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ABSTRACT Supply Chain Finance (SCF) in the energy sector has emerged as a critical area of focus due
to the need for sustainable and efficient financial solutions to manage the complex interactions between
various stakeholders, including suppliers, financial institutions, and energy companies. This study proposes
a novel hybrid Topological Data Analysis (TDA) and Graph Neural Network (GNN) to optimize credit
risk assessment in SCF. By leveraging BallMapper (BM) topological data analysis model and network-
based features, the proposed model provides deeper insights into credit risk factors, enhancing the accuracy
and dependability of credit risk evaluation for SMEs. Results demonstrate that the proposed BallMapper-
Graph Neural Network (BM-GNN) model achieves higher accuracy and F1-scores, outperforming traditional
machine learning approaches. Notably, incorporating network-based features alongside financial ratios
yields the most favorable results in credit risk assessment. The SHapley Additive exPlanations (SHAP)
model highlights the pivotal role of certain features in predicting bankruptcy, offering valuable insights for
risk mitigation strategies. These results contribute to the growing body of evidence supporting the efficacy
of TDA and GNN in financial applications, particularly in credit risk evaluation for SMEs in supply chain
finance. Using network-based models opens up new avenues for improving accuracy and reliability in risk
assessment, ultimately empowering financial institutions and stakeholders to make more informed decisions.

INDEX TERMS Topological data analysis, graph neural network, credit risk, BallMapper, supply chain
finance.

I. INTRODUCTION

In the intricate landscape of the energy sector, SCF emerges
as a crucial tool, particularly for SMEs, to navigate financial
challenges and optimize cash flow [1], [2]. SMEs in the
energy sector, including industries like oil, gas, petrochemi-
cals, and power plants, face numerous challenges such as high
capital requirements, complex regulatory compliance, mar-
ket volatility, rapid technological advancements, and fierce
competition from large enterprises [3]. Accessing sufficient
financing is particularly difficult, as banks and financial insti-
tutions often view SMEs as high-risk [4]. Effective credit
risk assessment is crucial for these SMEs as it helps improve
their access to finance by providing a clearer picture of
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their financial health to lenders and investors [5], [6]. It aids
in managing financial risks, enhancing business credibility,
guiding strategic decisions, ensuring regulatory compliance,
and attracting investment. These benefits are essential for
the growth, sustainability, and competitive edge of SMEs
in this capital-intensive and highly regulated industry. Tra-
ditional credit risk assessment methods, such as Decision
Trees (DT), Support Vector Machines (SVM), and Logis-
tic Regression (LR), primarily focus on financial ratios and
linear relationships [7]. However, these models often fall
short in capturing the complex, non-linear, and topolog-
ical characteristics inherent in financial data, particularly
within the networked structure of the energy sector’s supply
chain. To address these limitations, our research proposes
a novel hybrid model that integrates BallMapper (BM),
a topological data analysis method, with GNNs, which
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excel in modeling dependencies and interactions within
graphs.

The motivation behind combining BM and GNN lies in
their complementary strengths. BM is adept at identifying
patterns and clusters within high-dimensional data, reveal-
ing topological insights that traditional models overlook [8].
On the other hand, GNNs leverage relational information
within graphs to model the dependencies and interactions
among entities, capturing the contagion risk that arises from
financial distress spreading through the supply chain net-
work. By integrating these two methodologies, we aim to
develop a more comprehensive and accurate credit risk
assessment model, specifically tailored for the complexities
of SCF in the energy sector.

Our research introduces the BM-GNN model, which offers
several unique contributions and highlights its critical role in
various segments of the energy industry:

A. ENHANCED FEATURE SELECTION

Traditional credit risk assessment methods often rely on lin-
ear analysis of relationships between financial variables and
fail to model the complexities of multidimensional and non-
linear data. BallMapper, as a topological analysis method,
can uncover hidden structures and non-linear relationships in
data. By selecting features analogous to Altman’s Z-Score,
it enhances the precision of predicting companies’ financial
statuses.

Hypothesis 1: The initial features (Basic Feature Set) are
insufficient for accurate credit risk prediction, and selecting
features using BallMapper will significantly improve model
performance.

B. NETWORK-BASED CREDIT RISK ASSESSMENT

In supply chains, financial crises in one company can
propagate to others, creating systemic risks. GNN models,
leveraging network information, are capable of model-
ing these dependencies and complex interactions. Com-
bining BallMapper with GNN enables the extraction of
network-based features for a more accurate representation of
risk propagation within the energy supply chain.

Hypothesis 2: Network-based features extracted using
BallMapper better model the interdependencies and systemic
risks in the energy supply chain compared to non-network
features.

C. IMPROVED PREDICTIVE PERFORMANCE

Previous studies, such as [9], have demonstrated the success
of GNN models in credit risk prediction. However, integrating
topological methods like BallMapper with GNN can further
strengthen the model’s ability to identify non-linear relation-
ships and enhance predictive accuracy. This research assumes
that BallMapper-extracted features outperform correlation-
based features in predicting bankruptcy.
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Hypothesis 3: BallMapper-extracted features outperform
correlation-based features in capturing non-linear relation-
ships and improving predictive accuracy.

D. EXPLAINABILITY

One of the key challenges in complex machine learning mod-
els is transparency and explainability of predictions. In this
study, the SHAP model is used to analyze the importance of
features in credit risk prediction. Combining features selected
by BallMapper with network information extracted by GNN
provides more robust and transparent justifications for pre-
dictions, improving decision-making processes for managers
and investors.

Hypothesis 4: Combining BallMapper-selected features
and network-based features leads to the best overall perfor-
mance, offering superior accuracy and explainability in credit
risk prediction.

The remaining sections are structured as follows: Section II
presents an in-depth exploration of relevant literature con-
cerning credit risk prediction in SCF. We aim to provide
an extensive understanding of the prevalent trends in related
fields and to identify gaps in existing research that we
intend to address. Section III outlines the development pro-
cess of our proposed model, BallMapper GNN. We delve
into three key stages of the model: feature extraction using
BallMapper, graph transformation via clustering ideology,
and node classification by Graph Neural Network. Moving
on to Section IV, we offer a detailed account of the study con-
ducted, which is divided into four phases. Initially, we provide
a holistic overview of the data under examination. Subse-
quently, we elaborate on the implementation process of the
model. Following this, we subject the implemented models
to evaluative scrutiny, systematically comparing the obtained
results. Ultimately, we summarize the key findings of our
study and analyze its practical implications for management,
in Section V.

II. LITERATURE REVIEW

Supply chain finance is a critical component in optimizing
financial flows within supply chains, attracting significant
attention from academia and industry [10]. It involves the
use of various instruments and techniques such as reverse
factoring and dynamic discounting to reduce inefficiencies
in financial flows, resulting in substantial cost savings for
networks [11]. Supply chain finance is essential for ensuring
sustainable financial flows within industries, particularly in
the face of challenges like financial crises that can impact
supply chains [12]. The concept of supply chain finance is
closely linked to supply chain risk management (SCRM),
which is crucial for understanding and mitigating risks asso-
ciated with financial flows and transactions within supply
chains [13], [14]. In the realm of supply chain finance, Arti-
ficial Intelligence (AI) networks have been identified as a
significant strategy for ensuring sustainable financial flows
within the food and drink industry [12]. AI technologies
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are utilized to implement advanced solutions that enhance
financial processes and improve the overall efficiency of
supply chain finance operations. Additionally, blockchain
technology has been recognized as a valuable tool for enhanc-
ing various functions within supply chains, including finance
operations [15]. Blockchain technology offers opportunities
to enhance transparency, traceability, and security in financial
transactions within supply chains, thereby contributing to
more efficient supply chain finance practices [16]. Efforts
to redesign supply chains for the Circular Economy have
highlighted challenges that impact supply chain finance [17].
These challenges underscore the need for innovative finan-
cial strategies to support sustainable practices within circular
supply chains, ranging from product recovery processes to
closed-loop supply chain network design. Furthermore, the
application of game theory in supply chain finance has
been explored to analyse the value of advance payment
financing in reducing carbon emissions and improving pro-
duction efficiency within supply chains [18]. Supply chain
finance is intricately connected to supply chain coordination,
where coordinating financial processes among supply chain
members is crucial for maximizing the profitability of the
entire supply chain [19]. Trade credit, when combined with
effective coordination contracts, can significantly enhance
the profitability of both individual members and the overall
supply chain [20]. Moreover, the adoption of Al in supply
chain management has the potential to revolutionize financial
processes, although critical success factors influencing the
adoption of Al in supply chain finance require further explo-
ration [21]. The resilience of supply chains is another critical
aspect that intersects with supply chain finance, especially
in the face of increasing complexities and global uncer-
tainties [22]. Proactive management practices are essential
for enhancing supply chain resilience, particularly in the
context of global sourcing strategies that introduce addi-
tional complexities to financial flows within supply chains.
Additionally, the dynamic nature of supply chain networks
necessitates the development of dynamic recovery policies to
address disruptions and mitigate the ripple effect on supply
chain economic performance [23].

Credit risk in supply chain finance is a crucial aspect that
necessitates comprehensive understanding and management
to ensure the smooth flow of financial transactions within
the supply chain. Supply chain finance (SCF) has emerged
as an innovative solution aimed at optimizing financial flows
within supply chains [10]. However, the presence of credit
risk can significantly impact the effectiveness of SCF. Credit
risk refers to the potential that a borrower or counterparty
will fail to meet its financial obligations, leading to financial
losses for the lender or supplier. In the context of supply chain
risk management (SCRM), financial risk encompasses vari-
ous factors associated with financial flows and transactions
within the supply chain [14]. This includes risks related to
payment delays, defaults, insolvencies, and fluctuations in
currency exchange rates. Managing financial risks effectively
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is crucial for maintaining the stability and efficiency of supply
chain operations. One of the key challenges in addressing
credit risk in supply chain finance is the lack of visibility
and transparency in the financial flows within the supply
chain network [24]. Without clear visibility of the financial
transactions and relationships between different entities in the
supply chain, it becomes difficult to assess and mitigate credit
risk effectively. The emergence of longer and geographi-
cally dispersed supply chains has further exacerbated this
challenge, exposing companies to a wider range of financial
risks [24]. To mitigate credit risk in supply chain finance, it is
essential to adopt proactive risk management strategies that
involve identifying, assessing, and monitoring potential risks
associated with financial transactions [25]. Artificial intelli-
gence (Al) has been identified as a promising technology for
enhancing supply chain risk management practices, including
the identification and mitigation of credit risk [25]. By lever-
aging Al algorithms and predictive analytics, companies
can improve their ability to assess creditworthiness, detect
anomalies in financial transactions, and make data-driven
decisions to mitigate credit risk effectively. Furthermore,
building resilient supply chains through supplier flexibility
and reliability assessment can also help mitigate credit risk
in supply chain finance [26]. By developing strong relation-
ships with reliable suppliers and fostering flexibility in the
supply chain network, companies can reduce their exposure
to credit risk and ensure continuity in financial transactions.
Supplier evaluation mechanisms based on Bayesian belief
networks can also aid in analysing and quantifying credit risk
during supplier selection processes [27]. Offringa et al. [52]
categorized risks in supply chain financial business into
credit risk, market risk, operational risk, and systemic risk,
emphasizing credit risk as a primary concern for risk man-
agement in supply chain finance [28]. It was highlighted
that commercial banks play a pivotal role in evaluating and
mitigating credit risks within the supply chain. Various mod-
els and methodologies have been proposed to tackle credit
risk in supply chain finance. For example, Chen and Yano
(2018) suggested streamlining ownership transfer procedures
to reduce credit risk, emphasizing operational efficiency and
transparency [29]. Xia et al. (2020) introduced a credit risk
evaluation index system tailored to supply chain finance
business characteristics, aiding in identifying and manag-
ing credit risks effectively [30]. Technological advancements
like blockchain and the Internet of Things (IoT) have influ-
enced credit risk management in supply chain finance [31].
Research has explored the integration of blockchain and
fuzzy neural networks for supply chain financial risk assess-
ment, showcasing the potential of advanced technologies in
enhancing risk evaluation processes [32]. Additionally, the
measurement of supply chain finance credit risk based on IoT
has been investigated, highlighting the role of technological
innovations in refining credit risk assessment methodologies
within supply chain finance [33]. Predictive modelling has
emerged as a valuable tool for assessing credit risk in supply
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chain finance. Models such as IG-GA-SVM and K-Means-
SVM have been developed to forecast and manage credit
risks effectively [34]. External factors, such as the COVID-
19 pandemic, have also impacted credit risk in supply chain
finance. Studies have shown increased credit risk contagion
in supply chain finance during the pandemic, emphasizing the
need for adaptive risk management strategies during times of
economic uncertainty.

Based on the examination of the relevant literature, three
primary viewpoints arise regarding potential pathways for
enhancing predictive accuracies in credit risk assessment
models. Firstly, the acknowledgment of the significant advan-
tages of incorporating TDA models with other algorithms
has demonstrated promising potential, especially through the
application of graph representation learning models. Sec-
ondly, addressing scenarios involving implicit relations is
highlighted. While Prior research on graph-based method-
ologies often rely on explicit relations, the challenge lies
in scenarios where explicit relations are difficult to collect
or acquire. There is a noticeable gap in research focusing
on improving forecasts without explicit external relations.
Thirdly, in contemporary forecasting methodologies, the inte-
gration of various analytical tools emerges as a fundamental
aspect. These integrated models demonstrate exceptional
effectiveness in improving forecasting accuracy, particularly
when they are adaptable to diverse datasets and sources
of information. This emphasis on integration highlights a
significant transition toward more resilient and adaptable
forecasting approaches within modern research frameworks.

In the context of credit risk assessment in supply chain
finance, recent advancements in machine learning and
graph-based methods provide novel pathways for enhancing
predictive accuracy and risk evaluation processes. Traditional
algorithms such as LR, DT, Multi Layer Perceptrons (MLP),
and SVM have been extensively utilized due to their inter-
pretability, robustness, and ability to handle various types of
data. Each of these methods has its strengths and weaknesses,
making them suitable for different contexts within credit risk
evaluation.

Logistic regression remains one of the most widely used
statistical methods for credit risk assessment. Its advan-
tages include strong interpretability and the ability to pro-
vide probability scores for default risk, which are crucial
for decision making in financial institutions. For instance,
Zhou et al. demonstrated that an LR model achieved a
prediction accuracy of 81.25% in assessing the credit risk
of listed companies in China, highlighting its effectiveness
in practical applications [35]. Additionally, Pederzoli and
Thomas noted that while LR models do not require strict
assumptions about the distribution of feature variables, they
are limited by their capacity to include only a small number
of predictors, which can affect their predictive power [36].
This limitation is echoed in the work of Wei and Hasan,
who emphasized the utility of LR in commercial banking for
assessing borrower default risk [37]. Decision Trees (DT) are
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another popular choice for credit risk assessment due to their
intuitive structure and ease of interpretation. Guo et al. con-
structed a credit risk assessment model using DT alongside
LR, demonstrating its effectiveness in evaluating companies
with and without credit records [38]. The ability of DTs to
visualize decision paths makes them particularly useful for
stakeholders who require transparency in the decision making
process. Multi-layer perceptron, a type of artificial neural
network, have also been applied in credit risk assessment.
Assef et al. compared MLP with LR and found that MLP
could effectively analyze complex relationships in data, par-
ticularly in distinguishing between default and non-default
borrowers [37]. However, MLPs often require larger datasets
and more computational resources, which can be a drawback
in certain contexts. Support Vector Machines (SVM) are rec-
ognized for their robustness in high dimensional spaces and
their ability to handle nonlinear relationships. Nehrebecka’s
study compared SVM with LR in predicting default risk,
finding that SVM models often outperformed LR in terms of
predictive accuracy, particularly when dealing with complex
datasets [39]. This aligns with the findings of Huang, who
noted the effectiveness of SVM in evaluating credit risk for
listed companies [40].

The integration of graph representation learning, such as
Graph Convolutional Neural Networks (GCNNs) and Graph-
SAGE models, has proven effective in addressing complex
relational structures within data. For instance, these meth-
ods have been applied to cybersecurity attack detection
in cloud computing networks, showcasing their potential
in identifying patterns and anomalies within dynamic and
interconnected systems [41]. Similarly, adaptive learning
techniques, such as transfer adaptation methods for feature
expansion in multi-label deep neural networks, highlight the
importance of dynamic feature extraction and the ability to
adapt to evolving data landscapes [42]. These approaches
underline the necessity of flexible and scalable method-
ologies in domains characterized by diverse and dynamic
datasets. Moreover, collaborative frameworks for risk assess-
ment, such as those developed for dynamic federations of
cloud networks, emphasize the value of integrating dis-
tributed information sources to enhance decision-making
under uncertainty [43]. This collaborative risk assessment
aligns closely with the challenges of credit risk management
in supply chain finance, where diverse financial flows and
dependencies necessitate robust and coordinated analytical
tools. By leveraging hybrid models that combine TDA meth-
ods like BallMapper with GNNs, our proposed BM-GNN
framework builds on these advancements to address the com-
plexities of credit risk prediction. This model bridges the
gap between implicit relational extraction and the dynamic
nature of financial networks, offering a resilient and adaptable
solution tailored to the needs of SCF credit risk assessment.

We propose a novel hybrid model, BM-GNN, which
uniquely combines Topological Data Analysis and Graph
Neural Networks for a more nuanced and accurate credit
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risk assessment of SMEs. Unlike traditional approaches,
our model incorporates network-based features that capture
systemic interdependencies and topological insights, signif-
icantly enhancing predictive accuracy. The integration of
SHAP explanations further ensures model interpretability,
facilitating more informed decision-making for stakeholders.

lil. PROPOSED MODEL

In this study, we propose the BM-GNN model for credit
risk assessment, which integrates topological data analysis
BallMapper with GNN. This model is designed to lever-
age the strengths of both approaches: BallMapper excels in
identifying patterns and clusters in high-dimensional data,
while GNN effectively analyzes complex relationships and
dependencies within graph structures.
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FIGURE 1. Proposed BM-GNN algorithm.

As shown in Fig. 1, the BM-GNN model is structured into

three key stages:

o Feature Extraction Using BallMapper: In this stage,
financial attributes of companies are selected using the
BallMapper algorithm, enabling a more nuanced evalu-
ation of credit risk by capturing topological insights that
go beyond conventional linear methods.

o Graph Construction Using Extracted Features: The
extracted feature set is transformed into graphs by
incorporating proximity relationships among compa-
nies, creating a non-Euclidean data structure suitable for
graph analysis.

o Credit Risk Prediction Using GNN: Finally, the con-
structed graph is analyzed using a GNN model to predict
the financial health of companies. This stage utilizes
the GNN’s message-passing framework to aggregate
information from neighboring nodes and refine node
representations for accurate classification.

The overall architecture of the proposed BM-GNN model

is illustrated in Figure 1, which outlines the connections
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between these stages and highlights the flow of information.
Algorithm 1 further details the steps involved in imple-
menting the model, providing a comprehensive pseudocode
representation of the feature extraction, graph construc-
tion, and prediction processes. Each of these stages will
be elaborated in the following sections, offering a deeper
understanding of the methods and rationale underlying the
BM-GNN framework.

Algorithm 1 Pseudocode of BM-GNN Model

Input 1: Tabular companies’ dataset of financial attributes X (sized
mxn,i=1,2,...,n)and labels y; (sizedm x 1,i=1,2,...,m)
Input 2: Selection of an integer K
Input 3: Selection of epsilon as radius of the ball
Output: Predicted labels y'(sized m x 1,i =1,2,...,m)
for Co; in all m companies: do
Calculate Z;-score
End for
Let tabular companies’ dataset of financial attributes x; as points,
and Z;-score as values
1 = BallMapper (points, value, epsilon)
for all x; in financial attributes: do

ColorlgraphPlot(l)
End for
Stage I Completed Tabular companies’ dataset of BallMapper
attributes H (sizedm x h,i=1,2,...,n)

for all x; in H: do

Compute Kendall’s correlation: k;j(j = 1,2, ..., h);

Sort all the computed Kendall’s values and select the k least

instances as the neighborhood set of the instance x; : Nk (i)

for x; in Nk (i): do

ajj = aj; = 1: Drow edge between x; and x;.

end for
end for
Stage II Completed Transformed graph and its adjacency matrix
obtained: Gg,Ag = [aij]
for Gg,Ax = [aij] and node attributes X: do

Feed into GNN and get renewed node representations AT =

5 (5 4AD- bhowo) .
Update w® to optimize the losses between hf and y;.
Stage III Completed Predicted labels is created y = [hf]

Stage I: Feature Selection Using BallMapper

As seen in Algorithm 1, the dataset comprises m compa-
nies, where X represents n features, and y denotes bankruptcy
status. The primary objective revolves around binary clas-
sification, a task well suited for applying machine learning
techniques on structured tabular data (Algorithm 1- Input
1). Initially, the focus lies in computing the probability
of bankruptcy for each company. To achieve this, the Z-
score model, a renowned methodology for credit scoring,
is adopted, serving as the cornerstone of the study. (1) illus-
trates the discriminant function within the Altman’s Z-score

I Where 1© illustrates the node attribute matrix in layer £, W denotes
the weight matrix for layer €D is the degree matrix of A, A = A 4 [ is the
adjacency matrix of the graph augmented with self-connections, and § is the
activation function.
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model for industrial companies [44].
Z =120 + 1.4y + 3.3a3 + 0.6a4 +0.999as5 (1)

where «; is specified as follows fori = 1, 2, 3, 4, 5:

Working Capital

M= Total Assets
__ Current Assets — Current Liability @)
- Total Assets
Retained Earnings
a = (3)
Total Assets
Earning Before Interest & Taxes (EBIT) @
o =
3 Total Assets
Market Capitalisation
oy = — (5)
Total Liabilities
_ Sales ©)
> Total Assets

As Fig. 2 shows, if the Z-Score is above 3, it implies that the
company is in a secure zone with minimal chances of facing
financial difficulties. On the contrary, when the Z-score falls
below 1.8, it triggers concerns, indicating financial distress
and a significant likelihood of imminent bankruptcy. The
range from 1.8 to 3 indicates a gray zone, suggesting a
moderate risk of bankruptcy.

Red Zone Grey Zone
0 1.8 3 4

Safe Zone

FIGURE 2. Altman’s Z-scores zones.

Considering that this model computes company scores
linearly, there is a possibility that it may not accurately predict
the companies’ situations. For instance, consider a company
with low sales volume yet achieving maximum possible prof-
its. Due to its low sales, this company would likely obtain a
low score in the Altman model for credit scoring. To address
this challenge, leveraging the BallMapper algorithm can
be instrumental [45]. This algorithm rooted in topologi-
cal data analysis, provides a powerful tool for representing
high-dimensional datasets as point clouds. By employing a
random selection of landmark points and adjusting repre-
sentations through a configurable radius (epsilon), it ensures
uniform and adaptable visualizations. BM graphs preserve
intrinsic data relationships and structures, enabling the explo-
ration of connectivity, clustering patterns, and topological
features such as homology, even in dense datasets. This
methodology facilitates the detection of complex patterns
and correlations, offering nuanced insights into data that
traditional techniques may overlook, particularly in analyzing
corporate insolvency and financial behaviors.

As Algorithm 2 shows, the process of constructing a
BM graph begins by selecting a high-dimensional dataset,
denoted as X, and a radius epsilon to define the balls. Initially,
all points in X are considered uncovered. The algorithm iter-
ates through each uncovered point p € X, marking the points
within the ball of radius epsilon centered at p as covered.
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Algorithm 2 Pseudocode of BallMapper Algorithm

Input 1: Let X be the high-dimensional dataset with point cloud X
Input 2: Selection of epsilon > 0 as radius of the ball
Output: BM graph
C =0
E =0,
Let all point clouds of X as uncovered;;
while There exist uncovered p € X: do
C=CUp;
Mark all point x € B(p, epsilon) as covered;

end

Define abstract vertices as V, which are extracted one per each

element of C;

for p1,pr € Clx € X N B(py, epsilon) N B(py, epsilon): do
E=EU({p1.p2};

end

These covered points are then grouped into a cluster C. Once
all points are assigned to clusters, abstract vertices V are
defined, representing each cluster. The edges E of the graph
are established by connecting two vertices if their correspond-
ing clusters overlap, i.e., if there are points shared between the
balls centered at p; and p, with radius epsilon. This results
in a BM graph that captures the topological relationships
between the clusters, revealing the underlying structure of
the data. Figure 3 shows a sample BM graph generated by
applying the BallMapper algorithm to a dataset of 250 data
points with 40 features. This graph visually illustrates how
the data points are organized according to their intrinsic
characteristics, making it easier to identify key patterns and
relationships within the dataset. In the following section,
we will explore the main features of the BM graph and discuss
how they enhance our understanding of the data.

Firstly, coloration is used to represent the average value
of the default function within each ball, offering flexibility
to users in selecting alternative functions such as counts,
standard deviations, minimum, or maximum values. Sustain-
ability scores are positioned on a scale on the right side of the
plot, with lower scores situated towards the bottom and balls
9 and 22 averaging over 85.

Moreover, the size of balls reflects the number of entities
within each ball, indicating data concentration. Larger balls
signify denser concentrations of data points, as seen with ball
26 containing the most data while balls 25 and 2 have the
lowest concentration. The number of balls provides insight
into the intricacy of the analysis, with a greater number of
balls required to encompass data points when decreasing
the parameters of the ball radius. In constructing the graph
depicted in Fig. 3, experiments were conducted with varying
ball radii, ultimately determining a radius of ¢ = 14.2 as
the optimal value. Connectivity among balls reveals overlap
in data distribution, with numerous edges indicating simi-
larity between data points. Smaller arms reaching individual
balls suggest deviations from the central cluster, potentially
indicating outliers as seen with balls 2 and 25. Lastly, corre-
lation illustrates the relationship among axis variables, with
correlated data points aligning along a narrow band. The
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FIGURE 3. BallMapper graph sample (Note: This graph is related to a
sustainability dataset of 250 companies in 2019 with 40 features.
Coloration is the sustainability score. All axes are normalized to [0, 100].
&= 14.2).

shape of the BM graph reflects this correlation, appearing
more net-like when variables are less correlated, providing
a conceptual representation of correlation within the data.

In our proposed model, we used the BM algorithm for
feature selection. The reason for using BM is its ability
to uncover the underlying topological structure of the data,
which traditional methods might miss. By applying BM to
the dataset, we can capture the geometric properties and the
distances between data points (represented as balls in the
graph). This method allows us to identify features that exhibit
similar behavior to established credit risk measures, such as
the Altman Z-score, and better reflect the complex, non-linear
relationships within the data. To implement BM for feature
selection, we utilized the BallMapper library in R, and as
outlined in Algorithm 1, the function *“ColorlgraphPlot” was
employed to visualize the corresponding BM graph for the
input data.

After applying BM to the labeled dataset using the Z-score
model, a feature set, referred to as the BM Feature Set,
is obtained. This feature set is then used as input for the next
stage of analysis in our model.

Stage I1: Graph Construction

The feature set derived from BallMapper encompasses m
companies, with X representing attributes and y representing
labels. The graphs constructed in this stage, characterized as
a unique yet frequently encountered type of non-Euclidean
structured data, comprise several elements, containing nodes
(V), node features (X), edges (E), and bankruptcy status
(). Subsequently, the method for accessing these graphs is
elaborated upon, detailing the procedure for obtaining access
to these graph structures.

In the initial step, it is imperative to compute the cor-
relation between each pair of companies based on the
features selected by the BallMapper algorithm. Correlations
are frequently utilized to capture interdependencies during
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typical market conditions. As an example, ‘“Kendall’s rank
correlation coefficient” (Kendall’s 7) serves as a ‘‘non-
parametric”’ indicator of data associations, with values
ranging from —1 to 1. Pozzi et al. [53] advocate for the
use of Kendall’s tau over Pearson correlation, contending
that it provides richer information. In research conducted
in [54], the comparison between Pearson correlations and two
rank correlation techniques highlights the enhanced stability
of rank methods, making them better suited for examining
relationships in financial markets.

Suppose two observations (X, Y,) and (Xp, Yp) are two
financial ratios of two companies. The coefficient T can be
define as:

t(a, b) = Pr (concordant) — Pr(discordant) 7

where probability of concordant moves of X and Y means
Xy —Xp) (Y, —Yp) > 0 and probability of discordant
moves of X and Y means (X, — Xp) (Y, — ¥p) < O.

Utilizing the aforementioned approach, we computed the
correlation matrix between each pair of companies to lay the
groundwork for graph plotting.

In the second step of this stage, we will derive an adjacency
matrix for the graph using the proximity matrix obtained
from the Kendall’s correlation matrix. This adjacency matrix
will represent the relationships between companies in the
graph. This study introduces the application of the KNN
algorithm to extract relational information from financial
features, facilitating the construction of a network feature
set essential for subsequent analysis. A fundamental repre-
sentation of a graph, denoted as G = (V, E), encompasses
node features (X), bankruptcy status (y), and the adjacency
matrix (A), which collectively define the graph constructures
under investigation. The adjacency matrix A, typically sym-
metric and of size m x m, signifies connections between
nodes, with elements a;; and a;; represent the existence or
absence of edges between nodes x; and x;. While in undi-
rected unweighted graphs, a;; and a;j; typically assume binary
values (0 or 1), they may carry specific weights in weighted
graphs. In the context of directed graphs, the matrix takes
on an asymmetric form, introducing further complexities for
analysis.

Node attributes and labels are succinctly represented by
matrices X (of size m x n) and y (of size n x 1), respectively,
where n signifies the dimensions of the attribute vectors. The
establishment of graph structures necessitates the develop-
ment of the adjacency matrix based on predefined criteria or
rules. In BM-GNN model, companies are regarded as nodes,
and K nearest neighbors is utilized to uncover connections
between companies in an unsupervised manner. Through
evaluating the Kendall’s correlation of feature vectors among
m companies, a ranked list of the closest neighbors for each
node is determined. Determining K values in KNN governs
the connections between nodes and their K closest neighbors.
The resulting similarity measurements guide the construction
of the adjacency matrix A = [ajj], where N, (i) denotes the
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neighbor set of node i based on the chosen K value.

B
aij = 0

The resultant graphs, derived from the BallMapper
algorithm and Kendall’s correlation matrix, are character-
ized as undirected and unweighted, showcasing diverse edge
configurations as delineated by distinct adjacency matrices.
These graph representations furnish a robust data framework
for subsequent predictive modeling stages. Noteworthy, the
parameter K in our proposed model determines the number
of neighbors of each node that are connected to it, thereby
influencing the sparsity levels within the structed graphs.
Consequently, K emerges as a pivotal yperparameter signifi-
cantly influencing predictive performances.

In our proposed model, after calculating Kendall’s correla-
tion for all companies and constructing 8 adjacency matrices
using the KNN model with K values of 5, 10, 15, 20, 25,
30, 35 and 40, we obtained 8 distinct graphs. By extracting
features from these constructed graphs, we created 8 new
feature sets, referred to as the BM Network feature Set.
These feature sets are then used as input for the next stage
of the analysis in our model.

Stage I11: GNN Model

In this stage, a GNN is used to predict company
bankruptcy. After the graph transformation and the construc-
tion of the adjacency matrix in stage II, the GNN processes
the node features along with the graph structure to generate
updated node representations. Each company is represented
as a node, and its features are used as the node attributes.
The adjacency matrix, derived from Kendall’s correlation and
the KNN-based graph, captures the relationships between the
companies. The GNN performs a message-passing operation,
where information is aggregated from neighboring nodes
(i.e., other companies) based on their relationships in the
graph.

The GNN model updates the node representations itera-
tively. In each layer ¢, the node representations are updated
using the following formula:

X € NGK (l) /\x]' S NGK (])

) . (®)
Xi & Ny (D) V x; & N (7)

1

D = (D‘%Ab—zh“)w“)) )

The updated node representations 4*1 are then used
to predict the bankruptcy status of each company. The
bankruptcy prediction is made by comparing the final node
representations after the last GNN layer with the true
bankruptcy labels. The model optimizes the weight matrices
W during training to minimize the difference between the
predicted labels and the true labels. This allows the model
to predict whether a company is at risk of bankruptcy or not
based on its features and the relationships within the graph.

IV. EXPERIMENTS
This section presents a thorough examination of the experi-
ments carried out to validate the effectiveness of our proposed

13108

BM-GNN model. Our focus spans three key areas: data acqui-
sition and preprocessing, feature selection and extraction, and
results analysis alongside metrics for evaluating performance.
The primary objective of this paper is to offer general insights
into performance, facilitating clearer comparisons among
various experimental methodologies, including the BM-GNN
model, specifically in the domain of credit risk evaluation.

Up to this point, we have provided an explanation of the
proposed model. It is important to note that to more accurately
evaluate the performance of the proposed model, stages I
and II were repeated for feature selection using the correla-
tion relationships among the examined features. As a result,
in stage I, a new feature set called the Correlated Feature Set
was created and passed to stage II. Following the execution of
stage II, a new feature set named the Corr Network Feature
Set was generated.

) BM Feature Set + BM
Network Feature Set
A4

BM Network Basic Feature Set + BM
feature Set Network feature Set

—b‘ BM Feature Set ’—5‘

Basic Feature Set
lated Corr Network Basic Feature Set + Corr
Sl i 2 feature Set Network feature Set

A
» BM Feature Set +
Corr Network Feature

FIGURE 4. Extracted features and feature sets.

Finally, by evaluating different combinations of the created
feature sets along with the Basic Feature Set, we input the
generated datasets into the GNN model as well as four other
machine learning models (Fig. 4). The results obtained from
the evaluation of the implemented models are presented in the
following section.

A. DATASET

The dataset used in this study consists of two information
sources. The first source is the financial data platform of
Iran markets, provided by Mofid Brokerage’s Bourse View.
The second source is the collection of financial statements
of companies active in the energy sector, which were pre-
viously extracted from Mofid’s Bourse View. As a result of
aggregating this information, the financial indicators related
to 2000 companies active in the energy sector, including
oil and gas, petrochemicals, and electricity, are included.
The companies in the raw dataset were classified accord-
ing to their responsibilities and functions within the energy
supply chain. The Primary Energy Producers (PEPs) are
located at the highest level and are responsible for the
exploration, extraction, and processing of natural energy
resources. Tier 1 suppliers offer vital services and mate-
rials directly to PEPs, encompassing drilling equipment,
pipelines, and sophisticated technical services. Tier 2 sup-
pliers have expertise in providing certain technologies and
services, including safety equipment, logistics, and specialist
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machinery, to assist Tier 1 providers. Tier 3 suppliers man-
ufacture supplementary materials and components utilized
by Tier 2 suppliers, including tools and fundamental con-
struction supplies. Logistics and transportation firms oversee
the transit of energy resources and products throughout the
supply chain. Distributors procure processed energy com-
modities from manufacturers and distribute them to utility
companies or directly to major customers, while retail-
ers, such as local gas stations and energy service firms,
disseminate these commodities to end consumers. In addi-
tion, technology suppliers supply software and hardware for
energy management and exploration, while service providers
offer maintenance, repair, and operating services. Each orga-
nization within the energy sector supply chain plays a crucial
role in maximizing the efficiency of energy extraction, pro-
duction, distribution, and maintenance activities.

The dataset is mainly centered around small and
medium-sized enterprises (SMEs). It consists of 2000 compa-
nies carefully chosen from five distinct groups, each clearly
labeled. There are 259 firms classified as Tier 1 suppliers,
491 companies classified as Tier 2 suppliers, 703 compa-
nies classified as Tier 3 suppliers, 147 companies classified
as Technology providers, and 400 companies classified as
Logistics and transportation companies. The dataset encom-
passes a wide array of enterprises linked to the energy
industry, providing important insights into the financial
behaviors, performance, and trends of the entities involved in
the SCF. The information includes key financial indicators,
such as revenue, expenses, profits, and other relevant finan-
cial metrics, enabling a detailed analysis of the economic
dynamics within the energy sector supply chain. Before
analysis, we performed data normalization to ensure that all
features were on a comparable scale. This involved trans-
forming the data so each feature had a mean of zero and
a standard deviation of one. Normalization helps mitigate
the impact of varying scales among features, enabling more
effective analysis and modeling.

In this study, a specific indicator within the dataset
determines the financial status of companies, distinguishing
between bankruptcy and non-bankruptcy. The data indicates
that approximately 70% of the companies are non-bankrupt,
while 30% are classified as bankrupt. Given the diverse ML
models employed in this paper, ensuring a balanced distribu-
tion of data between training and testing sets is imperative.
To address this requirement, particularly in cases where data
imbalance needed rectification, we adopted the methodology
proposed in the Khemakhem study [46]. The ratio of bankrupt
to non-bankrupt instances was systematically adjusted to
achieve balance, adhering to varying proportions as specified
in the cited reference.

B. FEATURE EXTRACTION

In this section, we will explore feature extraction methods
aimed at reducing data dimensionality and improving model
performance. Two approaches, the BallMapper algorithm and
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correlation-based extraction, are utilized to capture key pat-
terns and relationships in the dataset.

1) USING BALLMAPPER ALGORITHM

In this stage, considering five financial indicators from the
available set, encompassing ““working capital to total assets”’,
“accumulated retained earnings to total assets”, ‘“‘earning
before interest and taxes (EBIT) to total assets”, ‘“market
capitalization to total liabilities™, and ‘“‘sales to total assets”’,
the Altman scoring model is implemented for each examined
company [44]. Based on the implementation of this model,
approximately 45% of companies were placed in the safe
zone, around 25% of them in the gray zone, and 30% of
them in the red zone. Considering that this model computes
company scores linearly, there is a possibility that it may not
accurately predict the companies’ situations. To address this
issue, we propose using the BallMapper method [45].

In order to draw a BallMapper graph, the optimal radius of
the balls must first be obtained experimentally. In this aim,
30 BallMapper graphs were drawn with radii in the range
[0, 3]. Then, using the “pointToBallList” function from the
BallMapper package in R, we determined the number of balls
drawn in each BallMapper graph and plotted the elbow plot
with the aim of finding the optimal graph. Fig. 5 shows the
number of balls created in the graph relative to various radii.
As can be seen, radii in the range [1.5, 2] will likely create the
best ball mper graph. Therefore, in order to obtain the optimal
solution, they should be drawn and the optimal radius should
be selected experimentally.
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FIGURE 5. Ball radius and ball numbers.

For visual representation of radii and balls, Fig. 6 displays
a total of 14 plots, enhancing readability and emphasizing
differences within this range. It’s important to highlight that
the formation of the graph is contingent upon the data, thus
discrepancies between graphs arise from variations in data
distributions across the 93 axes, joint distributions, and the
inclusion of differing numbers of observations.

Furthermore, Fig. 6 visually depicts the impact of a low ¢
parameter by demonstrating a value that results in an illegible
diagram. Adjusting the parameter to ¢ = 1.7 in panel (i)
yields a clearer plot, whereas setting ¢ = 3 in panel (n) does
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not yield significant insights into the space because of the
restricted quantity of balls.

As discussed theoretically, there is no pre-established
algorithm for determining the ideal number of balls, thus
leaving this decision to the researcher’s discretion. While
constructing graphs similar to those depicted in Fig. 5 and 6
may offer some insights, the primary focus should be on the
informativeness of the BallMapper graph as the key determi-
nant.

Figure 7 illustrates a BallMapper graph with ¢ = 1.7,
portraying a notable concentration of balls towards the center.
The coloration is based on the average Z-score within each
ball, representing a collection of companies exhibiting similar
financial behavior from our dataset. A connection between
two balls indicates the presence of at least one company
shared between them. Given that this visualization aims to
condense 93 dimensions into two-dimensional space, direct
interpretation of the vertical or horizontal direction is not
feasible. Nonetheless, the BM graph provides insights into
the overall shape of the data; for more detailed examination
of specific variables’ behavior, coloration by those variables
can be employed.
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FIGURE 6. Different ball radius in BallMapper graphs.

As shown in Fig. 7, the balls positioned in the top-right
corner of the chart represent a set of companies with the
lowest Altman scores. However, as we approach the cen-
ter, the average score increases, with the average score of
companies within the balls at the center of the chart falling
within the range of 2.5 to 3.5. Consequently, as we move away
from the center of the chart, the average scores of companies
within the balls increase, reaching an average higher than
4.5. It delineates how the distribution of companies corre-
sponds to their Altman scores across the chart’s spatial layout.
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By analyzing the spatial arrangement of the balls, one can
discern trends in the distribution of Altman scores among the
represented companies.

According to the characteristics of the BallMapper graph,
in this study, we can utilize it to select financial ratios exhibit-
ing similar behavior to the bankruptcy prediction model of
Altman. To this end, we depict this graph for all financial
ratios except for the five variables used in the Altman model.

45
40
35
30
25

- 2.0

@

FIGURE 7. Altman Z-scores BM Graph(Note: This graph is related to a
sustainability dataset of 2000 companies in 2022 with 93 features.
Coloration is the Altman Z-scores. All axes are normalized to [0, 1].
e=1.7).

After examining the BallMapper diagrams for each of the
88 financial ratios, it was determined that 12 ratios emerged
as the most influential factors the credit risk evaluation in SCF
(Fig. 8).

Given the extensive number of input variables in the
BallMapper algorithm utilized in this study, we have opted
to selectively consider a subset of them for further analysis.
We proceed by elucidating the methodology of financial ratio
analysis for companies present within each cluster. This pro-
cess illuminates the selection of 12 key indicators. It seems
that there is an implicit assumption that the variables function
independently. However, these variables may interact, affect-
ing the results. One of the valuable features of the BallMapper
model is that it can consider potential interactions between
variables by displaying the color changes of the balls; if vari-
ables (a) and (b) interact with each other, the changes in color
spectrum in the BM graph resulting from both variables will
either be aligned with each other or be in opposite directions.
Therefore, if variable (a is selected in feature selection using
the BallMapper method, then variable (b) will also certainly
be selected.

Investors and financial institutions may seek explanations
for the significant variance in returns between firms covered
by a specific ball and those adjacent to it. Additionally, the
observation of low scores at the top of the plot in Fig. 7,
despite similar axis variables, raises questions about why cer-
tain balls are not interconnected. Addressing these inquiries
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necessitates leveraging the ball comparison feature offered by
Dtotko [47].

Here is illustrated the outcomes of comparisons between
two distinct sets of balls derived from the BallMapper plot in
Fig. 7.

From the given description, it’s clear that the topmost
ball, denoted as ball 1, is isolated in the upper portion of
the space and not connected to any other balls. However,
balls with similar average scores, precisely Balls 2, 3, 4, 5,
and 6, have aggregated in the lower portion of Ball 1 in the
space. As illustrated in Table. 1 these balls exhibit a higher
“Inventory Turnover Ratio” compared to Ball 1. Remarkably,
the Receivables ‘“Turnover Ratio” of these companies is
significantly lower in comparison to that of Ball 1. Upon
normalization by the standard deviation, it becomes apparent
that the primary distinction between Sphere 1 and the other
Balls stems from the “Inventory Turnover Ratio”, with the
secondary variance arising from the Receivables Turnover
Ratio. Expanding the comparison to encompass other iso-
lated Balls specifically, incorporating Balls 11, 12, 14, and
27 into the central mass yields a similar trend. However, the
gap in the “Inventory Turnover Ratio” narrows, leaving the
“Receivables Turnover Ratio” as the probable determinant
of differentiation. Notably, when employing a benchmark of a
two-standard-deviation difference, none of the variables meet
this criterion in the latter scenario.

In another example, we aim to investigate why Ball 24,
despite being positioned adjacent to Ball 23, exhibits a lower
volume and score compared to Ball 23. As depicted in
Table. 1, Ball 24 demonstrates a lower “‘Inventory Turnover
Ratio” relative to Ball 23. Furthermore, Ball 23’s higher
“Current Ratio” than Ball 24 indicates that it has more
current assets relative to current liabilities, implying greater
financial stability and better liquidity to meet short-term
cash needs and debt obligations. Therefore, attention to these
financial ratios can help identify potential reasons for the
performance disparities between the two balls and facilitate a
more detailed analysis of the factors influencing their respec-
tive performances.

Following the aforementioned procedure, we extracted the
12 most influential financial ratios by thoroughly examining
all BM outputs associated with each financial ratio. Sub-
sequently, as described in previous sections, by computing
the Kendall correlation matrix on the BM feature set and
implementing the KNN model with 8 K values (5, 10, 15,
20, 25, 30, 35, and 40), we obtained eight graphs. After con-
structing various graphs, we extracted eight network features
for each graph to investigate the impact of graph properties
on assessing credit risk for companies and predicting their
short-term bankruptcy.

2) USING CORRELATION

This study performed a correlation examination to explore
the relationships between the specified variables. Fig. 9 illus-
trates the relationships among the financial ratios, where
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darker shades of red signify stronger positive correlations,
while deeper shades of blue indicate stronger negative cor-
relations. Notably, out of the total 93 pairs, 53 pairs exhibit
correlation absolute values exceeding 0.75, representing
56.98% of the total pairs. This observation underscores a
pervasive strong correlation among most variables in the
financing behavioral data. In this stage, considering a thresh-
old of 0.75 in the calculations related to the correlation
between financial ratios, 53 ratios were selected. Subse-
quently, by performing all the procedures described in the
previous subsection, eight graphs were constructed with the
same K values.

C. RESULTS

Utilizing the process described in the preceding section, this
study obtained 18 distinct feature sets using various feature
selection and extraction methods from the Basic Feature Set.
Subsequently, by amalgamating the feature sets, we assess
the efficiency of the GNN model against four ML models.
To evaluate the performance of machine learning models and
GNN, the dataset was randomly divided into two subsets:
80% for training data and 20% for testing data. To ensure
class distribution preservation in both subsets, we used strati-
fied sampling. This method guarantees that the class ratios in
the training and testing subsets align with those in the original
dataset, thus preventing biases in model evaluation.

The results of implementing ML and GNN models will be
presented in nine scenarios as illustrated in Table. 2. The eval-
uation metrics utilized in the experiments are derived from
well-established standard measures within the domain of
credit risk prediction for SMEs in SCF. These metrics include
average accuracy, precision rate, recall rate, Fl-score rate,
and the receiver operating characteristic (ROC) curve [48].
The limitations and challenges of evaluating GNNs using
traditional metrics such as ROC curve are discussed in var-
ious research contexts [49], [50]. Therefore, in the following
sections, the AUC value derived from the ROC curve is
calculated only for evaluating the ML models. For the GNN
model evaluation, this metric could not be computed.

— Scenario 1: In this scenario, the results obtained by
employing four different machine learning models on the
“Basic Feature Set”’, which includes 93 financial ratios, are
examined. Subsequently, the results generated by the GNN
model are discussed.

Table. 3 shows the accuracy rates of LR, DT, MLP, and
SVM models in assessing credit risk for companies, all
achieving 90.50 percent accuracy except SVM, which lags
by 0.75 percent. DT outperforms others with an F1-score of
56.82 percent, indicating balanced performance. LR, MLP,
and SVM models exhibit the highest AUC on the ROC curve,
suggesting their superior ability to differentiate bankrupt and
non-bankrupt companies. DT emerges as the most effective
model for predicting SME bankruptcy in the energy sector
SC. However, generalization to other industries or company
types should be approached cautiously.

13111



IEEE Access

K. F. Mojdehi et al.: Novel Hybrid Model for Credit Risk Assessment of SCF Based on TDA and GNN

025

020 ®

015

010

005

0.00

(a) Current Ratio

oe ERL 1 oo
o 1' ®

® ®
08
o7
L ==
08 ¢ —0p
@
05 L o
04
e 03 I
(d) Debt to Total Assets Ratio
& 014 %
012
® ®
010
0.08
o
0.06
004
0.02
® @
(g) Debt to Equity Ratio
® 0.95 o
® 0.90 ®
0.85
=
080
[ == [ =
075
] 0.70
e 065
I ®

(i) Receivables Turnover Ratio

FIGURE 8. Results of BallMapper feature extraction.

In Table. 4, GNN implementation on feature selection
via the BallMapper algorithm outperforms correlation-based
feature selection, notably achieving its highest accuracy at
K =25, reaching 92.92 percent. The BallMapper algorithm’s
feature selection, renowned for enhancing interpretability and
predictive accuracy, significantly impacts GNN’s predictive
capabilities. Furthermore, the BM model attains a remarkable

13112

(b) Quick Ratio (Acid Test Rano)

1.00 ®
®

0.95 i
3 0.90 5

085

°
N
080 [ ]

(e) Gross Profit Margin

(h) Return on Equity (ROE)

(k) Cash to Current Liability

044
0.0014 o
042
0.0012 @ @
1V 0.40
7 0.0010 W &
QY 038
0.0008 &gt ‘
038
o 0.0008 P
034
e 0.0004 °
2 032

0.30
025
[~ 020

I 0.15

010
0.05

0.00

(f) Net Profit Margin

075 ®
0.90
0.70 ® ®
o 085
0.65
v = =B 0.80
s L]
0,60 i =
P )
% 0.75
0.55 |
0.70
[+]
050
0.65
e
045 o

(i) Inventory Turnover Ratio

095

(1) Interest Coverage Ratio (ICR)

F1-score of 92.48 percent at K = 25. A key observation is the
smaller numerical differences between evaluation metrics in
GNN compared to ML models, indicating superior credit risk
evaluation performance in SCF using GNN. The utilization of
graph-based techniques such as BallMapper further enhances
the efficacy of GNN in extracting meaningful insights from
complex data structures.
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TABLE 1. Ball comparisons for Altman Z-score.

Compare: Ball 1 Ball 23
With: Balls 2,3,4,5,6 Ball 24
Dist. Diff. Dist. Diff.
Current Ratio -0.394 0.810 -0.489 1.005
.692 2 2. 91
Quick Ratio (Acid Test Ratio) 069 0265 396 0916
Return on Assets (ROA) 0.061 0.365 0.016 0.099
Debt to Total Assets Ratio 1.164 0.806 0.450 0.311
Gross Profit Margin -1.420 -0.334 0.450 0.029
Net Profit Margin 1.163 2.019 -0.015 -0.026
Debt to Equity Ratio 0.026 0.002 0.063 0.004
Return on Equity (ROE) 0.172 0.013 0.047 0.003
Inventory Turnover Ratio -12.220 -5.959 -1.251 0.610
Receivables Turnover Ratio 10.274 3.482 0.211 0.071
Cash to Current Liability 0.209 0.011 0.009 0.000
Interest Coverage Ratio (ICR) 0.945 0.536 0.667 0.378
TABLE 2. Ball comparisons for Altman Z-score.
Experiments Re]evat‘lt Description of the Scenario Number of
Scenario Features
1 Basic Feature Set 1 Implementing models on a feature set, which contains all financial ratios 93
of companies.
2 BM Feature Set 2 Implementing models on a feature set, which contains selected ratios 12
using the BallMapper algorithm.
3 Correlated Feature Set 3 Implementing models on a feature set, which contains selected ratios 53
using inter-company correlation relationships.
4 BM Network feature Set 4 Implementing models on a feature set, which contains network features 8
constructed based on the BallMapper algorithm.
5 Corr Network feature Set 5 Implementing models on a feature set, which contains network features 8
constructed based on inter-company correlation relationships.
6  Basic Feature Set + BM Network 6 Implementing models on a feature set, which contains the total of all 101
feature Set financial ratios and network features constructed based on the
BallMapper algorithm.
7  Basic Feature Set + Corr Network 7 Implementing models on a dataset comprising the total of all financial 101
feature Set ratios and network features constructed based on inter-company
correlation relationships.
8  BM Feature Set + BM Network 8 Implementing models on a feature set, which contains selected ratios 20
Feature Set using the BallMapper algorithm and constructed network features.
9  Correlated Feature Set + Corr 9 Implementing models on a feature set, which contains selected ratios 61

Network feature Set

using inter-company correlation relationships and constructed network
features.

— Scenario 2: In this scenario, the results obtained by
employing four different machine learning models on the
“BM Feature Set”, which includes 12 financial ratios, are
examined. Subsequently, the results generated by the GNN
model are discussed.

As shown in Table. 5, The evaluation of various machine
learning models for credit risk assessment in supply chain
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finance reveals intriguing insights. Among the models stud-
ied, LR, MLP, and SVM demonstrate comparable accuracy
at 89.75%. However, the DT model lags slightly behind with
a 6.50% difference. Interestingly, although the DT model’s
accuracy is lower, its F1- score surpasses that of the other
models at 27.96%, indicating a superior balance between
precision and recall. Further analysis delves into the area
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FIGURE 9. Correlations between the variables of the financial indicators
of the companies.

TABLE 3. Evaluation of machine learning models in Scenario 1 (percent).

Model  Fl-score  Recall Precisio Accuracy AUC
LR 17.39 9.76 80.00 90.50 0.87
DT 56.82 60.98 53.19 90.50 0.76

MLP 34.48 24.39 58.82 90.50 0.87
SVM 9.17 5.00 55.00 89.75 0.87

under the curve, where LR and SVM models outshine the
others with a score of 0.73. This implies stronger discrimi-
natory power in distinguishing between positive and negative
instances, enhancing their overall effectiveness in predicting
credit risk. Moreover, the study reveals nuanced performance
nuances concerning false positives. While SVM performs
best in controlling false positives until the rate reaches 0.4,
LR outperforms beyond this threshold. This suggests the
importance of selecting models based on specific risk toler-
ance levels.

As shown in Table. 5, The evaluation of various machine
learning models for credit risk assessment in supply chain
finance reveals intriguing insights. Among the models stud-
ied, LR, MLP, and SVM demonstrate comparable accuracy
at 89.75%. However, the DT model lags slightly behind with
a 6.50% difference. Interestingly, although the DT model’s
accuracy is lower, its F1- score surpasses that of the other
models at 27.96%, indicating a superior balance between
precision and recall. Further analysis delves into the area
under the curve, where LR and SVM models outshine the
others with a score of 0.73. This implies stronger discrimi-
natory power in distinguishing between positive and negative
instances, enhancing their overall effectiveness in predicting
credit risk. Moreover, the study reveals nuanced performance
nuances concerning false positives. While SVM performs
best in controlling false positives until the rate reaches 0.4,
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LR outperforms beyond this threshold. This suggests the
importance of selecting models based on specific risk toler-
ance levels.

As indicated in Table. 6, the implemented GNN model
achieved the highest accuracy on the feature set resulting
from Implementation of BallMapper algorithm, specifically
with K = 20 reaches 92.91 percent. This signifies the robust
performance of the GNN model in accurately evaluating
credit risk. Furthermore, considering the F1-score, it becomes
evident that this GNN model outperforms others by a mar-
gin of more than one percent, highlighting its superiority in
achieving the highest value of this metric among the models.
These findings underscore the efficacy of the GNN model,
particularly concerning the feature selection process con-
ducted by the BallMapper algorithm, for precise and reliable
prediction of credit risk.

— Scenario 3: In this scenario, the results obtained by
employing four different machine learning models on the
“Correlated Feature Set”, which includes 53 financial ratios,
are examined. Subsequently, the results generated by the
GNN model are discussed.

As shown in Table. 7, implementing four ML models on
the selected indices using correlation calculations reveals that
both LR and DT models exhibit the highest accuracy on this
dataset. Furthermore, the DT model stands out significantly
in the F1-score metric compared to other models, occupying
the highest tier with a substantial margin, achieving a value of
53.01%. These findings underscore the superior performance
of LR and DT models in accurately assessing the feature
set, with the DT model provides a superior balance between
precision and recall in evaluating credit risk.

The MLP model outperforms the other three models,
showcasing its superior performance. This suggests that
MLP exhibits stronger discriminatory power in distinguish-
ing between positive and negative instances when evaluating
credit risk. The elevated AUC value for the MLP model
implies better overall effectiveness and performance in pre-
dicting credit risk compared to the other models.

The results obtained from this section demonstrate that
although the accuracy of the LR and DT models is higher
compared to the other two algorithms, SVM achieves the
highest AUC value. Therefore, considering all evaluation
metrics, the MLP model, despite having lower accuracy of
0.25 compared to the LR and DT models, exhibits better per-
formance. However, selecting the best model in these cases
should be done in accordance with the business management
approaches.

As indicated in Table. 8, the implemented GNN model
achieved the highest accuracy on K = 35 with 90.27 percent.
This signifies the robust performance of the GNN model in
accurately evaluating credit risk. An important observation in
comparing the results obtained from implementing the GNN
model on the feature set derived from feature selection using
correlation with the GNN model implemented in the previous
scenario is that the accuracy in this section is 2.64% higher
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TABLE 4. Evaluation of GNN model in Scenario 1 (percent).

BM Feature Set Correlated Feature Set
K-Values
F1 score Recall Precision Accuracy F1 score Recall Precision Accuracy
K=5 88.41 89.39 87.46 89.57 86.6 88.51 84.78 88.78
K=10 90.67 91.43 89.92 91.47 87.78 88.82 86.76 89.03
K=15 90.6 91.23 89.97 91.41 88.85 89.8 87.92 89.87
K=20 91.06 91.51 90.61 91.68 87.25 88.45 86.08 88.77
K=25 92.48 92.85 92.11 92.92 87.67 88.69 86.67 88.85
K=30 90.87 91.27 90.47 91.5 88.89 88.88 88.91 89.26
K=35 90.91 90.6 91.23 90.63 89.08 89.54 88.63 89.81
K=40 90.19 90.34 90.04 90.36 88.33 89.34 87.34 89.82
TABLE 5. Evaluation of machine learning models in Scenario 2 (percent). TABLE 8. Evaluation GNN model in Scenario 3 (percent).

Model Fl-score  Recall Prerclisio Accuracy ACU K-Values F1-score Recall Precision Accuracy
LR 1648 1700 1600 8975 0.73 k=5 87.54 88.91 86.21 88.95
DT 27.96 3171 95.00 8325 0.69 K =10 87.58 89.16 86.06 89.66
MLP 667 1000  5.00 8975 0.70 k=15 87.54 88.75 86.36 89.12
SVM 17.14 20.00 15.00 89.75 0.73 k=20 85.87 88.58 83.32 88.72

K =25 85.17 88.17 82.37 88.51
K =30 89.16 90.07 88.27 90.21
TABLE 6. Evaluation GNN model in Scenario 2 (percent). K = 35 88.78 89.84 87.74 90.27
K =40 87.04 88.88 85.28 89.28

K-Values F1-score Recall Precision Accuracy
K=5 89.99 90.21 89.78 90.56
K =10 90.66 90.68 90.64 90.93
K =15 90.45 90.73 90.18 90.92
K =20 92.58 92.86 923 92.91
K =25 91.31 91.77 90.85 91.8
K =30 91.41 91.68 91.14 92.1
K =35 90.43 90.93 89.94 91.16
K =40 90.76 91.17 90.36 91.42

TABLE 7. Evaluation of machine learning models in Scenario 3 (percent).

Model Fl-score  Recall Prelclisio Accuracy ACU
LR 17.02 17.02 66.67 90.25 0.81
DT 53.01 53.01 52.38 90.25 0.74

MLP 31.03 39.13 52.94 90.00 0.85
SVM 10.00 8.00 10.00 89.75 0.81

than in the previous scenario. This indicates that the BM
model has positively influenced the performance improve-
ment of the GNN model.
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— Scenario 4: In this scenario, the results obtained by
employing four different machine learning models on the
“BM Network Feature Set”, which includes eight features,
are examined. Subsequently, the results generated by the
GNN model are discussed.

The evaluation of machine learning models on the BM
Network feature set reveals interesting insights (Table. 9).
LR, MLP, and SVM achieved the highest accuracy of 91.50%.
Notably, LR with K values of 5, 15, and 20, along with MLP
and SVM with K values of 15 and 20, demonstrated the
highest accuracy. However, despite the balanced nature of the
data, all examinations on this feature set consistently yielded
the highest F1-score value of 41.27%, indicating potential
mismatch between the models and the features. Analyzing
the ROC curves across different K values, MLP excelled
with an AUC of 0.65 at K=5, while DT outperformed others
with AUC values of 0.68 at K=10 and 0.79 at K=20,25,
and 40. This suggests DT’s superior performance across var-
ious thresholds.

Overall, despite its lower accuracy compared to other mod-
els, DT consistently performs better, as indicated by its AUC
values and positioning within the ROC space.

Table. 10 reveals a notable consistency in performance
metrics, including “F1-score, “Recall”, “Precision”, and
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TABLE 9. Evaluation of machine learning models in Scenario 4 (percent).

K-Values | Fl-score | Recall | Precision | Accuracy | AUC K-Values | Fl-score | Recall | Precision | Accuracy | AUC

K=5 32.00 19.51 88.89 91.50 0.63 K=5 28.57 17.07 87.50 91.25 0.65

K =10 28.57 17.07 87.50 91.25 0.66 = K =10 28.57 17.07 87.50 91.25 0.67

'g K =15 29.17 17.07 100.00 91.50 0.73 ‘?é;. K =15 29.17 17.07 100.00 91.50 0.73

%0 K =20 32.00 19.51 88.89 91.50 0.74 E K =20 32.00 19.51 88.89 91.50 0.75

E K =125 32.73 21.95 64.29 90.75 0.68 % K =25 16.67 9.76 57.14 90.00 0.67

E‘) K =30 23.08 14.63 54.55 90.00 0.77 :ﬁ K =30 23.08 14.63 54.55 90.00 0.75

B K =35 27.45 17.07 70.00 90.75 0.69 = K =35 17.78 9.76 100.00 90.75 0.68

K =40 29.63 19.51 61.54 90.50 0.66 K =40 21.74 12.20 100.00 91.00 0.60

K= 26.42 17.07 58.33 90.25 0.63 K= 17.78 9.76 100.00 90.75 0.52

K =10 38.60 26.83 68.75 91.25 0.68 § K =10 25.53 14.63 100.00 91.25 0.58

3 K =15 38.71 29.27 57.14 90.50 0.73 ?:; K =15 29.17 17.07 100.00 91.50 0.68

% K =20 29.63 19.51 61.54 90.50 0.79 25 K =20 32.00 19.51 88.89 91.50 0.59
= 3

Zg K =25 33.90 24.39 55.56 90.25 0.74 | 2 K =125 32.73 21.95 64.29 90.75 0.62

] K =30 40.63 31.71 56.52 90.50 0.80 ‘é K =30 37.29 26.83 61.11 90.75 0.72

K =35 41.27 31.71 59.09 90.75 0.79 § K =35 27.45 17.07 70.00 90.75 0.57

K =140 24.00 14.63 66.67 90.50 0.72 K =140 21.74 12.20 100.00 91.00 0.66

“Accuracy”, which are observed to fall within a narrow
range, spanning from 87.90 percent to 92.38 percent. Such
stability reflects a marked difference from conventional
machine learning model implementations, highlighting a dis-
tinctive trait of the GNN model. Notably, the assessment of
credit risk attains its highest accuracy at K = 20, reaching
92.02 percent.

TABLE 10. Evaluation GNN model in Scenario 4 (percent).

K-Values F1-score Recall Precision Accuracy
K=5 90.15 89.42 90.89 89.86
K =10 88.82 87.90 89.75 88.40
K =15 91.12 90.50 91.74 90.90
K =20 92.12 91.86 92.38 92.02
K =25 91.28 90.75 91.82 91.00
K =30 91.64 91.12 92.16 91.41
K =35 90.45 90.87 90.04 91.36
K =40 90.15 89.41 90.91 89.86

— Scenario 5: In this scenario, the results obtained by
employing four different machine learning models on the
“Correlated Network Feature Set”, which includes eight
features, are examined. Subsequently, the results generated
by the GNN model are discussed. Table. 11 illustrates the
evaluation of machine learning models, where LR achieves
the highest accuracy at 89.75%. However, when considering
Fl-scores, SVM and DT models with a graph generated
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using K = 25 perform optimally, scoring 20.31% and 25.29%
respectively. This indicates a trade-off between accuracy and
F1-score, with LR excelling in accuracy while DT shines in
Fl-score. Analyzing ROC curves across different K values,
LR consistently leads in performance, particularly at K = 5,
10, 15, 20, and 25. However, MLP outperforms at K = 30,
and LR again takes the lead at K = 35 and 40.

Overall, the performance of ML models on this feature set
is deemed subpar. Nevertheless, LR and MLP demonstrate
superior performance compared to SVM and DT, especially
noticeable at K = 30. Further examination is warranted to
determine the best-performing model based on additional
criteria.

Table. 12 demonstrates a remarkable consistency across
various performance metrics, including ‘‘Fl-score”,
“Recall”, “Precision,” and “Accuracy’, all of which exhibit
anarrow range from 76.74 percent to 89.76 percent. This con-
sistency signifies a departure from typical machine learning
model implementations, underscoring a distinctive character-
istic of the GNN model. Particularly noteworthy is the highest
accuracy achieved in assessing credit risk at K = 30, reaching
89.67 percent.

— Scenario 6: In this scenario, the results obtained by
employing four different machine learning models on the
“Basic Feature Set + BM Network Feature Set’’, which
includes 101 network features and financial ratios, are exam-
ined. Subsequently, the results generated by the GNN model
are discussed.

In Table. 13, LR and DT models achieve the highest
accuracy rate at 93.55%. A closer examination of F1-scores
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TABLE 11. Evaluation of machine learning models in Scenario 5 (percent).

K-Values | Fl-score | Recall | Precision | Accuracy | AUC V:fl-les F1-score | Recall | Precision | Accuracy | AUC
K=5 K=5 7.21 5.23 11.60 88.75 K=5 8.25 6.23 12.20 83.51 0.49
K =10 K =10 12.88 20.00 9.50 89.73 = K =10 13.59 19.24 10.50 80.05 0.42
é K =15 K =15 18.38 20.00 17.00 88.51 ‘% K =15 12.01 12.21 11.82 79.25 0.51
Eﬂ K =20 K =20 12.30 8.78 20.54 89.56 E K =20 17.03 10.78 40.54 87.65 0.59
; K =25 K =25 21.35 19.56 23.50 87.82 % K =25 20.10 17.56 23.50 83.75 0.57
E‘J K =30 K =30 11.76 19.23 8.47 88.65 ;; K =30 10.87 11.28 10.49 83.00 0.64
K =35 K =35 12.20 14.68 10.43 88.23 = K =35 13.87 20.68 10.43 82.75 0.61
K =40 K =40 14.02 15.07 13.11 89.75 K =40 15.04 15.75 14.40 87.52 0.55
K=5 K=5 10.53 9.76 11.43 83.00 K=5 21.57 20.00 23.40 87.24 0.54
K =10 K =10 14.89 17.07 13.21 80.00 § K =10 14.93 18.45 12.54 86.52 0.64
A K =15 K =15 12.24 14.63 10.53 78.50 g K =15 14.61 15.87 13.54 88.26 0.49
é K =20 K =20 14.46 14.63 14.29 82.25 § K =120 20.98 20.24 21.78 87.52 0.56
= 3
:g K =25 K =25 25.29 26.83 2391 83.75 § K =25 20.31 18.49 22.53 88.72 0.48
5 K =30 K =30 16.28 17.07 15.56 82.00 é K =30 18.28 21.54 15.87 88.22 0.41
K =35 K =35 12.50 12.20 12.82 82.50 m% K =35 13.59 14.68 12.65 88.53 0.49
K =40 K =40 15.79 14.63 17.14 84.00 K =40 15.61 15.75 15.48 89.01 0.46
TABLE 12. Evaluation GNN model in Scenario 5 (percent). range, spanning from 88.04 percent to 93.56 percent. Such
stability reflects a marked difference from conventional
K-Values Fl-score Recall Precision  Accuracy machine learning model implementations, highlighting a dis-
K=5 83 85 89.02 79.04 89.02 tinctive trait of the GNN model. Notably, the assessment of
K =10 £ 9828 78,15 I ;ge(shg I1)“1esr1(<:ezlllttt.alns its highest accuracy at K = 20, reaching
k=15 8234 87.82 7751 88.04 — Scenario 7: In this scenario, the results obtained by
K =20 81.81 87.60 76.74 87.60 employing four different machine learning models on the
K =25 83.04 88.14 78.50 88.60 “Basic Feature Set 4+ Correlated Network Feature Set”,
K =30 84.61 8928 80.41 89.76 which includes 101 network features and financial ratios, are
K =35 82,74 88,09 78.01 £8.33 examined. Subsequently, the results generated by the GNN
K =40 84.60 89.41 80.29 89.61 model are discussed.

reveals that the DT model, particularly with a graph generated
using K = 40, attains the highest values for both accuracy and
F1-score metrics, establishing itself as the superior model for
credit risk assessment on this dataset. Analyzing ROC curves
across different K values, MLP outperforms other models at
K =5, while LR and MLP surpass others at K = 10, and
LR leads at K = 15. MLP showcases superior performance at
K =20, 30, and 40. These results highlight the robustness and
effectiveness of LR and MLP models in capturing financial
dataset patterns and nuances, underscoring their potential for
accurate and reliable financial prediction tasks across various
scenarios and parameter settings.

Table. 14 reveals a notable consistency in performance
metrics, including “Fl1-score”, “Recall”’, “Precision”, and
“Accuracy”’, which are observed to fall within a narrow
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Table. 15 presents the implementation of ML models,
where SVM achieves the highest accuracy at 91.25%. How-
ever, upon detailed examination of F1-scores, the DT model,
particularly with a graph generated using K = 5, demonstrates
optimal performance with an Fl-score of 60.46%. Further
analysis delves into ROC curves across varying graph com-
plexities (determined by K values), enhancing understanding
of how these complexities impact ML model performance.
AtK =5, both MLP and SVM models outperform others with
an AUC of 0.89. LR leads at K = 10, while MLP performs
better at K = 15, 20, 25, 30, 35, and 40, collectively demon-
strating stronger performance. The LR model’s accuracy
remains relatively stable despite changes in K, showcasing
consistent performance compared to other models. However,
business conditions should be considered alongside model
selection for credit risk assessment in the supply chain,
emphasizing the importance of aligning ML model choices
with specific business requirements.
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TABLE 13. Evaluation of machine learning models in Scenario 6 (percent).

K-Values | Fl-score | Recall | Precision | Accuracy | AUC V:l(l-les Fl-score | Recall | Precision | Accuracy | AUC

K=5 49.12 34.15 87.50 92.75 0.91 K=5 52.31 41.46 70.83 92.25 0.92

K =10 51.72 36.59 88.24 93.00 0.88 = K =10 47.46 34.15 77.78 92.25 0.88

é K =15 51.72 36.59 88.24 93.00 0.92 ‘% K =15 47.46 34.15 77.78 92.25 0.91

Eﬂ K =20 54.24 39.02 88.89 93.25 0.90 E K =20 55.88 46.34 70.37 92.50 0.93

E K =25 48.39 36.59 71.43 92.00 0.92 E‘ K =25 54.55 43.90 72.00 92.50 0.93

E‘J K =30 55.38 43.90 75.00 92.75 0.90 ;; K =30 54.55 43.90 72.00 92.50 0.92

K =35 58.46 46.34 79.17 93.25 0.90 = K =35 60.00 51.22 72.41 93.00 0.90

K =40 61.54 48.78 83.33 93.55 0.91 K =40 60.61 48.78 80.00 93.50 0.93

K=5 58.14 60.98 55.56 91.00 0.76 K=5 17.78 9.76 100.00 90.75 0.75

K =10 71.11 78.05 65.31 93.50 0.71 § K =10 25.53 14.63 100.00 91.25 0.71

S K =15 62.92 68.29 58.33 91.75 0.78 g K =15 29.17 17.07 100.00 91.50 0.78

é K =20 59.26 58.54 60.00 91.75 0.79 § K =20 32.00 19.51 88.89 91.50 0.72

= 3

:g K =25 55.17 58.54 52.17 90.25 0.76 § K =25 32.73 21.95 64.29 90.75 0.78

5 K =30 64.44 70.73 59.18 92.00 0.81 é K =30 26.42 17.07 58.33 90.25 0.79

K =35 69.77 73.17 66.67 93.50 0.79 m% K =35 32.65 19.51 100.00 91.75 0.74

K =40 73.56 78.05 69.57 93.55 0.84 K =40 36.00 21.95 100.00 92.00 0.80
TABLE 14. Evaluation GNN model in Scenario 6 (percent). In Table. 17, MLP achieves the highest accuracy among
the implemented ML models on the feature set, particularly
K-Values  Fl-score Recall Precision  Accuracy when combining BM features and network features obtained
K=5 88.90 89.78 88.04 89.79 with K = 5. However, LR and DT models attain a similar
K=10 89.93 90.42 89.45 90.74 accuracy of 91.75 under similar conditions. Notably, MLP
K =15 90.65 90,58 90.72 90.99 also demonstrates superior F1-score performance compared
K = 20 93.17 93.29 93.06 93.56 to the other models at K = 5. Analyzing ROC curves across
different K values, LR and MLP consistently outperform
k=25 91.93 92.09 o177 92:51 other models at K = 10, 20, and 25, with AUC values of
K =30 91.14 91.29 90.99 9L71 0.80, 0.81, and 0.83 respectively. MLP leads at K = 15 with
K =35 91.86 91.94 91.79 92.19 an AUC of 0.81, while LR dominates at K = 5, 30, 35,
K = 40 90.68 90.98 9038 9137 and 40, showcasing AUC values of 0.76, 0.86, 0.85, and

Table. 16 reveals a notable consistency in performance
metrics, including “F1-score”, “Recall”, “Precision”, and
“Accuracy”, which are observed to fall within a narrow
range, spanning from 85.11 percent to 91.51 percent. Such
stability reflects a marked difference from conventional
machine learning model implementations, highlighting a dis-
tinctive trait of the GNN model. Notably, the assessment of
credit risk attains its highest accuracy at K = 30, reaching
91.51 percent.

— Scenario 8: In this scenario, the results obtained by
employing four different machine learning models on the
“BM Feature Set + BM Network Feature Set’”, which
includes 20 network features and financial ratios, are exam-
ined. Subsequently, the results generated by the GNN model
are discussed.
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0.84 respectively, indicating its superior positioning within
the ROC space compared to alternative models.

Table. 18 reveals a notable consistency in performance
metrics, including “Fl1-score”, “Recall”, “Precision”, and
“Accuracy”, which are observed to fall within a narrow
range, spanning from 87.86 percent to 92.46 percent. Such
stability reflects a marked difference from conventional
machine learning model implementations, highlighting a dis-
tinctive trait of the GNN model. Notably, the assessment of
credit risk attains its highest accuracy at K = 30, reaching
92.46 percent.

— Scenario 9: In this scenario, the results obtained by
employing four different machine learning models on the
“Correlated Feature Set + Correlated Network Feature Set’,
which includes 61 network features and financial ratios, are
examined. Subsequently, the results generated by the GNN
model are discussed.
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TABLE 15. Evaluation of machine learning models in Scenario 7 (percent).

K-Values | Fl-score | Recall | Precision | Accuracy | AUC V:l(l-les Fl-score | Recall | Precision | Accuracy | AUC
K=5 17.03 9.76 66.67 90.25 0.84 K=5 40.00 31.71 54.17 90.25 0.89
K =10 17.03 9.76 66.67 90.25 0.85 - K =10 23.52 14.63 60.00 90.25 0.87
é K =15 20.84 12.20 71.43 90.50 0.87 % K =15 35.09 24.39 62.50 90.45 0.88
Eﬁ K =20 21.28 12.20 83.33 90.50 0.89 E K =20 26.41 17.07 58.33 90.25 0.89
E K =25 17.40 9.76 80.00 90.50 0.86 E‘ K =25 22.64 14.63 50.00 89.75 0.87
E‘J K =30 17.03 9.76 66.67 90.25 0.90 ;; K =30 29.09 19.51 57.14 90.25 0.90
K =35 17.40 9.76 80.00 90.50 0.90 = K =35 23.52 14.63 60.00 90.25 0.91
K =40 17.40 9.76 80.00 90.50 0.88 K =40 33.33 24.39 52.63 90.00 0.89
K=5 60.46 63.41 57.78 90.50 0.78 K=5 17.78 9.76 100.00 90.75 0.89
K =10 54.54 58.54 51.06 90.00 0.74 § K =10 25.53 14.63 100.00 91.25 0.87
A K =15 57.98 63.41 53.41 90.48 0.74 g K =15 40.00 31.71 54.17 90.25 0.87
é K =20 58.14 60.98 55.56 91.00 0.74 § K =20 45.37 40.54 51.51 90.48 0.86
= 3
:g K =25 56.52 63.41 50.98 90.00 0.73 § K =25 18.53 10.76 66.67 90.27 0.85
5 K =30 17.03 9.76 66.67 90.25 0.69 é K =30 26.53 17.17 58.33 89.75 0.86
K =35 17.03 9.76 66.67 90.25 0.69 m% K =35 23.52 14.63 60.00 89.75 0.87
K =40 20.84 12.20 71.43 90.50 0.71 K =40 23.30 14.63 57.14 90.48 0.85
TABLE 16. Evaluation GNN model in Scenario 7 (percent). indicate the superior positioning of MLP within the ROC
space compared to alternative models, suggesting its effec-
K-Values Fl-score Recall Precision  Accuracy tiveness in credit risk assessment.
K=5 88.01 88.37 87.66 88.86 Table. 20 reveals a notable consistency in performance
K =10 88.63 90.84 4746 90.15 metrics, including> “Fl-score”, “Recall”, “Pre?ision”, and
“Accuracy”’, which are observed to fall within a narrow
k=15 87.11 88.42 83.84 88.63 range, spanning from 83.43 percent to 92.11 percent. Such
K =20 87.43 88.40 86.49 88.87 stability reflects a marked difference from conventional
K=25 86.68 88.30 85.11 88.40 machine learning model implementations, highlighting a dis-
K =30 89.47 90.09 88.85 91.51 tinctive trait of the GNN model. Notably, the assessment of
K =35 $8.95 89,61 88.29 90.11 credit risk attains its highest accuracy at K = 10, reaching
K =40 89.09 89.83 88.36 90.25 92.11 percent.

Table. 19 illustrates the implementation results of machine
learning (ML) models, with DT achieving the highest accu-
racy at 90.75%. However, upon closer examination of
F1-scores, SVM with a graph generated using K = 40 demon-
strates optimal performance, boasting an F1-score of 69.75%.
Notably, the DT model applied to the dataset generated with
K = 15 achieves the highest F1-score among the accuracy-
leading models, suggesting it as a preferable choice over LR
for assessing credit risk.

Analyzing ROC curves across different K values, MLP
consistently outperforms other models at K = 5, 10, 15,
25, 30, 35, and 40, with AUC values ranging from 0.86 to
0.88. Additionally, LR and MLP demonstrate dominance at
K = 20, both achieving an AUC value of 0.86. These results
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D. SUMMARY OF RESULTS AND DISCUSSION

A comparative analysis was conducted in this study to eval-
uate the performance of four ML models: (i) decision tree,
(i1) logistic regression, (iii) support vector machine and (iv)
multi-layer perceptron in comparison to the GNN model. This
comparison was carried out across nineteen distinct feature
sets derived from financial data of 2000 SMEs operating
within the energy sector supply chain in 2022. The datasets
consisted of 93 different financial ratios and were analyzed
under nine distinct scenarios:

Scenario 1: Models are applied to a feature set containing
all financial ratios of companies. This approach offers a
comprehensive overview of the dataset but may suffer from
redundancy and noise in the features.

« Hypothesis 1: The initial features (Basic Feature Set)

are insufficient for accurate credit risk prediction.
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TABLE 17. Evaluation of machine learning models in Scenario 8 (percent).

K-Values | Fl-score | Recall | Precision | Accuracy | AUC V:l(l-les Fl-score | Recall | Precision | Accuracy | AUC
K=5 35.29 21.95 90.00 91.75 0.76 K=5 38.46 24.39 90.91 92.00 0.75
K =10 32.00 19.51 88.89 91.50 0.80 - K =10 37.04 24.39 76.92 91.50 0.80
= <]
'% K =15 29.17 17.07 100.00 91.50 0.80 % K =15 32.65 19.51 100.00 91.75 0.81
o o
EO K =20 32.00 19.51 88.89 91.50 0.84 E K =20 32.00 19.51 88.89 91.50 0.84
~ o
8 K =25 32.73 21.95 64.29 90.75 0.83 % K =25 32.73 21.95 64.29 90.75 0.83
E‘J K =30 23.08 14.63 54.55 90.00 0.86 :; K =30 23.08 14.63 54.55 90.00 0.84
—
K =35 27.45 17.07 70.00 90.75 0.85 = K =35 41.98 41.46 42.50 88.25 0.84
K =40 30.19 19.51 66.67 90.75 0.84 K =40 29.63 19.51 61.54 90.50 0.83
K=5 35.29 21.95 90.00 91.75 0.69 K=5 17.78 9.76 100.00 90.75 0.59
K =10 47.31 53.66 4231 87.75 0.68 § K =10 25.53 14.63 100.00 91.25 0.73
S K =15 46.51 48.78 44.44 88.50 0.65 § K =15 29.17 17.07 100.00 91.50 0.68
s =
i K =20 42.11 48.78 37.04 86.25 0.71 5 K =20 32.00 19.51 88.89 91.50 0.64
g 2
:g K =25 40.48 41.46 39.53 87.50 0.66 E K =25 32.73 21.95 64.29 90.75 0.65
o
A K =30 45.98 48.78 43.48 88.25 0.72 g K =30 37.29 26.83 61.11 90.75 0.69
(=9
K =35 27.45 17.07 70.00 90.75 0.73 a K =35 27.45 17.07 70.00 90.75 0.72
K =40 48.72 46.34 51.35 90.00 0.76 K =40 21.74 12.20 100.00 91.00 0.72
TABLE 18. Evaluation GNN model in Scenario 8 (percent).
Scenario 3: Models are applied to a feature set containing
K-Values _ Flscore Recall Precision  Accuracy s.electejd rat1o§ derived from 1nt§rcompany COI‘I‘E.‘,latIOIl rela-
tionships. This approach emphasizes the correlation between
K=5 88.15 87.86 88.44 88.23 . . Y . .
different financial indicators as a basis for feature selection.
K =10 90.80 90.92 90.68 91.40 « Hypothesis 3: Correlation-based feature selection pro-
K=15 90.14 90.22 90.07 90.59 vides a simpler yet effective method for feature extrac-
K =20 90.36 90.79 89.94 91.17 tion, though it may be less effective than BallMapper in
K =25 91.04 9136 9072 91.76 modeling noq-hnear relationships.
o Results: While ML and GNN models perform better
K =30 91.91 92.32 91.51 92.46 . . .
than Scenario 1, the performance of GNN in this sce-
k=35 9051 90.82 9020 9131 nario is slightly inferior to Scenario 2, validating the
K =40 91.19 91.60 90.79 91.76

« Results: As expected, the GNN model outperforms ML
models, but the accuracy is lower compared to scenarios
involving feature selection or network-based features.

Scenario 2: Models are implemented on a feature set
comprising selected ratios obtained using the BallMap-
per algorithm. This method focuses on extracting relevant
features based on the distribution of data points in multidi-
mensional space.

« Hypothesis 2: BallMapper-selected features enhance
the model’s predictive performance by reducing noise
and redundancy.

o Results: The GNN model achieves higher accuracy
and F1-score compared to Scenario 1, confirming that
BallMapper-selected features are more effective for
credit risk prediction.
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advantage of BallMapper in capturing non-linear rela-

tionships.
Scenarios 4 and 5: Models are implemented on feature
sets containing network features constructed based on either
the BallMapper algorithm or intercompany correlation rela-
tionships, respectively. These scenarios leverage graph-based
representations of the data to capture complex relationships
and structures within the dataset.

o Hypothesis 2: Network-based features better model
interdependencies and systemic risks in the energy sup-
ply chain.

o Results: The GNN model demonstrates significant
improvements in accuracy and Fl-score compared to
Scenarios 1-3, with Scenario 4 showing superior results,
highlighting the effectiveness of graph-based features
derived from BallMapper.

Scenario 6: Combines the total of all financial ratios with net-
work features constructed using the BallMapper algorithm.
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TABLE 19. Evaluation of machine learning models in Scenario 9 (percent).

K-Values | Fl-score | Recall | Precision | Accuracy | AUC V:l(l-les Fl-score | Recall | Precision | Accuracy | AUC
K=5 13.04 7.32 60.00 90.00 0.83 K=5 25.45 17.07 50.00 89.75 0.87
K =10 13.04 7.32 60.00 90.00 0.82 - K =10 27.59 19.51 47.06 89.50 0.87
é K =15 16.67 9.76 57.14 90.00 0.83 ‘% K =15 22.22 14.63 46.15 89.50 0.86
Eﬂ K =20 13.04 7.32 60.00 90.00 0.86 E K =20 21.82 14.63 42.86 89.25 0.86
E K =25 17.78 9.76 100.00 90.75 0.85 E% K =25 27.59 19.51 47.06 89.50 0.88
E‘J K =30 17.39 9.76 80.00 90.50 0.83 ;; K =30 21.82 14.63 42.86 89.25 0.87
K =35 17.02 9.76 66.67 90.25 0.82 = K =35 24.56 17.07 43.75 89.25 0.86
K =40 17.78 9.76 100.00 90.75 0.86 K =40 20.83 12.20 71.43 90.50 0.88
K=5 51.16 53.66 48.89 89.50 0.76 K=5 23.06 15.07 49.05 89.75 0.86
K =10 51.16 53.66 48.89 89.50 0.75 § K =10 23.08 14.63 54.55 89.50 0.86
S K =15 53.16 51.22 55.26 90.75 0.70 g K =15 55.17 58.54 52.17 88.50 0.82
é K =20 53.49 56.10 51.11 90.00 0.75 § K =20 29.63 19.51 61.54 59.50 0.85
= 3
:g K =25 53.93 58.54 50.00 89.75 0.75 > K =25 22.64 14.63 50.00 90.25 0.84
o K =30 49.41 51.22 47.73 89.25 0.76 é K =30 29.09 19.51 57.14 90.50 0.85
K =35 51.85 51.22 52.50 90.25 0.76 m% K =35 41.98 41.46 42.50 90.25 0.77
K =40 51.16 53.66 48.89 89.50 0.78 K =40 69.77 73.17 66.67 90.25 0.85
TABLE 20. Evaluation GNN model in Scenario 9 (percent). o Hypothesis 4: Integration of financial ratios with
correlation-based graph features improves prediction
K-Values Fl-score Recall Precision  Accuracy accuracy, though it may be less effective than Scenario 6.
K=c5 88.15 87.86 88.44 88.23 o Results: While GNN achieves high accuracy and
K10 90.80 90.92 90,68 91.40 Fl.-SCOI’f.}, the performance i.s slightly below Scenario 6,
reinforcing the greater efficacy of BallMapper-based
K =15 90.14 90.22 90.07 90.59 features.
K =20 90.36 90.79 89.94 91.17 Scenarios 8 and 9: Involve implementing models on fea-
K =25 91.04 91.36 90.72 91.76 ture sets combining selected ratios obtained using either the
K =30 91.91 9232 91.51 92.46 BallMapper algorithm or intercompany correlation relation-
K =35 90.51 90.82 90.20 9131 ships with construc.ted ne.:twork features. These s.cenarios aim
X = 40 o110 0160 9079 o176 to assess the combined impact of feature selection methods

This integrated approach aims to leverage both numerical
and graph-based representations of the data for improved
predictive performance.

« Hypothesis 4: Combining BallMapper-selected features
with graph-based features yields the best performance in
credit risk assessment.

o Results: The highest accuracy of 93.56% and supe-
rior Fl-score for the GNN model are achieved in this
scenario, confirming the hypothesis that integrating
numerical and graph-based features leads to the most
robust credit risk prediction.

Scenario 7: Models are applied to a dataset comprising the
total of all financial ratios and network features constructed
based on intercompany correlation relationships.
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and graph-based representations on model performance.

« Hypothesis 4: The combination of BallMapper fea-
tures and network features provides a balanced trade-off
between precision and recall, ensuring optimal predic-
tion outcomes.

o Results: Scenario 8 outperforms Scenario 9, further
confirming the strength of BallMapper-selected features
and their integration with graph-based data.

As illustrated in Fig. 10(a), across all investigated sce-
narios, the GNN model achieved the highest accuracy in
evaluating the credit risk of companies through predicting
their likelihood of bankruptcy over the next two to three
years. This underscores the superior predictive capability
of GNN in comparison to other models examined in our
study.

The highest accuracy achieved in implementing the GNN
model stands at 93.56%, obtained in Scenario 6. Over-
all, the performance of the GNN surpasses that of ML
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FIGURE 10. (a) Comparison of each scenarios according to the accuracy of the implemented models (b) Comparison of each of the scenarios

based on the “F1-score” of the implemented models.

models. However, it is noteworthy that the most effective
approach in evaluating credit risk in the studied research
lies in incorporating all financial ratios of companies along
with graph-based features constructed using the BallMapper
algorithm. This indicates the importance of leveraging both
financial metrics and graph-based features for robust credit
risk assessment.

Furthermore, as depicted in Fig. 10(b), the Fl-score in
the implementation of the GNN model notably outperforms
that of traditional machine learning models. The notable
contrast highlights the GNN model’s superior performance
in attaining a delicate equilibrium between precision and
recall, which is pivotal for effective credit risk assessment.
Since the F-score is derived from recall and precision, the
graphs related to these two metrics exhibit similar behavior
to Fig. 10(b). Therefore, we have limited our discussion to
the graph related to the F-score.

It’s worth noting that in Scenario 6, the discrepancy
in “Fl-score” between the implementation of ML models
and the GNN model is less significant. This indicates that
the combination of graph-based features constructed using
the BallMapper algorithm alongside other financial ratios
yields more favorable results in evaluating the credit risk
of companies. This underscores the significance of integrat-
ing graph-based features alongside financial ratios for more
effective credit risk assessment.

To gain insight into the crucial features influencing our
model, we can generate a visualization depicting SHAP
(Shapley Additive explanations) values for each feature
across all samples. Fig. 11 organizes features based on
the cumulative sum of SHAP value magnitudes through-
out the feature sets, utilizing SHAP values to illustrate the
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distribution of feature’s Influence on the BM-GNN’s results.
Additionally, feature values are represented by a color scale,
with higher values depicted in red and lower values in blue.

Based on Fig. 11, it is clear that certain features play a piv-
otal role in predicting bankruptcy. Notably, “Operating Funds
to Liability”, “Net Value Per Share (Before Interest and
Depreciation After Tax)”, ““Cash Flow to Total Assets”, and
“Cash Reinvestment” emerge as the most influential factors.
These features exhibit a positive impact on the likelihood of
bankruptcy, implying that as their values increase, so does the
probability of bankruptcy. Conversely, “Net Profit Growth
Rate” exerts a negative influence on bankruptcy probability;
as this feature’s value rises, the likelihood of bankruptcy
decreases.

In contemporary management practices, it’s commonplace
for decision makers to seek comprehensive insights beyond
mere identification of key independent variables and fore-
cast performance. Their quest extends to understanding the
nuanced impacts of these variables on anticipated outcomes.
This holistic approach empowers financial institution (FI)
managers to mitigate financing credit risks, aids SMEs man-
agers in enhancing their financing capabilities, and equips
corporate entity (CE) managers to navigate and minimize
joint liability credit risks.

Pioneered by Friedman in 2001, the methodology of Partial
Dependency Plot (PDP) analysis emerges as a potent tool for
dissecting the influence of independent variables on predicted
responses through graphical representation. PDP excels in
unveiling both linear and nonlinear relationships existing
amidst independent variables and their corresponding predic-
tive outcomes, leveraging various regression models such as
regression trees. Its ability to generate line plots depicting
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predicted responses against individual features, while factor-
ing in the collective influence of other independent variables,
renders it a versatile analytical asset [S1].

High
Operating Funds to Liability

Persistent EPS in the Last Four Seasons
Cash Flow to Total Assets

Net Value Per Share

Net Value Growth Rate

Operating profit per person

Net Income to Stockholder's Equity

Total Asset Return Growth Rate Ratio '-*

Cash Flow Per Share

Feature value

Cash Reinvestment

CFO to Assets

Continuous Net Profit Growth Rate

—~ -2 a 2 4
SHAP value (impact on model output)

FIGURE 11. The influence between indicators and results.

In the forthcoming discourse, we embark on a PDP based
exploration to dissect the impact of variable v; on the likeli-
hood of non-risky outcomes for SMEs. This section delves
into a nuanced examination of each variable’s role in shap-
ing risk assessment, mirroring the insights encapsulated in
Fig. 12 of our analysis.

Fig. 12(a) illustrates the correlation between an upward
trend in the net value per share index and a decreased prob-
ability of company bankruptcies for SMEs in SCF. This
index represents the difference between a company’s assets
and liabilities divided by its outstanding shares. A higher
net value per share indicates a robust financial stance, sug-
gesting lower credit risk, while a lower value may signal
heightened financial vulnerability. Therefore, the net value
per share serves as a critical determinant in forecasting credit
risk assessment in SCF, offering indispensable guidance for
evaluating creditworthiness and implementing risk mitiga-
tion strategies. Fig. 12(b) shows the persistent Earnings Per
Share (EPS) over the last four seasons for SMEs in SCF,
indicating their financial stability and performance over time.
An increase in this index is linked with a decrease in the
likelihood of company bankruptcies. Fig. 12(c) depicts the
cash flow per share (CFPS), which reflects operational effi-
ciency and the ability to generate cash from core activities,
crucial for sustainability. A higher CFPS indicates financial
stability, reducing risk perception, while weak CFPS raises
concerns about financial stability and ability to repay debts.
The likelihood of company bankruptcies decreases with an
increase in CFPS up to approximately 3% but escalates
beyond this threshold, reaching 20%. Fig. 12(d) highlights
the importance of continuous improvement in the net profit
growth rate for SMEs in SCF. It signifies enhanced profitabil-
ity, effective operational management, and potential market
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share expansion. In credit risk assessment, a positive net
profit growth rate indicates financial stability and operational
efficiency, making SMEs more favorable to financial service
providers. Conversely, a decreasing or negative net profit rate
may signal financial troubles or operational inefficiencies,
increasing credit risk. Continuous monitoring of the net profit
growth rate is crucial in evaluating SME creditworthiness in
SCEF, providing insights into their financial health and future
prospects. The figure shows that as the net profit growth
rate increases up to 0.2, SMEs in the energy sector supply
chain have a 21% probability of bankruptcy, which decreases
significantly beyond this threshold. Fig. 12(e) presents the
net value growth rate, a critical indicator for SMEs in SCF,
reflecting their financial health and trajectory. As depicted,
higher values of this indicator correspond to a probability of
bankruptcy for companies falling below 10%. A positive net
value growth rate suggests successful business operations,
expansion, or efficiency improvements within the supply
chain, thereby lowering perceived credit risk. Conversely,
a negative or stagnant growth rate may raise concerns about
the SME’s financial capacity, potentially elevating credit risk.
Financial institutions often use the net value growth rate
in risk assessment models to inform financing decisions,
with higher growth rates associated with lower credit risk.
Monitoring and analyzing the net value growth rate are
essential for evaluating SMEs’ creditworthiness and financial
stability in SCF. Fig. 12(f) illustrates the total asset return
growth rate for SMEs in SCF, indicating the rate at which
the value of assets owned by these businesses is increas-
ing over time. As depicted, as the total asset return growth
rate ratio increases up to 0.25, companies face a probabil-
ity of approximately 22% of bankruptcy. However, beyond
this threshold, the probability diminishes below 10%. Yet,
considering various economic and environmental factors, the
likelihood of bankruptcy increases again, reaching 15%. This
growth rate is a crucial indicator of SMEs’ performance and
financial health within the SCF context. A higher total asset
return growth rate suggests significant expansion and healthy
investment returns, implying lower credit risk. Conversely,
a negative or declining total asset return growth rate may
indicate financial instability and higher credit risk. Hence,
financial institutions and lenders should consider the total
asset return growth rate when evaluating the creditworthiness
of SMEs in SCF. Fig. 12(g) highlights cash reinvestment,
which involves reinvesting cash generated from operational
activities into the supply chain to optimize liquidity and
efficiency. An increase in cash reinvestment by up to 30%
predicts a probability of bankruptcy for companies exceeding
16%. However, beyond this threshold, the probability fluctu-
ates between 5% to 16%. Ultimately, with a cash reinvestment
value from 40% to 100%, companies’ bankruptcy proba-
bility reaches approximately 11%. This strategic approach
empowers SMEs to enhance working capital management,
foster stronger supplier relationships, and bolster overall sup-
ply chain resilience. Efficient cash reinvestment mitigates
liquidity risks, ensures timely payment to suppliers, and
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FIGURE 12. The line PDP of the top features of GNN.

demonstrates financial stability, which are crucial factors
in assessing creditworthiness. Incorporating cash reinvest-
ment insights into credit risk assessment models can enhance
predictive accuracy and comprehensively evaluate SMEs’
creditworthiness in SCF contexts. Fig. 12(h) underscores the
significance of operating profit per person, a vital metric
for SMEs providing insights into business efficiency and
profitability on a per-employee basis. As operating profit
per person increases up to 0.4, the probability of bankruptcy
within recent years reaches approximately 14%. Beyond this
threshold, under various environmental and economic con-
ditions, this probability exceeds 20%. However, once the
indicator surpasses 0.42, the probability stabilizes at 19%.
This metric reflects how efficiently the company utilizes labor
resources to generate profits. Higher operating profit per
person suggests operational efficiency and better financial
health, potentially lowering credit risk. Conversely, lower
operating profit per person may indicate financial challenges
or inefficiencies, raising credit risk. Monitoring this metric is
instrumental in assessing SME creditworthiness in SCF and
guiding risk management strategies for financial institutions.
Fig. 12(i) highlights operating funds liability, representing the
debts incurred by businesses in their day-to-day operations
within the supply chain. As the operating funds to liabil-
ity ratio increases up to 0.35, the probability of bankruptcy
rises from 30% to over 40%. Subsequently, the probability
sharply decreases to below 10%. However, surpassing the
0.5 threshold increases the likelihood of bankruptcy to 15%.
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Operating funds liability reflects the SME’s financial health
and liquidity management. Higher liability suggests poten-
tial liquidity challenges or cash flow inefficiencies, leading
to increased credit risk. Managing operating funds liability
is crucial for accurate credit risk assessment and ensuring
SMESs’ financial stability in SCF. Fig. 12(j) depicts the cash
flow to total assets ratio, showcasing how efficiently an SME
utilizes its assets to generate cash flow. As this ratio increases,
indicating improved liquidity, the probability of bankruptcy
decreases. It offers valuable insights into the SME’s ability
to convert assets into cash, crucial for operational continuity
and financial commitments. A higher ratio suggests effec-
tive asset management and lower credit risk, while a lower
ratio may indicate inefficiencies and higher credit risk. This
ratio serves as a significant indicator in assessing credit risk,
reflecting the SME’s ability to generate cash flow from its
assets to meet financial commitments. Fig. 12(k) shows the
CFO to asset ratio, indicating the efficiency of cash flow
management relative to the total assets of the companies.
Anincrease in this ratio correlates with a decrease in the prob-
ability of bankruptcy for companies, demonstrating improved
financial health and operational efficiency. A higher CFO
to asset ratio suggests efficient asset utilization and strong
cash flow generation, positively impacting credit risk assess-
ment. Conversely, a lower ratio may raise concerns about
liquidity and financial resilience, potentially increasing per-
ceived credit risk. Therefore, analyzing the CFO to asset ratio
is crucial for accurately assessing the credit risk in SCF,
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providing valuable insights into their financial performance
and resilience. Fig. 12(1) illustrates the net income to stock-
holders’ equity ratio, indicating a company’s profitability
relative to the equity invested by shareholders. An increase
in this ratio up to 0.8 is associated with a probability of
bankruptcy around 22%, decreasing to approximately 10%
beyond that threshold. This ratio serves as a measure of finan-
cial performance and efficiency in generating shareholder
returns for SMEs in the SCF field. A higher ratio suggests
effective utilization of equity to generate profits, indicating
lower credit risk. Conversely, a lower ratio may indicate
financial distress, potentially elevating credit risk. Therefore,
this ratio plays a crucial role in assessing credit risk in SCF,
providing insights into the SME’s ability to generate profits
relative to shareholder equity and aiding financial institutions
in making informed predictions about creditworthiness and
financial stability.

1) FEATURE IMPORTANCE ANALYSIS AND SECTOR-SPECIFIC
PATTERNS

The energy sector’s selection indeed distinguishes our study,
as SME:s in this sector face unique financial challenges and
risk factors. To explore sector-specific patterns, we conducted
a detailed analysis of the feature importance results, focusing
on how certain financial indicators uniquely impact credit risk
for SMEs in the energy sector.

2) KEY FINDINGS

o Operating Funds to Liability: This feature emerged
as a critical indicator of financial health in the energy
sector. SMEs with higher ratios of operating funds to
liabilities were found to have a significantly lower risk of
bankruptcy. This highlights the importance of liquidity
and efficient fund management in mitigating financial
distress in an industry characterized by high capital
intensity and long operational cycles.

o Net Value Per Share (Before Interest and Deprecia-
tion After Tax): Our analysis revealed that SMEs with
higher net values per share tended to be more resilient to
financial shocks. This suggests that maintaining a strong
equity base and effective asset management are crucial
for sustaining operations in the volatile energy market.

o Cash Flow: Consistent positive cash flow was iden-
tified as a vital factor in reducing credit risk. Energy
sector SMEs that managed to maintain stable cash flows
despite market fluctuations were better positioned to
meet their financial obligations, indicating the impor-
tance of robust cash flow management practices.

o Inventory Turnover Ratio: A higher inventory
turnover ratio was associated with lower credit risk,
reflecting efficient inventory management and quicker
conversion of inventory into sales. This is particularly
important in the energy sector, where inventory can
include costly and perishable items.

+ Receivables Turnover Ratio: A higher receivables
turnover ratio indicated better credit control and faster

VOLUME 13, 2025

collection of receivables. SMEs that excelled in manag-
ing their accounts receivable were less likely to expe-
rience liquidity issues, underscoring the significance of
effective credit policies and debtor management.

3) SECTOR-SPECIFIC PATTERNS

« Volatility Management: The energy sector is subject
to significant price and demand volatility. SMEs that
exhibited strong financial indicators related to liquidity
and asset management were better equipped to handle
such volatility, reducing their overall credit risk.

o Capital Intensity: The high capital requirements in
the energy sector mean that SMEs must manage their
resources efficiently. Features related to capital utiliza-
tion, such as net value per share and operating funds to
liability, were crucial in differentiating low-risk SMEs
from their high-risk counterparts.

o Supply Chain Dependencies: The interconnected
nature of the energy supply chain means that disruptions
can have cascading effects. SMEs with robust inventory
and receivables management were able to mitigate these
risks more effectively.

4) STRENGTHENING THE ARGUMENT FOR CONTRIBUTION
By identifying and analyzing these sector-specific patterns,
our research highlights the unique financial dynamics that
impact credit risk in the energy sector. This deeper explo-
ration not only strengthens the predictive capability of our
BM-GNN model but also underscores its practical value for
stakeholders in the energy sector. Financial institutions and
SMEs can leverage these insights to enhance their credit risk
assessment frameworks and implement targeted risk mitiga-
tion strategies.

In summary, our expanded analysis in Section D demon-
strates that the BM-GNN model effectively captures critical
financial indicators specific to the energy sector, provid-
ing a comprehensive tool for predicting SME credit risk.
This contributes to the broader understanding of credit risk
management in high-stakes, capital-intensive industries like
energy.

V. CONCLUSION

Assessing credit risk has been both challenging and pivotal
for financial institutions across various societies. Thus far,
most studies have been conducted based on independent
variables related to companies’ demographic, psychographic,
and financial characteristics. In this study, however, we have
taken a different approach from previous research and utilized
the BallMapper algorithm to isolate the financial indicators
that have the most significant impact on predicting com-
panies’ credit risk. Subsequently, by forming an adjacency
matrix, we integrated network features with other attributes
in various ways and evaluated the performance of four ML
models alongside a GNN model. We aimed to innovate
in our approach to credit risk assessment by leveraging
advanced techniques such as the BallMapper algorithm and
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integrating network features with traditional predictors. This
novel methodology allows us to potentially uncover deeper
insights into the drivers of credit risk and enhance predictive
accuracy in financial decision-making processes. This study
proposes a multi-modal approach, termed BM-GNN, aimed
at enhancing credit risk prediction for SMEs. By integrating
BallMapper with GNN analysis techniques, this approach
offers a comprehensive and sophisticated framework for risk
management, surpassing the capabilities of available models
highlighted in previous research. Leveraging the topolog-
ical properties of data, topological data analysis provides
deeper insights into credit risk factors, thereby optimizing
the accuracy and reliability of credit risk predictions for
SMEs. In conclusion, the integration of GNNs and topo-
logical data analysis techniques (BallMapper in this study)
offers a promising avenue for enhancing credit risk prediction
capabilities, particularly within the context of SMEs and SCF.
By leveraging the network relationships and non-financial
data sources provided by GNNs, alongside the analytical
depth of topological data analysis, a more comprehensive
evaluation of credit risk for SMEs engaged in supply chain
finance can be achieved. This multi-modal approach, exem-
plified by the BM-GNN model, not only improves the
reliability and accuracy of credit risk evaluation for SMEs but
also enables financial institutions to better anticipate default
probabilities and manage credit risk effectively within the
dynamic landscape of SCF. Hence, the integration of GNNs
and topological data analysis signifies a substantial progres-
sion in credit risk prediction, equipping institutions with
deeper insights and enhanced decision-making capabilities
to support the financial requirements of SMEs within supply
chain ecosystems.
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