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ABSTRACT We benchmark performance of long-short term memory (LSTM) network machine learning
model and autoregressive integrated moving average (ARIMA) statistical model in temporal forecasting of
distributed temperature sensing (DTS). Data in this study consists of fluid temperature transient measured
with two co-located Rayleigh scattering fiber optic sensors (FOS) in a forced convection mixing zone of a
thermal tee. We treat each gauge of a FOS as an independent temperature sensor. We first study prediction
of DTS time series using Vanilla LSTM and ARIMA models trained on prior history of the same FOS that
is used for testing. The results yield maximum absolute percentage error (MaxAPE) and root mean squared
percentage error (RMSPE) of 1.58% and 0.06% for ARIMA, and 3.14% and 0.44% for LSTM, respectively.
Next, we investigate zero-shot forecasting (ZSF) with LSTMandARIMA trained on history of the co-located
FOS only, which is advantageous when limited training data is available. The ZSF MaxAPE and RMSPE
values for ARIMA are comparable to those of the Vanilla use case, while the error values for LSTM increase.
We show that in ZSF, performance of LSTM network can be improved by training on most correlated gauges
between the two FOS, which are identified by calculating the Pearson correlation coefficient. The improved
ZSF MaxAPE and RMSPE for LSTM are 4.4% and 0.33%, respectively. Performance of ZSF LSTM can
be further enhanced through transfer learning (TL), where LSTM is re-trained on a subset of the FOS that
is the target of forecasting. We show that LSTM pre-trained on correlated dataset and re-trained on 30% of
testing target dataset achieves MaxAPE and RMSPE values of 2.32% and 0.28%, respectively.

INDEX TERMS Distributed temperature sensing, Rayleigh scattering fiber optic sensors, thermal hydraulic
temperature sensing, machine learning, statistical methods, ARIMA, LSTM, zero-shot forecasting, transfer
learning.

I. INTRODUCTION
Monitoring the state of a nuclear reactor coolant fluid
involves measurements of process variables, such as tem-
perature, pressure, and flow rate. The most common type
of measurement in a reactor is temperature sensing, which
provides information about reactor power. Temperature sens-
ing in existing reactors is performed with nuclear-grade

The associate editor coordinating the review of this manuscript and
approving it for publication was Sukhdev Roy.

thermocouple arrays or resistance temperature detectors [1],
[2], [3]. Installation of such sensors requires modification of
the fluid vessel or piping pressure boundary to accommodate
a thermowell or similar sensor insertion mechanism. This
weakens the mechanical resilience of the structure because of
increasing risk of crack development around the thermowell
welds. In addition, each sensor unit has its own set of elec-
tric cables, which contribute to the instrumentation clutter.
Cable damage in the high temperature and ionizing radiation
environment can leave the sensor inoperable.
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An alternative approach of distributed temperature sens-
ing (DTS), involving measurements with fiber optic sensors
(FOS) immersed in a fluid has emerged recently [4], [5], [6].
DTS offers the capability to obtain temperature field in the
fluid with spatial resolution higher than that of conventional
thermocouple arrays and with a smaller instrumentation foot-
print. FOS does not involve the use of electric cables, and
requires fewer penetrations through fluid vessel pressure
boundaries, as compared to the installation requirements of
thermocouple arrays. DTS has been recently demonstrated in
different reactor fluids, including water [7], [8], gas [9], [10],
liquid sodium [11], [12] and molten salt [13], [14].
The physics of DTS involves light scattering from refrac-

tive index fluctuations in the optical fiber, which are mod-
ulated through interaction with the surrounding medium.
DTS for nuclear energy applications have been demonstrated
using Rayleigh [15], [16], Raman [17], [18], [19], [20], and
Brillouin [21] scattering processes in optical fibers. Rayleigh
scattering involves elastic (frequency-conserving) interac-
tions of light with subwavelength intrinsic manufacturing
defects (e.g., nanoscale air bubbles in silica glass), the density
of which is modulated locally by thermal strain. Raman scat-
tering involves inelastic (frequency up-conversion or down-
conversion) interaction of light with phonons of vibrational
and rotational modes of atomic bonds. Brillouin scattering
involves inelastic light scattering from macroscopic-scale
acoustic phonons in silica glass.

DTS based on Rayleigh scattering is advantageous because
of higher sensitivity of Rayleigh scattering compared to
Raman and Brillouin scattering, and because of relatively
simpler instrumentation consisting of a single monochro-
matic laser and inexpensive telecommunication wavelength
fibers. The spatially resolved strain can be measured either
with optical time domain reflectometry (OTDR) [22] or fre-
quency domain reflectometry (OFDR) [23]. Using OFDR
allows to obtain higher spatial resolution of sensing, with
sub-millimeter spatial resolution for fiber lengths on the order
of a few meters [24]. Frequency shifts measured with OFDR
can be converted to temperature through power law correla-
tion [12], [16], [23].

Due to degradation of silica glass in the high temperature
and radiation environment of a nuclear reactor, Rayleigh
scattering FOS are susceptible to failure [25], [26], [27], [28],
[29], [30]. Early detection of failures can be accomplished
through automation of sensor response monitoring [31].
Using machine learning (ML) algorithms for analysis of dis-
tributed sensingwith optical fibers has been reported in recent
literatures [32], [33], [34], [35], and [36], including con-
volutional neural networks (CNN) [37], autoencoders [35],
generative adversarial networks (GAN) [32], long short-term
memory (LSTM) networks [38], [39], andK-nearest neighbor
(KNN) [35]. In related research efforts, surrogate MLmodels
of distributed physical field variables based on deep learning
(DL) approaches have been developed to expedite computer
simulations [40], [41].

Performance of data-driven ML models generally depends
on the available training data. Understanding relative merits
of the emerging ML models can be enhanced through com-
parison of their performance with those of statistical models,
which are another type of data-driven models. In this paper,
we benchmark performance of a long-short term memory
(LSTM) network ML model and autoregressive integrated
moving average (ARIMA) statistical model in one-step ahead
forecasting of DTS. LSTM and ARIMA have been shown to
be highly efficient methods in time series analysis [39], [42],
[43], [44]. ARIMA, in general, needs smaller volume of train-
ing data compared to LSTM, but ARIMA requires training
and testing data pre-processing.While performance of LSTM
typically depends on the amount of the training data [45],
it does not require any data pre-processing. Performance
of LSTM and ARIMA has been benchmarked in studies
involving data for financial [46], [47], wind forecasting [48],
and structural mechanics [49] applications. However, to the
best of our knowledge, performance of LSTM and ARIMA
models in forecasting DTS time series in a thermal hydraulic
system has not been studied systematically.

The data in this study consists of fluid temperature tran-
sient measured with two co-located Rayleigh scattering FOS
(FOS1, FOS2) in the mixing zone of a thermal tee. DTS data
consists of a 2D matrix of temperature values, where one
dimension is measurement time, and the other dimension is
length along the fiberwith spatial resolution given by the fiber
gauge pitch. We treat each gauge of a FOS as an independent
temperature sensor. Performance of the ARIMA and LSTM
forecasting models is evaluated with root mean squared error
(RMSE) and maximum absolute error (MaxAE), as well
as with root mean squared percentage error (RMSPE) and
maximum absolute percentage error (MaxAPE).

We first consider the Vanilla use case, where LSTM and
ARIMA are trained on the prior history of the same FOS
that is used for forecasting. Statistical tests indicate that the
data for both FOS is non-stationary, and thus differencing
is required to make the data stationary for forecasting with
ARIMA. Tests on the same dataset demonstrate that ARIMA
has lower errors than LSTM.

Next, we consider the zero-shot forecasting (ZSF) use case,
where both the LSTM and ARIMA are trained on the history
of the co-located FOS only. ZSF potentially allows to develop
a forecasting model when limited data is available for a given
domain. Performance of ARIMA is similar for the Vanilla and
ZSF use cases, and better than that of the LSTM network.
Performance of the LSTMmodel can be enhanced by training
on most correlated gauges between the two FOS, which are
identified by calculating the Pearson correlation coefficient.
However, the MaxAPE and RMSPE in LSTM forecasting
remain larger than those of ARIMA.

To improve performance of the LSTM developed for the
ZSF use case, we consider a transfer learning (TL) use case.
In the TL approach, the LSTM network pre-trained on co-
located FOS is re-trained on the data from the same FOS
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as the one used in testing. When pre-training on correlated
gauges in the TL use case, LSTM achieves MaxAPE compa-
rable to that of ARIMA. However, RMSPE is still smaller for
ARIMA.

Table 1 provides a summary representation of the structure
of this paper by listing relative merits or utility, and train-
ing and testing domains for LSTM and ARIMA models in
Vanilla, ZSF and TL use cases. Section II describes the LSTM
and ARIMA algorithms, as well as the ZSF and TL meth-
ods. Section III includes description of the measured DTS
data and characterization of the data based on correlations
between FOS gauges. Section IV contains details on DTS
data partitioning, as well as on training of ARIMA and LSTM
models. Section V discusses the Vanilla use case, including
data portioning and results of LSTM and ARIMA perfor-
mance. Section VI discusses the ZSF use case and the case
where data partitioning is modified according to correlations
between fiber gauges. Section VII presents the TL use case,
where pre-trained LSTM from ZSF use case is re-trained on
same-sensor data. Section VIII contains the conclusions.

TABLE 1. Summary representation of vanilla, ZSF, and TL use cases.

II. FORECASTING MODELS
A. LONG SHORT-TERM MEMORY (LSTM) NETWORKS
LSTM networks are a special type of a recurrent neural
network (RNN) architecture, which is efficient in processing
sequential data with long-term dependencies. LSTM net-
works address the vanishing and exploding gradient problems
often encountered in analysis with traditional RNN [39].
An LSTM cell consists of input, forget, and output gates,
which control the flow of information within the network.
The input gate determines howmuch new information should
be stored in the memory cell, while the forget gate decides
what information to discard from the cell. The output gate
regulates the information flow from the memory cell to the
next layer or output. An LSTM cell calculates a hidden state
Ht and a current state Ct :

Ht =σ (xtUo + Ht−1Wo) · tanh (Ct) (1)

Ct =σ
(
xtUf + Ht−1Wf

)
· Ct−1

+ σ (xtUi + Ht−1Wi) · tanh (xtUc + Ht−1Wc) (2)

Here xt is the cell input, Ht−1 and Ct−1 are the hidden and
current states from the previous time step, σ is the sigmoid
activation function, U and W are the weight matrices. In the
standard LSTM network, sigmoid is used as the gating func-
tion and the tanh is used as the output activation function [50].

The subscripts f, i, o, and c indicate forget, input, output gates
and the current state, respectively.

The elements in the U and W weight matrices are gen-
erated during network training by solving the optimization
problem of minimizing the value of the loss function. In times
series forecasting, typical loss function is the mean squared
error (MSE):

MSE =
1
n

∥∥∥X − X̂
∥∥∥2 (3)

Where X = {xi} is the set of n observations, X̂ =
{
x̂i

}
is the

set of predictions, and ∥X∥ is the norm of a vector.
Performance of the network during a test can be evaluated

with several error metrics. In this work we use average and
largest error RMSE and MaxAE metrics defined in Equa-
tions (4) and (5), respectively. In addition, we use average
and largest percentage errors RMSPE and MaxAPE defined
in Equations (6) and (7), respectively.

RMSE =
√
MSE (4)

MaxAE = max
∣∣∣X − X̂

∣∣∣ (5)

RMSPE =

√√√√1
n

∣∣∣∣∣
∣∣∣∣∣X − X̂

X

∣∣∣∣∣
∣∣∣∣∣
2

· 100% (6)

MaxAPE = max

∣∣∣∣∣X − X̂
X

∣∣∣∣∣ · 100% (7)

B. AUTOREGRESSIVE INTEGRATED MOVING AVERAGE
(ARIMA)
ARIMA is a statistical model frequently used for forecasting
time series. In the autoregressive (AR) model, the current
value of a time series xt depends on k time lags:

xt = α + β1xt−1 + · · · + βkxt−k (8)

where α is the intercept estimated by the model, and βi are
the coefficients for each time series lag xt−i, i = 1, 2, . . . , k .
In the moving average (MA) model, the current value of a
time series xt depends on the forecast error time lags:

xt = α + ϵt + c1ϵt−1 + · · · + ckϵt−k (9)

where ϵt−i are the error time lags, and ci are the respective
coefficients.

The ARIMA(p, d, q) model contains three integer-valued
parameters to be selected by the user [50]. Implementation
of the ARIMA requires that the time series are stationary,
i.e., the statistical properties of the time series do not change
with time. Stationarity of the FOS data was evaluated with
the Augmented Dickey-Fuller (ADF) statistical test. Outputs
of the ADF test include the p-value, the test statistic, and
the critical value. For example, for a confidence level of
95%, p-value < 0.05 indicates that a time series is station-
ary. Similarly, a test statistic value smaller than the critical
value, which depends on the number of points in the time
series, indicates stationarity of the data. The parameter d
corresponding to the integrated (I) part is the number of times
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needed to difference the time series so that they become
stationary [51].

Once the time series are differenced, the user calculates
the values of the parameters p and q using the stationary data.
The parameter p corresponding to the AR part is the num-
ber of significant lags in the partial autocorrelation function
(PACF). The k th order lag is calculated as:

Cov (xt , xt−k | xt−1, . . . , xt−k+1)
√
Var (xt |xt−1, . . . , xt−k+1)Var (xt−k | xt−1, . . . , xt−k+1)

(10)

where Cov and Var represent the covariance and variance,
respectively. The value of the parameter p is determined by
examining the shape of the PACF in Equation (10).

The parameter q corresponding to the MA part is the
number of significant lags in the autocorrelation function
(ACF) γ̂k

γ̂k =

∑n
t=k+1 (xt − x) (xt−k − x)∑n

t=1 (xt − x)2
(11)

Where x is the mean value of the time series, and n is the
total number of terms in the time series. The value of the
parameter q is determined by examining the shape of the ACF
in Equation (11).

C. ZERO-SHOT FORECASTING AND TRANSFER LEARNING
Zero-shot forecasting (ZSF) and transfer learning (TL) refer
to approaches involving training a data-driven model on
source domain S to make predictions on target domain T [52],
[53], [54], [55], [56], [57], [58], [59], [60]. Let XS be the
set of the past k observations, and YS be the set of current
observations at time t in S:

XS = {xt−1, . . . , xt−k}S (12a)

YS = {x t }S (12b)

Let XT be the set of the past k observations and YT be the set
of current observations at time t in T :

XT = {xt−1, . . . , xt−k}T (13a)

YT = {xt }T (13b)

Training a forecasting model involves learning the functions
fS and fT

fS : XS → YS (14a)

fT : XT → YT (14b)

In Vanilla forecasting, the prediction ŶT for the observed
values YT can be written as

ŶT = fT (XT ) (15)

In the zero-shot forecasting (ZSF) approach, the prediction
ŶT for the observed values YT can be written as

ŶT = fS (XT ) (16)

The approach of TL involves re-training on T a model that
was pre-trained on S. The TL prediction ŶT can be expressed
as

ŶT = fT (fS (XT ; θS) , θT ) (17)

where θS and θT are parameters learned from pre-training in
S, and re-training in T , respectively.
TL is referred to as homogeneous if there is semantic and

quantitative similarity in the feature space in source and target
domains, and heterogeneous otherwise [61], [62]. Quantita-
tive similarity between the source and target domains can be
estimated, for example, by calculating the Pearson correlation
coefficient (PCC) [63]. For 1D signals x and y of length n and
respective mean values x and y, the PCC is calculated as:

ρ =

∑
i (xi − x)(yi − y)√∑

i (xi − x)2
∑

i (yi − y)2
(18)

The correlation coefficients take on values in the range from
ρ = 1 (identical signals) to ρ = −1 (anti-correlated), where
ρ = 0 means that the signals are uncorrelated.

III. DTS DATA COLLECTION AND CHARACTERIZATION
A. DTS MEASUREMENTS IN A FLOW LOOP WITH A
THERMAL MIXING TEE
A water flow loop with a forced convection mixing ther-
mal tee was constructed for experimental DTS tests with
Rayleigh backscattering FOS. The loop was constructed with
polycarbonate pipes and filled with water at ambient pres-
sure. Figure 1 shows a schematic diagram of the flow loop.
A thermal mixing tee is a common experimental setup for
proof-of-principle studies of thermal hydraulic phenomena in
advanced reactors, such as thermal striping in a sodium fast
reactor [64]. Water has been shown to be a good surrogate
for sodium when performing thermal hydraulic experiments,
possessing very similar density and viscosity to within an
order of magnitude [65], [66]. Therefore, using a water flow
loop provides a reasonable low-cost experimental data col-
lection alternative for a proof-of-concept study.

Water was circulated against the gravity (clockwise in the
viewing plane) with a 1.5 hp variable speed pump. The flow
split into a cold and a hot leg, where a variable power heater
with maximum power of 4 kW heated the water to generate a
thermal transient. Flows from the hot and cold legs recombine
in the mixing tee, as shown in Fig. 1. The inner diameters
of the pipes in the main loop, cold leg and hot leg are 1.5 in
(3.81 cm) and 0.75 in (1.9 cm), respectively. The mixing zone
is indicated with a circle. Two identical Rayleigh backscat-
tering fiber optic sensors, labeled FOS1 and FOS2, were
installed in the loop [65]. Fiber optic cables without cladding
were inserted into metallic thimbles, the outer surfaces of
which were in contact with the fluid. As shown in Fig. 1,
FOS2 was installed closer to the inlet from the hot leg.

During the experiment, the heater was set to the max-
imum power setting to raise the temperature of the water
to 57.7◦C. The flow velocities in the main loop, cold leg,
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FIGURE 1. DTS with Rayleigh backscattering FOS1 and FOS2 installed in a
water flow loop with a thermal mixing tee.

hot leg were 0.054 m/s, 0.036 m/s, and 0.018 m/s, respec-
tively. Measurements were performed with a Luna ODiSi
6000 system, which provides an uncertainty in temperature
measurements of ±0.9◦C. The gauge pitch or spatial reso-
lution for both FOS1 and FOS2 was 2.6 mm, and data was
acquired every 0.05 s. Raw experimental data consisted of
728 s total observation time, while lengths of FOS1 and FOS2
were 3.64 m and 5.24 m, respectively. The frequency shifts
S[GHz] measured with OFDRwere converted to temperature
T [C] using the power law correlation described in [67]:

T [C] = 1.569 |S [GHz]|0.855 + 22.4 (19)

The data for the study in this paper consisted of tempera-
turemeasurements taken from 18.7-cm long sections of FOS1
and FOS2 (72 gauges) for an observation time span of 25 s
(500 points in time series). These spatial-temporal sections
presented enough temperature fluctuations for LSTM and
ARIMA models testing and training. Pseudocolor images of
temperature fields (with units of ◦C), measured with FOS1
and FOS2 in the thermal tee mixing zone, are displayed in
Figs. 2(a) and 2(b), respectively. The measurement time is
along the x-axis, while the distance along the FOS is on the y-
axis. The transient consists of cold leg fluid at approximately
25◦C mixing with a hot leg fluid at approximately 45◦C,
with the temperature downstream of themixing zone reaching
approximately 35◦C in the steady state. One can observe from
the panels of Fig. 2 that FOS1, which is further from the hot
leg inlet than FOS2, measures different temperature patterns
which are time-delayed because of convective and diffusive
heat transfer. Note that the colormap display function trun-
cates the temperatures to the nearest integer, so regions of the
colormap with the same colors do not correspond to constant
temperatures.

FIGURE 2. Pseudocolor temperature map in the thermal tee mixing zone
measured with (a) FOS1 and (b) FOS2.

B. CORRELATIONS BETWEEN FOS1 AND FOS2
To develop a quantitative estimate of similarity between
FOS1 and FOS2, we calculate the 72 × 72 matrix of PCCs
for all gauges of FOS1 and FOS2. Figure 3 displays the
matrix of PCCs as a pseudocolor image. Each element (i,j) of
the matrix is the PCC between gauge i of FOS1 and gauge
j of FOS2. Note that gauges of FOS1 and FOS2 with the
same number and same vertical position in the mixing zone
of the thermal tee are not necessarily most correlated. The
mapping between FOS1 gauges and maximum correlation
FOS2 gauges is listed in Table 2. Note that the subset of
maximum correlation gauges for FOS1 consists only of five
FOS2 gauges.

Correlations between gauges of FOS1 and FOS2 are elu-
cidated further in the stem plot of PCCs as a function of
distance along FOS1. Figure 4(a) shows PCCs calculated for
the same-number gauges of FOS1 and FOS2. The FOS1 and
FOS2 gauges numbered approximately 25 through 75 (13 cm
length of fiber), which are located closest to the junction of
the hot and cold legs, are weakly correlated with ρ < 0.4.
Higher-number FOS1 gauges, starting from approximately
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FIGURE 3. Pseudocolor image of matrix of PCCs for all gauges of FOS1
and FOS2.

TABLE 2. Maximum correlations between gauges of FOS1 and FOS2.

gauge 120, located downstream of the mixing zone, display
stronger correlations with the same-number FOS2 gauges,
with ρ > 0.8. Figure 4(b) shows the stem plot of PCCs where
for each gauge of FOS1, we calculated the PCC using the
maximum correlation gauge of FOS2, as identified in Table 2.
For all gauges of FOS1 in Fig. 4(b), ρ > 0.8.

IV. ARIMA AND LSTM FORECASTING MODELS TRAINING
A. DTS DATA PARTITIONING FOR FORECASTING USE
CASES
Data-driven analysis involves partitioning the data into train-
ing and testing datasets, with a typical split of 90% for
model training and 10% for model testing. Following this
approach, a subset of 10% of time series of all 72 gauges
of FOS1 temperature measurements, corresponding to the
time interval [6.5 s, 9 s], was selected as the testing data
for all three forecasting use cases. The testing dataset time
series are 2.5 s-long data segment consisting of 50 points
(0.05s temperature sampling rate). Temperature of the FOS1
testing dataset is displayed as pseudocolor image in Fig. 5(a).
The testing segment was selected from the first half of the
transient to qualitatively exhibit sufficient spatial-temporal
amplitude fluctuations in most FOS1 gauges to present a
challenge to the forecasting models. The remaining 90% of
time series of temperature measurements of all gauges of
FOS1 in time intervals [0, 6.5 s] and [9 s, 25 s] were merged
into the training data set. Thus, the time series in the training

FIGURE 4. (a) Stem plot of PCCs calculated for the same-number gauges
of FOS1 and FOS2. (b) Stem plot of PCCs for FOS1 gauges and correlated
subset of FOS2 gauges in Table 2. In (a) and (b) the distance is along FOS1.

data set with a total time duration of 22.5 s consisted of
450 points.

A subset with the same time stamps was selected from the
FOS2 temperature measurements as the training data for the
ZSF and TL forecasting use cases. Temperatures of the FOS1
training dataset and FOS2 training dataset are displayed as
pseudocolor images in Figs. 5(b) and 5(c), respectively. The
two wavy lines on the time axis of Figs. 5(b) and 5(c) indicate
the temporal location where the two subsets of the original
FOS1 and FOS2 data were merged to form the respective
training datasets.

As shown in Fig. 4(a), time series of the same-number
gauges of FOS1 and FOS2 are not strongly correlated. There-
fore, for the ZSF and the TL forecasting, we develop another
training dataset FOS2-corr consisting of a subset of FOS2
gauges that have maximum correlation with FOS1 gauges.
The gauges of FOS2-corr are selected according to the map-
ping in Table 2. Note that FOS2-corr data set consisting of
72 gauges is formed out of five FOS2 gauges with repli-
cations. The resulting spatial-temporal temperature map is
displayed as a pseudocolor image in Fig. 5(d).
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FIGURE 5. DTS data partitioning segments displayed as pseudocolor images. (a) FOS1 testing dataset. (b) FOS1 training dataset. (c) FOS2 training
dataset. (d) FOS2-corr training dataset.

B. ARIMA(p,d,q) MODEL TRAINING
Implementation of the ARIMA model involves selection of
the values of the ARIMA(p, d, q) parameters based on results
of statistical tests. The value of the parameter d is the order
of differencing required to make the model training data sta-
tionary. Stationarity of the DTS data was evaluated with the
ADF statistical test for 95% confidence level. For all gauges
of FOS1 and FOS2 training datasets, p-values > 0.05 and
test statistic > critical value, indicating that the data is non-
stationary. Differencing the time series once (d = 1) and
repeating the ADF tests results in p-values = 10−3 and test
statistic < critical value for the differenced time series for
all gauges of FOS1 training data and FOS2 training data.
This indicates that the differenced time series are stationary.
Parameters p and qwere determined from the differenced sta-
tionary time series by finding the number of lags for the PACF
given by Equation (10) and ACF given by Equation (11). The
values of PACF and ACF saturate after p = 1 and q = 0 lags,

respectively. Therefore, we select ARIMA(1,1,0) implemen-
tation for Vanilla and zero-shot forecasting (ZSF) use cases.
The FOS1 testing data was differenced once as well for all
test cases involving ARIMA forecasting.

C. LSTM MODEL TRAINING
LSTM networks for all use cases of DTS forecasting were
developed with training data, where 90% of that data was
reserved for model training and 10% for model valida-
tion. LSTM network architecture included an input layer,
an LSTM layer, a fully connected layer, and a regression
layer. In addition, 10 hidden units were used in the LSTM
layer, and the learning rate was set to 0.005. The architec-
ture of the models, including layers in the network, number
of LSTM hidden layers, and learning rate were determined
by studying the convergence of training and validation loss
curves. The number of LSTM hidden layers was varied in the
interval of [5, 100], and the learning rate was varied across the
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range [10−5, 10−2]. The Adam optimizer was used due to its
strong performance on time series data [50], [68], [69]. LSTM
models for each FOS gauge were trained for 120 epochs with
the option for early stopping. All LSTM models converged
after 50 epochs.

For the Vanilla use case, we developed LSTM-vanilla
trained on FOS1 training dataset. Figures 6(a) and 6(b) show
the loss curves of the LSTM-vanilla model, for training and
validation, respectively. There are 72 learning curves in Fig-
ures 6(a) and 6(b) for each gauge of FOS1. Training and
validation losses converge after 50 epochs. Spatially averaged
training and validation losses at 50 epochs for LSTM-vanilla
are 0.0036◦C and 0.0049◦C, respectively.
For zero-shot forecasting (ZSF) use case, we devel-

oped LSTM-ZSF and LSTM-corrZSF networks using FOS2
training and FOS2-corr training datasets, respectively. For
LSTM-ZSF the average training and validation losses at
50 epochs are 0.0036◦C and 0.0113◦C, respectively. For
LSTM-corrZSF, at 50 epochs the average training and valida-
tion losses are 0.0036◦C and 0.0043◦C, respectively. Similar
learning curves as the ones shown in Figure 6 were observed
for training and validation of LSTM-ZSF and LSTM-corrZSF
models.

FIGURE 6. (a) Training loss curves and (b) validation loss curves for
LSTM-Vanilla model. There are 72 learning curves for each gauge of FOS1.

V. VANILLA USE CASE FORECASTING OF DTS
Figures 7(a) and 7(b) display pseudocolor temperature
images of the forecasting errors (error = predicted –
measured) for the FOS1 testing data, obtained with the
ARIMA-vanilla and LSTM-vanilla models, respectively. The
range of time labels on the x-axis of both Figs. 7(a) and 7(b)
is 6.5 s to 9 s, which is in reference to the temporal location
of the testing segment in the original FOS1 data. The largest
errors for both LSTM and ARIMA forecasting are observed
in the spatial region approximately between 130 mm and
150 mm (gauges 50 and 58), and for time spans approxi-
mately between 7.1 s and 8.5 s. Both LSTM and ARIMA
under-predict the temperature at the start of this transient and
over-predict at the end of the transient.

FIGURE 7. Pseudocolor temperature map of errors in forecasting of FOS1
testing data with (a) ARIMA-vanilla, (b) LSTM-vanilla.

Table 3 summarizes the MaxAE and MaxAPE, and time
and space-averaged RMSE and RMSPE for the LSTM and
ARIMA models developed with FOS1 training data, indi-
cating that ARIMA outperforms LSTM in Vanilla use case
of forecasting FOS1 testing data. Note that all MaxAE and
RMSE for ARIMA, and all RMSE for LSTM are smaller than
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the uncertainty of DTS measurements of ±0.9 ◦C. MaxAE
of LSTM slightly exceeds the uncertainty of experimental
measurements.

TABLE 3. Errors in vanilla forecasting of FOS1 temperature with models
trained on FOS1 data.

VI. ZERO-SHOT FORECASTING OF DTS
Figure 8(a) displays pseudocolor temperature image of the
ARIMA-ZSF error (error = predicted – measured). From
qualitative comparison of the images in Fig. 8(a) and
Fig. 7(a), one can observe that ARIMA-ZSF and ARIMA-
vanilla errors are similar. Figure 8(b) displays pseudocolor
temperature image of the LSTM-ZSF error. From qualitative
comparison of the images in Fig. 8(b) and Fig. 7(b), one
can observe that LSTM-ZSF errors are larger than those
of LSTM-vanilla. In particular, the LSTM-ZSF errors are
substantially larger than those of LSTM-vanilla in the spa-
tial region from 26 mm to 52 mm. As can be seen in
Fig 4(a), the gauges of FOS2 and FOS1 at these spatial
locations are weakly correlated. Spatial-temporal errors with
LSTM-corrZSF are displayed as a pseudocolor image in
Fig. 8(c). Qualitatively comparing Figs. 8(b) and 8(c), the
errors of LSTM-corrZSF are smaller than those of LSTM-
ZSF.

Table 4 lists the MaxAE and MaxAPE, and time and
space-averaged RMSE and RMSPE for the three ZSF mod-
els. The MaxAE and RMSE of LSTM-corrZSF are lower
than those of LSTM-ZSF, but larger than those of ARIMA-
ZSF. Comparing Table 4 and Table 3, RMSE and MaxAE
of ARIMA in ZSF use case are slightly larger than those
of the Vanilla use case. ZSF use case RMSE and MaxAE
of LSTM-corrZSF are smaller and larger, respectively, than
the corresponding errors of the LSTM-vanilla. It should
be noted that RMSE for all ZSF models and MaxAE for
ARIMA-ZSF are smaller than the DTS measurement uncer-
tainty of ±0.9◦C.

TABLE 4. Errors in ZSF of FOS1 for models trained on FOS2 data.

VII. FORECASTING OF DTS WITH TRANSFER LEARNING
A. LSTM-TL TRAINING
The performance of LSTM-corrZSF could be further
improved with transfer learning (TL) by re-training the

FIGURE 8. Pseudocolor temperature map of ZSF errors of FOS1 testing
data with (a) ARIMA-ZSF, (b) LSTM-ZSF, (c) LSTM-corrZSF.

LSTM-corrZSF with the FOS1 training data. During the re-
training process, all trainable parameters of the network are
initialized with the values of those in the pre-trained net-
work. However, re-training the pre-trained LSTM-corrZSF
network results in large forecasting errors for relatively small
amounts of FOS1 training data. As an example, the MaxAE
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FIGURE 9. (a) MaxAE and (b) space and time-averaged RMSE as functions
of fraction of FOS1 training data used in training of the LSTM-TL model.

is 18.39◦C and the space and time-averaged RMSE is 7.9◦C
when re-training LSTM-corrZSF with 10% of FOS1 data.
This is a common phenomenon of catastrophic forgetting
in neural networks, where previously learned knowledge is
forgotten when the networks are trained on new datasets [70].
To mitigate the catastrophic forgetting, forecasting mod-
els are trained on a combination of old and new datasets.
Therefore, in the TL use case, we re-train the pre-trained
LSTM-corrZSF network on datasets consisting of both the
FOS2 training data and the FOS1 training data.

Figures 9(a) and 9(b) plot the MaxAE and space and time-
averaged RMSE, respectively, as functions of the fraction of
FOS1 data used in LSTM-TL model re-training. The MaxAE
and RMSE for 0% of FOS1 data are the errors listed for
LSTM-corrZSF in Table 4. From Fig. 9(a), increasing the
fraction of FOS1 training data for LSTM-TL re-training leads
to reduction in the MaxAE. The decrease in MaxAE saturates
after the re-training includes 60% of FOS1 training data.
LSTM-TL retrained with 60% of FOS1 data converged after
70 epochs with the average training loss of 0.0028◦C, and

FIGURE 10. Pseudocolor temperature maps of forecasting errors with
LSTM-TL networks re-trained with (a) 30% and (b) 60% of FOS1 training
data.

the average validation loss of 0.011◦C. From Fig. 9(b), after
the initial decline, the RMSE does not saturate with increas-
ing fraction of FOS1 training data, and instead oscillates in
the 0.17◦C to 0.19◦C range. The minimum RMSE value is
observed for 30% of FOS1 re-training data.

B. LSTM-TL TESTING
Figures 10(a) and 10(b) display pseudocolor temperature
images of forecasting errors with LSTM-TL networks
retrained with 30% and 60% of FOS1 training data, respec-
tively. The largest errors for both cases are observed in the
spatial region approximately between 130 mm and 150 mm
(gauges 50 and 58).

Table 5 lists the MaxAE and MaxAPE, and time and
space-averaged RMSE and RMSPE for the LSTM-TL net-
works developed with 30% and 60% of FOS1 training data.
MaxAE and RMSE for LSTM-TL are smaller than those
of LSTM-corrZSF listed in Table 4. The smallest MaxAE
with 60% of FOS1 data used in re-training of LSTM-
TL is between the MaxAE values for ARIMA-ZSF and
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ARIMA-vanilla. However, the smallest RMSE for 30% of
FOS1 used for re-training LSTM-TL is larger than RMSE
for ARIMA-ZSF and ARIMA-vanilla. It should be noted that
MaxAE and RMSE for LSTM-TL in Table 5 are smaller than
the DTS uncertainty in measurements of ±0.9◦C.

TABLE 5. Errors in LSTM-TL forecasting of FOS1 testing data.

VIII. CONCLUSION
We benchmarked performance of machine learning LSTM
and statistical ARIMA models in temporal forecasting of
DTS. The data in this study was a thermal transient in a mix-
ing Tee of a water flow loop, measured with two co-located
Rayleigh scattering FOS. Temperature measurements were
taken from 18.7-cm long sections of two FOS (72 gauges)
for a total observation time span of 25 s (500 points in time
series). The data was partitioned into 2.5 s – long (50 points
in time series) testing dataset and 22.5 s – long (450 points
in time series) training dataset. Performance of LSTM and
ARIMA was evaluated with RMSE, MaxAE, RMSPE and
MaxAPE error metrics. The benchmarking study investigated
temperature forecasting in Vanilla, zero shot forecasting
(ZSF) and transfer learning (TL) use cases. In Vanilla use
case, predictions of FOS temperature were made with LSTM
and ARIMA trained on the data from the same FOS that was
used for testing. In ZSF use case, forecasting of one FOS
was made with ARIMA and LSTM trained on another FOS.
In TL use case, LSTM developed in ZSF was re-trained for
improved performance.

The study has shown that ARIMA outperforms LSTM in
all use cases. However, since both LSTM and ARIMA are
data-driven forecasting models, their performance depends
on the training data. Development of ARIMA requires per-
forming statistical tests to determine the (p, d, q) model
parameters, and differencing the training and testing data to
make it stationary. The MaxAE and RMSE for ARIMA are
similar for vanilla and ZSF use cases. Since datasets usedwith
ARIMA are differenced to make them stationary, ARIMA
is relatively insensitive to correlations between the original
training and testing datasets.

The MaxAE and RMSE for LSTM in ZSF are larger than
the corresponding errors in the Vanilla use case. To improve
performance of LSTM in the ZSF use case, we identified
gauges in the FOS1 training dataset that are most correlated
with the FOS2 training dataset. Training LSTM on the highly
correlated training dataset resulted in decrease of MaxAE
and RMSE. Performance of LSTM can be further improved
through TL by re-training LSTM developed in ZSF case. The
re-training dataset includes all the data from training in ZSF
and a sub-set of the training data from the FOS that was the

target of forecasting. This shows that LSTM depends on the
correlation between the training and testing datasets, and on
the volume of the training data.

Future studies will investigate benchmarking of several
other time series with forecasting methods such as transform-
ers, which in principle have the potential to perform well in
ZSF applications. In addition, we will explore performance
of LSTM, ARIMA and other methods in multi-step ahead
forecasting. Furthermore, we will investigate the effect of
different activation functions in LSTM models performance.
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