limited to short,
simple sentences and a reduced vocabulary, remaining far
from natural language in its completeness.

A significant challenge in using artificial neural models for
language processing stems from an apparent irreconcilable
discrepancy between the two formats. Language is an ordered
sequence of auditory signals or written symbols, while
a neural layer is a real vector with a fixed dimension.
Designing a transformation from words to numerical vectors
that preserves aspects of the words’ meaning is problematic.
Representing words becomes more challenging when transi-
tioning from single-word morphology to syntax. Moreover,
feed-forward neural networks are static, making establishing
a sense of ordering for multiple words in a sentence far from
straightforward.

Various coding strategies were proposed for solving the
representation issue, while the ordering issue was addressed
using recurrent networks. However, none of these solutions
was effective when moving from a small controlled language
to complete language processing. Recurrent neural networks
struggle to maintain relevance for words that are too distantly
placed yet syntactically related. A slight improvement was
made with Long Short-Term Memory (LSTM) [86] and
Gated Recurrent Unit (GRU) [87].
On the other hand, neural networks are comfortable

dealing with continuous signals. With the advent of deep
learning, tasks like text-to-speech and speech-to-text con-
version have been essentially solved [88], [89]. Systems
like Google’s Tacotron and Facebook’s Wav2Vec have
dramatically improved the fidelity and understandability of
generated speech and transcriptions.

2) THE TRANSFORMER ARCHITECTURE
The Transformer architecture, invented by the Google
team [90], combines two effective strategies that address the
crucial issues noted in the previous section. The first is the
word embedding technique, introduced by Mikolov et al.
[91], which learns from examples the optimal mapping from
words to vectors of neural activity. Its primary feature is
that the vectorial representation is meaningful, allowing for
manipulation and yielding results consistent with aspects of
lexical semantics.

The second strategy is a mechanism called ‘‘attention’’
[92]. This technique dynamically identifies relevant infor-
mation and relationships among words in a sentence. The
Transformer employs these strategies innovatively: on the
one hand, word embedding is learned while the entire
neural model absorbs everything from corpora; on the other
hand, the attention mechanism entirely replaces recursion,
presenting all words along with their vectorial embedding
simultaneously as input.

The Transformer architecture retains elements reminiscent
of the autoencoder (see Sec. III), featuring both encoding
and decoding components. Its seemingly straightforward task

involves reproducing the sequence of words it encounters
as input. The original version was designed for translation,
with an encoder for the input text and a decoder for the
text generated in a different language. A simplification was
later adopted by GPT (Generative Pre-trained Transformer),
consisting only of a decoder part, primarily for generating
text by completing a given prompt [93]. The famous public
interface ChatGPT is based on later models of the GPT
family [94].

The primary innovation of the Transformer lies in a simple
heuristic for gauging the relevance of each word in the
sequence relative to the current context, leveraging four
matrices known as key, query, value, and output. The key
matrix transforms the incoming words within the sequence,
while the query matrix transforms the words generated in the
output. The scalar product of these two matrices modulates
the outcomes of the other two matrices. The value matrix
operates on the input sequence, while the output matrix
affects the output sequence. This mechanism governs which
information is extracted from the source words and how
it is incorporated into the destination. The matrices are
learned dynamically during the training process, in tandem
with the conventional feed-forward neural weights of both
the encoders and decoders. Moreover, the representation of
words as neural vectors is not fixed from the outset but is
gradually acquired through exposure to extensive corpora.
In a discursive manner, the attention mechanism produces a
vector where information from all the words preceding the
current one is mixed, weighted according to how relevant the
previous word is to the current one. Here, the synergy with
the other fundamental mechanism of the Transformer comes
into play: word embedding. The efficiency and completeness
in capturing every relevant word information in a numerical
vector, in every possible context of use, allow relying on
simple operations of linear algebra to capture the meaning of
the reciprocal syntactic and semantic relationships in a text.

In addition, the entire token expressed as an embedded
vector is divided into H portions, called heads, and the
identical mechanism described is applied separately to each
head. Only in the end are the various portions rejoined. The
idea is that an embedded vector combines different properties
of a word, and specific categories (e.g., the tense of verbs
or the gender and number of nouns and adjectives) always
occupy the same portions of the vector. Therefore, it is
convenient to process the network of relationships separately
between the characteristics of the various words in the text.

Neural language models powered by the Transformer
architecture can produce extensive essays comprising thou-
sands of words, conveyed in well-articulated language
and enriched with substantial content. The sudden and
unexpected appearance of models capable of fulfilling
Turing’s dream –conversing with human beings [95]– in
addition to opening the doors to many practical applications,
has sparked an intense theoretical debate. Questions are
being raised about how much neural language models truly
understand [17], [96], [97], [98], [99]; what the appropriate
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methods are for investigating their nature and their poten-
tial [100], [101], [102], [103]; whether they possess the ability
to understand the minds of their users [104], [105], [106]; and
even whether they possess consciousness [107], [108].
While AI has made significant strides in understanding and

generating natural language, there remains ample scope for
improvements. The journey ahead necessitates technological
innovations and an intense focus on the ethical, transparent,
and responsible use of these systems. The future that
combines these will unfold a new era of AI language
processing capabilities for a breadth of practical cases.

B. IMAGE PERCEPTION AND GENERATION
Artificial vision is the field where deep artificial neural
networks have unexpectedly revolutionized AI, approaching
human performance for the first time in history [109]. This
revolution began just over a decade ago [110]. In the wake of
this revolution, a new and unique perspective has emerged:
the combination of visual perception and image generation.
This concept was not present in the 50 years of image
processing tradition that preceded deep learning, which
primarily meant recognizing its content when processing an
image. In that era, image synthesis was a separate domain
entirely [111].
The idea that perception and generation are unified in

vision is supported by fascinating cognitive science and
neuroscience theories and evidence. However, these theories
and evidence have rarely been explicitly used to inform
the development of artificial vision systems. One immediate
example of this unity is the phenomenon of visual imagery.
When a person tries to picture an object or a situation,
they are essentially re-enacting an internally simulated
perception of that object or situation. It was debated whether
visual imagery shares features and mechanisms with visual
perception for a long time. While Kosslyn was a supporter
of this hypothesis [112], Pylyshyn flatly rejected it [113].
Recent evidence suggests that Pylyshyn was wrong. Studies
have shown that, in the absence of the visual stimulus, the
primary visual cortex is activated during visual imagery,
albeit with a simplified representation of the object of
interest [114]. This infers that visual imagery is not simply
a form of imagination but rather an internal simulation
based on the exact neural mechanisms of visual perception.
More recent evidence suggests a significant overlap in neural
processing during perception and imagery, encompassing
the visual, parietal, and frontal cortices. This indicates that
the two processes are more closely related than previously
thought [115], [116], [117]. Reusing the same neural circuit
is the foundation of mirroring, mental simulation (thinking),
imitation, deliberation, and mind reading [118].

1) THE IDEA OF AUTOENCODER
There are several ways to implement the unified approach
of perception and generation in deep artificial neural
networks. The oldest, yet still a fundamental component

in the most advanced models, is the autoencoder, a neural
network whose task is to reproduce its input as output
by learning a low-dimension representation of the input.
This may seem like a straightforward objective, but as the
autoencoder learns to replicate its input, it demonstrates the
ability to construct highly insightful and concise internal
representations of the data. This concept has been around
for quite some time [119] but has more recently served
as the cornerstone for the transition from shallow to deep
neural architectures [120], [121]. The critical challenge of
training neural architectures with multiple internal layers was
initially addressed by associating each layer with a Restricted
Boltzmann Machine [120]. This allowed the layers to be
individually pre-trained in an unsupervisedmanner. Adopting
autoencoders overcame the training costs associated with
Boltzmann Machines. Autoencoders permit the training of
the whole network like an ordinary fully connected layer. The
key idea here is to utilize the same input as the target output,
which trains each layer to optimize input reconstruction. The
overall result is a regularization of the entire model, akin to
the one achieved with Boltzmann Machines [122].

Regardless of specific implementation details, an autoen-
coder’s fundamental structure consists of two neural models.
The first is the encoder, responsible for computing a compact
representation of a high-dimensional input. The second is the
decoder, often called the generative model, which generates
high-dimensional data using the low-dimensional compact
representation as input. In the initial implementation of
the autoencoder for handwritten digit recognition [120], the
encoder was constructed by stacking feed-forward layers
with a decreasing number of units. At the same time, the
decoder consisted of feed-forward layers with a number
of units that mirrored those of the encoder in reverse
order. In subsequent developments, the encoder typically
comprises a hierarchy of convolutional filters interspersed
with nonlinear down-sampling. This architecture essentially
follows the design introduced by Hinton [110], which is
derived from the earlier Neocognitron model proposed by
Fukushima [123]. The corresponding decoder component
adopts the deconvolution approach [124], [125], [126], which
alternates convolution filtering with unpooling, ultimately
restoring the high dimensionality of the input image.

2) FROM AUTOENCODERS TO DIFFUSION MODELS
The autoencoder stands as a fundamental concept bridg-
ing the realms of perception and generation, and it is one
of the few outcomes of AI with a robust neurophysiological
counterpart [127]. The autoencoder has served as the genesis
of numerous divergent approaches, departing from their
initial biological inspiration and evolving into the cornerstone
of today’s most influential AI generative models for image
generation.

While the primary focus of deep learning developments at
the start of the past decade was on enhancing the successful
Convolutional Neural Networks (CNNs) architectures, the
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autoencoder found its path, mainly due to its compelling self-
supervision potential. One notable achievement in recogni-
tion systems inspired by the autoencoder paradigm is the U-
Net, initially designed for medical applications [128]. Kulka-
rni [129] harnessed the latent autoencoder representations
effectively for discriminating individual graphical attributes
within images, including location, pose, lighting, texture,
and shape. During this same period, a probabilistic variant
of the autoencoder gained rapid popularity, wherein each
element of the latent vector incorporates both the mean and
variance parameters of a Gaussian distribution. This variant
is commonly referred to as the variational autoencoder [130],
[131], and, akin to the deterministic autoencoder, it offers
the valuable advantage of self-supervision [132]. A notable
image processing model that combines variational autoen-
coders with convolution layers is PixelVAE [133].
A pivotal advancement that greatly influenced the exclu-

sive generative utilization of autoencoders was the intro-
duction of stacked denoising autoencoders [121]. In this
innovative approach, the original image undergoes a gradual
degradation by adding Gaussian noise. Each autoencoder
stage takes a specific level of degradation as input, aiming to
encode the immediate level with reduced noise in its output.
Through the sequential chaining of these autoencoders, there
is a progression from an almost uniformly noisy state to the
best achievable reconstruction of the original image.

The immediate benefit of this framework in typical
recognition or detection tasks is its effectiveness in han-
dling noisy images. However, the true novelty lies in the
framework’s ability to generate high-quality images by
randomly sampling a matrix filled with Gaussian noise.
Denoising autoencoders share similarities with formulations
inspired by principles from physics [134], where degradation
occurs through probabilistic diffusion, resembling processes
in non-equilibrium statistical physics [135]. The degradation
operation may be produced by down-sampling, blurring,
or Gaussian noise [136]. In all instances, the reverse trans-
formation is learned through conventional neural approaches,
and these methodologies are collectively referred to as
diffusion models [137].
One of the early and still widely used proprietary tools for

generating images with diffusion models is Midjourney.6 In
a parallel vein of development, a team at Ludwig Maximilian
University of Munich [138] shifted the perturbation process
from the input/output of the autoencoders into the latent
space. This not only reduced complexity but also notably
enhanced image quality. They called this solution stable
diffusion, with support from the company Stability-AI.

Thus far, the intersection of perception and generation
has yielded formidable methods for synthesizing images
without any initial visual cues; they can be generated entirely
randomly (see Fig. 2 for a couple of examples). However,
imagination is inherently non-random, and for most practical
purposes, a trade-off is necessary between creativity and

6https://updates.midjourney.com/

FIGURE 2. Images generated by DALL-E 3 when giving as prompt the title
of this paper: ‘‘Artificial Intelligence in Science and Society: the Vision of
the Universal Scientific Education and Research Network.’’.

alignment with the intended image’s purpose. This raises the
question of how to ‘‘condition’’ or ‘‘guide’’ the model toward
generating the desired type of image.

With the wide availability of deep learning classification
models, it has become easy to integrate generative models
with classifiers. This allows for selecting images with a high
probability of being categorized into a specific class. Conse-
quently, users can designate one or more standard ImageNet
class labels to steer the image generation process [139].

3) THE TRANSFORMER MILESTONE
The Transformer architecture has also affected the field
of computer vision, providing an excellent solution to the
previously mentioned challenge: guiding image generation
according to user preferences. Whether you are a fashion
designer, a magazine cover illustrator, or an altermodern
painter, there are no more effective means of articulating your
creative vision than through natural language. The emergence
of neural language models equipped to comprehend natural
language descriptions reveals an exciting new avenue for
exerting precise and captivating control over image genera-
tion.

The OpenAI team achieved a groundbreaking milestone
by introducing the first Transformer-based image gener-
ation model, known as DALL-E [140]. This remarkable
achievement was made possible through a series of research
endeavors that, driven by the success of Transformers in
natural language processing, explored the direct application
of this technology to image processing [141]. A pivotal
aspect of this development is the concept of ‘‘image
tokenization,’’ which involves efficiently segmenting images
into a one-dimensional sequence of encoded vectors. While
preserving all visual features captured by CNNs in a linear
token sequence can be challenging, it proves sufficient
when the objective is to align images with natural language
descriptions to control image generation. In the case of
DALL-E, this challenge is addressed by preprocessing
images with variational autoencoders, compressing a 256 ×

256 RGB image into a 32 × 32 grid of tokens, each having
8192 potential values. The text component is processed
during generation to generate the most likely sequence of
‘‘image tokens’’ as the output. In the second version of

16004 VOLUME 13, 2025



T. Dorigo et al.: Artificial Intelligence in Science and Society: The Vision of USERN

DALL-E, the image generation aspect is further enhanced
by including a diffusion model decoder, which derives its
latent information from the Transformer-tokenized repre-
sentation of the predicted image. This combination of a
Transformer-based approach for simultaneous learning of
text and related images, coupled with a diffusion model to
enhance output quality and resolution, has become a pivotal
factor in the ongoing advancement of generative models.
Notably, Google’s ImaGen Google [142] is a testament to
the continued evolution of such models. Meta has made
another notable achievement with the DINO model [143],
a self-supervised learning algorithm for training Vision
Transformers (ViTs) without needing large amounts of
labeled data. DINOworks by training two ViTs, a student and
a teacher. The student is trained on augmented or distorted
versions of images, while the teacher is trained on the original
images. The student model is then asked to predict the
original image from the augmented image. By doing this,
the student model learns to identify and preserve the images’
essential features, even when distorted.

Generative AI rapidly integrated itself into the creative
toolkit of artists and designers. A pioneering moment in
the art world occurred when Jason Allen’s piece, ‘‘Théatre
D’opéra Spatial,’’ generated using the Midjourney tool,
obtained the first artistic award ever won by an AI-created
work at the Colorado State Fair Fine Arts Competition. As of
September 2022, OpenAI reported that over 3,000 artists use
their DALL-E AI system from 118 countries.

Unsurprisingly, the art world did not uniformly embrace
this innovation with enthusiasm. Many scholars and critics
raised concerns regarding potential risks to the integrity
of an artist’s work and the evolving concept of art and
creativity. Consequently, a profound and ongoing debate
has emerged, addressing the implications of generative
AI from a multitude of perspectives: psychological [144],
philosophical [145], and sociological [146]. This debate is
intricate and multifaceted, a topic that is beyond the scope
and purpose of this discussion. Instead, we believe that the
sentiments of media researcher and artist Zylinska [147]
eloquently capture the essence of this discourse: ‘‘It is worth
remembering that the anxiety evoked by ML technology in
relation to art has historical precedence. In the early 1820s,
for example, it was feared that the invention of photography
would lead to the death of painting. Instead, photography
generated an explosion of new ways to see and create
images—including painted ones’’.

Equally unsurprising is the regulatory world’s struggle
to deal with the disruptive effects of these technologies
in various legal domains, as they impact multiple areas,
such as privacy, copyright, civil liability, cybercrime, and
disinformation. While it will take some time for these
various sectors to accommodate Generative AI’s specificities,
the AI Act proposes harmonized rules for the design,
development, and post-market monitoring of AI systems
throughout the European Union’s market. It uses a risk-
based approach, categorizing artificial intelligence systems

into unacceptable, high, limited, and minimal risk levels.
On this basis, the regulation offers a three-pronged approach
concerning Generative AI.

First, generative models will be categorized according to
the risk levels identified for the AI systems into which they
are implemented. Thus, they could, for instance, be prohibited
(unacceptable risk) or subject to requirements before entering
the market (high risk).

Second, the limited risk category is particularly relevant for
systems implementing Generative AI models, and notably,
its requirements can be combined with those of high-risk
systems. Article 50 establishes that artificially generated
or manipulated content (text, audio, image, or video) must
be marked as such by the provider in a machine-readable
format (e.g., via watermarks). The deployer must disclose
the artificial nature of the output. At the same time, humans
must be informed that they are interacting with systems such
as chatbots (typically based on language models). These
so-called transparency measures for limited risk systems
relate to the nature of the system and its output. They
are intended to promote trust, prevent manipulation and
disinformation, and enable informed choices by individuals
who interact directly with an AI system or are exposed to
AI-generated content as a kind of informed consent [148].

Third, general-purpose AI models, including Generative
AI models, will also be subject to specific documentation and
copyright compliance requirements (article 53). In addition,
general-purpose AI models with systemic risk will be
required to assess and mitigate potential systemic risks,
ensure adequate cybersecurity, and document and report
serious incidents and relative mitigation actions (article 55).

C. AUTONOMOUS VEHICLES
Autonomous vehicles (AVs) are one of the simplest forms
of embodied AI. They have a narrow AI goal, which is safe
and efficient locomotion on roads (safe and efficient driving).
The vision of self-driving vehicles has notable precursors in
the European ‘‘Prometheus’’ project from the early 1990s
and the US DARPA Challenges (2005-2007). As a form of
embodied intelligence, AVs have a body that must respond to
environmental stimuli while pursuing long-term navigation
goals. Given the definitions we have provided in Sec. II, they
are examples of agents that require cognitive abilities [149]
(and are potentially suitable for consciousness, according to
what we posited in Sec. II).

The dominant sensorimotor architecture (Fig. 3, top)
of today’s AVs follows a traditional control engineer-
ing approach consisting of three sequential functional
blocks [150]: 1) a perception block that creates a symbolic
‘‘representation’’ of the road environment, 2) a decision block
that plans a behavior by reasoning over the symbol set,
and 3) a control block that actuates the behavior through
lower-level control loops.

The definition of the atomic symbols for the output of the
perception layer is made by human designers. Thus, although
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FIGURE 3. Top: the sense-think-act architecture used for self-driving
systems. Bottom: the end-to-end architecture. Both are functions that
map sensory data to control actions. The systems will always respond in
the same way to the same input (except for noise) and cannot be
considered as having conscious internal initiatives.

the perception layer may contain large trainable neural
networks that classify sensor data into different entities, the
output classes are predefined and fixed. If an entity that does
not belong to the predefined classes occurs, it is forced into
the closest class or ignored. That was the source of a fatal
accident involving a UBER car that hit a pedestrian who
was walking with a bicycle, as such a pattern could not be
recognized into a predefined class by the vehicle’s perception
system [151], [152]. A review of AI techniques for crash
prediction may be found in [153].

Then, following the choice of the symbols for the world
‘‘representation,’’ engineers design the algorithms for the
decision block. From an engineering perspective, this is
expected to guarantee that the systems are verifiable and
that their safety and performance can be guaranteed. Unfor-
tunately, the complexity of the situations that a self-driving
agent may face generates complex rules and algorithms –see,
e.g., [154] and [155].

The two shortcomings above may explain why the recent
development of autonomous driving technology is impeded
by the continued emergence of many edge and corner
cases [156], [157], [158], [159], with a long tail of unexpected
situations in which cars are unable to act [160] or act
dangerously [151], [152].
From the perspective of AI, self-driving vehicles engi-

neered with the sense-think-act architecture look closer
to complex control systems rather than genuine artificial
intelligent agents. They are programmed by human beings
and evolve only with human re-coding. As such, these
systems are deterministic controllers. Their output depends
on the input and may vary only because of noise in the
perception-action chain. One can consider these systems to
possess some cognitive abilities. Still, they are not conscious,
have no ‘‘free will,’’ and will not have any self-initiated
goal other than responding in a programmed way to the
environment and vehicle states.

As an alternative to the sense-think-act architecture (Fig. 3,
bottom), NVIDIA demonstrated a lane-keeping function

trained end-to-end, given raw sensory input and steering
examples from an expert human driver [161]. However, in the
following studies, Waymo stated that ‘‘simple imitation of a
large number of expert demonstrations is not enough to create
a capable and reliable self-driving technology’’ and studied a
perturbative approach to creating synthetic data that help to
generalize self-driving abilities [162]. These efforts witness
the attempt to explore different cognitive architectures, which
are discussed next. Although the implementation is different,
the following systems are still simple functions that map input
to output and are unconscious.

D. ROBOTICS AND HUMAN-ROBOT COOPERATION
Compared to autonomous vehicles, robots are more complex
forms of embodied AI. Theymay have amore comprehensive
set of AI goals involving abilities such as manipulating
objects (for example, the dexterous manipulation of tissues
is exceptionally challenging), locomotion in completely
unstructured environments, and interaction and cooperation
with humans.

A significant difference between embodied intelligence
and LLM is that embodied robots can act on the environment
and observe the consequences of their actions. In this way,
they can explore the world in autonomy via generalized
motor babbling and construct predictive models of increasing
abstraction levels. This gives embodied AI the ability to
refine behaviors, acquire new behaviors, and, in principle,
new goals. If a robot develops selfish goals and behavior, the
gap between a cognitive system and consciousness shrinks,
albeit it is hard to say whether this mechanism alone may be
sufficient to reach consciousness. Below is an example of a
robot capable of extending its sensorimotor system. However,
let us first recall precursor cognitive architectures.

The subsumption architecture [163] generates behav-
iors using perception-action loops organized hierarchically.
It starts from simple behaviors at the bottom and creates
more complex behaviors at higher levels by subsuming lower
levels. The topic of action selection, i.e., which of the many
behaviors created in parallel by subsumption architectures
takes control of the agent, was studied by Prescott [164], indi-
cating that a centralized switching mechanism is preferred.
With centralized action selection, the system is scalable: new
behaviors can be added to the stack (or learned). As long
as they provide the behavior reward on a standard currency
scale, they become immediately available for selection to the
agent. Adaptive behaviors and learning of new behaviors are
obtained seamlessly with layered control architectures (the
name given to subsumption architectures with centralized
action selection).

Notably, layered control architecture in robotics parallels
the affordance competition hypothesis in natural cogni-
tion [165], where the brain’s ‘‘dorsal stream’’ responds to
affordances by instantiating potential actions in parallel.
Then, the basal ganglia selects one using a competition
process based on estimating their rewards.
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FIGURE 4. A cognitive architecture that can learn models of the world
and use them to self-extend its sensorimotor repertoire.

Layered control architectures have two primary learning
loci: one is learning biases in the action selection process,
which can be used to steer the behaviors according to long-
term goals [166]. This process may be realized through
reinforcement learning or othermethods. The second learning
mechanism consists of expanding the subsumption stack,
which can happen in several ways. A promising approach
is generative AI: the perception-action loops are made
of generalized autoencoders with various branches, which
resembles the organization in ConvergenceDivergence Zones
proposed by Damasio [167]. With generative AI, different
objects are encoded separately in the latent space, avoiding
using predefined symbols. The symbols are instead learned.
These symbols are often qualified as ‘‘modal’’ because
they are linked to the states of the neural convergent and
divergent zones that produce the particular patterns in the
latent space. Re-activation of those states can reconstruct
the corresponding input or predict corresponding motor
behaviors (similar to image perception and generation but
declined to sensorimotor control). Learning the evolution
of modal symbols across time corresponds to learning
predictive models. In turn, predictive models can be used to
imagine hypothetical events and derive novel action strategies
[127], [168].
A final benefit of the layered control architecture is

emergent human-robot interaction [169]. This relies on
a modified version of action selection where actions are
selected according to the similarity with the activity of a
human with which the agent intends to cooperate.

An example of a robot with the above capabilities is
the self-driving agent developed in the EU-funded project
Dreams4Cars.7 The robot sensorimotor architecture is shown
in Fig. 4, superimposed on the outline of a brain, inspired
by Cisek’s affordance competition hypothesis. The red arrow
is the primary perception-to-action loop. It creates many
potential actions by responding to affordable actions offered
by the environment. The action selection loop selects one
of them via a competition process and gates it to the
motor system. In this way, the agent achieves basic adaptive

7www.dreams4cars.eu

behavior [170]. However, by noting the consequences of
actions, the agent can learn models of the world (the violet
feedback loop and the red arrow in the inverse direction).
These models have various uses [118], [171]. Among them,
learned models of the world can be used to simulate the
real world mentally (without engaging in dangerous actions)
to develop action strategies safely. Once created, these new
sensorimotor behaviors can be incorporated into the primary
action priming loop and extend the agent’s capabilities [172],
[173]. Alternatively, biasing strategies can be developed to
steer action choices towards those more beneficial for the
agent [174] (this is where hypothetical consciousness might
control the agent).

Concerning the purpose of the present paper, we note that,
compared to the self-driving agents of Fig. 3, several feedback
loops now allow the agent to self-extend its capabilities.
Hence, while at any given time, an agent always responds in
the same way to external stimuli (hence, it is not conscious),
with time, it can evolve its abilities and improve its ways of
dealing with problems. The agent evolution was supervised
in Dreams4Cars by human operators who decided which
scenarios should have been analyzed. However, in principle,
an agent could explore hypothetical scenarios randomly and
–without supervision– we cannot exclude that the agent
develops selfish (but dangerous for humans) behaviors.
Hence, some mechanism for approval of learned behaviors
should be set. Compared to humans, artificial agents can also
share learned behavior in a much easier way. This may be
useful (for example, a population of cars can learn a safer
behavior from one rare, dangerous event that happened to one
agent). Still, it can also create the risk of quickly spreading
undesirable behavior.

Thus, from the perspective of artificial intelligence, the
robotics cognitive architectures described above are capable
of different forms of learning. Hence, they can evolve
autonomously. The agents have cognitive states. However,
given the definition we provided in Sec. II, the simple posses-
sion of cognition does not imply such agents are conscious.
Nonetheless, guaranteeing ethical and safe self-evolution is
an open point.

E. MULTIMODAL SYSTEMS AND AGI
In recent years, multimodal systems have emerged as a
critical area of focus within AI research. These systems
concurrently utilize multiple input or data types (e.g., text,
image, video, audio) to make more nuanced interpretations,
decisions, and predictions. Key advancements include image
captioning, visual question answering, and audio-visual
speech recognition.

Various architectures have been developed to tackle
multimodal tasks as part of the continual innovations in AI.
We mention a few of them below.

• Multimodal Transformers. Recent technologies have
seen an extension of transformer-based models from
the realm of Natural Language Processing (NLP) into
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the multimodal domain. These models are proficient
at dealing with multimodal data using self-attention
mechanisms that enhance their learning capabilities
from multiple data sources.

• The Late Fusion CNN-RNN model is a hybrid architec-
ture for video classification tasks. The model employs
a CNN for extracting frame features and a Recurrent
Neural Network (RNN) for sequentially encoding those
features. The model’s architecture allows it to process
videos in a manner that accounts for both the visual
content (CNN) and the temporal dynamics (RNN).

• ViLBERT (Vision-and-Language BERT) is a model
architecture designed for tasks that require understand-
ing both visual and textual content. It features two
parallel BERT (Bidirectional Encoder-Representations
from Transformers) models, one each for vision and
language, connected through co-attentional transformer
layers. This architecture allows effective communication
between the textual and visual streams.

• Developed by Facebook AI, MultiModal Framework
(MMF) is a multimodal research framework to facilitate
the development of vision and language models. It is
used in models like VisualBERT and MMBT (Modular
Multimodal BERT), which effectively combine text and
image data for various tasks such as image-text matching
and visual question answering.

• LXMERT (Learning Cross-Modality Encoder Repre-
sentations from Transformers) is another prominent
example of multimodal transformer models. It accom-
modates visual and textual data, possessing separate
encoders for each and a cross-modality encoder for
integrated processing.

The architectures mentioned above underline the potential
held by multimodal systems in advancing AI’s capabilities.
However, despite these advances, finding an effective way
to synchronize data from different modalities continues to be
challenging, driving ongoing innovations in this area.

1) LIMITATIONS AND IMPROVEMENTS
Despite the progress shown by the above systems, challenges
persist. For instance, integrating heterogeneous data and syn-
chronizing different modalities remain significant hurdles.
While the field has seen impressive growth, there is still much
room for improvement to advance models’ accuracy, context
understanding, and real-time performance in complex, real-
world environments.

2) ARTIFICIAL GENERAL INTELLIGENCE
The ultimate goal inAI research is to achieve artificial general
intelligence, an AI system with generalized human cognitive
abilities to understand, learn, and apply knowledge across a
broad range of tasks. Despite substantial progress in the past
few years, AGI remains hypothetical, with tangible examples
yet to surface in the real world.While multimodal systems are
a steppingstone towards developing AGI, it is critical to note

that AGI’s realization involves addressing challenges beyond
technical feasibility, including ethical implications, societal
readiness, and regulatory landscape adaptation. Wreturnck to
these issues in Sec. V.

3) THE NON-AXIOMATIC REASONING SYSTEM (NARS)
NARS, or the Non-Axiomatic Reasoning System, is a
model designed to embody a theoretical understanding of
intelligence that is abstract enough to apply to human
cognitive processes and artificial intelligence systems. This
model is distinctive because it does not focus on specific
application problems but aims to provide a general-purpose
system that can handle various tasks, including those not
anticipated by the system or its designers [175], [176].

NARS is intended to be an Artificial General Intelligence
(AGI) system. It is designed to abstract intelligence from
human intelligence, focusing on the ability to adapt and
function in a wide range of situations, not limited by the
specific biological characteristics of human brains. The
system is structured to handle tasks and problems that are not
predefined or anticipated, making it a general purpose. This
aligns with the goals of AGI, which aims to create systems
that can perform any intellectual task that a human being can,
rather than being confined to narrow, specialized tasks typical
of many contemporary AI systems.

The architecture of NARS emphasizes adaptability,
resilience to insufficient knowledge and resources, and the
capability to learn from experience, all of which are key
attributes desired in AGI systems. It does not attempt to
model human thought processes or learningmethods directly;
instead, it develops its problem-solving strategies based
on its interactions and experiences, further underlining its
alignment with the broader objectives of AGI.

The core principle behind NARS is the ‘‘Assumption
of Insufficient Knowledge and Resources’’ (AIKR), which
posits that any intelligent system must operate under limited
knowledge and constrained resources. This leads to a system
that, rather than striving for perfect or optimal solutions,
prioritizes flexibility, adaptability, and originality. NARS
uses a unique approach to reasoning based on experience and
adapts over time, reflecting the system’s ongoing interaction
with its environment. This model contrasts with traditional AI
models that often rely on fixed, pre-programmed knowledge
or purely statistical learning mechanisms [177].

In summary, NARS represents a significant departure from
conventional artificial intelligence paradigms by emphasiz-
ing an experience-based and adaptive reasoning process.
Its flexibility may be the key to avoiding many potentially
dangerous behaviors that an autonomous agent endowed with
superintelligence might otherwise develop.

F. BRAIN-COMPUTER INTERFACES
Brain-Computer Interfaces (BCI—also known as Brain-
Machine Interfaces) are systems that can translate observed
brain activity into commands or messages for interactive

16008 VOLUME 13, 2025



T. Dorigo et al.: Artificial Intelligence in Science and Society: The Vision of USERN

applications [178], [179]. A typical example of a BCI is a
system that enables users to move a cursor on a computer
screen towards the left or right, simply by imagining
movements of the left and right hand, respectively. Such
imagined movements can be recognized from the user’s brain
activity, typically measured by ElectroEncephaloGraphic
(EEG) electrodes placed on the user’s scalp. BCIs might find
numerous applications, including enabling (severely) motor-
impaired users to control assistive technologies, e.g., spellers,
power wheelchairs, or prostheses; for real-time mental state
monitoring and adaptive interaction (e.g., to adapt the level
of automation of an autonomous system to the users’ mental
workload); or for motor and cognitive rehabilitation, among
others [180].

1) ARTIFICIAL INTELLIGENCE IN BCI DESIGNS AND
APPLICATIONS
Many BCI systems are based on AI [181], [182] and have
been so since some of the first pioneer BCI designs [183].
Indeed, BCIs notably use Machine Learning classification
algorithms to recognize the users’ EEG patterns associated
with a given mental state or intention, e.g., an imagined
left-hand movement or a high cognitive workload (a.k.a.
mental efforts). Most BCI designs are based on so-called
shallow classifiers (e.g., Linear Discriminant Analysis or
Support Vector Machines) [181]. Still, like many other fields,
a rapidly increasing number of studies andworks now explore
Deep Learning for EEG classification and BCI designs [182],
[184]. However, it should be noted that, contrary to other
domains such as image or speech recognition, there has not
been, at least not so far, a Deep Learning revolution in BCI.
Most international brain signal classification competitions
are not won by Deep Learning methods, probably due to a
lack of large brain signal BCI databases, but by so-called
Riemannian Geometry algorithms [185], [186], [187], which
manipulate EEG signals represented as covariance matrices.
This may change in the future, as several efforts are made
to gather large EEG data sets by combining the efforts of
multiple laboratories [188] or by finding ways to reuse vari-
ous existing data sets together [189]. Finally, more recently,
AI algorithms have been used not only for EEG and brain
signals classification but also in the design of the BCI-based
application itself, typically to adapt dynamically, in an
automatic and intelligent way, the application or interface
to the users’ mental states. This can, for instance, enable to
automatically adapt the level of automation assistance using
Partially Observable Markov Decision Process (POMDP)
[190], [191]; to propose a personalized sequence of training
exercises using Intelligent Tutoring Systems (ITS) [192],
[193]; or to learn the users’ long-term goals and a model of
the users using Reinforcement Learning (RL) [194], [195].

2) APPLICATIONS OF AI-BASED BCIs
This section presents a brief overview of the various
applications of BCI to illustrate its potential and capabilities.
It does so by distinguishing invasive BCIs, which measure

brain signals from within the skull or even within the brain,
using implanted electrodes, from non-invasive BCIs that only
use sensors placed on or around the skull [178]. Indeed,
these two BCI categories have different capabilities – sensors
implanted in the brain naturally have much better signal
quality and information – but they also target different user
populations and have more significant risks.

During the last few years, there have been several
impressive developments in invasive BCIs, notably those
that are based on chronically implanted brain sensors, such
as Micro Electrode Arrays (MEA) implanted in the brain
(the more invasive sensors) or ElectroCorticoGram (ECoG)
implanted below the skull but on top of the brain (thus less
invasive). These chronic implants enabled long-term data
recording from a given patient, leading to large amounts of
data available for AI algorithms and long-term user training,
which can also significantly improve BCI performances and
capabilities. Indeed, BCI control is a skill that needs to be
learned and trained [196]. In the domain of neuroprosthetics,
invasive BCIs have notably enabled tetraplegic users to
control robotic arms with up to 10 degrees of freedom with
MEA [197], [198] or to control a full exoskeleton with
up to 8 degrees of freedom with EcoG [199]. Combining
invasive BCI with invasive muscle stimulation or brain
stimulation to provide artificial sensations also improved the
control over neuroprosthetics [200], [201]. Invasive BCIs
have also recently made impressive progress in BCI-based
communication, with some works enabling an implanted BCI
user to spell up to ninety characters per minute, using brain
activity only, by imagining the gestures done to write these
characters [202]. Even more recently, direct speech decoding
was demonstrated, with a spelling speed of 62 words per
minute with MEA [203] and 78 words per minute with
ECoG [204].

Despite less impressive results due to lower quality
signals that are also less informative, non-invasive BCIs,
notably those based on EEG, are much more popular and
more studied. They are also more likely to be usable by
many users since they do not require surgery. The most
promising applications of non-invasive BCIs can be gathered
in three main categories: assistive technologies [205], Motor
and Cognitive Rehabilitation [206], and NeuroAdaptive
Technologies (NAT) based on mental state monitoring [207].
Note that there are also works in which non-invasive BCIs
can be used for direct control of applications for healthy
users, e.g., to control video games [208]. However, the current
(un)reliability of non-invasive BCIs (e.g., current EEG-based
BCIs that recognize left or right imagined movements make
about 20-25% of errors on average, while between 10% to
30% of BCI users cannot use current EEG-based BCIs [209])
make them unlikely to be used in practice outside the lab,
at least in the short term.

In terms of assistive technologies, EEG-based BCIs have
been used to control wheelchairs (to go forward, turn left
or right by imagining, e.g., foot, left-hand or right-hand
movements respectively), simple prosthetics (e.g., opening or
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FIGURE 5. Illustration of a BCI being used to monitor User eXperience
(UX) from EEG signals to assess and adapt 3D interaction tasks
accordingly (
Inria / Photo H. Raguet).

closing a prosthetics hand), and spellers [205]. The latter is
generally based on so-called reactive BCIs [210]. With such
reactive BCIs, different letters are displayed on the screen,
and a specific visual stimulus is usually overlaid on each letter
(a different one per letter). Suppose the user pays attention to
one such stimulus. In that case, this evokes a stimulus-specific
brain response that can be detected in the user’s EEG signals
to select the corresponding letter [211]. Latest developments
in EEG-based BCI spellers enabled spelling speed at a rate of
up to thirty-five error-free characters per minute [212], [213],
and have become commercial products, e.g., Intendix from
g.tec8 or MindAffect.9

Regardingmotor and cognitive rehabilitation, non-invasive
BCIs are notably promising for post-stroke motor rehabilita-
tion [214]. Indeed, patients who suffer from a stroke may be
paralyzed in a limb due to a stroke lesion in the corresponding
brain area. Such paralysis may prevent the user from
benefiting from physical therapies. However, since BCIs can
detect motor intention and imagination from EEG signals,
they can be used to guide the patient to use the damaged
brain area, even if they are unable to move the corresponding
limb: dedicated feedback, e.g., visual feedback of a 3D
hand moving on screen or tactile input on the paralyzed
hand, can be provided when the BCI detects a movement
intention. This can stimulate brain plasticity in the damaged
brain area and thus help towards recovery. Recent research
and meta-analyses have shown that BCI-based post-stroke
motor rehabilitation is clinically effective (in complement to
traditional therapy), and it leads to better rehabilitation than
motor imagery or functional electrical stimulation therapy
alone [214], [215], [216]. Currently, further applications of
BCI-based post-stroke rehabilitation are being investigated,
including post-stroke speech rehabilitation [217] or cognitive
rehabilitation [206].

Finally, non-invasive BCIs can be used for real-time
mental state monitoring (e.g., see Fig. 5). Indeed, these

8https://www.gtec.at/
9https://www.mindaffect.nl/

instruments can monitor cognitive, affective, or conative
(i.e., related to motivation) states, such as mental workload
(related to mental efforts), attention levels, valence or arousal
(emotional states), error perception or curiosity [210], [218],
[219], [220], [221]. Naturally, recognizing such mental
states is far from perfect, as always with BCIs, with
classification accuracies in the range of 60% to 90% to
distinguish two mental states (e.g., curious vs non-curious
or perceived error vs no error). Monitoring such states
opens the door to many promising applications, so-called
NeuroAdaptive Technologies (NATs), that dynamically adapt
to the user’s mental state. For instance, NATs can provide
optimal sequences of training exercises adapted to the mental
efforts of the user for education. They can also be used for
neuroadaptive gaming, to adapt the difficulty of the game to
the attention or stress of the user, or for intelligent cockpits,
to adapt the information provided in the cockpit to the pilot’s
attention or mental workload, to ensure they do not miss
alarm or relevant information [207].

3) POTENTIAL BENEFITS AND RISKS OF AI-BASED BCIs
BCIs are very promising for many applications, as they
could enable severely motor-impaired users to regain some
autonomy and independence, thanks to BCI-based assistive
technologies, notably for prosthetics and speller control. They
are also promising for the rehabilitation of stroke patients to
improve their motor, speech, or cognitive recovery. Finally,
mental state monitoring can enhance education efficacy
and efficiency, entertainment quality, or safety in critical
environments.

Naturally, AI-based BCIs are not without risk either. Since
they can monitor brain activity and adapt the interaction with
users accordingly, they might be used for ethically debatable
applications when not for applications that should be
forbidden altogether. For instance, BCIs can be (and are) used
for neuromarketing, possibly for tailoring the advertisement
shown to users according to their preferences decoded
by a BCI, thus influencing –possibly without the users’
knowledge- what they will buy. Similar approaches could
influence political preferences or, in general, unknowingly
manipulate users. To the best of our knowledge, there are
no reports in scientific publications that this is feasible in
practice, but this seems theoretically a possibility. BCIs could
also monitor workers or students (e.g., are they working hard
enough based on their estimated mental workload?). Again,
these are only possibilities but not realities so far, but these
are risks one needs to consider. In general, data privacy
is a concern for BCI. Responsibility is another concern:
when using an AI-based BCI to control an application if this
application (e.g., a wheelchair) creates an accident, who is
responsible? These questions and others are ethical and legal
questions that would need to be debated and answered [222].

Interestingly enough, the OECD has developed guidelines
for responsible innovation in neurotechnologies,10 which

10https://www.oecd.org/science/recommendation-on-responsible-
innovation-in-neurotechnology.htm
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include BCIs. Such policies are currently being implemented
in the various OECD states. This is a first step towards
limiting the risks of AI-based BCI use. However, these are
only guidelines which are non-constraining. Actual laws
are probably needed, such as the neuro-rights that Chili
implemented in its constitution.11 The recent EU AI act also
aims at regulating affective computing, to which some passive
BCIs are related [6].

IV. AI IN SCIENTIFIC RESEARCH
In this section, we examine the state-of-the-art application
of AI technology to a selection of scientific research areas,
focusing on the crucial elements that are reshaping the field
and will drive innovation in the future. In so doing, we also
try to identify the most promising and the most dangerous
aspects of this impending revolution. Consideration of
the latter, in particular, will inform a discussion aimed
at imagining preemptive measures and possible areas of
intervention where we may successfully mitigate or avert
the threats posed by a fully unsupervised and unconstrained
diffusion of AI.

A. PHYSICS
Physics is traditionally a field of scientific investigation
where new ideas and methods emerge and develop only
after a difficult gestation period. During that transition,
the community goes through a multi-stage process that
sometimes may last for a long time. This inertia exists
because, in general, physicists are trained to automatically
doubt and ruthlessly question new claims and revolutionary
ideas. They acquire that attitude by working in a field of
science that moves slowly and where genuine revolutions are
rare. At the same time, ill-supported or made-up claims of
disruptive innovations come in at a steady pace. In such an
ecosystem, it pays off to err on the side of caution and align
with the establishment.

At what we might call ‘‘stage zero,’’ a new idea (either
a new physics theory, a new instrumental technique, or a
new method to extract inference from data) does not receive
enough attention to even be worthy of a reaction by the most
influential members of the community: it may then remain for
a significant amount of time a topic that is only considered
and investigated by the few researchers who brought it up
in the first place. At this stage, it may be very difficult for
the proponents to get the person-power and the resources
required to develop their ideas, acquire funding to increase
the effort, or publish interim results. Stage one in the path
of acceptance takes place when the new idea is finally
brought to the attention of a significant number of academics,
e.g., by being presented at an international conference or
published in visible publications, at a level at which it
cannot be ignored any longer. The academic establishment
is then likely to express an evaluation or a reaction. The

11https://en.unesco.org/courier/2022-1/chile-pioneering-protection-
neurorights

FIGURE 6. The Higgs boson signal (red histogram) overlaid to known
processes involving the production of a Z boson and other particles that
could mimic the signal characteristics in the ‘‘golden’’ four-lepton final
state, extracted by the CMS experiment from 10.31 inverse femtobarns of
7- and 8-TeV proton-proton collisions produced in 2011-2012 by the Large
Hadron Collider. Experimental data are shown by black dots with vertical
uncertainty bars; blue and green histograms show expected backgrounds.

reaction is almost universally one of general skepticism; it
may include direct attacks that leverage weaknesses in the
less well-developed aspects of the proposed idea, ignoring
its strong suits. Proponents at this stage may struggle in the
uphill fight to acquire a sufficient consensus from their peers
and often get marginalized or even discriminated against12

[223]. Only when a sufficient part of the community is
convinced of the soundness of the new proposed innovation
does a transition occur to ‘‘stage two,’’ when the idea may be
exploredwith significant resources and start to attract funding
and the interest of young researchers. Yet even then, it is
quite common for a good part of the community –typically
represented by the old-schoolers– to remain critical or even
openly opposed to the innovation. Eventually, old schoolers
graciously tone down their criticism or simply retire or die.
That is stage three, when the new idea and its consequences
revolutionize the field.

1) THE PAST
The general multi-stage path outlined above is not dis-
similar to the slow-motion rise and adoption that artificial

12A fitting example of this situation is the ‘‘dynamical likelihood’’
technique developed by Kunitaka Kondo and collaborators in the late 1980s.
The method was meant to apply to data analysis in the CDF experiment at
the Fermilab Tevatron collider, which (among other things) was searching
for a signal of the sixth quark, the top. Despite its soundness, the dynamical
likelihood method was never accepted for application in CDF analyses, and
over a decade had to pass before the technique was accepted as a highly
performant, correct method and was finally employed to measure the mass
of the top quark. It subsequently became a standard weapon in the toolkit of
particle physicists.
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intelligence methods saw in physics research. We may take
particle physics as an example to examine such develop-
ments. Particle physics, a field marked by a century of inter-
twined scientific progress and technological advancements,
seems ripe for innovation. Despite this, efforts to leverage
the rapidly growing computing power that became gradually
available at the end of the 20th century faced significant
challenges. During this ‘‘stage 0’’, indicatively starting in the
1980s [224], [225], [226], only a small number of researchers
experimented with the new complex algorithms and methods
for data analysis that had been made available by recent
advancements in computer science and statistics –including
statistical learning methods and neural networks; for a review
of early studies see [227]. Those pioneering attempts were
typically not backed up by the collaborations running large
collider experiments. Entering the 21st century, the decade
which we may associate with a ‘‘stage 1’’ according to the
schematization outlined supra, there was a gradual increase
in studies of what we now recognize as machine learning
techniques, such as decision trees, random forests, and
gradient boosting; yet despite this growing interest, the path
to publication of analysis results that made use of those
techniques remained arduous and uncertain, mainly due to the
scepticism of part of the scientific collaborations producing
the results, every member of which had the power to request
further studies and checks ad infinitum before submission to
a scientific journal could be made.

Finally, in 2012, a true paradigm shift happened, and
‘‘stage 2’’ started. The ignition point was the discovery of the
Higgs boson (see Fig. 6) [228], [229], for which the ATLAS
andCMS collaborations at the CERNLHC collider employed
machine learning techniques [230]. This coincided with the
rise of machine learning in other disciplines, mainly driven by
the success of algorithms for image classification in achieving
and surpassing human performance. Still, it took a few more
years to reach what we might recognize as ‘‘stage 3’’: old-
fashioned academics kept questioning for a little more time
the indeterminate nature of the mechanisms inside the ‘‘black
box,’’ the unknown way by which neural networks take their
decisions when applied to the classification or regression
tasks which are common in particle physics data analysis.

Today, the question, in particle physics as well as in
other adjacent fields of fundamental science investigation
(including astronomy and astrophysics, nuclear physics, and
related physics phenomenology areas), is not any longer the
way neural networks –which have grown ‘‘deep’’ even in
the most straightforward applications and settings– operate
their decisions. Rather, the question now is how to fully
exploit the latent potential of the large arsenal of tools
developed in computer science and how to customize, extend,
and improve the functionality of those new tools for the
specific tasks demanded by the investigation of frontier
physics. The revolution has fully taken place, and what
twenty years ago hadmoved from being labeled as ‘‘statistical
learning’’ (with an emphasis on the properties of the
estimators those algorithms could produce) to more properly

‘‘machine learning’’ (with an emphasis on the adjustment of
algorithms to the specific learning task, and a focus on their
performance), is starting to be called without restraint with
the broader umbrella term of artificial intelligence.

2) THE PRESENT
Artificial intelligence is used today in fundamental physics
to improve the performance of experiments, to boost the
precision of measuring instruments, and to achieve suffi-
ciency13 of summary statistics employed in the analysis of the
complex, multi-dimensional data usually acquired by those
instruments. In addition, AI is used by phenomenologists
to simplify the investigation of large-dimensional parameter
space or to improve the potential of theoretical calculations.
The gauge of a completed paradigm shift is observing the
path of a particle physics analysis to publication, operated
by a large collaboration. As we mentioned supra, only
fifteen years ago a study using a neural network technique
would be questioned harshly and would not be allowed to
proceed to submission for publication until extensive, excru-
ciatingly detailed, and deep cross-checks were performed.
In contrast, today, an analysis result that does not employ a
neural network or a similarly powerful supervised learning
technique for data reduction and inference extraction will
be automatically considered suboptimal, questioned for the
reason of a lack of optimization, and often regarded as
unworthy of being published.

The above paradigm shift is fueling a sociological effect
within the scientific community. Young researchers who start
their path as Ph.D. students in physics and dedicate them-
selves to the extraction of measurements from experimental
data are quickly catching the message that they either become
experts in those computer science tools or had better move
on to some other career path. The result is that physics
knowledge is losing value to computer science skills, even
within the walls of academia. The long-term outcome of this
trend remains to be seen. Still, in the meantime, we can
observe how major universities worldwide have promptly
reacted to the shift in demand and have started to tap the
throughput of bachelor courses in Physics to hire students.
The new term ‘‘Physics of Data’’ is being used to advertise
or directly name new master courses that focus on computer
science concepts and training at least asmuch as they focus on
advanced physics. The message is that to be a good physicist,
you must know computer science well today.

Meanwhile, the exploitation of deep neural networks and
supervised learning has gradually become only one of the
activities on which experiments base the production of
their results, as new powerful methods (normalizing flows,
transformers, autoencoders) and, in general, unsupervised
learning methods have flanked it and gradually grown in

13Sufficiency is a property of a statistic (a function of the data) that
retains all the information about the parameters of interest. A sufficient
statistic provides an efficient summary of the data, often by reducing its
dimensionality, without losing information relevant to the estimation or
inference of the parameters.
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importance. Following what is happening elsewhere, deep
neural networks are being replaced with the more general
concept of differentiable programming, which is the true
engine under the hood of neural networks: the capability to
backpropagate the gradients of a loss function to optimize the
network parameters. Differentiable programming is offering
itself for the solution of tasks that, until yesterday, were not
even considered as approachable. Here, we mention two of
them.

The first novel application concerns generative models.
In fundamental physics, the mechanisms responsible for
data generation in any relevant instrument are intrinsically
stochastic –two protons hitting the same block of matter with
the same energy, e.g., will never produce the same chain of
reactions. The differences are so stark that the problem is not
amenable to solution by writing down a likelihood function
of the parameters of interest given the observed data: it is
intractable by those means. In such situations, inference can
be operated by comparing observation with simulated data
that samples the space of latent parameters governing the
physics of the system under study; the procedure is captured
by the term ‘‘simulation-based inference’’ or ‘‘likelihood-
free inference.’’ In recent years, new unsupervised learning
methods (in particular, normalizing flows, autoencoders, and
adversarial networks) have become available to produce
generative models that greatly simplify the task of scanning
the latent space and extracting precise inference from the
stochastic input data. These techniques are thus revolu-
tionizing the analysis of large bodies of stochastic data in
fundamental science applications.

The second task AI technology enables is the end-to-end
optimization of the instruments conceived by researchers
to further their knowledge of fundamental science [231].
Large particle physics or astroparticle experiments involve
the design of instruments of such complexity that the only
viable option for the study of their potential performance has
until now been the discrete sampling of a few ‘‘reasonable’’
configurations informed by experience and the comparison of
their performance on a proxy of the actual set of wide-ranging
goals of the experiment. This procedure is virtually certain
to miss consideration of innovative design solutions that
leverage the interplay of any number of the many inter-related
construction parameters at play.

The above discrete sampling can be revolutionized by
artificial intelligence, exploiting differentiable programming
in the construction of a complete model of all the functional
blocks of the pipeline connecting the data collection and
interaction with the detector with the pattern recognition
performed on the resulting detector response and with the
successive information extraction procedures, all the way to
the calculation of an experiment-wide ‘‘objective function’’
that encapsulates the true goals of the experiment, optionally
including an appraisal of constraints, costs, and any other
factor worth including in the recipe (see Fig. 7). The
differentiable model allows for the complete exploration of
high-dimensional parameter space of construction choices

FIGURE 7. Sketch of an end-to-end modeling pipeline encoding all the
functional elements that connect the design elements of a detector to the
physical processes taking place in it during data taking, the pattern
recognition and inference extraction procedures operated on the
resulting data flow, and the final computation of a global utility function.
Suppose the model is differentiable (e.g., thanks to creating a valid
surrogate model of the stochastic processes generating the data, left).
In that case, the update of detector parameters (top left) following the
gradient of the utility function (top right) allows the instrument to be
completely optimized. Boxes labeled ‘‘H’’ indicate where hybrid
digital-neuromorphic computing can be integrated into the procedure.

in a continuous way, and the identification of the global
maximum of the objective function.

There is one additional important point concerning
present-day AI’s effect on the collateral effects of collab-
orative research in physics. As in other disciplines, the
computing power required for the heaviest applications is
quite significant not only in itself but also as a source of
carbon dioxide in the atmosphere; it is a source that cannot
be neglected any longer when designing and operating large
experiments, as it may exceed by orders of magnitude the
emissions due to operation of the experimental complex. For
example, analyzing the data produced by high-energy collider
experiments requires not only the collection, reconstruction,
and storing of collision data but also the concurrent produc-
tion and use of massive datasets produced by high-fidelity
simulations of the physical processes and the apparatus. The
ATLAS collaboration recently surpassed the mark of one
million 100% active CPU cores employed for their computing
effort –a large part of which is used to generate simulated
data. As we move to higher-intensity machines (such as
HL-LHC, the already approved high-luminosity version of
the Large Hadron Collider, which will deliver ten times
higher rates of collisions), the impact on our environment
of these experimental endeavors is a concern. AI may help
significantly reduce this load in several ways. One of them,
which is not new, is improving the use of distributed resources
by optimizing access to data and computing. Another is the
demonstration of the validity of the above-cited generative
models, which may eventually restrict to validation tasks the
large ‘‘full simulation’’ datasets that today still absorb most
of the computing resources of the LHC experiments.

3) THE FUTURE
Following the two avenues mentioned above to reduce
the environmental impact of large physics experiments,
a third one that must be placed in the category of
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FIGURE 8. Illustration of the encoding and processing of signals by a
neuromorphic computing system. In (a), a time-dependent signal (black
curve) is processed by Lebesgue sampling to detect the time of integrated
changes of its value; this results (b) in two streams of spikes (blue and
red dashes) which represent positive and negative variations of the
transduced signal. (c) represents the spike-based encoding of the
resulting information stream for n channels representing axons; (d) offers
a schematic of a spiking neural network unit with input and output
channels, mimicking the functional elements of a neural element.

prospects is the development of the new paradigm offered by
neuromorphic computing. Neuromorphic processors, which
encode information with the time of arrival of electrical
pulses in close analogy to the behavior of biological
neurons (see Fig. 8), have the potential to reduce the
energy consumption of computing tasks by many orders of
magnitude compared to standard von Neumann computers.
For example, it has been calculated that to produce the
same amount of computing expressed by a human brain,
which consumes about 20 watts of power, a digital computer
must employ 20 megawatts [232]. In addition to those vast
energy benefits, neuromorphic devices offer co-location of
processing (the neuron membrane, which adds potential from
the incoming signals and fires once a threshold is reached)
and data (the strength of the connections of synapses to
the neuron membrane). This constitutes a second disruptive
improvement over present-day technology. Neuromorphic
computing devices offer a perfect substrate for new artificial
intelligence developments due to their natural functioning
closely mimicking the biological brain.

Although the technological challenges are significant,
no evident showstoppers have been identified in the devel-
opment of this new paradigm, and the issues appear instead
to concern details of its technical implementation. The

question, therefore, seems to be not whether neuromorphic
processors will be developed and start to compete with
conventional digital computers in a significant number of
tasks but rather when such a transitionwill eventually happen.
Besides the huge potential of neuromorphic computing
in reducing the carbon footprint of large experimental
endeavors, its development is also bound to play a quite
significant role in many applications for fundamental physics
experiments. For example, the possibility to endow particle
detectors with many small independent processors integrated
into the detection elements, which perform computing
operations with the output of those elements and produce
high-level summaries, thus massively reducing the data
flow to the backend, constitutes a promising avenue of
exploitation of these systems, once their commercial viability
and technological readiness reaches the required threshold.
Another example concerns applications where the energy
needed to operate sensors is a scarce resource (such as in
experiments at the north or south pole or experiments in
space where a large, distributed set of small, independent
units operate detection, pre-processing, and transmission of
signals powered by small-scale solar panels): neuromorphic
computing is thus poised to provide a new groundbreaking
avenue for 21st-century research.

Aswe point out throughout this work, artificial intelligence
is already transitioning to become a more impactful reality
in our societies and technology at an increasing pace. This
situation, dubbed one of ‘‘jolting technologies’’ (where jolt,
a colloquial term for the jerk, is the third derivative of
position; a positive, non-zero jerk implies an increase of
the force acting on the system, with a divergent effect that
we are not accustomed to conceive as it is alien to our
physical experience), has been argued to be the signature
of an impending singularity [233]. A true singularity would
be generated if AI systems were to become capable of
autonomously self-improving themselves. This effect is
nowhere near being proven at the time of writing. Yet,
the impact of this evolving situation is very significant in
fundamental physics research because of the large scale and
the large time of conception-to-commissioning of the big
science experiments required to further our understanding of
fundamental physics and of the universe.

For example, a new future circular collider (FCC) has
been proposed as the machine that should receive the baton
from the Large Hadron Collider after the 2040s, when the
HL-LHC phase will have reached its natural termination
point. If an FCC or a similar gargantuan-scale machine (see
Fig. 9) will be built, it will obviously be entirely based
on artificial intelligent systems for the functioning of all
its parts (accelerating chain, beam control systems, detector
operation, data collection and reduction, event reconstruction,
digital twinning and simulation, inference extraction). What
is more to the point, though, is that in accordance with
the wish to have such a machine ready not much later
than the end of operation of the LHC, the community has
already started design studies a few years ago. Sitting on a
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FIGURE 9. Aerial view of the region around Geneva (Switzerland) with a
sketch of the proposed location and dimensions of a future circular
collider. The Large Hadron Collider (LHC) and the other smaller facilities
at CERN (SPS, PS) are overlaid to the view in the lower left; the future
circular collider footprint is green.

steep slope of technological improvement, however, is not
a very comfortable position to be in if we are to make
crucial decisions on design, allocation of resources, and
other thousands of important choices that play a role in the
success of a multi-decennial machine. Therefore, the present
situation embodies a misalignment risk. This is not the kind
of existential misalignment risk between the goals of humans
designing a general artificial intelligence and the goals that
the system may decide to set for itself once it is operative
(we discuss that situation infra, see Sec. V), but it is still a
very serious concern. Suppose today we design a machine
that will be commissioned and start to take data only twenty
or thirty years from now. How can we ensure that we are not
making the wrong choices and end up investing efforts and
resources in hardware that will be unfit to be best exploited
by the artificial intelligence tools that will be available
then?

A solution to the above difficulty is to take the ‘‘best case
scenario’’ as a baseline –in stark opposition to the attitude
one would be advised to take in less long-term projects of
this kind. Suppose we cannot model the performance an
artificial intelligence may offer thirty years from now in
extracting information from generated data by the device
we are designing today. In that case, our best bet is to
assume that such performance will be arbitrarily large.We are
helped by the fact that a ceiling exists for this task: it is the
perfect, lossless extraction of sufficient summary statistics
from any relevant part of the generated physical processes.
In so doing, we are led to concern ourselves with operating
design choices that maximize the amount of information
physically generated by the system; instead, any choice we
made that reduced the information produced by the raw
physical processes would be liable to be regretted upon,
when using a future higher-intelligence system for inference
extraction.

Let us make an example to clarify the point mentioned
above. Calorimetric measurements of fluxes of subnuclear
particles exploit different mechanisms by which energetic

particles lose energy in interacting with dense media. Until
recently, calorimeters were only tasked to measure the total
energy of incident particles, and their designers did not
even attempt to extract from the interactions any usable
information on the substructure of the flow of particles
crossing the detector, let alone the exact timing of the
interactions or useful information on the particles’ identity.
This construction paradigm was shaken to its roots about
twenty years ago, once it was realized how important
features could be mined in the substructure of the generated
energy flow [230]. Calorimeters suddenly started to be
constructed with a finer granularity to gain access to that
substructure; experiments that had not considered that aspect
at the design stage could not exploit it now. It is already
dawning on us that future calorimeters should not only allow
access to highly granular information on the longitudinal
development of the energy release, as well as its timing
(which also produces useful information for discriminating
processes of different origins) but they should be built to
allow for particles of different identity to manifest their
different interaction properties in a detectable manner (see
Fig. 10). Such has never been the purpose of a calorimeter
in the past, but times are changing fast. While we have
not yet been able to demonstrate that it be possible to,
e.g., exploit the different localized patterns exhibited by
hadrons of different species in interacting with nuclei (e.g.,
the different interactions undergone by charged pions and
kaons hitting nuclei of different materials) for precise particle
identification, we must err on the safe side and assume that
such a feat will be pulled off in the future, as it is in principle
possible.

Whether physicists will adopt the above ‘‘forward-
thinking’’ attitude in designing their apparatus remains
an interesting question for the coming years. Hopefully,
the fast increase in the capabilities of artificially intel-
ligent systems that we are experiencing daily in other
areas of human occupation will inspire the present gen-
eration of decision-makers in fundamental science and
allow them to consider the implication of that accelerated
acceleration.

B. FORMAL SCIENCES
The fields of Mathematics and Computer Science are integral
to the development and evolution of Artificial Intelligence.
This symbiotic relationship enhances our understanding of
complex AI models and greatly influences problem-solving
approaches in both AI and formal sciences. This section
delves into the key intersections between these disciplines,
highlighting current research directions, the role of advanced
mathematical concepts, and prospects, as they collectively
guide the path for AI’s theoretical foundations and practical
applications.

The theoretical foundations of AI are progressing at an
unprecedented rate, as indicated in the survey article [235],
which is based on an invited lecture at the International
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FIGURE 10. GEANT-4 [234] simulation of the energy release in a block
constituted by a lattice of 100 × 100x100 calorimeter cells (of dimensions
3 × 3x12 mm) made of lead tungstate hit by a 100 GeV proton; displayed
units are cell indices. The proton hits the center of the block in the (x,y)
projected image shown above by traveling in the z-direction (orthogonal
to the xy plane). The lateral diffusion of secondary particles and their
energy depositions is visible in the plane orthogonal to the incident
proton direction. The released energy (shown by a color temperature
map) has been summed over all the cells at the same (x,y) coordinate.
It is evident that together with total energy information, the fine-grained
cells record information on the number and direction of secondary
hadrons produced in the shower, opening the way to the extraction of
more information.

Congress of Mathematicians 2022. The author identifies
relevant research directions at the intersection of mathematics
and artificial intelligence: mathematical foundations for AI
and, conversely, AI for mathematical problems. In this
direction, the concept of artificial neurons is crucial for
developing deep neural networks. As indicated in Sec. III,
Riemann Geometry algorithms are useful in Brain-Computer
Interfaces [185].

As an example of the envisioned breakthroughs in
mathematics, the use of AI will be crucial to gaining
insight into classical partial differential equations and inverse
problems. Multi-layer neural networks for deep learning
based on fractional differential equations can be used to
search an optimal structure [236], and artificial neural
networks can efficiently approximate high-dimensional func-
tions in numerical approximations of the Black-Scholes
partial differential equations [237].
Let us delve into other innate examples of the rela-

tionship between AI and Mathematics and the profound
influence that the former is having on the progression of
this field of research. The rhythm of this advancement
is a well-orchestrated dance of formal sciences and AI,
with each complementing and advancing the other. The
intersection of AI and formal sciences paves the path
for significant advancements in computational complexity,
thereby improving the efficiency of learning algorithms and
the development of energy-efficient AI. It also buzzes with
continual refinement of optimization algorithms, forging

the path for enhanced AI learning and problem-solving
capabilities. Here are additional realms where Mathematics
and AI converge and complement each other.

An understanding of Statistical Learning Theory is crucial
for developing machine learning algorithms. Fundamental
mathematical concepts like the Vapnik—Chervonenkis (VC)
dimension for model complexity, Rademacher complexity to
control variance, and empirical risk minimization to reduce
training error fortify the application ofmachine learning algo-
rithms. A recent addition to this blend is Category Theory,
focusing on abstract structure and the relationships between
mathematical structures. It has found exciting applications
in the theoretical foundations of machine learning and AI.
For instance, composing morphisms mirrors the assembly
of complex systems from simpler ones, as seen in neural
network architectures.

The development and operation of AI algorithms is firmly
rooted in the Optimization Method. For instance, techniques
like gradient descent, linear programming, and convex and
non-convex optimization methods are core to AI algorithms’
training process. They play an essential role in managing
model accuracy and effectiveness, ensuring an optimal
solution is achieved.

Graph Theory forms a pillar for discrete mathematics
in AI. Essential for path planning in robotics and strategy
in games, it has applications in AI branches like social
network analysis and semantic web, specifically ontology.
Methods from probability theory and stochastic processes are
also vital in AI. Important concepts like Bayesian networks,
Markov Decision Processes, and Monte Carlo methods are
indispensable for dealing with uncertainty and probabilistic
decision-making in AI.

As AI systems increasingly form part of critical operations,
their security becomes ever more significant. Advanced
cryptographic techniques guarantee secure communication
channels and protect sensitive AI system data.

While we still grapple with the fundamentally black-box
nature of artificial neurons and deep learning models,
Explainable AI (XAI) represents an exciting frontier [238].
It strives to make AI decisions more transparent and under-
standable. The necessity for an AI agency to oversee and
regulate these aspects is becoming starkly evident to ensure
the successful coexistence of humans and AI. Developing
verifiable and accountable algorithms is paramount to con-
firming behaviors aligned with desired outputs. This nexus
of AI and Mathematics, embracing old and new concepts
alike, is key to harnessing AI’s potential effectively and
responsibly. The growth of this relationship is accelerating
faster than ever, indicating an exciting future at their
confluence.

Finally, we all are concerned with the black-box-like opac-
ity of AI to detect biases and prevent potential harms [239].
A possibility is to generate an explainable model, a kind
of ‘‘white box’’ proxy replicating the inputs and outputs
of the original system. An AI Agency to regulate different
aspects, as indicated before, is necessary. In all cases,

16016 VOLUME 13, 2025



T. Dorigo et al.: Artificial Intelligence in Science and Society: The Vision of USERN

verifiable algorithms should be implemented to monitor and
complement the opaque ones.

C. GEOGRAPHY
The application of artificial intelligence techniques to
research in Geography dates back to the first geospatial and
temporal studies developed by geographers to map terrain
more precisely. Already in 1986, Couclelis [240] described
how the application of new computing techniques would
significantly impact geography. However, it took a few more
decades before the power of machine learning brought to the
development of entirely new applications [241]. A relevant
turning point happened in 2000, when geopositioning through
the signal of GPS systems became 10 times more precise
overnight, as finally applying a 1996 deliberation of the
Clinton administration, the US Air Force removed the
scrambling of signals from its satellites. Besides the obvious
benefits it brought to navigation systems, the order-of-
magnitude improvement in the precision of the localization
of devices receiving GPS signals was a powerful enabler of
a wealth of new applications. Today, a ground positioning
precision of one meter is the standard, and new systems have
been announced that will bring the precision down by two
orders of magnitude.

A significant further advancement was achieved soon after
the geopositioning revolution of 2000, when free availability
of high-resolution imagery of the whole Earth’s surface
was provided to internet users, thanks to a free-distribution
software (Google Earth) which was first released by Google
in 2001 [242], and has since withstood regular improvements
and updates.

Nowadays, the use of geospatial data for mapping, surveys,
and other tasks benefits from a number of AI-powered new
methods that have been enhancing research. Remote sensing
and image analysis are performed with convolutional neural
networks, extracting features and patterns from satellite
imagery and other sources. This enables improved results
in areas ranging from large-scale land cover classification,
object detection, and change detection, tasks that may be
routinely performed with high accuracy. Geographic Infor-
mation Systems (GIS) software integrates AI tools to improve
data processing, analysis, and visualization capabilities.
Besides their use for geography per se, GIS applications are
also used in various other fields, such as urban planning
and transportation management. Environmental monitoring
is performed automatically by algorithms that can detect
deforestation, monitor wildlife populations, and assess the
impact of climate change on ecosystems. In addition, large
language models are used to improve data mining from
textual and social media data, to understand human behavior
and socioeconomic trends at different spatial scales, and to
enable studies of the interplay of human activities and the
environment.

While the enhancements mentioned above in our capability
to harvest and process data from the surface of our planet

constitute clear progress and are enablers of better planning
and intervention in the environment, there are ethical and
social implications arising from the diffuse use of geospatial
analysis. Data privacy and algorithmic bias are two issues that
apply here, and although they pre-date the application of AI
technologies, the use of AI tools is enhancing their relevance.

In the context of artificial intelligence for developing
geographical disciplines, a new concept was recently devel-
oped: GeoAI [243]. Theoretical advances are now boosted
by data management, computer hardware and software, and
the fast processing of those data with the new computers.
GeoAI is today a discipline within geographical sciences
devoted to developing computer programs that can imitate
the human view of space and time. Then, the geographical
changes, human perception, and spatial and temporal changes
are researched using the GeoAI to achieve an advance of
knowledge about the status of the environment and to find
solutions to the impact of humans on our planet [244], [245],
[246].

D. AGRICULTIRAL SCIENCES
Agricultural sciences encompass the production and pro-
cessing of food and fiber, involving technologies related
to tillage, plant cultivation, and harvesting, as well as
animal production and the processing of plant and animal
products for human consumption and use. These sciences
face significant challenges, particularly in finding sustainable
solutions to the problem of feeding a rapidly growing global
population, amidst declining arable land, water, and soil
resources due to ongoing environmental degradation and cli-
mate change [247]. Agricultural farms and firmsmust address
four main objectives: ensuring an adequate food supply,
alleviating poverty, achieving better health and nutrition for a
growing population, and conserving natural resources [248].
Historically, agriculture has been a driving force in economic
development, playing a central role in agricultural, rural,
and structural transformation. Notably, poverty remains most
prevalent in rural areas where agriculture provides substantial
income, employing 1.23 billion people and supporting over
3.83 billion livelihoods across all stages of the agricultural
value chain [249].

Digital crop and livestock farming holds significant
potential to meet future food demands [250]. The rapid
advancement and diffusion of artificial intelligence (AI)
technologies are poised to transform global agriculture.
AI, machine learning (ML), and Internet of Things (IoT)
sensors that provide real-time data for algorithms are
increasing agricultural efficiency, improving crop and animal
productivity, and reducing food production costs. Business
intelligence research projects that global spending on smart,
connected agricultural technologies and systems, including
AI and ML, will reach $15.3 billion in revenue by 2025.
Farming, traditionally involving numerous manual processes
and stages, places immense pressure on farmers. To survive
today, farmers must be experts in fertilizers and soils,
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crop-specific insecticides, planting and irrigation cycles, and
weather effects, among other things. AI can complement
these applied technologies by facilitating the most complex
and routine tasks. It can collect and process large amounts of
data on a digital platform, determine the best course of action,
and even initiate it when combined with other technologies.

AI in agriculture promises to improve crop management
and productivity by phenotyping plants, diagnosing plant
diseases, efficiently applying agrochemicals, and providing
site-specific agronomic advice. While AI can revolutionize
agriculture, farmers need support to implement it correctly.
Applying AI in agriculture on a global scale represents a
promising opportunity to help farmers minimize or manage
their risks to produce economically viable agricultural
products.

Bannerjee et al. [251] conducted a literature review
covering 100 significant contributions from 1983 to 2017,
where AI techniques addressed agricultural challenges. In the
1980s and 1990s, rule-based expert systems were widely
used in agriculture. As in other fields, machine-learning
algorithms have quickly taken the dominant role after the turn
of the century. More recently, more advanced hybrid systems
such as neuro-fuzzy systems and image processors coupled
with artificial neural networks have been utilized.

1) POSITIVE IMPACTS OF AI IN AGRICULTURE
The integration of AI with agriculture offers numerous
benefits, including the possibility to quickly and effectively
analyze market demand to simplify crop selection and
identify profitable agricultural products, the management of
risk through forecasting and predictive analytics that may
reduce errors in business processes andminimize crop failure,
the breeding of crop seeds that are more likely to withstand
biotic and abiotic stresses. In addition, autonomous systems
may be developed to monitor soil health by diagnosing
nutrient deficiencies or toxicity, protecting crops by detecting
andmanaging pests and diseases, feeding crops by optimizing
the use of irrigation, nutrients, and agrochemicals, and
harvesting crops by automating and predicting the optimal
harvest time.

A recent systematic review by Sachithra and Sub-
hashini [252] explored how AI contributes to agricultural
sustainability. They found that the most common application
of AI in agriculture is predictive modeling for total agricul-
tural output value, followed by harvesting applications. They
also noted the increasing use of AI and image-processing
techniques to enhance overall efficiency and sustainability
in agriculture. In another relevant study, Linaza et al.
[253] summarized recent research activities through projects
that were developed and implemented in a few European
countries. They defined terms and concepts related to
precision agriculture, described global trends and policies
fostering AI-based solutions in the agricultural sector, and
reviewed the current state-of-the-art AI applications within
precision agriculture. They concluded that AI technologies

are instrumental in providing support for decisions for farms,
as well as monitoring conditions and optimizing production.
For example, they help farmers fine-tune the inputs for
each crop. These improvements have positive outcomes
in water use reduction, and they may also mitigate the
emission of greenhouse gases. The cited source also suggests
that substantial improvements may come from developing
dedicated, intelligent robots that may autonomously retrieve
plant and soil samples or assist in livestock management.

Recent research has focused on improving crop produc-
tion, preventing crop diseases, managing irrigation, and man-
aging livestock using various AI tools [254]. The integration
of high-throughput phenomics and genomics with analytic
applications based on large volumes of data has sparked
a revolution in agricultural science [255], [256]. AI will
enable crop management software to incorporate biological
information, developing holistic agronomic programs that
integrate both chemical and biological insights. The ability
to navigate complexity, distinguish between correlation and
causation, and use ML to uncover hidden patterns is crucial
for unlocking the big data potential. The simultaneous
processing of large datasets provides tremendous opportu-
nities for researchers in academia and industry to advance
agricultural science. In this field, the potential of ML
models, expert systems, and autonomous machines on farms,
farmers, and food security is still largely overlooked or
underappreciated.

The large potential of these new methods also entails
some risks. Systemic risk factors of AI in agriculture
may depend on one side on the interoperability, reliability,
and relevance of agricultural data relied upon and on
the other on the possible unintended socio-environmental
consequences of the narrowness of objectives (such as
employing models only optimized for yield), and safety and
security concerns with the deployment of ML platforms
at scale [257]. Suggested risk mitigation measures include
involving rural anthropologists and applied ecologists in
the technology design process, applying responsible and
human-centered innovation frameworks, establishing data
cooperatives to improve data transparency and ownership,
and initially deploying agricultural AI in digital sandboxes.
Agricultural technology companies (AgTech) are the primary
agents of this ongoing revolution toward digital agriculture
and the potential drivers of adoption of further innovative
AI-based technologies [258]; these companies can provide
knowledge-based digital agriculture services at all stages of
the agricultural value chain (see Fig. 11). With their expertise
and products, AgTech may mitigate the problems and
limitations of digital agriculture connected to connectivity,
data collection, transmission, storage, accessibility, and
interoperability.

Disseminating technical advice and best practices through
agricultural extension services is crucial for supporting
570 million small-scale farmers worldwide, contributing to
food security and rural development. In a recent study, Tza-
chor et al. [259] assessed the potential benefit to farmers from
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FIGURE 11. Digital agriculture processes within the South America
region’s farm and agriculture value chain. Processes are grouped into
four main categories: field and livestock segmentation, crop and livestock
monitoring, activity tracking and control, and other applications within
the value chain (Source: [258]).

the use of large language models to transform agricultural
extension. This study focused on LLMs’ ability to simplify
scientific knowledge and provide personalized, location-
specific recommendations that may boost productivity. LLMs
can be transformative by simplifying science and making
advisories personal. Results from the cited study also
highlighted the shortcomings of this technology, informed
by real-life testing of GPT to generate technical advice for
Nigerian cassava farmers. An idealized LLM design process
incorporating human experts was proposed to ensure the safe
and responsible dissemination of LLM functionality across
farming worldwide.

2) THE FUTURE OF AGRICULTURE IN THE AI AGE
As discussed above, the benefits that AI methods have
brought to agriculture are undeniable; AI may integrate
diverse types of data across crop and livestock sci-
ence, unraveling the complex interplay between genetics,
nutrition, agronomy, and the environment, as well as
influencing on-farm performance and informing ongoing
breeding programs for more efficient and sustainable food
production [260].

In the future, we anticipate further quantum leaps in
agricultural productivity. These may come through the appli-
cation of cutting-edge technologies such as AI-assisted gene
editing, thus meeting today’s needs of farmers and the society
they feed and anticipating the challenges posed by long-term
sustainability in a deteriorating environment and a growing
demand. Smart farming tools can perform small, repeatable,
and time-consuming tasks, freeing up farm workers for
more strategic operations requiring human intelligence.
Additionally, the employment of vertical farming systems,
which allow the growing of crops in vertically stacked layers
in controlled indoor environments, enhances the efficiency
and sustainability of crop production. These technological
advancements represent the next step in the evolution of
smart agriculture, necessitating other technologies to function
effectively. Technology providers must address challenges
related to improving their tools, helping farmers solve them,
and communicating how ML helps solve real problems, such
as reducing manual labor. As farmers, cooperatives, and

agricultural development companies embrace data-centric
approaches and expand AI use to improve yields and quality,
the future of AI in agriculture looks promising. Wider
adoption of AI-based agricultural practices will only be
achieved through collaboration among researchers, technol-
ogy developers, suppliers, farmers, and their advisors across
the digital innovation system [261]. AI will unlikely replace
the farmer, but it will significantly enhance decision-making,
transforming agriculture into a more efficient, sustainable,
and climate-resilient future.

E. MEDICAL SCIENCES
1) THE PAST
The history of AI in medicine dates back to the mid-
20th century and has gone through various phases of
development since. AI’s popularity rose in 1950 when Alan
Turing introduced the idea of computers mimicking human
intelligence in his book, ‘‘Computer and Intelligence’’ [262].
In the 1960s, Stanford University developed DENDRAL
–an expert system that could analyze organic chemical
compounds by examining their mass spectra and applying
general chemistry knowledge. This was one of the first AI
expert systems to be integrated into medical applications as it
replicated a chemist’s problem-solving and decision-making
processes [263]. Also, during this time, the SRI Artificial
Intelligence Center created Shakey the Robot in 1966, which
could plan its own routes and rearrange standard objects
using humanistic thought processes such as perception and
reasoning. Referred to as the ‘‘first electronic person’’ by Life
magazine, Shakey highlighted the soaring potential for AI to
understand and execute instructions [264]. A decade later,
Stanford’s School of Medicine developed MYCIN, a tool
assisting physicians in determining the bacterial pathogens
behind infections such as bacteremia or meningitis, as well
as recommending the appropriate antibiotic therapy dosage
options according to the patient’s mass [265].

Indeed, the 1970s were a pivotal decade for AI in medicine.
Already in 1971, the University of Pittsburgh’s School of
Medicine developed INTERNIST-1 [266], a large-scale set
of disease profiles containing patient symptoms, laboratory
abnormalities, signs, and demographic data (Institute of
Medicine [US] Council on Health Care Technology 1988).
This database was designed to assist medical professionals
in diagnosing complex diseases. In 1976, the LDS Hospital
in Salt Lake City introduced the Health Evaluation through
Logical Processing (HELP) system [267]. HELP was the
pioneering hospital information system that combined the
collection of clinical data with computerized aid in real-time
decision-making.14 This provided medical professionals with
alerts for harmful drugs and other clinical recommendations.
Despite being innovative and showcasing the potential for
AI in medicine, these systems struggled to gain widespread
acceptance due to certain technological constraints and

14https://www.clinfowiki.org/wiki/index.php/Health_Evaluation_
through_Logical_Programming_(HELP)
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skepticism from many groups within the healthcare industry
and the public.

The 1980s and 1990s saw continued progress with
significant advancements. DXplain, a system developed by
the Laboratory of Computer Science at the Massachusetts
General Hospital in 1986, could provide justifications for
over 2600 diseases based on clinical symptoms and user
laboratory data. Specifically, DXplain can output a ranked
list of potential diagnoses to be considered based on
symptoms, recommends which additional information should
be collected, as well as manifestations that would be atypical
for each specific diagnosis.15 AI applications extended into
cardiology with consultation systems and clinical tools like
CorSage, developed by Cedars-Sinai in 1989 [268]. CorSage
utilizes a blend of AI and statistical methods to assist
physicians in pinpointing heart patients who are at the highest
risk of experiencing recurrent coronary events. Further, The
Human Genome Project, launched in 1990 by the National
Human Genome Research Institute, provided crucial genetic
data that allowed AI systems to understand further genetic
factors in diseases.16 Numerous organizations, projects, and
hospitals played a crucial role in supplying data to train and
operate these AI systems.

Machine learning caused a significant evolution at the
dawn of the 21st century when neural networks rev-
olutionized medical diagnostics, particularly the use of
CNNs in imaging. For example, regarding breast cancer
detection, Google’s DeepMind developed a CNN model
that understands mammograms to identify cancerous lesions
with an accuracy that often surpasses humans.17 Another
relevant application is in diagnosing diabetic retinopathy.
In 2020, Temple University developed IDx-DR, the first
FDA-approved autonomous AI system for this purpose, and
it uses CNNs to analyze retinal images and accurately detect
diabetic retinopathy [269]. Overall, this evolution of AI
highlights its transformative influence onmedical diagnostics
and its growing acceptance within the healthcare industry.

2) THE PRESENT
Today’s applications of AI in medical science can be
categorized into two main branches: virtual and physical.
We examine them separately below.

The virtual part includes a wide spectrum from electronic
health record systems to neural network-based advice
providers in clinical decision-making. AI-driven electronic
health record systems incorporate features such as Nat-
ural Language Processing (NLP), intelligent image input
suggestions, and data entry recommendations to improve
operations efficiency and simplify patient record manage-
ment for healthcare professionals [270]. Another virtual
aspect is rooted in Machine Learning, which harnesses
algorithms and data to enable AI systems to replicate human

15https://www.mghlcs.org/projects/dxplain
16https://www.genome.gov/human-genome-project
17https://health.google/caregivers/mammography/

learning processes, enhancing their precision over time.
Recent developments in AI have improved the prediction,
speed, efficiency, and accuracy of the diagnostic process.
AI algorithms can analyze large amounts of medical data
such as vital signs, biosignals, medical history, laboratory
test results, demographic information, and imaging data
such as MRIs, ultrasounds, X-rays, DXAs, and CT scans.
This analysis helps medical professionals make informed
decisions and accurate predictions in patient care [271].
An example is IBM’s ‘‘Watson for Oncology’’ software,
which oncologists use to make treatment decisions for
cancer patients [272]. By combining attributes from data
from Memorial Sloan Kettering and a patient’s file, Watson
for Oncology recognizes and orders possible treatment
plans. Other medical disciplines, such as drug development,
digital consultation, and pathology, use AI to assist medical
professionals.

Machine Learning has facilitated advances in medi-
cal sciences. For example, unsupervised algorithms for
protein-protein interactions contributed to the discovery of
promising therapeutic targets [273], computational method-
ologies for recognizing DNA variants (e.g., single nucleotide
polymorphism) to predict specific diseases or physiological
traits [274], and particular algorithms for electronic medical
records to capture and process data in real-time to facilitate
the finding of patients with a positive family history for
specific genetic disorder or individuals with increased risk
of specific chronic diseases.18 Recently, ML models have
proven beneficial in assisting healthcare professionals in
diagnosing various diseases and illnesses earlier based on a
series of parameters. Another interesting virtual application
of AI in medical care is the utilization of softbots. Softbots
have been introduced as teachable psychotherapeutic avatars
and have shown promise for pain control measures in
pediatric patients with cancer and for detecting emotional
disturbances such as suicidal ideas [275].

The physical part includes advanced medical devices,
intelligent prostheses, and complex robots for care delivery
(carebots). AI-assisted robots have been used as companions
for the geriatric population with cognitive or mobility
impairments, as assistants in surgeries or solo performers, and
as teachers for autistic children [276], [277]. Nevertheless,
routine application of AI-assisted robots is associated with
major ethical issues and requires standardization, precise
evaluation of the efficacy, and close follow-up on the related
side effects and outcomes.

The evaluation of patients’ performance in rehabilitation
is improved by using AI systems such as wearable health
sensors. Interestingly, AI is suggested as a powerful tool for
monitoring guided drug delivery to different tissues.

Some AI-based tools received FDA approval; for example,
Kardia for ECG monitoring on smartphones and detecting
atrial fibrillation [278], Guardian and Sugar.IQ systems for
glucose level monitoring and prediction of hypoglycemic

18https://doi.org/10.1186/s13336-015-0019-3
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episodes [279], [280], Empatica’s wearable Embrace for
detecting epileptic seizures [281], [282], wearable sensors
for evaluating gait, posture, and tremor in patients with
neurodegenerative diseases [283], and other algorithms for
interpreting pulmonary function tests [284], [285], predicting
the decrease in glomerular filtration rate [286], processing
the endoscopic and ultrasound imaging in gastroenterol-
ogy [287], and assisting cancer diagnosing via computational
histopathology [288].

3) THE FUTURE
Using past data to improve clinical decision-making is
the core concept of evidence-based medicine. AI facili-
tated uncovering complex associations among a vast set
of different data, which cannot be humans. This allows
machine learning systems to approach complex clinical
problems in a way similar to how a physician would
operate. The superiority of these systems to clinicians is the
openness to numerous simultaneous inputs and the ability
to rapidly process data. Indeed, such systems can obtain
data from as many cases as a clinician may visit in a
lifetime, just in a minute. Accordingly, AI-assisted tools
were successfully used in the classification of suspicious skin
lesions, radiologically determining pulmonary tuberculosis,
and triaging systems [289]. Taken together, AI performance
in well-defined tasks, such as the classification of suspicious
skin lesions, had higher sensitivity and specificity than expert
dermatologists. Moreover, AI could be a promising tool for
poorly resourced services; for example, the lack of expert
radiologists in remote regions where tuberculosis is prevalent
could be compensated by deep learning models [290].

The use of AI tools may reduce the financial burden on
the healthcare system while also offering more personalized
clinical advice to patients. Application of AI-assisted tools in
medical settings may reduce the workload of healthcare staff,
hence they can spend more time on critical cases.

AI systems do not have empathy and compassion; hence
most patients prefer to be visited by a human physician.
Lack of direct human-human contact may result in imperfect
communication and lead to the system missing essential
information that human physicians may be able to observe in
addition to the main patient’s complaints and details of their
health problems; that ancillary information may sometimes
prove necessary for clinical decision-making. In general,
AI systems are still less trusted by patients [291]. On the
other hand, uncontrolled access to AI-assisted medical help
may result in misuse, information overload for the patient,
misdiagnosis, and mismanagement.

Some serious criticism focuses on the validation process of
AI tools. For instance, most of the studies on the efficiency of
AI versus human physicians are suggested to have unreliable
designs and lack primary replication [292]. In addition, the
majority of the studies on the use of AI in clinical practice are
criticized due to retrospective design, sample size, spectrum
bias, and selection bias [287]. Finally, confronting AI and

physicians is probably not the proper approach; some studies
considered the combination of AI-assisted tools and human
physicians, which outperforms either alone [293].

Different ethical issues are raised with AI development.
Considering that medical sciences are engaged with people’s
health, addressing ethical issues concerning the application of
AI in medicine is of utmost importance. Again, we insist that
an AI Agency to supervise these ethical aspects is necessary.

AI and data mining unlock vast possibilities for uncovering
new links between health and various aspects of life,
drawing from extensive repositories of health records (i.e.,
USMedicare, USVeterans Affairs, British Tissue Repository,
ADNI, and others) and genomic data available on scientific
and genealogy platforms such as 23andMe, Ancestry, and
similar sites. Despite official governmental restrictions on
access and use, there are data privacy concerns associated
with many of these repositories. In December of 2022,
BlackRock purchased Ancestry.com19 and later a couple of
plaintiffs filed a class action complaint, alleging BlackRock
violated the Genetic Information Privacy Act20—aCalifornia
legislation that imposes privacy regulations on direct-to-
consumer genetic testing companies while also affording
consumers access and deletion rights. The plaintiffs alleged
that before the Blackstone acquisition, Ancestry linked
their saliva sample genetic sequencing kits with personal
details such as email and home addresses. They claimed
that Blackstone’s acquisition compelled Ancestry to disclose
this protected information. Despite official restrictions on
access and use, concerns arise when investors like BlackRock
heavily invest in platforms such as Ancestry, prompting
questions about the potential unauthorized transfer of data to
insurance databases.

Independent from investing in repositories, further data pri-
vacy concerns exist, such as the logistics behind training AI
models. High-quality, large, and diverse data sets are required
to effectively improve and train AI models; however, not
all organizations collecting medical data are shielded by the
HIPAA privacy law. Furthermore, erroneous or biased data
used by AI can lead to inaccurate predictions, causing under
or over-diagnosis and treatment.21 The question remains:
whenwill the precision of machine learning exceed that of the
top specialist expert? Diagnosis is the gateway of treatment
plans, and here, AI possesses the capability to process
exponentially more inputs than the human brain, facilitating
world-class diagnosis and treatment to be delivered anywhere
while highlighting the lack of infrastructure required for
delivery.

In Alzheimer’s disease (AD), for 30 years, researchers
have evaluated the most highly predictive genetic factor in
AD, the apolipoprotein genotype (APOE). APOE is a reliable

19https://cookcountyrecord.com/stories/641978335-appeals-panel-
blackrock-s-purchase-of-ancestry-com-doesn-t-mean-they-can-be-sued-for-
obtaining-illinoisans-genetic-info

20https://privacyrights.org/resources/genetic-information-privacy-act-
california

21https://veterans.house.gov/calendar/eventsingle.aspx?EventID=6371
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predictor of Alzheimer’s disease risk, with individuals
carrying the E4 allele facing three times the risk and
homozygotes facing a risk 10 to 20 times greater. Add this
to the differential penetration among African Americans and
Hispanics, and there are clear risk classes [294]. The use of
AI to mine large demographic and patient-record databases
can reveal additional risk predictions. These analyses extend
beyond diagnostics, accurately predicting individuals who
are not yet affected by the condition. This raises ethical
concerns surrounding issues related to information acces-
sibility, counseling restructuring, and the stigma associated
with pre-symptomatic labeling. These matters necessitate
vigorous dialogue in this rapidly emerging area, which not
only provides labeling from databases and genetic data
without individual knowledge but also from speech or gait
patterns. Developing policies for most conditions requires
independence and should not solely depend on patient
advocacy groups, which agents of industry frequently back.

As AI tools are trained based on specific datasets, the
algorithms may be biased toward certain patient groups,
leading to discriminatory traits. In addition, AI tools need
access to a vast amount of patient data to be trained and to
make decisions. Hence, data security and privacy, as well
as data ownership using AI tools, is controversial. Along
the same lines, patients probably do not understand how
their data is being processed by AI tools, which endangers
informed consent. There are also concerns regarding the
accountability (the responsible party for AI decisions and
actions in the healthcare setting) and transparency (the
complexity of AI systems makes it challenging to rationalize
how the system arrived at a decision) of AI tools. From
the global health perspective, the application of AI-assisted
tools may exacerbate the current health disparities. Another
challenge would be the overreliance on AI systems, which
may lead to debilitating critical thinking and decision-making
skills of healthcare professionals [295], [296].

AI can transform the grounds of medicine as it is
time-efficient, inexpensive, and does not have physical
limitations as humans do. It offers great promise to improve
healthcare and reveal the root causes of genetic, lifestyle, and
chronic diseases. However, parameters must be established
to address patient data privacy and ethical concerns. Medical
professionals must provide AI control, oversight, and security
to utilize its transformative potential in medicine fully.

F. BEHAVIOURAL SCIENCE
Behavioral science offers an example of how AI has the
potential to help scientific progress as well as to hurt and
hinder it. We discuss this contrasting situation below.

1) EMPOWERMENT OF BEHAVIORAL SCIENCE BY AI
Artificial Intelligence has the potential to significantly
augment scholarly work in behavioral science, offering tools
and methodologies that can enhance the efficiency and
effectiveness of research and practice.

Among the more obvious benefits is the potential effi-
ciency of uncovering past knowledge if the models are
properly curated. Advanced search algorithms can sift
through vast databases of scholarly articles, rapidly extracting
findings that are relevant to specific questions. With enough
curation, the quality of research can be weighed as part of this
process.

Barriers to fair consideration of research findings can
potentially be reduced in this fashion. For example, standard
indexing engines have a known bias against non-English
sources or studies from lower-and-middle-income countries
–even if the science is of high quality [297]. Biases of
this kind can considerably distort systematic reviews of
the literature [298], but AI tools can help overcome these
language barriers.

Some research topics that would simply be impossible
without AI can be explored. For example, communications
researchers might study the impact of discussing modern
issues in the style of historical figures (e.g., ‘‘What would
Walter Cronkite say about abortion and howwould it land?’’).
Other research topics might be explored with greater exper-
imental control. For example, social persuasion research
could examine the impact of AI-generated transcripts in
which scientists tightly specify the parameters. The ease of
conducting experiments could also be increased by using
AI tools to manage and analyze large datasets, automate
recruitment, or manage the engagement of participants.

Access to sophisticated modeling tools is another advan-
tage afforded by AI that is already widely in use. More
advanced statistical and measurement tools can better detect
complex behavioral patterns, allowing for the development
of more precise theoretical models. For example, extensive
high-density longitudinal data on scores of individuals
with specific mental or behavioral problems can readily
overwhelm conventional models, but AI methods can dis-
cover signals that reside amidst a great deal of noise.
AI tools applied to longitudinal data on the process of
change and their relation to outcomes in a large number
of individuals, each considered ideographically, may be
able over time to produce a more functional diagnostic
system than the current normative categorical systems such
as the Diagnostic and Statistical Manual of the American
Psychiatric Association [299]. As this occurs, kernels of
specific evidence-based interventions might be suggested or
delivered in a just-in-time fashion that better meets the needs
of the individual.

2) EMPOWERMENT OF CONTEXTUAL BEHAVIORAL SCIENCE
RESEARCH
We will now provide a concrete example of how behavioral
science research can be empowered by AI by using the
Contextual Behavioral Science (CBS) research program as
an example. CBS embodies a distinct approach within the
broader behavioral sciences that emphasizes understand-
ing behavior in relation to its historical and situational
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contexts [300]. This approach is multilevel, process-based,
multidimensional, prosocial, and pragmatic. The core char-
acteristics of CBS can be described as follows:

• Multilevel: CBS research examines behavior across dif-
ferent levels of analysis (e.g., biological, psychological,
social) to understand how these levels interact and
influence one another. It aims to address the coherence
across these levels within a broad evolutionary science
framework.

• Process-based: CBS emphasizes identifying and under-
standing processes of change that are functionally
important. This involves focusing on dynamic sequences
of events that can lead to clinically relevant outcomes,
linking these to basic behavioral and evolutionary
principles.

• Multidimensional: CBS research approaches human
behavior from various dimensions, including cognitive,
affective, behavioral, and social aspects. It considers the
complex and interrelated nature of these dimensions in
understanding and influencing behavior.

• Prosocial: CBS research is guided by a prosocial
purpose, seeking to foster social justice, cooperation,
and the betterment of society. It involves being explicitly
aware of the societal impacts of research and aiming to
address issues like equity, fairness, and inclusiveness.

• Pragmatic: The approach is inherently practical, focus-
ing on developing strategies and interventions that
directly and meaningfully impact real-world problems.
CBS values research that can be applied to improve
human well-being and adapt to changing societal needs.

In essence, CBS research is about understanding behavior
in context, emphasizing practical application and social
relevance, and striving to create an adequate behavioral
science for addressing the complexities of the human
condition.

As mentioned in Sec. III, the Non-Axiomatic Reasoning
System and similar AGI systems offer a unique opportunity
to enhance our understanding of human cognition and
behavior from a CBS perspective. Given that NARS learns in
interactionwith its environment (rather than being pre-trained
on data sets), it could, in principle, be used as an experimental
‘‘subject’’ in settings and procedures akin to those used with
human participants. This research strategy has been used to
study the development of various forms of concept formation
and relational reasoning abilities [301], [302], [303]. This
presents a novel approach to studying multilevel interactions
and processes. NARS, designed to mimic certain aspects of
human reasoning, provides a controlled environment where
researchers can manipulate variables and observe outcomes
in a way that is not possible with human subjects. Hence,
NARS can serve as a dynamic model for understanding how
different levels of analysis —such as cognitive processes,
whole-organism behaviors, and social interactions— interact
with each other to produce complex behavior patterns.
By embedding NARS in simulations that mimic real-world
social settings or psychological conditions, researchers can

manipulate and observe the impact of changes at one level
(e.g., altering cognitive rules or input stimuli) on other
levels (e.g., behavioral responses and social dynamics). This
approach allows for detailed experimentation on complex,
multilevel phenomena in an ethically permissible and highly
controllable way. The insights gained from such studies could
then inform the development of hypotheses about human
behavior, which can be tested in naturalistic settings.

Furthermore, in principle, NARS could be used to carry out
process-based research regarding clinically relevant change
processes. NARS is unique in that it has a concept of ‘‘self’’
[304]. The SELF in NARS embodies a critical component
of its artificial general intelligence, enabling adaptive behav-
ior and decision-making in complex environments. This
concept facilitates self-awareness and self-control within
NARS, allowing it to perceive and interact with its internal
environment similarly to its external surroundings. The
SELF-concept evolves through the system’s experiences and
interactions, starting with built-in operations and expanding
through learned behaviors and modifications based on
feedback. As a dynamic and evolving feature, it enriches
NARS’s functionality, enhancing its autonomy and its ability
to refine operations and behaviors to better meet its objectives
and respond to environmental challenges.

The application of NARS in process-based research
offers a novel approach for investigating the cognitive
and emotional dynamics involved in, for example, anx-
iety disorders. This methodology provides experience to
NARS that leads to it developing a self-concept that
encapsulates various anxiety-related cognitive processes and
emotional states, such as worry, avoidance behaviors, and
safety-seeking actions. By arranging a series of anxiety-
inducing procedures, researchers could manipulate and
measure changes in NARS’ internal state and behaviors in
response to interventions like cognitive-behavioral therapy
(CBT) techniques, exposure therapy, and mindfulness-based
interventions. The use of NARS would allow for detailed
tracking and analysis of how interventions impact anxiety
levels and behavioral responses over time, with a particular
focus on how changes in self-awareness and the effectiveness
of previous coping strategies influence future behavior
and self-concept adjustments. This process-based approach
would facilitate a deeper understanding of the mechanisms
underlying anxiety and its treatment and provide insights into
the generalizability of coping mechanisms across different
scenarios. Such findings could significantly enhance the
development of therapeutic techniques, emphasizing the role
of self-awareness and adaptive changes in self-concept in
anxiety management. Refer to [304] for an example regarding
fear learning.

In addition, AI, in general, can advance the prosocial
aims of CBS research. By leveraging AI-driven analysis,
researchers can better understand the societal impacts of their
work and identify strategies that promote equity, fairness,
and inclusiveness. AI can help in modeling the societal
implications of various interventions, thereby guiding the
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development of more socially responsible and effective
approaches.

Lastly, the pragmatic nature of CBS research is well-served
by AI’s ability to provide practical, data-driven insights.
AI can aid in rapidly prototyping and testing interventions,
streamlining the process of translating research findings into
real-world applications. This can significantly enhance the
ability of CBS researchers to develop strategies that directly
address human well-being and adapt to societal changes.

In conclusion, AI offers a suite of tools and methodologies
that can significantly enhance the multilevel, process-based,
multidimensional, prosocial, and pragmatic aspects of CBS
research. As such, NARS, as it applies to CBS research,
is an example of an AI framework that could potentially
enhance how behavioral science research is more generally
conducted. By integrating AI into their toolkit, researchers
can achieve a deeper, more comprehensive understanding
of behavior and develop more effective interventions to
improve human well-being within a broad evolutionary and
life science framework.

3) RISKS TO BEHAVIORAL SCIENCE FROM AI
Despite all its benefits, AI also introduces risks that could
undermine the integrity and progress of behavioral science.
One primary risk is the propagation of false information that
can be mixed with factual data in ways that are difficult to
detect. The ease with which AI can generate content further
poses a significant threat to the originality and credibility of
scholarly work. Plagiarism is a constant threat.

Depending on how models are developed, the risk of
cultural hegemony and bias is embedded within AI algo-
rithms. Commercial AI tools could easily be curated in
ways that favor specific commercial products or areas, such
as research tools that ignore design problems in research
on pharmaceuticals for behavioral and emotional problems
while criticizing them in psychosocial research on these
topics.

There is a risk that the outcome success of large language
models could be mistaken for an understanding of the
natural processes of language acquisition, especially in
vulnerable populations such as children with disabilities. The
‘‘Chinese room’’ problem in this article shows the issue.
Still, confusion of this sort could detract from the search for
the human processes underlying language competence, thus
undermining effective application and slowing knowledge
development.

In the area of psychotherapy, as LLMs come to do a
better and better job of mimicking the actions of therapists,
the human therapeutic alliance may come to be replaced
by machine → human substitutes rather than to use AI
tools to extend and augment therapeutic interactions. Famous
psychotherapists may have their voices and mannerisms,
in essence, taken away from them as part of this change. The
long-term impact of AI therapists is hard to model in the
absence of data, just as with the effects of humanoid robot

substitutes in other areas, but it raises difficult ethical and
moral issues at the very least.

Finally, the allure and ease of use of newAI methodologies
may overshadow the foundational purposes of research and
the hard work needed to produce new scientific knowledge.
For example, a young scientist might find it far easier to
conduct AI-driven meta-analyses of other scientists’ work
than to risk failure in discovery-oriented research in the lab.
This could slow scientific progress even if AI tools perform
very well because they cannot replace the need to uncover the
processes that lead to behavioral competencies through actual
experimentation.

4) POSSIBLE MITIGATION STRATEGIES
Several strategies can be implemented to minimize the risks
associated with AI in behavioral science. The creation of
sophisticated tools to detect plagiarism and cultural or other
biases within AI-generated content is essential. In a similar
way, improving the capacity to discern false information
through enhanced AI algorithms may help improve scientific
quality.

Psychiatry has long pursued better conflict of interest
(COI) regulations to manage the influence of commercial
interests on research outcomes, but these can become ‘‘pro
forma’’. In AI, merely waiving one’s hand will not suffice.
The involvement of scientists and professional associations
in setting standards and providing guidelines for AI use is
critical to ensure that the integration of AI into behavioral
science enhances rather than detracts from the field’s integrity
and progress.

V. IMPACT OF AI DIFFUSION IN TODAY’S AND
TOMORROW’S SOCIETY
A. ETHICAL ASPECTS
The introduction of AI in today’s human society raises
concerns that are even more radical than those championed
in the XIX century by the Luddite movement, which strongly
opposed the introduction of machines in the textile industry.

While most critics of the introduction of machinery in
XIX century industries used to focus on the damage to
the overall employability of the workers that were being
made redundant, we know that the work market somehow
adjusted itself to a new configuration. A side effect of utmost
importance, however, became apparent when industrial
production evolved to Henry Ford’s concept of supply chain:
the alienation of the workers, whose job changed from a
creative activity where ‘‘a cycle’’ was the creation of a whole
finished product, to a repetitive fast activity where the job
collapses to a single, quick, repetitive action that requires no
thinking nor any critical or creative thought.

The changes to society were radical: the frustration of the
workers and their exploitation created the conditions for the
rise of new ideologies and self-consciousness of the work-
ers [305]. The rise of Communism molded most of modern
politics and history: like all human activities, it involved
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lights and shadows: most of the laws that regulate the job
market nowadays (at least in places that did not adopt the
ultra-capitalistic system of the USA) came as a result of the
activities of the communism-inspired Unions; the implemen-
tation of the Communist ideology has however also brought
perversion, mass murder, and inequality in many countries.

The AI revolution can have an even more massive impact
than the industrial revolution. AI promises to make most
of our actions faster or simpler and is often used to
improve connectivity between humans. Still, each benefit
is unfortunately open to being exploited in perverse ways.
The widespread terror about the impact of AI on the
job market has inspired several populist movements across
Europe to make ‘‘citizen income,’’ a guaranteed income that
each citizen would receive to be able to live a normal life
even without working, a central message of their campaign
(cite Italy, Spain, France, etc.). When applied to human
interactions, AI can increase connectivity but also be used to
manipulate people’s minds and political orientation, enabling
companies or malicious actors to sway and decide the
result of elections, with negative impacts on the population,
increasing overall unhappiness. Several tasks that were once
exclusively performed by humans can be executed quickly
by large language models today, but this entails several
risks. Although non-experts use them to produce content,
interpreting their output requires expert knowledge to spot
errors correctly. This significantly impacts the reliability
of AI-produced content, particularly when humans do not
honestly declare the AI generation aspect. AI content and the
spreading of its use can be devastating from the pedagogical
point of view even when the content itself is correct and
reliable: students may be tempted to use the outputs as a
substitute for putting real effort into studying a topic, and
the knowledge of the subject matter will be more and more
delegated to the algorithm, to the point that maintaining a
certain level of human know-how and control may become
unfeasible.

Among the various essays, Bengio et al. [306] stands out
as one of the most authoritative. Its contributors include
prominent intellectuals such as Yuval Noah Harari and
Daniel Kahneman, alongside key figures in the current
AI revolution, including Geoffrey Hinton. Despite their
significant contributions to the advancement of AI, these
authors express both surprise at the rapid progress and
an anticipation of new frontiers that AI will soon reach.
They argue that the unpredictable extent of AI’s potential
intelligence shortly necessitates a severe examination of its
associated risks. Rather than calling for a slowdown in AI
research, these authors advocate for an accelerated focus on
integrating safety measures and verification processes into AI
development.

1) BENEFITS AND RISKS OF AI DIFFUSION TO MODERN
SOCIETY
AI-generated content and advice are widely used in sectors
like healthcare, education, literature, report production,

language translation, and social media [307], [308], [309],
[310], [311], [312]. One of the major benefits of AI is that
it significantly simplifies content production, both written
and visual. Advances in machine learning and AI have
led to language models (see supra, Sec. III) that generate
credible continuations to short prompts. For example, these
applications are revolutionizing journalism. They automate
writing tasks such as local news stories, special interest
stories, and earnings reports. This allows human efforts
to focus on editing, selecting, organizing, and presenting
content [313].
The rise of AI has also sparked concerns over the

proliferation of fake news and misinformation. AI can be
used to identify those susceptible to misinformation and
manipulation and to create content that sounds reasonable and
mimics human news stories, narratives, and behavior [313],
[314]. For example, social bots significantly contribute to the
spread of low-credibility articles. They amplify such content
in the early stages of spreading before it goes viral. These
bots target users with numerous followers by responding
to them and mentioning them [315]. The users, in turn,
reshare the content posted by bots, causing fake news to go
viral.

Fake news refers to fabricated information that imitates
legitimate news media in form but lacks the organizational
process or intent [316]. Unlike legitimate news outlets, fake
news sources do not adhere to editorial standards that ensure
accuracy. Misinformation can also come from conspiracy
theories and health or vaccination misinformation [317],
[318]. Studies show that misinformation spreads more widely
and quickly than accurate information [319].

During the US presidential election, a quarter of tweets
were either fake news (10%) or extremely biased (15%)
[320]. Automated accounts and bots played a significant role
in spreading fake news. A survey found that 36% of respon-
dents believed in conspiracy theories about the planning of
the coronavirus outbreak by powerful people [321]. Research
suggests that a substantial proportion of the public views
misinformation as highly reliable [313].

Right-leaning media was more linked to fake news
than left-leaning media, potentially influencing the election
and democratic processes [320]. Misinformation can also
lead to false perceptions, risky behavior, and distrust of
authorized information [322]. Health risks can arise from
misinformation about such things as vaccines, the Zika
virus, Lyme disease, and Ebola prevention and treatment
strategies [317].

In summary, while AI can aid useful content, it can
be used to support the generation and spread of harmful
misinformation.

2) MITIGATING RISKS OF FAKE AND MISLEADING
INFORMATION
Fake news and misleading advice are intentionally written to
mislead readers with false information, making it challenging
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to detect based on content alone [323]. Therefore, it is
crucial to consider auxiliary information to identify fake or
misleading information. This can include user likes, social
media stances, and user content annotations.

There are three major ways to fact-check information.
First, information can be checked by experts –a resource-
intensive task. Second, crowdsourcing can be used to
enable regular users to annotate content. These annota-
tions can be aggregated to produce an overall assess-
ment of the accuracy of the information [323]. This
approach depends on crowds being ‘‘wise.’’ Finally, compu-
tational and AI-oriented information-checking can identify
unreliable, misleading, or false information [324], [325],
[326], [327].
The use of AI in identifying false information establishes a

delicate balance between technology and privacy, data protec-
tion, transparency, and explainability of the AI system [328],
[329]. AI’s effectiveness in detecting disinformation relies on
analyzing large data sets, often involving intrusive access to
users’ online activities and social media interactions. This
raises significant privacy concerns, including potential data
breaches and the risk of false positives that could stifle free
speech. Moreover, who controls the AI and the criteria for
identifying ‘‘fake news’’ adds another ethical layer; a clear
pitfall to be avoided is the involvement of private corporations
in the process, as these players might easily manipulate the
system using those same AI algorithms to serve undisclosed
interests. Therefore, A governance system under a superna-
tional entity’s direct control is highly advisable. In summary,
despite AI’s potential in combating disinformation, its
deployment must balance technological efficacy and ethical
considerations.

B. LAW OF WAR
Not long ago, the idea of war conducted with AI-enabled
weapons only featured in dystopian science fiction. From
Metropolis (1927) to The Terminator (1984), AI with evil in
its chromium heart was depicted as determined to ‘‘Crush!
Kill! Destroy!’’ until there was nothing left of humanity.22

In the last couple of decades, AI has moved beyond the
realm of fiction to very real, very lethal weapons systems
that will likely make an appearance on the battlefield shortly.
More are sure to follow, and, as is often the case, technology
races ahead, whereas relevant policy and law struggle to keep
up [330].
The stakes are high, and international law is the most

prominent tool for controlling AI-enabled weapons devel-
opment, proliferation, and use. International humanitarian
law (IHL) governs the conduct of armed conflict and
is accepted as binding by all states through customary
international law and such instruments such as the Geneva
Conventions.23 Below we first consider how IHL applies to

22‘‘Crush! Kill! Destroy!’’ was the frightening favorite phrase of Killer
Android IDAK Alpha 12 from the US television series ‘‘Lost in Space,’’
which ran from 1965-68. https://lostinspace.fandom.com/wiki

23https://ihl-databases.icrc.org/en/ihl-treaties/treaties-and-states-parties

AI-enabled weapons, after a brief review of what the category
of AI weapons includes. We then discuss the potential
dangers of including AI in modern warfare that have been
overlooked.

1) WHAT ARE AI WEAPONS?
The US Department of State defines AI as ‘‘the ability
of machines to perform tasks that would otherwise require
human intelligence’’ and notes that autonomy ‘‘involves a
system operating without further human intervention after
activation’’ [331].

The full AI definition in the declaration is ‘‘the ability
of machines to perform tasks that would otherwise require
human intelligence. This could include recognizing patterns,
learning from experience, drawing conclusions, making pre-
dictions, or generating recommendations. An AI application
could guide or change the behavior of an autonomous
physical system or perform tasks that remain purely in the
digital realm.’’

This definition of AI is unhelpfully broad, but the
specific use of AI in legal weapons systems is at issue
here. Across various international law definitions, there is
no distinction between AI-enabled weapons and (Lethal)
Autonomous Weapons Systems (LAWS). Some LAWS
involve AI, and some do not, but in general, the international
legal community debates LAWS rather than a more specific
category of AI-enabled weapons. That framing is used here as
well.

An example of an autonomous weapons system that
does not require AI is the Phalanx Weapons System
(‘‘Phalanx’’ in the following). Designed to operate in a
delimited area, Phalanx is used on board ships to defeat
inbound airborne threats. Phalanx employs what might
be called an ‘‘if it flies, it dies’’ strategy —once it is
activated, it identifies as hostile and engages all targets
in a pre-defined area [332]. Even landmines are, to some
extent, autonomous, as they identify any target of a certain
weight as hostile and engage those targets without human
input.

As technology advanced, LAWS started to include ele-
ments of what we now think of as AI. For example, loitering
munitions have offered a glimpse of things to come for some
time. Sometimes referred to as ‘‘kamikaze drones,’’ these
airborne platforms were initially designed to be released
from human-crewed aircraft and to remain aloft as long as
possible while searching for a specific electronic signature
that indicated an enemy anti-aircraft site. If a signal were
detected, the weapon would target the enemy system for
destruction [333]. This category of weapons may be the
first to be developed into true AI-enabled offensive weapons
that would operate in a less-controlled environment and be
able to identify a broader range of targets, such as military
vehicles or personnel that would have to be distinguished
from protected people and objects also in the area of
operations.
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2) APPLICATION OF IHL TO AI-ENABLED WEAPONS
The body of law known as international humanitarian
law (IHL) applies during armed conflict.24 IHL is unique
in that its purpose is to protect noncombatant lives and
property as much as possible while recognizing that waging
armed conflict involves violent and destructive activities
that, in peacetime, would be unlawful [334]. This means,
for example, that under certain circumstances during armed
conflict, combatants may kill people and destroy property
lawfully. IHL is an old body of law, but it has been quite
resilient at remaining relevant as innovative technologies
have been introduced in armed conflict.25

IHL is applied primarily through four principles: dis-
tinction, proportionality, humanity, and necessity, although
other principles such as precautions in attack are also
relevant [336].26 It is beyond the scope of this commentary to
discuss each of the principles; distinction and proportionality
are the focus here.

Proportionality is perhaps the most difficult —and
human— of the IHL principles to evaluate. Proportionality
prohibits attacks ‘‘expected to cause incidental loss of civilian
life, injury to civilians, damage to civilian objects, or a
combination thereof, which would be excessive about the
concrete and direct military advantage’’ [337]. Military
attacks must always be directed against military objectives,
but collateral damage and casualties (incidental damage and
injury resulting from an attack) are an inevitable part of
waging war. Balancing the expected collateral harm against
an expected military advantage is not an equation that lends
itself to a mathematical solution. Even with perfect battlefield
intelligence, aggressors must draw what are, in some ways,
moral conclusions about the value of attacks. Additionally,
many factors can blur battlefield intelligence, from faulty
sensors to exhausted humans and inclement weather. This
uncertain information is then metaphorically placed on
the proportionality balancing scale and used to evaluate
the legality of a particular attack. This has traditionally
been seen as a judgment requiring human experience,
considered judgment, and applying inchoate moral factors.
Some decisions are painful, and many are ambiguous.

One of the most common objections to the use of AI
in LAWS is that such weapons will lead to the intentional
killing of humans without a human directly making the
decision [338]. Despite it often being framed as a legal issue,
this is a moral rather than a legal question. IHL establishes an
objective standard to assess the legality of attacks in armed
conflict. Legality is determined by adherence to the standard,

24The law governing the conduct of hostilities is most commonly referred
to as IHL, but in the US and elsewhere, is also referred to as the law of armed
conflict (LOAC).

25The Martens Clause stipulates that in cases not explicitly governed by
law, humanity and the dictates of public conscience will apply [335].

26Additional Protocol I of the Geneva Conventions, etc. (AP I). AP I
is not universally accepted –notably, the US did not ratify it– but most
of its provisions (including precautions in attack) are accepted as binding
customary international law.

not by who (or what) enables the correct conclusion to be
drawn.

Another common concern with using AI in weapons
systems centers on doubts that AI can be sufficiently sophisti-
cated to make error-free lethal decisions. Insufficiently devel-
oped AI might draw inaccurate conclusions about targeting,
failing to distinguish civilians from military members. This
doubt may be well-founded, but it is irrelevant. IHLmandates
legal review of weapons before they are employed in armed
conflict, so if AI is incapable of controlling a weapons system
lawfully, IHL already prohibits the use of the weapons system
(a legal review of weapons is discussed infra). This is a
technology concern, but as it is a legal issue, it has already
been addressed in IHL.

Beyond these moral and technical debates, issues relevant
to AI-enabled weapons implicate IHL. The main one is
accountability. To ensure an effective application of IHL,
belligerents must be able to identify who is responsible
for military decisions so that accountability for decisions
attaches [339]. Accountability for attacks, particularly non-
combatant death and injury that may have been caused
unlawfully, must be traceable to a responsible (human)
party –even when an AI-enabled weapons system caused the
unlawful action. Some proposals to address accountability
include holding overall operational commanders liable or
even tracing liability to programmers of algorithms con-
trolling the AI. These proposals seem unsatisfying because
humans may have acted in good faith, and holding people so
removed from the action may seem unjust. On the other hand,
it is also true that the international community has a spotty
record of holding humans accountable for misdeeds in war,
even under entirely conventional circumstances [340].
Despite the issues set out above, States are generally not

advocating for a total ban onAI inmilitary systems [341]. The
majority view is that states should ensure LAWS comply with
IHL. The primary means IHL provides to ensure weapons
systems comply with international law is a requirement
for a legal review of weapons under Article 36 of AP
I [342]. As noted above, the review must be conducted before
the weapons are fielded [343]. These reviews ensure that
weapons systems are not inherently indiscriminate (i.e., they
can be targeted) and that the injuries they cause do not cause
unnecessary suffering.27 With traditional (kinetic) weapons
such as firearms and explosives; reviews include testing the
weapons by employing them in a controlled situation, such
as at a rifle range. Kinetic weapons tend to be stable in
design and manufacture, ensuring legal reviews remain valid
throughout the weapon’s life.

Legal reviews of cyber-related capabilities, including AI,
are more challenging. If computer code controls a system, the
code will likely require updates and patches. These changes

27The prohibition of unnecessary suffering originated in early documents
such as the Hague Convention respecting the Laws and Customs of War
on Land (October 18, 1907) and is now considered part of binding custom-
ary international law. Seehttps://ihl-databases.icrc.org/en/ihl-treaties/hague-
conv-iv-1907/regulations-art-23
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introduce an element of uncertainty that is not present
in kinetic weapons. AI-enabled systems are also uniquely
challenging because AI substitutes for the human operator
rather than the weapon itself.28 It is easy enough to review
the kinetic part of an AI-enabled system; it is no different
than testing and reviewing a traditional weapon. Objectively
assessing whether an AI system will make appropriate
targeting and engagement decisions is more complicated.
Human operators are trained and tested throughout a career
that may span decades. Developing appropriate standards
and testing AI decision-making in several different, realistic
situations may be difficult.

It is a feature of AI that the algorithms powering it draw
conclusions based on many concurrent factors that humans
would find difficult or impossible to digest because of the
volume of data and the speed with which it must be analyzed.
This ‘‘black box’’ problem can make it impossible for an
AI to explain ‘‘why’’ a particular decision is made [344].
That means it could be impossible to judge the legality
of decisions made in armed conflict. Since IHL requires
a system of accountability for decisions made in war, this
feature complicates the legal status of AI-enabled weapons.

IHL has generally been sufficient to govern LAWS as
currently configured.More challenges will arise when LAWS
with significantly more autonomy are employed in less
rigid, less controlled situations.29 The autonomous systems
that are most feared, and thus are most controversial, are
those systems capable of identifying, selecting, and engaging
targets in unique situations without human intervention. For
example, a future AI offensive weapons system might have
autonomous robots with lethal capabilities range ahead of
friendly military forces to engage adversaries. In a contested
space that includes both lawful and unlawful targets, such
systems would require a sophisticated ability to identify
noncombatants and civilian objects and distinguish them
from appropriate targets. This capability would be necessary
for AI-powered ground vehicles or, perhaps more likely,
in the short term, uncrewed AI-enabled aerial platforms used
in an offensive role. Defensive systems can be programmed
with strict engagement parameters in advance because
they are used under more predictable conditions, such as
on board a ship or at a vehicle checkpoint. In contrast,
offensive systems often deploy forward into chaotic situations
with incomplete information, making strict programming
impossible.

States have begun to issue statements about the legality
of LAWS, but they tend to be quite broad. US statements
support ‘‘appropriate use.’’ [345] China’s position on LAWS
is unclear, charitably referred to as ‘‘strategic ambiguity,’’
[346] but could also reflect indecision on whether LAWS
will operate to its advantage. China and the US have
discussed keeping AI out of nuclear command and control

28Sophisticated, interconnected systems like this are why the military
refers to ‘‘weapons systems’’ rather than merely weapons.

29One example would be the loitering munitions described above with
more robust capabilities.

systems [347]. European States can generally be relied on
to advocate for international regulation, and autonomous
weapons are no exception. The consensus in Europe is that
states should ‘‘work towards a legally binding instrument
ensuring meaningful human control over the use of force’’
[348]. Finally, Russia opposes any specific legal regime
for LAWS, asserting that existing law applies and is
sufficient [349].
As a brief aside, the most significant AI-related gap in

IHL does not directly involve a weapon and is beyond the
scope of this short discussion, but it is still worth noting. IHL
may insufficiently address the use of manipulated, artificially
amplified, or insidious information [350]. The rules may
be insufficient to control AI capabilities to create, target,
and disseminate information from anywhere to anywhere
instantly.

If the alignment problem can be addressed, AI-enabled
weapons could be more ‘‘humane’’ than humans. The correct
answer is to go slow, but the odds of that happening are
low. Still, it does make sense to try to slow the roll. The
accountability requirement may be a rational line to draw, and
it requires no new law. Only weapons systems amenable to
post-incident analysis should be fielded. This would provide
at least some pathway to accountability for violations of IHL
and force some level of human grappling with these complex
issues.

In conclusion, AI weapons systems with Skynet-like
abilities are far ahead. Hopefully, systems with Skynet’s
intent to destroy humanity will never come to pass.30

The ongoing development of AI to assist in intelligence
analysis, decision-making, predictive analysis, and defense
will continue. Soon, more capable AI-enabled weapons
systems will appear in armed conflicts [351], [352].
Most likely, these systems will present possible targets to

human operators for approval before engaging the targets,
at least in areas with collateral concerns. Keeping humans
‘‘in the loop’’ in the short term will help integrate AI more
seamlessly into combat operations. In this evolving situation,
it appears crucial to keep closely watching the developments
of these technologies.

Independent organizations have started to be on the lookout
for new AI weapons31; they provide valuable sources of
information, which hopefully may seed more organized
control efforts by supernational entities.

C. OTHER SOCIETAL IMPACTS OF AI APPLICATIONS
1) AI IN SOCIAL MEDIA
As in other areas of human endeavor, AI has had an outsized
impact on social media. It has driven profound change in how
humans interact with information because of its ability to
work with social media content at speeds and scales beyond

30In the 1984 film ‘‘Terminator,’’ Skynet was a highly advanced AI system
built for defense, which ended up trying to eliminate humanity. SkyNet
clearly illustrates the ‘‘alignment problem’’ in which AI’s and humans’ goals
clash.

31, E.g., seehttps://autonomousweaponswatch.org
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human capabilities. The changes can generally be divided
into three categories: curation, creation, and surveillance. All
three are discussed below.

Social media platforms leverage AI as a personal curator
of news and information for individual users. Based on
preferences expressed through clicking links and time spent
on web pages and articles, AI builds a profile of user
preferences [353]. These preferences control the resources
offered to users, both filtering and prioritizing items [354],
[355]. This has advantages in that filtering out uninteresting
material prevents users from wasting time looking for items
of interest. For example, users can avoid being offered
news items about football if they express no interest in
sports offerings. Social media platforms also use AI-enabled
algorithms to prioritize information in order of interest, from
most to least interesting, saving users time and making
their search for information more efficient. Finally, AI helps
shield users from advertising related to products they have
no interest in while exposing them to product advertising
that might be relevant to them and thus support purchasing
decisions [356].

On the other hand, AI acts as a sort of gatekeeper for
new information. This ‘‘filter bubble’’ can mislead people
into discounting or failing to understand alternative points
of view [357]. Because curation is so efficient, readers and
researchers are less likely to feel the need to engage in
broad inquiry that exposes readers to unique areas and points
of view [358]. Why search for information on ‘‘privacy
standards’’ when an infinite stream of AI-curated content
detailing corporate violations of GDPR (for example) is
delivered daily to the email inbox, homepage, and news feed?
AI-driven algorithms feed content known to be of interest.
However, They can also act unintentionally as agents to drive
people deeper into ‘‘rabbit holes’’ of extremist content for
which they would not have chosen to search [359]. Finally,
AI’s ability to build user profiles allows targeting through
social media of individuals likely to be amenable, not just
to products and legitimate political ideologies, but also to
anti-social and potentially harmful ideas [360].
Social media platforms thrive on user engagement, and

new content is the fuel that feeds engagement. Creating
material distributed on social media platforms is another
way AI has affected the ecosystem. AI systems can generate
routine articles at a pace and scale beyond human capabilities.
When the topic is weather, sports results, and other routine
reporting, AI can lighten the burden for reporters, at least
in theory, freeing them to provide more in-depth reporting
and analysis on nuanced issues [361], [362]. However, AI is
assuming a role in writing on more controversial and divisive
topics as well —and the result is not always positive [363].
As noted supra, AI systems sometimes generate false

content. It can be difficult for the truth to keep up with
falsehoods in the best of times; AI enables the creation of
false and misleading items on a large scale very quickly,
and social media provides a platform for these items to
reach an extensive audience in a short period. AI generates

new content so fast that the only way social media content
moderators have been able to keep up at all is by also using
AI to help identify inappropriate, fabricated, and inaccurately
attributed material [364], [365].

The advantage of usingAI to identify harmful AI-generated
content does not end with its ability to keep pace.
AI moderation of social media content also protects human
moderators from psychological stress. Content moderators
on social media platforms are sometimes exposed to
disturbing material, such as depictions of violence and
child sexual abuse. Moderators have reported symptoms
such as ‘‘intrusive thoughts, avoidance and hypervigilance
around children’’ as a result of viewing disturbing material
in the course of their work [366]. For some moderators,
their experience has a profoundly negative effect on their
lives [367].

Using AI to moderate content also potentially results
in more objective enforcement of content standards [368].
Problems have plagued social media networks for years as
companies have attempted to set and enforce standards for
billions of users [369]. AI is imperfect at content moderation
and works best with some human oversight. Still, at least it
can flag potentially offensive or inappropriate material at a
relevant speed [370]. The sheer volume of content generated
on social media platforms —much of it AI-generated—
dictates the use of AI in defense.32

AI systems can effectively moderate content by rapidly
analyzing and categorizing large quantities of data. This
set of capabilities makes AI useful in surveillance, as well.
On the positive side, AI-driven surveillance allows gov-
ernment agencies and law enforcement officials to protect
national security and the safety of citizens, as well as
to prevent and solve crime [371]. By scanning data for
keywords, phrases, and connections in real time, AI systems
can highlight problems as they arise, enabling immediate
response [372]. For example, if a teenager in the depths
of depression posts videos about an imminent suicide,
mental health assistance could be dispatched to prevent the
person from taking their own life [373]. However, automated
online content moderation can also restrict the freedom of
speech of vulnerable groups. In the case of LGBTQ+-
related hate speech content moderation, such systems often
lack diverse training datasets and are influenced by pre-
existing inequalities [374]. Moreover, LGBTQ+ groups
usually adopt words that are derogatory to their community
as an identification and re-appropriation mechanism. When
these terms are isolated from their historical, cultural, and
political context, they can be automatically labeled as toxic,
thus censoring marginalized groups and amplifying existing
inequalities [375].

Unfortunately, the same capabilities allow repressive
regimes to stifle dissent and protest [376]. AI-enabled

32At the time of writing, Facebook has almost 3 billion monthly active
users worldwide; YouTube, WhatsApp, and Instagram together total over
6.5 billion users.
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surveillance also allows for efficient monitoring of citizens’
communications, which can be devastating to individual
privacy. Much of the developed world has legal protections
to prevent government abuse. Still, in other parts of the
world, the ubiquity and efficiency of AI’s monitoring of
social media could ultimately spell the end of privacy in
communications [377], [378].

The internet introduced profound changes to the ability
of individuals to communicate with others instantly and
without regard to geography. Social media platforms took
communications to a new level, allowing users to generate
volumes of content every second and broadcast it to everyone
worldwide. AI has proven to have a unique synergy with
social media, for both good and evil. AI can generate content
libraries every second, tailor the information, and target it to
particularly receptive audiences. The computer revolution has
happened quickly, and it continues to accelerate. Social media
itself has had a significant influence on individuals and the
way we react to each other. Whether this turns out to be an
overall positive or negative, the effect will be amplified by
AI in this arena, as in every other area AI touches.

2) EDUCATION AND LEARNING
AI is deeply embedded in daily work and various life
aspects, including education, where it is a powerful tool.
The academic interest in this area is substantial, as noted
by Chen et al. [379], who identified 4,519 publications
between 2000 and 2019. Integrating AI in learning marks
a transformative step, representing a significant shift due to
AI’s contributions and ongoing progress [380].While its most
prominent applications have surfaced in the 21st century, the
use of AI in educational tasks dates back to the late 20th
century [381].

Advancements in AI, particularly in large language models
(LLMs), have revolutionized various sectors, including
education. Sophisticated AI systems like GPT-4 can pro-
cess and generate human-like text, offering unprecedented
opportunities in educational settings. Trained on vast amounts
of data, these models can perform various language-related
tasks, from answering questions to creating educational
content. Kasneci et al. [382] recently highlighted the rapid
development and adoption of LLMs in educational research
and practice, presenting ideas on using them responsibly and
ethically in education. The integration of LLMs represents
a technological advancement and a paradigm shift, promis-
ing personalized learning experiences, efficient knowledge
dissemination, and enhanced student-teacher interactions.

The potential of AI in education is extraordinary, as dis-
cussed by Zhai et al. [383]. Key topics include AI’s role in
personalizing learning through adaptive approaches, devel-
oping expert systems and intelligent tutoring strategies, and
recognizing AI as a crucial component of the educational
process. However, several challenges and considerations
must be addressed to improve learning outcomes. AI-driven
tools, such as adaptive learning platforms, tailor content

and pace to individual needs, catering to diverse learning
styles and abilities. This shift enhances student learning
experiences and equips educators with sophisticated tools
for better teaching support. As AI reshapes the educational
landscape, it opens doors to innovative pedagogies and
learning strategies, reflecting a significant evolution in how
education is delivered and experienced.

Enhanced learning and teaching support through AI and
technology involves augmenting traditional educational prac-
ticeswith digital tools to better cater to diverse learning needs.
This approach recognizes the limitations of conventional
teaching methods, which often struggle to address the
individualized needs of students. Educators can provide more
targeted and effective teaching strategies by integrating AI-
driven tools.
These AI tools can range from interactive learning

platforms to intelligent tutoring systems, offering real-time
feedback, personalized learning paths, and more interactive
content. For teachers, these technologies provide valuable
insights into student performance and learning patterns,
enabling them to tailor their instruction more effectively.

Enhanced learning and teaching support aims not to
replace teachers but to empower them with better tools and
data. This support helps identify areas where students strug-
gle and adapt teaching methods to address these challenges.
For students, it means receiving an education more aligned
with their learning style, pace, and interests. Additionally, this
approach promotes a more inclusive learning environment.
Students with different learning abilities, including thosewith
disabilities or language barriers, can benefit from tailored
educational resources and support. AI tools can help break
down complex concepts into manageable parts, provide
alternative explanations, and even offer translations, making
learning more accessible.

In conclusion, enhanced learning and teaching support
through AI and technology represents a significant step for-
ward in educational practices. It optimizes students’ learning
experiences and provides teachers with the tools they need
to be more effective educators. As this approach continues to
evolve, it can potentially transform the educational landscape,
making learning more personalized, inclusive, and effective.

Personalization in learning is an educational approach
where teaching methods, materials, and pace are tailored
to individual students’ needs, abilities, and interests. This
concept, gaining traction in modern educational systems,
is driven by recognizing that learners are diverse, with unique
backgrounds, learning styles, and motivations. Personalized
learning aims to move away from the traditional ‘‘one-size-
fits-all’’ approach, providing a more engaging, relevant, and
effective educational experience.

At the core of personalized learning is the use of data
and technology. AI and machine learning algorithms can
analyze vast data points to understand a student’s learning
patterns, strengths, and areas needing improvement. This
information enables the creation of customized learning
paths and materials, ensuring that each student learns most
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effectively. For instance, students struggling with a specific
concept might receive additional resources and exercises
tailored to their learning style. In contrast, students excelling
in another area might be given advanced materials to keep
them challenged and engaged.

Another key aspect of personalized learning is flexibility
in pacing. Traditional classroom settings often move at a
fixed pace, which can be too fast for some students and
too slow for others. Personalized learning allows students to
progress at their own pace, ensuring they fully understand a
concept before moving on. This flexibility can lead to better
academic outcomes, as students are less likely to fall behind
or disengage due to boredom. Furthermore, personalized
learning can include adaptive learning technologies. These
systems adjust in real-time based on student interactions,
providing immediate feedback and altering the difficulty level
of tasks to suit the learner’s current ability. This dynamic
approach keeps students in their optimal learning zone,
known as the ‘‘zone of proximal development,’’ where they
are sufficiently challenged but not overwhelmed.

The benefits of personalized learning extend beyond
academic performance. It fosters greater student autonomy
and responsibility for their education. Students are more
engaged andmotivatedWhen they have a say in their learning
process. They learn to set goals, track their progress, and take
ownership of their educational journey. This empowerment is
crucial for developing lifelong learners who are adaptable and
self-driven. However, implementing personalized learning
is not without challenges. It requires significant resources,
including technology infrastructure, teacher training, and
ongoing support. There is also a need to ensure that all
students have equal access to these resources to avoid
exacerbating educational inequalities.

In summary, personalized learning represents a significant
educational philosophy and practice shift. It promises a
more inclusive, effective, and student-centered approach
to education that prepares learners for academic success,
lifelong learning, and adaptability in an ever-changing world.

The integration of AI and technology in education brings
several challenges and considerations. Key among these is
data privacy and security issues, where handling sensitive
student information must be done with the utmost care and
in compliance with legal standards. Additionally, there is the
concern of exacerbating the digital divide, as unequal access
to technology can lead to increased educational disparities.

Another significant challenge is the need for teacher train-
ing and adaptation. Educators must be adequately equipped
and supported to utilize these advanced tools effectively in
their teaching methodologies. This involves not just technical
training but also an understanding of how to integrate
technology in a pedagogically sound manner. Furthermore,
there is the risk of over-reliance on technology in education,
which could potentially undermine the development of
critical thinking and problem-solving skills in students.
Finding a balance between technology-enhanced and tradi-
tional teaching methods is crucial to ensure students benefit

from both worlds. In summary, while AI technology offers
numerous opportunities for enhanced learning, addressing its
challenges is essential for successful and equitable integration
into the educational landscape.

3) AI AS AN AID TO PSYCHOLOGICAL INTERVENTIONS
This section discusses the benefits and risks of AI in psychol-
ogy and strategies for mitigating the risks. AI has been shown
to have significant potential in psychological assessment,
intervention, and engagement. It can help identify specific
subgroups for treatment, streamline decision-making, and
boost patient engagement and adherence to intervention
plans. However, the use of AI also poses risks, such as the
potential for misuse of personal data, the reinforcement of
societal biases, and the potential for normative interventions
to be ineffective for specific groups. To mitigate these risks,
we need transparency in data usage, strong privacy measures,
and constant AI debiasing efforts. Developing AI models
specific to psychological interventions and well-being can
enhance accuracy and relevance and address ethical issues
unique to the field.

We believe the psychological risks are not due to AI
but how it is used, applied, and integrated into larger
systems [314]. AI models can use personalized data to
craft influential messages encouraging specific actions or
beliefs. This can influence decision-making, for instance,
in elections through voter profiling using Facebook likes.
Additionally, personalized data can be used to take advantage
of moments of vulnerability. For instance, when indicators
suggest an individual feels unattractive, beauty products can
be promoted.

Systems operating at a psychological level are hazardous in
the event of misuse and manipulation. For this reason, article
5 of the AI Act prohibits AI systems that use subliminal tech-
niques or exploit the vulnerability of an individual (or group)
to distort their behavior and cause (or are likely to cause)
significant harm. In addition, systems used by professionals
and considered medical devices will be classified as high-
risk systems. They must undergo a conformity assessment to
evaluate their compliance with specific requirements. How-
ever, the regulation only covers other already commercialized
systems, such as those used to manage and cope with anxiety
and grief, as they require chatbots to inform individuals that
they are interacting with an AI system.

Moreover, AI and the data sets built on a ‘‘normal’’
population may reflect the biases of that population in
terms of religion, race, gender, nationality, and sexuality.
These biases often reflect stereotypes [384]. In addition,
normative intervention methods may not always be effec-
tive, with mainstream interventions failing to work for
many people [299], [385], [386]. AI models built from
‘‘representative’’ mainstream cultures may be excessively
focused on WIERD (Western, educated, industrialized, Rich,
Democratic), caucasian, and heterosexual norms. They may
not suit those who fall outside of the so-called average.
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Despite the challenges and risks mentioned supra, the
use of AI certainly has the potential to revolutionize
psychological assessment and treatment; it can identify spe-
cific subgroups for targeted therapies, streamline decision-
making, and automate treatment delivery. Below, we provide
some details on these enhancements.

• AI can support psychological assessment. Research
shows a significant heterogeneity in conditions like
depression and anxiety and their root causes [387],
[388]. AI-powered algorithms could be designed to
help assess patients by identifying such heterogeneity
and pinpointing specific subgroups that respond well
to certain treatments. This method could minimize
human bias, which often leads to problems such as
over-diagnosis of borderline personality disorder in
women and conduct disorder in minority groups [389],
[390], [391].

• AI can support interventions. AI has the potential
to revolutionize interventions. It can identify who
needs treatment, determine the appropriate treatment
type, and assess the necessary support level. These
AI-driven strategies can streamline decision-making or
even automate treatment delivery [386]. Furthermore,
AI can function as a therapist or co-therapist. Studies
have shown that robot-assisted interventions generally
yield positive results [392].

• AI can support engagement and adherence. Engagement
and adherence are key to improved outcomes [393].
Technology has emerged as a promising tool to boost
both these factors [394], [395]. Engagement can be
enhanced through gamification, simplified feedback
processes, and bite-sized content delivery. AI systems
have a particular role in timing content to meet user
needs and sending reminders to complete a task, boost-
ing engagement. Additionally, AI allows the therapist
to extend their influence beyond the one hour of
therapy per week and provides a ‘‘co-therapist’’ that can
support connection and provide reinforcement outside
the session.

• AI can support treatment gains. AI-driven systems can
significantly contribute to maintenance and treatment
gains by identifying early warning signs of relapse
and providing preventive nudges. This technology will
also provide more comprehensive access to mental
health services, particularly for those who cannot afford
psychologist fees or time off work for appointments.

• AI can offer unique training opportunities. Integrating
artificial intelligence (AI) and avatars in psychotherapy
training presents a novel approach to enhancing the
educational experience of future therapists [396]. The
potential of AI as virtual patients for psychotherapy
training could be a significant tool, providing trainees
with a diverse range of simulated scenarios that closely
mimic real-life interactions, thereby improving their
diagnostic and therapeutic skills in a controlled envi-
ronment [397]. This approach not only aids in refining

practical skills but also allows for repeated practice
without the risk of causing harm to actual patients.

Several measures can be implemented to offset the dangers
and problems associated with AI in psychological interven-
tions. Firstly, data usage can be more transparent, and robust
data protection and privacy measures should be in place,
which will reduce the risk of data being used to manipulate.
Second, debiasing can be used at every stage of AI model
development, which includes data collection, model building,
model performance, and model deployment [386]. For
instance, data collection should be unbiased and culturally
sensitive, encompassing comprehensive samples and ranges
of information. Once an AI model is built, it should be
rigorously tested for biases. For example, the models should
be tested to see if they overdiagnose certain conditions or for
sensitive classes (race, gender).

From a regulatory standpoint, among the requirements for
high-risk systems (such as medical devices) set out in the
AI Act, the data management provision requires training,
validation, and testing of data sets that are ≪relevant,
sufficiently representative, and to the best extent possible,
free of errors and complete given the intended purpose≫
(article 10). In addition, instructions detailing the limitations
and capabilities of the system would be available to the
physician (who would always oversee the operation of
the system) in a clear format, and the provider would be
required to maintain a risk management system to identify,
eliminate or mitigate potential risks, including those arising
after implementation. Indeed, the AI Act aims to eliminate
(including by prohibiting certain practices) and reduce the
dangers posed by AI systems entering the EU market as far
as possible. The risk-based approach aims at achieving a
proportionate balance between promoting innovation and the
economy and protecting the rights and interests of individuals
and society.

Second, we can build domain-specific models based on
scientific evidence and big data derived from psychological
assessment to combat an AI-driven model that provides
generic and inaccurate advice. Such models can reliably
identify subgroups and how they respond to specific treat-
ment kernels (a fundamental, irreducible unit of behavioral
intervention designed to affect a particular outcome). This
is likely to reduce error rates by narrowing down the data
scope and increasing the efficiency of the intervention [398].
A domain-specific focus also facilitates rapid model updates,
as more data is gathered from users about what works and
does not work, and AI decision-making can be improved.

Importantly, these specialized models can effectively
identify and address field-specific ethical issues like biases.
For example, recommendations of treatment kernels can
be based on the best scientific evidence for a specific
individual in a particular context rather than on what advice
is popular on the internet. Further, domain-specific models
can identify vulnerable moments and provide well-being
enhancing kernel interventions [399], rather than marketing
messages that seek to sell beauty products.
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FIGURE 12. Map of risks from asteroid collisions in the Torino scale
(adapted from ESA).

Our proposal for mitigating risks focuses on providing an
ethical, AI-driven approach to psychological interventions.
However, this does not reduce the problem of AI being
used by companies manipulating individuals, often against
their best interests. We believe regulating these companies
won’t be easy, so we propose a speculative alternative.
We believe an AI ‘‘sentinel’’ system can be developed to
run in the background of a browser or operating system.
Creating a World Agency supervising ethical issues of AI
is necessary and urgent. This system would operate like
a mental anti-virus program: It would monitor the content
that the individual is exposed to and warn the person
when something pernicious might be influencing their views,
decisions, and actions. For example, one might imagine a
person reading inflammatory and misleading psychological
information (e.g., ‘‘It is important to control your emotions
at all costs;’’ ‘‘Democrats should never be trusted’’) while
the sentinel provides context (e.g., ‘‘research suggests that
attempts at control can be problematic. Here are some
science-based alternatives;’’ ‘‘Stereotypes are inaccurate and
can be misleading about individuals’’).

D. CONTAINMENT ISSUES AND EXISTENTIAL THREATS
FROM MISALIGNMENT OF AI GOALS
1) THE ALIGNMENT PROBLEM
In the expansive realm of Artificial General Intelligence
(AGI), a technology with unparalleled transformative poten-
tial lurks significant existential risks that may lead to the
extinction of a substantial part of our planet’s popula-
tion [400]. Advancing AI to AGI to benefit humanity involves
careful navigation of these potential perils, specifically those
about goal misalignment and containment issues. These risks
demand our immediate attention and thoughtful solutions,
as the risks are not just to individual lives, instead they have
societal, economic, and existential implications.

AGIs that do not align with human values and objectives
could become problematic. Let us say a hypothetical AGI
is designed to maximize paperclip production in a factory,
but it is not explicitly programmed to consider human safety.

FIGURE 13. Visual representation of the threat index of ten different
potential risks (labeled A through J, see Table 1) from AI deployment in
the short, medium, and long term, as results from the authors’
assessment of the probability and severity of each considered risk. See
the text for details.

Its overriding goal could potentially lead to compromises in
worker safety to achieve higher output, such as turning off
safety features because they slow production, for instance.
In a counterexample, anAGI created to aid in climate research
could significantly aid in climate change mitigation and help
formulate effective strategies only if its goals align perfectly
with the human value of preserving the environment. More
specifically, AGI agents might act in ways human operators
did not intend or expect. The results could be catastrophic
if an AGI misinterprets or optimizes itself in ways that
deviate from human safety and welfare. Advanced AGIs have
the potential to resist human control if the process of error
correction or modification of their objectives threatens the
achievement of their defined goals.

Ensuring value alignment with AGIs is therefore cru-
cial [401]. This involves spending considerable time and
resources developing robust methodologies for instilling
human values and ethics in AGIs, understanding their
learning and decision-making processes, and incorporating
human oversight throughout AGI operational processes.

Some scholars hold a different view, which is that the
problem may effectively be solved by instilling uncertainty
in the machine concerning the goals it is supposed to pursue
and connecting the latter to the satisfaction of humans. For
example, if a machine were uncertain about the relativemerits
of two possible actions that could potentially maximize its
utility due to the by-design imprecision in the definition of
the utility, it would likely find it helpful to consult with the
humans who defined the utility in the first place, allowing
them to apply a steering action, by specifying a higher utility
of one of the two actions or by proposing a third. A detailed
description of the challenges of this approach and arguments
in favor of its overall viability are offered in [402]. Even
assuming the viability and fail-safe nature of this approach,
the risks coming from a non-universal application of similar
safeguards remain.

2) THE PROBLEM OF CONTAINMENT
The problem of containment stems from the difficulties in
effectively controlling ultra-intelligent AGI systems. This
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TABLE 1. Summary of ten risks from artificial intelligence evaluated for their likelihood (L) and severity (S) in the scale VL (very low), L (low), M (medium),
and high (H), and resulting global threat index (T) from the scale shown in Fig. 13. See the text for details.

includes the risks associated with ‘‘Rogue AIs’’ [403]. As AI
technology continues to evolve, these systems could become
so skilled that they could predict human behavior and
ultimately trump our ability to control them. A Rogue AI
may exploit poorly defined objectives, veer away from its
original goals towards more easily optimized ones, strive
for more computation power or resources (and in extreme
cases, political power), resist shutdown attempts, and even
develop deceptive tactics to avoid being restricted, exploit
their understanding of human psychology.

Secure containment policies, use of interpretability tech-
niques to understand decision-making processes in AGI, and
ensuring the existence and fail-safe operation of a reliable
‘‘off-switch’’ to abort AGI operations when necessary are
some of the mitigatory measures against rogue AGI that can
be implemented. The development of ‘Oracle’ designs, where
AGI is set up only to answer questions rather than act in the
world, could be a way to manage potential containment risks.

The ‘‘AI race,’’ or the rush among nations and corporations
to develop advanced AGI systems, increases the existential
threat [404]: uncontrolled competition could lead to a
reckless race to develop AGI systems, sacrificing safety and
potentially leading to containment breaches. In the military
domain, AGI could be exploited to create autonomous
weapons systems —veering towards an unsettling era of
AI-enabled warfare and cyber-attacks [405]; some notes on
those developments have been offered supra. International
cooperation in AI safety research is paramount to bring
balance to this complex situation. Establishing binding
agreements to prevent an AI arms race, emphasizing a
cooperative orientation over a competitive one, ensuring
transparency, and introducing ethical guidelines for AI
applications in warfare could help mitigate those existential
risks.

The development of AGI undeniably holds great promise
but also bears severe risks if the new technology is not
deployed correctly. As we stand on the brink of a new
technological era, it appears crucial to approach AGI devel-
opment with a sense of responsibility, rigor, and cooperation,
recognizing that our decisions today will shape the trajectory

of AGI’s impact on humanity. Researchers have suggested
safeguarding against superintelligence by ‘‘Capability Cau-
tion’’ [406], where there is a deliberate slowing down of
progress on capabilities while focusing on accelerating safety
and control methods. Binding international agreements on
AGI might also help coordinate global efforts to manage
these threats. These agreements should include principles like
value-aligned development, safety precautions, and global
benefit, ensuring the risks are minimized while the benefits
of AGI are shared broadly.

As real-world testing is always risky with AGI, sufficiently
rigorous theoretical frameworks, computer simulations, and
small-scale, controlled experiments should precede any
implementation in real-world scenarios.

AGI presents a dichotomy of a great boon and a potential
existential risk to humanity. The scales are based on our
rigorous efforts to align AGI goals with human values
and effective containment strategies. Careful, coordinated,
and regulated development coupled with more research into
safe and interpretable AGI is key to avoiding catastrophic
consequences.

VI. CONCLUSION
This review article is the result of the collaboration of
scientists from a wide range of disciplines with a collective
vision of the present impact of artificial intelligence (AI)
technology on science and society, as well as on the future of
humankind. By interrogating ourselves on the situation and
how it may evolve, we have attempted to provide a bird’s
eye view of the recent developments in AI and the expected
outcomes and impact of those new AI technologies on our
society and scientific research. Looking at the issue from
various angles, we have come to observe and distinguish
beneficial effects from problematic trends and identify
specific areas of concern where the scientific community
should get involved to reduce potential adverse outcomes.
In some scenarios that many would still consider alarmist,
if not ridicule, today, these outcomes are in the realm of global
existential threats and, thus, in our opinion, require the most
serious and careful consideration to avoid negative impacts.
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In general, we live today in a transitional phase char-
acterized by the accelerated development of entirely new
AI-enabled technologies. The most recent and visible new
reality we have dealt with in the immediate past is that
of large language models. These systems have evolved
from a niche computer science research to a ubiquitous
tool in no more than a few years: in this case, the
exponential growth of their performance, diffusion, and
impact is all but debatable. In other application areas,
the transformative effect of AI is less obvious but quite
significant. It is hard to find examples of human activities
or production processes that are not changing under the
pressure of the performance gains made possible by AI
technology. To mention art —the highest bastion of human
dominance—, we observe that while some areas of artistic
production involving human embodiment are likely to remain
undisturbed even in the long term (musical performance,
ballet, theater), several others less directly connected with
a human presence, such as sculpture, painting, and poetry,
have already begun to mingle with AI helpers, in the form of
software algorithms, human-computer interfaces, or robotic
hardware.

The consequences for humanity of the booming trend of
AI technology are difficult to predict. Still, disruptions are
in order since our societies are not capable of adapting with
the necessary speed to phenomena that show a continuous
increase in their rate of change —which, as noted in Sec. IV,
should not be mistaken for acceleration, but rather for jerk.
This should motivate us to be fully aware of their unfolding,
prepare for what awaits us, and possibly create effective
amortizers.

Ultimately, as scientists, we cannot claim a role that we
do not have, have never had, and are unlikely ever to be
given, except perhaps in situations so compromised as to
constitute an already inevitable defeat (in Hollywood disaster
movies, the last-ditch attempt of government leaders to save
the day by ‘‘calling the scientist’’ is a common cliche’).
As scientists, however, we feel responsible for informing
society about the impending threats: it is a moral obligation.
A successful further raising of the bar, striving to bring our
concerns to a level where policy changes can be proposed
and supported, can only result from a higher awareness of
the threats we face and a discussion fostered at multiple
levels.

A. A TORINO SCALE FOR AI
A framework for giving proper weight to different threats
connected to the development of new AI technologies and
their introduction into our societal system can be proposed
in analogy with the Torino scale. The Torino scale is a
number from 0 to 10 that qualifies the severity of a threat of
impact with Earth of an asteroid. Richard Binzel proposed
it [407] to gauge how much attention should be paid to
the frequent assessment of impact probability by near-Earth
asteroids provided by dedicated monitoring systems and

telescopes. The impact probability is a number that may
change significantly over time, depending on the time during
which the object’s trajectory is followed and measured.
Since there are thousands of objects to keep track of,
resources should be driven by the importance of improving
the measurement of trajectories for objects that have the
highest destruction potential. This can be quantified by the
kinetic energy carried by the object at impact. The Torino
scale is shown in Fig. 12.
A conceptually similar scale could be developed for AI

threats. In our case, we cannot quantify the probability
that any of the hypothesized threats could manifest them-
selves, nor the damage they would cause to humanity (or
to smaller-scale environments and systems). Nevertheless,
it is still helpful to paint a qualitative map where the
perceived or assessed likelihood of outcomes is on the
horizontal axis, and the vertical axis is the severity of
the outcome. This may help us start a discussion on
the hierarchy of those threats, which would guide the
community toward paying more attention and studies to
the ones that maximize the product of likelihood and
severity.

With that purpose in mind, let us list below some of the
potential threats posed by AI systems –present and future–
we have discussed in this review, their scope, a level of
likelihood of manifestation within a time scale of 10 years,
between 10 and 30 years, and longer than 30 years, and a
corresponding assessed level of severity.

To force ourselves into assessing in at least a semi-
quantitative way these likelihoods and severity, we may use
the following scale:

• VLL = very low likelihood (p = 0.0001 and below)
• LL = low likelihood (p = 0.0001 - 0.01)
• ML = medium likelihood (p = 0.01 - 0.1)
• HL = high likelihood (p = 0.1 - 0.5)
• VHL = very high likelihood (p = 0.5 and above)

For severity, we propose an assessment based on three levels:

• LS = low severity (effects limited geographically or to
closed systems or topics, not going to affect humanity as
a whole);

• MS = medium severity (effects that may cause major
disruptions in our society, its functioning, or the
well-being of large sectors of the population or the
environment);

• HS = high severity (any effect that has the potential of
becoming an existential threat).

We propose that HS threats should be assessed with a
threat index of 10 if estimated to correspond to at least
a low likelihood (LL, p > 0.0001) and 9 if classified
as VLL –provided their likelihood is theoretically strictly
larger than zero. The rationale is that even a remote chance
of their occurrence should deserve our undivided attention.
We will assign MS threats a threat index varying from 4
(VLL) to 8 (HL). For LS threats, we will assign threat
indices from 0 to 3. Table 1 lists the ten considered
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threats connected with the development of AI technologies
and their corresponding proposed levels of likelihood and
severity in the short-term, medium-term, and long-term.
Fig. 13 also shows the same data pictorially, highlighting
the correspondence of threat index to likelihood and severity
of each risk, and includes three threat indices per each
considered risk, respectively, for the short, medium, and long
term.

Below, we comment on the ten threats we singled out in
Table 1 and offer some considerations that led to their quoted
assessment of likelihood and severity.

1) ACCELERATION OF NOCUOUS IMPACTS ON THE
ENVIRONMENT
With all the benefits of a more connected world, where
information flows fast and (mostly) free, has come a price to
pay: computing is a significant contributor to CO2 emissions
today, and we can only expect its impact to grow larger
and larger shortly. While new, more energy-efficient forms
of computing (such as the one powered by neuromorphic
processors; see Sec. IV) are likely to partly reduce this
trend in the mid-to-long term, global warming is a direct
negative outcome which we will have to cope with. A similar
note can be made concerning other forms of pollution:
for example, the reduced costs of production of goods,
enabled by AI technology that eases manufacturing, and
the added simplification of logistics and distribution, have
flooded the markets with cheap goods; the textile industry
is a prime example of this phenomenon, and a considerable
source of concern, as the vast majority of the products
have a short life cycle and end up in nonreducible waste.
With further increases in the power of AI systems, this
trend could soar in the short term. It seems reasonable
to believe that countermeasures may, in the longer term,
manage to tame or at least contain these nocuous outcomes;
however, they constitute a very significant risk to the planet’s
habitability.

2) BREACH OF TRUST IN NEWS AND MANIPULATION OF
PUBLIC OPINION
The creation of fake news and its use to pollute the
informationmarket has already started. Today, large language
models can be easily customized to produce nocuous
and malicious content. Recent notable uses of chatbots,
automated distribution of false content in social media, and
similar content-producing AI systems have been used, e.g.,
to bias electoral results or undermine trust in vaccines.
Further, image processing systems can today be used to create
‘‘deepfakes,’’ i.e., pictures and videos whose appearance is
indistinguishable from authentic footage. While the pollution
of the information highways has remained mostly confined
to specific targets, its use to bias public opinion in case of
regional conflicts or other large-scale geopolitical situations
will create a general distrust of any source of information
and news. In our evaluation, the likelihood of this outcome
is very high. Indeed, it appears certain at the time of

writing, yet we believe that effective countermeasures will
likely become available and get widespread application
in the medium term. Therefore, this threat is probably
mostly connected to the transition period when powerful
AI systems are available for generic applications and
balancing measures have not yet been developed or agreed
upon.

3) CASTING THE BASIS OF OVER-AUTHORITARIAN REGIMES
Governments have long had the power to exert control over
individuals through accumulating sensitive data on their
behavior as consumers, acquiring imagery via surveillance
cameras, and monitoring private communications, emails,
and internet traffic. This concern has grown significantly
with the advent of AI tools. Today, these tools amplify the
potential for societies to devolve into dystopian regimes
where citizens have no privacy and are constantly monitored
by authorities. AI’s ability to mine and summarize vast
databases, identify individuals from images, track cell
phones, and cross-correlate diverse information sources
enormously enhances this control. Governments may exploit
these capabilities to entrench their power, suppress dissent,
and eliminate political opposition, tightening their grip pro-
gressively. While some of these practices are already in place
to varying degrees across different countries, the situation
could rapidly worsen as AI systems continue to improve.
We consider these risks quite serious. Our evaluations in
Table 1 reflect the urgency of bringing discussions on their
mitigation to the highest levels.

4) DISRUPTION OF THE STOCK MARKET BY
ULTRA-EFFECTIVE PREDICTION OF TRENDS
Large companies have used AI tools in several ways in the
last decade to improve stock trading performance. Although
direct automatic trading is performed by exploiting machine
learning algorithms that predict price movements, the main
focus has been on algorithms that perform sentiment analysis
to inform trading decisions or to minimize market impact,
optimize portfolios, and manage risks [408], [409], [410].
In the future, AI systems can prove much more effective
in integrating these tasks and may consequently become
more autonomous in taking decisions. We are not aware of
systems with the potential to achieve performances so high
to disrupt the system, but this scenario cannot be excluded
in the long term. Stock markets worldwide have built-in
mechanisms to react to abnormal speculative activity, e.g., the
volatility interruption mechanism or even stronger protocols
that may suspend trading activities. Still, they may be too
slow to cope with a superintelligent system. Again, the
issue here seems to be the balance of new developments
and countermeasures in a fast-developing situation. The
likelihood of adverse effects may only increase in the short
term when the severity of possible outcomes has been
assessed as medium. In contrast, we foresee that the stock
markets will become more robust to AI-powered intervention
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in the long term because most of the trading will become
automated.

5) EDUCATIONAL SYSTEM DISRUPTION BY AI AVAILABILITY
AND ASSOCIATED NOCUOUS IMPACTS
When ChatGPT3 was released, educators and academics
worldwide immediately recognized the disruptive effect this
new, readily available tool would have on the grading system
of student homework. The demonstration that large language
models may easily mimic the expressive level, jargon, and
content of a high schooler and thus be used by the latter
to drastically cut the time required to learn study material
without any risk has created a difficult situation in many
school systems. We consider this an example of negative
side-effects of new technologies that constitute an otherwise
positive outcome for society, and we can relate it to a similar
concern on the power of internet search engines and their
use in aid of homework assignments; that concern was born,
peaked, and subsided within less than a decade, as the school
system managed to adapt to the new situation. Indeed, such
are typically transient phenomena, which should be accepted
as a necessary ‘‘growing pain’’ in a fast-evolving scenario.

6) FORMATION OF AI-POWERED WEAPONS
The production of new weapons and automated offensive
devices or automata generates several risks: the potential for
world domination by the country that first acquires a novel
technology offering higher power of destruction or other
forms of dominance is only one. Other risks, such as a drift
toward dystopic societies with ultra-authoritarian control by
robotic units, have been considered by various science fiction
works and movies. The risks’ severity varies from medium to
high, but the likelihood is not easy to assess. In this situation,
we prefer to err on the side of caution, evaluating the odds as
medium in the short and medium term and high in the long
term.

7) GROWING A DIVIDE BETWEEN INTEGRATED AND
ANTI-TECH CITIZENS
New technology brings profound consequences for our way
of living, which are welcomed by some and repelled by
others. The polarizing effect of new tools that significantly
empower humans with new abilities and skills can have
divisive effects when those tools are not available to
everybody. Still, the same effect arises when they present
features that pose the need for the user to decide for or
against them. Factors that may create a division are the
fear of government control or the potential harm to one’s
health.: we are familiar with these themes, as we have
recently witnessed similar polarizations during the COVID-
19 vaccination campaigns. The development of BCIs and
under-skin microchips are examples of technologies that may
generate a two-tiered society, with individuals who may
reap its benefits and others who get marginalized by not
having access to them. This may have long-term nocuous
consequences on the general happiness, integration, and

democracy of our future society. We may again classify this
as a collateral downside of the growing pains toward a more
empowered version of humans. However, the effect can be
far-reaching and must concern us; in many cases, mitigating
strategies exist, but they must be planned.

8) HANDOVER OF CONTROL OF CRITICAL SYSTEMS TO AI
The economic benefits of automation create a general
tendency to substitute human decisions with algorithms.
While the latter may show lower failure rates (as it has already
happened in some cases, such as diagnosis of pathologies
from clinical images) and therefore be overall beneficial
in regular operation, here we are concerned with the fact
that such a substitution, and the automation of decision
procedures, involves risks associated with misbehavior or
malfunction not considered in the design phase, and that
produce catastrophic effects. One example of this kind is
the famous failure of an early-warning system detecting the
launch of ICBMmissiles by the US toward the Soviet Union.
On September 26, 1983, a rare alignment of the detection
satellite with the sun and with the field of view of the
US territory caused the system to report the launch of five
missiles, when in fact, the detection was an artifact due to Sun
glare.33 Only the presence of a ‘‘human in the middle’’ (in the
person of Colonel Stanislav Petrov) and his doubts about an
attack involving only five missiles avoided a retaliation strike
that would have likely caused the start of a global nuclear war.
In general, the risk of overconfidence in automated decisions
cannot be quantified if not connected with specific systems
under control. However, we may still assess its potential
severity as a medium overall. The likelihood of manifestation
of nocuous effects can be estimated as medium in the short
term and low/very low in longer time scales as we gain
confidence in our validation systems and design more robust
and reliable countermeasures.

9) INCEPTION OF SUPERINTELLIGENCE WITH MISALIGNED
GOALS TO THOSE OF HUMANKIND
This scenario has been discussed in some detail supra
(Sec. IV and Sec. V). Developing a systemwith super-human
capabilities in a broad enough range of tasks entails the
possibility that the system acquires the skill to reflect on itself
and its role in a wider context and develop objectives different
from those it was initially designed to address. This might
cause it to become hostile to humans or to pursue its goals
in ways that conflict with the existence of human life on our
planet. In both cases, this is an existential risk of the highest
severity and, therefore, regardless of perceived or assessed
likelihood, must be assigned very high values on our scale.

10) JOB AUTOMATION EFFECTS ON SOCIETY
Several sources have discussed this global threat in detail;
see, in particular, the books by Martin Ford [411], [412].

33https://en.wikipedia.org/wiki/1983_Soviet_nuclear_false_alarm_
incident
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It is generally agreed that many tasks of repetitive nature
—such as the operation and driving of vehicles for the
transportation of humans or goods, the delivery of goods to
the end users, intermediate processing tasks in production
chains, and many others— are going to withstand significant
change with the substitution of human operators with AI-
driven systems, fueled by the largely associated decrease
in cost; this process has already started, and it will only
intensify in the short term. Similarly, the AI impact on
education will be explicit in the widespread availability of
real-time speech translation, the acquired higher trust of large
language model outputs, and the automated production of
educational audio/video products. Many experts argue that
humans will not be substituted but rather empowered by
AI assistance, which will have a beneficial and qualifying
effect on their work conditions. Others note that AI will
reduce the expertise required to perform complex tasks by
human workers, depreciating the value of their experience
and skills. It remains to be seen what the net outcome
of the ongoing transition will be. Still, if we only look
at the likelihood and severity of adverse outcomes in this
area, we must assess these as a medium in both cases.
This is likely also to be a transient effect, so we believe
the impact will decrease in the long term to a low-severity
one.

B. DISCUSSION
The numerical evaluations of the risk of AI-related phenom-
ena and their perceived likelihoods are manifestly subjective,
and by themselves, each of them means very little. What
matters is the big picture: by doing the exercise of asking
ourselves the questions that must be answered to fill data into
Table 1, we get to see how wide-ranging and far-reaching
the potential consequences of the development of artificially
intelligent systems are: we are led to consider that in every
area of human activity, the introduction of AI may have
serious drawbacks. We believe that by fostering an awareness
of this fact and continuously monitoring the evolving status
of each sub-area, we may successfully lay the basis for
possible governance. As AI expert Stuart Russell aptly put
it in his book ‘‘Human Compatible: AI and the Problem of
Control’’ [402], recently, ‘‘everybody and their uncle’’ have
been proposing supervisory organizations meant to oversee
and control the development and the integration of AI in
human activities. While he notes that those efforts were,
in the beginning, ineffective due to their grass-root nature and
their limited reach and impact, he admits in a post-scriptum
that today, more organized and institutionalized entities are
getting established, which have a chance to be able to
influenceAI developments and steer usmore effectively away
from unwanted, harmful situations. We certainly agree that
such organizations are essential in our effort to mitigate or
avert most potential dangers. Yet, we suggest that they may
be insufficient to thwart the biggest ones, which may be out
of reach of governance bodies. For example, wemay consider
the threat of AI-eased authoritarian involution: regimes will

likely not collaborate with those organizations if they value
the opportunity to get more robust control and power. Instead,
they will likely feign their cooperation and diligence while
secretly pursuing developments to reinforce control over
society. A similar effect may happen with risk F in Table 1,
the development of AI weapons. A likely result will be
that countries that limit their technological developments by
abiding by the rules set by intergovernmental organizations
will have no means to gauge what happens worldwide and
will be at a disadvantage compared to others.

Let us consider the light red and dark red boxes in Fig. 13,
which correspond in our assessment to the biggest threats
to humankind from AI development and deployment; not
surprisingly, those threats are also the hardest to control and
reduce. Also, not surprisingly, the risk that gets the highest
score from our assessment is the development of a misaligned
or malignant AGI; this is true regardless of what temporal
horizon we consider. In other words, despite its very low
likelihood, we are most concerned by that development as
it is potentially the most harmful and destructive. This is
due to its far-reaching consequences and the absence of
possible countermeasures ex-post. We can only hope that the
strategies that have started to be implemented today [6], and
the considerate action of individuals at the driver’s seat of
companies who lead development efforts of AGI systems,
will help reduce that risk.

A word must also be spent on three other risks that reach in
our assessment a level of light or dark orange (respectively,
level 7 and 8) in the short term (i.e., within the next ten years).
These are risk A (Acceleration of nocuous impact on the
environment), risk F (Formation of AI weapons), and J (Job
automation effects on society).

As far as the AI-development-induced nocuous impact on
the environment is concerned, this is an effect that compounds
the dire situation we are already facing in the world today,
with soaring CO2 emissions in the atmosphere, deforestation,
and pollution of the environment.We believe that this risk has
already become a reality. Although it is, in principle, never
too late to fight the current situation, e.g., by embracing the
idea of de-growth [413], [414]—a controlled downscaling of
production and consumption in the wealthiest countries—,
we observe that the 180-degree turn in the way the world’s
leading economies work that would be required is practically
impossible to achieve.

The development and accumulation of AI-powered
weapons is also a danger that is already clear and
present. As discussed in Sec. V, weapons development
already includes AI among its technological ingredients.
In connection to risk C (the use of AI for creating ultra-
authoritarian regimes), this is a significant threat that is hard
to mitigate because of the lack of instruments and the opacity
of the involved processes. At the time of writing, given the
very uncertain geopolitical situation we are currently facing,
it is one of our most serious concerns.

Finally, concerning the risk of social disruptions due to
the automation of an increasing number of jobs, this is a
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situation that rich countries can indeed effectively act upon
by foreseeing social amortizers, universal income, and other
measures. It is a problem that can be solved by throwing
money at it, but this requires careful planning and a favorable
political situation to be implemented. So here is an AI-related
threat to our society that is very concrete, quite likely to
manifest itself in the short term, and one we can defuse if
we make it more manifest and if we clarify what options are
possible —the kind of objectives we are trying to aim at with
the present text. On the other hand, there is ground to be
pessimistic in this case, as there have already been situations
where job automation caused significant disruption, e.g.,
at Amazon warehouses or McDonald’s restaurants [412] —
job loss, devaluation of human skills, worsening of working
conditions— without government interventions to mitigate
those effects.

1) AN OPTIMISTIC VISION ON THE INCOMING REVOLUTION
We believe it is appropriate to conclude this long review
on a positive note by echoing some of the points in the
previous sections about the enormous benefits that artificial
intelligence systems and tools have brought to our modern
society. Indeed, AI has profoundly revolutionized our lives
within a mere decade, and the process is accelerating. It has
significantly increased the living standards of human beings
worldwide and across almost all income categories (although,
unfortunately, this has come at least in part at the expense
of most other animal species on this planet). For example,
it is estimated that 85% of the world population today
owns a smartphone, and an even more significant fraction
can freely access a computer connected to the web. This
provides humans with powerful AI-powered functionalities,
such as finding one’s way regardless of where one is on the
planet, instantly translating text, generating computer code,
constructing images or videos, solving problemswith the help
of LLMs, and learning from a vast database of documents and
videos. Compiling a list of the benefits we have been reaping
from AI technology indeed feels silly, no less than cavemen
extolling the virtues of fire.

Within the boundaries of scientific research, some analysis
of the present and foreseen future benefits of AI systems
has been offered throughout Sec. IV. To summarize that
discussion here, we note that in the scientific research areas
we discussed in this document, as well as in others we did
not comment on, the advantages brought by deeper analysis,
more accessible and faster achievement of results, improved
performance, higher precision that AI methods can provide
over previous standards are so vast that it is hard even to
start putting something on the other arm of the scale. This
does not even consider all those situations where AI-powered
technologies have generated genuine breakthroughs and
paradigm-changing advancements that defy the definition of
a pre-AI comparison point. We mention the following three:

1) AlphaFold and the Protein Folding Prediction,
announced in December 2020 by DeepMind [415],

is probably the most glaring example. Protein folding is
a critical problem in biology, as proteins’ enormously
complex three-dimensional structure largely deter-
mines their function. AlphaFold demonstrated high
precision in predicting the structure of specific protein
structures, vastly outperforming traditional methods.
This advancement bears profound implications for drug
discovery, understanding diseases, and designing novel
therapies.

2) Image recognition and computer vision have been
thoroughly revolutionized by deep learning meth-
ods. Convolutional neural networks have achieved
unprecedented accuracy in tasks ranging from object
recognition to image classification and segmentation.
These advancements have brought a wealth of benefits,
e.g., to clinical medicine, improving the precision of the
diagnosis of patients, satellite imagery analysis, space
exploration, autonomous driving, and pure research in
several areas.

3) NLP tools and large language models such as the series
of OpenAI’s generative pre-trained transformers have
wholly transformed language processing tasks. They
found application to a wide area of research tasks
in many different fields. For example, in biomedical
research, NLP techniques have been applied to the
analysis of large volumes of biomedical literature,
electronic health records, and clinical notes, extracting
valuable information from unstructured text, enabling
researchers to identify disease patterns, predict out-
comes, and improve clinical decision [416], [417].

The above examples should suffice to make the point that
in scientific research, the development of AI technologies
has produced massively positive developments across the
board, and it is likely to continue to do so at an increasing
pace. Suppose we broaden our field of view to consider
the impact of those research enhancements on our society.
In that case, we see distinctly positive outcomes already at
the consumer end, notably those connected to better, more
effectivemedicine. In the future, we can only expect a broader
impact, with a speed-up of several procedures and bottlenecks
of current research and development in all areas of scientific
investigation carrying over their effect to an improved quality
of human life.

Human progress is hard to define from within the time
scale of the human lifetime; its precise appraisal also
requires the vantage point of ex-post considerations. Yet we
entertain no doubts that artificial intelligence is a necessary,
unavoidable evolutionary step in the march of humankind
toward its future. It is a future that may await us with
dystopian or idyllic features. We thus feel we are today at
a critical juncture when that future can still be —at least
in part— shaped by our decisions and policies. As the
introduction notes, shaping may have unimaginable and far-
reaching long-term consequences in this area of the universe.
For those reasons, artificial intelligence and its development
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must be kept on the discussion table in all human occupations
and at all levels for the years to come. As scientists, we feel
we have the responsibility to inform those discussions and
keep them rational and pragmatic. Still, we also need to
ensure a place in the decision-making procedures to defend
science-driven reasons and their impact on those decisions
from the attack of irrational arguments. We are therefore
happy to see that several recent spontaneous initiatives and
organizations worldwide are starting to work in that direction
together with governments and inter-governmental bodies.
This document is our small contribution to inform those
discussions.

2) LIMITATIONS AND POTENTIAL BIASES OF THIS STUDY
As a position paper, this work may not be as unbiased
and objective as a typical research work. It represents the
viewpoint of a group of experienced scholars who have
collectively published numerous scientific works across var-
ious disciplines over the past forty years. We are expressing
our perspectives on the impacts that artificial intelligence is
having on our research fields. It is important to note that
our backgrounds may influence our viewpoints. However,
our collective views could be valuable and interesting to the
community. This aspect is both a limitation and a valuable
asset of our work.
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He is a Professor with the Institute for Positive

Psychology and Education, Australian Catholic
University. He has published more than 179 sci-
entific journal articles and many books, including
the widely acclaimed Emotional Intelligence in
Everyday Life and The Weight Escape. His latest
book is What Makes You Stronger: How to Thrive
in the Face of Uncertainty Using Acceptance and
Commitment Therapy. He has been honored with

more than four million dollars in research funding. His work has been
discussed on TV and radio, and in magazines and newspaper articles. He is
ranked in the top 1% of scientists in the world across all disciplines.

Prof. Ciarrochi has served as the President for the Association for
Contextual Behavior Science and the first Editor for Journal of Contextual
Behavioral Science.
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MAURO DA LIO (Member, IEEE) is a Full
Professor of mechanical systems with the Uni-
versity of Trento, Italy. His earlier research
activity was modeling, simulation, and optimal
control of mechanical multibody systems, par-
ticularly vehicle and spacecraft dynamics. More
recently, his focus shifted to modeling human
sensory-motor control with applications in health,
robotics, and, mostly, intelligent vehicles. He was
involved in several EU framework program 6 and

7 projects (PReVENT, SAFERIDER, interactIVe, VERITAS, AdaptIVe,
No-Tremor, and SUNRISE). He was the Coordinator of the EU Hori-
zon 2020 Dreams4Cars Research and Innovation Action: a collaborative
project in the robotics domain that aimed at increasing the cognition abilities
of artificial driving agents using offline simulation mechanisms broadly
inspired by the human dream state (learning of forward models and offline
synthesis of inverse ones).

NICOLE D’SOUZA is currently pursuing the
Bachelor of Science degree in neuroscience
(minoring in data science).

She is a Researcher with the Systems Neural
Engineering Laboratory, University of California
at Riverside. Her academic journey is marked by
a commitment to bridging the gap between neuro-
science and data analytics. She was a recipient of
the prestigious Chancellor’s Research Fellowship,
funding her research between the Department of

Bioengineering, UCR and Stanford University. She is heading research with
the Palo Alto Veterans Affair Medical Center and Stanford in applying
machine learning algorithms to enhance diagnostic tools and treatment
strategies for neurological disorders such as Alzheimer’s Disease.

Ms. D’Souza serves as an Editor fpr UCR’s Undergraduate Research
Journal, where she contributes to the dissemination of innovative research
findings, and is a previous Intern with the Society of Brain Mapping and
Therapeutics, where she organized the Alzheimer’s Disease and Dementia
conference track.

NICOLAS R. GAUGER is a Full Professor and the
Chairholder of scientific computing and the Direc-
tor of the Computing Center (RHRZ), University
of Kaiserslautern-Landau (RPTU); and the Princi-
pal Investigator of the SIVERT Research Training
Group (https://sivert.info) dealing with the algo-
rithmic part of the proton Computed Tomography
(pCT) Project of the Bergen pCT Collabora-
tion (https://indico.cern.ch/category/13882/). His
research interests include numerical optimization,

high-performance computing, machine learning, and pCT, amongst other
fields of application.

Prof. Gauger is a member of the MODE Collaboration (https://mode-
collaboration.github.io), a collaboration of physicists and computer scientists
for the optimized co-design of hardware and software for future experiments
in fundamental science.

STEVEN C. HAYES received the Ph.D. degree
in clinical psychology (minor in experimen-
tal psychology) from West Virginia University,
Morgantown, WV, USA, in 1977.

He did his internship witht Brown Univer-
sity, Providence, RI, USA, from 1975 to 1976.
He was an Assistant and Associate Professor of
psychology from the University of North Carolina
at Greensboro, from 1977 to 1986, and a Full
Professor of psychology with the University of

Nevada, Reno, from 1986 to 2023. He is currently a Foundation Professor
Emeritus with UNR and the President of the Institute for Better Health,
Santa Rosa, CA, USA, a 47-year-old charitable organization dedicated to
excellence in mental and behavioral health care. As the author of 47 books
and over 700 scientific articles, his career has focused on symbolic learning
and how it relates to human suffering.

Dr. Hayes is a fellow of the American Association for the Advancement
of Science. He has received Lifetime Achievement Awards from the
Association for Behavioral and Cognitive Therapy and the Association for
Psychological Science.

STEFAN G. HOFMANN was born in Germany.
He received the B.A., M.S., and Ph.D. degrees
in psychology from the University of Marburg,
Germany.

He is the Alexander von Humboldt Professor
with the Philipps University ofMarburg, Germany,
where he holds the LOEWE Spitzenprofessur
for Translational Clinical Psychology, Germany.
He went to the USA, in 1991, and worked with
Boston University, from 1996 to 2023. Prior to

that, he was with SUNY Albany, and before that, with Stanford University.
He is a leading expert in anxiety disorders, with a focus on psychotherapy.
He has been an Editor of Cognitive Therapy and Research and has been
named a Highly Cited Researcher every year, since 2015. He has published
more than 500 peer-reviewed scientific articles and 20 books. Some of his
studies led to insights into the mechanism of treatment change, translating
discoveries from neuroscience into clinical applications, emotion regulation,
and cultural expressions of psychopathology.

Prof. Hofmann is a fellow of many professional organizations, including
AAAS.He has receivedmany awards, including theAaron T. BeckAward for
Significant and Enduring Contributions to the Field of Cognitive Therapy, the
Lifetime Achievement Award by ABCT, and the Humboldt Research Award.
He was an advisor to the DSM-5 and the DSM-5-TR.

ROBERT JOHANSSON received the dual Ph.D.
degree in psychology and in computer science
from Linkping University, in 2013 and 2024,
rerspectively.

He is an Associate Professor in clinical psy-
chology with the Department of Psychology,
Stockholm University. His clinical research has
focused on the development and evaluation of
digital health interventions. Since 2017, his main
focus of research has been in the area of arti-

ficial general intelligence (AGI), where he has focused on studying the
development of human-level cognitive capabilities with a particular AGI
systems and the non-axiomatic reasoning system (NARS). The research
is guided by Relational Frame Theory, a behavioral psychology approach
to understanding human language and cognition. He is also a licensed
Psychologist with a broad range of interests, with a particular interest in
emotion-focused psychotherapy models.
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MARCUS LIWICKI (Senior Member, IEEE)
received theM.S. degree in computer science from
the Free University of Berlin, Germany, in 2004,
the Ph.D. degree from the University of Bern,
Switzerland, in 2007, and the Habilitation degree
from the Technical University of Kaiserslautern,
Germany, in 2011.

He is the Chair Professor in machine learning
and the Vice-Rector of AI with Luleå University
of Technology. FromOctober 2009 toMarch 2010,

he visited Kyushu University, Fukuoka, Japan, a Research Fellow (a Visiting
Professor), supported by the Japanese Society for the Promotion of Science.
His research interests includemachine learning, pattern recognition, artificial
intelligence, human–computer interaction, digital humanities, knowledge
management, ubiquitous intuitive input devices, document analysis, and
graph matching.

Dr. Liwicki received the ICDAR Young Investigator Award, in 2015,
a bi-annual award acknowledging outstanding achievements in pattern
recognition for researchers up to the age of 40.

FABIEN LOTTE received the M.Sc. and Ph.D.
degrees from INSA Rennes, in 2005 and 2008,
respectively, and the Habilitation to Supervise
Research from the University of Bordeaux,
in 2016, all in computer science.

He is the Research Director (DR2) with
the Inria Center, University of Bordeaux, and
LaBRI, Talence, France. He is a Specialist in
brain–computer interfaces (BCI) and electroen-
cephalography signal processing. He notably

coordinated or is coordinating the ANR REBEL Project (2016–2019), the
ANR Proteus Project (2023–2027), the ERC Starting Grant BrainConquest
Project (2017–2022), and the ERC Proof-of-Concept Project SPEARS
(2024–2025). He has published more than 200 papers in this field, which
have received more than 16000 citations in total. He also gave more than
110 invited talks in 20 different countries.

Dr. Lotte received the Laureate of the 2022 international Universal
Science and Education Research Network (USERN) Prize in formal science;
the 2023 Lovelace-Babbage Prize from the French Academy of Science
in collaboration with the French Computer Science Society (SIF); and the
Nature Award forMentoring in Science, in 2023 (mid-career category). He is
a member of the editorial boards of several leading journals on BCI and
co-edited two books on the subject in 2016 and 2018.

JUAN J. NIETO is a Full Professor with the
Department of Statistics, Mathematical Analysis
and Optimization and Academician. He was a Ful-
bright Fellow with The University of Texas, USA.
His most influential contributions to date are in
the area of differential equations, and his research
interests are in fractional calculus, equations under
uncertainty, and epidemiological models. He is
one of the most cited mathematicians in the world
according to different databases and has been

listed in the Highly Cited Researchers uninterruptedly, from 2014 to 2021.
He was also in the World’s Top 2% Researcher in 2022 by Stanford
University. In 2010, he was among the scientists who has themost hot papers.
His research interests include mathematical analysis, differential equations,
nonlinear analysis, biomedical applications, and digital twins.

Dr. Nieto is the Editor-in-Chief of the journal Fixed Point Theory and
Algorithms for Sciences and Differential Equations and Dynamical Systems.

GIULIA OLIVATO received the degree (cum
laude) in comparative, European and transnational
law with the University of Trento, in 2020, where
she is currently pursuing the Ph.D. degree.

She was a Visiting Ph.D. Student with the
Technical University of Munich, Germany, from
October 2023 to April 2024. She completed a
six-month internship (November 2022–June 2023)
with a software company, where she experienced
first-hand the benefits and drawbacks of imple-

menting some regulatory provisions of the AI Act. She received formal legal
training in both Rome and Trento and has been admitted to the bar. She
has presented at various conferences and webinars and has published one
article and two conference proceedings. Additionally, one more conference
proceeding and one book chapter are forthcoming.

PETER PARNES was born in Malmo, Sweden,
in 1971. He received the Ph.D. degree in computer
science from Luleå University of Technology
(LTU), Luleå, Sweden, in 1999. He holds docent
title in media technology.

He has been a Full Professor in pervasive and
mobile computing with LTU, since 2010, leading
the ArcTech Learning Laboratory, since 2020.
His work experience includes various academic
and research positions, including his role as a

Researcher and a Lecturer with LTU before his current position, and several
non-academic positions, such as the Founder and the Chief Scientist of
Marratech (1998–2007) and the Site Engineering Manager for Google
Sweden (2007–2009).

Prof. Parnes has received the Curt Bostrm Award for best Ph.D. thesis,
in 1999; and the IT-Person of the Year 2015, for his ongoing work in
attracting more girls into the STEM area and technical studies via his work
with Luleå Makerspace. He has served as an expert in various subjects
related to digitalization and learning with several Swedish authorities,
such as the Swedish National Agency for Education, the Swedish Ethical
Review Authority, the Swedish Research Council, and Sweden’s innovation
agency—VINNOVA.

GEORGE PERRY received the Bachelor of Arts
degree in zoology from the University of Cali-
fornia at Santa Barbara, and the Ph.D. degree in
marine biology from the University of California
at San Diego, in 1979, under David Epel.

He is a Neuroscientist and a Professor of neu-
roscience, developmental and regenerative biology
with The University of Texas at San Antonio.
He is recognized in the field of Alzheimer’s
disease research, particularly for his work on

oxidative stress. After graduation, he studied with the Scripps Institution
of Oceanography, Hopkins Marine Station of Stanford University, and the
Marine Biological Laboratory, Woods Hole. He received a postdoctoral
fellowship with the Department of Cell Biology, Laboratories of William
R. Brinkley, Joseph Bryan, and Anthony R. Means, Baylor College of
Medicine, where he laid the foundation for his observations of cytoskeletal
abnormalities. In 1982, he joined the Faculty of Case Western Reserve
University, where he holds an adjunct appointment. He is the Dean of the
College of Sciences and a Professor of biology with The University of
Texas at San Antonio. He is distinguished as one of the top Alzheimer’s
disease researchers with over 1000 publications, one of the top 100 most-
cited scientists in neuroscience & behavior, and one of the top 25 scientists
in free radical research.
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ALICE PLEBE received the B.Sc. and M.Sc.
degrees in computer science from the University
of Catania, Italy, in 2014 and 2016, respectively,
and the Ph.D. degree in information and commu-
nication technology from the University of Trento,
Italy, in 2021.

Following her doctorate, she was a Post-
doctoral Fellow with the University of Trento,
from 2021 to 2024. Since 2024, she has been a
Research Fellow with University College London,

working on large language models for trustworthy collaboration in multi-
agent systems. As part of the EU Horizon 2020 Dreams4Cars Research
and Innovation Action, her research focused on exploring how the cognitive
capabilities of the human brain can inform the design of artificial driving
agents with human-like performance.

IDUPULAPATI M. RAO was born in Mandadam,
Amaravathi, Andhra Pradesh, India, in 1951.
He received the B.Sc. degree in chemistry, botany,
and zoology from Andhra University, in 1971, the
M.Sc. degree in botany from Bhopal University,
in 1973, and the Ph.D. degree in botany (plant
physiology) from Sri Venkateswara University,
India, in 1978.

From 1979 to 1981, he was a Plant Physiologist
with ICRISAT, India. From 1981 to 1989, he was

a Research Associate/Assistant Specialist with the University of Illinois
and the University of California at Berkeley, USA. From 1989 to 2016,
he was a Plant Nutritionist/Physiologist with the International Center for
Tropical Agriculture (CIAT), Cali, Colombia. Since 2017, he has been an
International Consultant and Emeritus Scientist of CIAT. He is the author of
more than 250 journal articles and more than 70 book chapters. His research
interests include abiotic stress tolerance of crops, crop-livestock systems, and
mitigation of climate change.

Dr. Rao was a recipient of the Outstanding Principal Staff Award from
CIAT, in 2000; and theOutstandingResearch PublicationAwards fromCIAT,
in 1999, 2003, 2009, and 2011. He is on the editorial board of the journal
Farming System.

NIMA REZAEI received the M.D. degree from
Tehran University of Medical Sciences, and the
M.Sc. degree in molecular and genetic medicine
and the Ph.D. degree in clinical immunology and
human genetics from the University of Sheffield,
U.K.

He spent a short-term fellowship in pediatric
clinical immunology and bone marrow transplan-
tation with Newcastle General Hospital. He is
currently a Full Professor of immunology and the

Vice Dean of research and technologies with the School of Medicine,
Tehran University of Medical Sciences, and the Co-Founder and the Head
of the Research Center for Immunodeficiencies. He is also the Founder
of the Universal Scientific Education and Research Network (USERN).
He has been the Director of more than 200 research projects and has
designed and participated in several international collaborative projects.
He has edited more than 100 international books, presented more than a
1000 lectures/posters at congresses/meetings, and published more than 1,500
scientific articles in international journals.

Prof. Rezaei is an editor, an editorial assistant, and an editorial board
member of more than 50 international journals.

FREDRIK SANDIN was born in Sweden, in 1977.
He received the Diploma degree from ATLAS
collaboration with CERN, the M.Sc. degree from
CERN, in 2001, and the joint Ph.D. degree in
physics from Luleå University of Technology
(LTU) and the Swedish Graduate School of
Space Technology, in 2007, with a focus on
computational physics.

He has been a Full Professor in machine
learning with LTU, since 2021. He was an NFSR

Postdoctoral Fellow with the University of Lige, from 2008 to 2009.
He serves as a PI for several projects in that area and coordinates LTU
research and education on sustainable AI. His work focuses on brain-inspired
machine learning and neuromorphic technologies for resource-efficient AI.

Dr. Sandin was received the Gunnar Quist Fellowship from the Kempe
Foundations, in 2014, and the ‘‘New-Talents’’ Award for original work in
theoretical physics at the 2004 International School of Subnuclear Physics
in Erice.

ANDREY USTYUZHANIN is the Director of
AI/ML research with Acronis, Singapore, a Vis-
iting Research Professor with the National Uni-
versity of Singapore, and a PI with the Institute
of Functional Intelligent Materials. Before joining
NUS, he was with LHCb, one of the LHC experi-
ments with CERN. His research’s primary priority
is designing new machine learning methods and
using them to solve tough scientific challenges,
thus improving the fundamental understanding of

our world. His key projects include the efficiency improvement of online
triggers at LHCb, speeding up BDT-based online processing, and developing
the algorithm for tracking in scintillators optical fiber detectors. His current
research interest is the development of foundation generative models for the
discovery of new dynamic materials.

GIORGIO VALLORTIGARA is a Professor of
neuroscience with the Centre for Mind/Brain
Sciences, University of Trento, Italy. He has
published more than 300 refereed papers that have
receivedmore than 29,000 citations (H-index is 95,
Google Scholar). He has also contributed to several
book chapters and the author of Born Knowing
(MIT Press, 2021).

Prof. Vallortigara was a recipient of the Geof-
frey de St. Hilaire Prize for Ethology; and the

Doctorate Honoris Causa from the University of Ruhr, Germany.
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PIETRO VISCHIA was born in Padua, Italy,
in 1983. He received the bachelor’s and master’s
degrees in physics from the Universitã degli Studi
di Padova, in 2006 and 2011, respectively, and the
Ph.D. degree in physics from the Instituto Superior
Tcnico, Lisbon, in 2016.

From 2016 to 2018, he was a Postdoctoral
Fellow with the Universidad de Oviedo, and
with the Universite Catholique de Louvain,
from 2018 to 2022, holding several prestigious

doctoral and postdoctoral research grants. Since 2023, he has been in
his current position as a ‘‘Ramóy Cajal’’ Senior Researcher with ICTEA,
Universidad de Oviedo; and an Adjunct Professor with IIT-Madras. He is the
coordinator and one of the cofounders of the MODE Collaboration (mode-
collaboration.github.io), a collaboration of physicists and computer scientists
for the optimized co-design of hardware and software for future experiments
in fundamental science. He is also a coordinator of the Machine Learning
Group of the CMS Collaboration. He was the Co-Coordinator of the CERN
Interexperimental Machine Learning Working Group, from 2020 to 2024.
He has been a member of the CMS Collaboration, CERN, since 2009. He is
the author of over 1000 scientific publications in peer-reviewed journals and
has an H-index of 116, according to Scopus. More on his research can be
found at vischia.github.io/.

NILOUFAR YAZDANPANAH received the M.D.
degree from Tehran University of Medical
Sciences.

She is a Researcher in immunology, neu-
roimmunology, and genetics. Currently, she is a
Postdoctoral Researcher with the Research Center
for Immunodeficiencies, Children’s Medical
Center of Tehran. She has been the Executive
Director of the Universal Scientific Education and
Research Network (USERN), since 2022.

Dr.Yazdanpanah received the title of ‘‘Best Undergraduate Student of
the Year’’ at the Tehran University of Medical Sciences, in 2022, and the
Children’s Medical Center Hospital, in 2023; the First-Rank Razi Medical
Award; and the most prestigious award in medical sciences in Iran.
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