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ABSTRACT This study examined the impact of learning style and study habit alignment on the academic
success of engineering students. Over a 16-week semester, 72 students from Process Engineering and
Electronic Engineering programs at the Universidad de Los Llanos participated in this study. They completed
the Learning Styles Index questionnaire on the first day of class, and each week, teaching methods and
class activities were aligned with one of the four learning dimensions of the Felder-Silverman Learning
Styles Model. Lesson 1 focused on one side of a learning dimension, lesson 2 on the opposite side, and
the tutorial session incorporated both. Quizzes and engagement surveys assessed short-term academic
performance, whereas midterm and final exam results measured long-term performance. Paired t-tests,
Cohen’s effect size, and two-way ANOVA showed that aligning teaching methods with learning styles
improved students’short-term exam scores and engagement. However, multiple regression analysis indicated
that study habits (specifically time spent studying, frequency, and scores on a custom-developed study quality
survey) were much stronger predictors of midterm and final exam performance. Several machine learning
models, including Random Forest and Voting Ensemble, were tested to predict academic performance using
study behavior data. Voting Ensemble was found to be the strongest model, explaining 83% of the variance
in final exam scores, with a mean absolute error of 3.18. Our findings suggest that, while learning style
alignment improves short-term engagement and comprehension, effective study habits and timemanagement
play a more important role in long-term academic success.

INDEX TERMS Academic performance, engineering instruction, ensemble methods, Felder-Silverman
learning styles model (FSLSM), machine learning (ML), predictive modeling.

The associate editor coordinating the review of this manuscript and

approving it for publication was Francisco J. Garcia-Penalvo .

I. INTRODUCTION
In the era of Artificial Intelligence (AI) and machine learn-
ing, the ability to mine vast amounts of student data
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presents university educators with unprecedented opportuni-
ties to adapt their teaching methodologies. Machine learning
involves the development of algorithms that are learned from
data to make decisions or predictions. This advancement
raises an important question in the context of engineer-
ing education: What is the most valuable data that can be
collected to develop the most effective teaching strategies
Answering this question could significantly improve student
performance and prepare them for their future careers as
engineers. This effort aligns with Sustainable Development
Goal 4 of UNESCO’s Incheon Declaration for Education
2030, which calls for equitable quality education and lifelong
learning opportunities for all [1].

One issue that has divided scholars, educators, and pol-
icymakers is the concept of learning styles, which refers
to individuals’ specific preferences for how they receive
and process information, and how they respond cognitively
and behaviorally to certain learning tasks [2]. These prefer-
ences are often categorized into several models, including
the VARK model [3], Kolb’s Experiential Learning The-
ory (ELT) [4], Honey and Mumford’s learning styles [5],
Gardner’s multiple intelligences [6], Dunn and Dunn’s learn-
ing styles model [7], Grasha-Riechmann’s Student Learning
Styles Scales [8], and the Felder-Silverman Learning Styles
Model (FSLSM) [9].

These models are no longer new ideas in the literature.
However, if the idea that students have specific learning
styles is true, AI and machine learning can be built around
this concept to improve educational outcomes. For example,
Latham et al. [10] developed a Conversational Intelligent
Tutoring System (CITS) that predicted learning styles with
accuracies ranging from 61% to 100%, whereas Hasan et al.
[11] achieved 97.56% accuracy in identifying learning styles
using the Extreme Gradient Boosting (XGBoost) machine
learning library. However, the existence of learning styles
remains a controversial topic.

Learning styles advocates argue that tailoring instruction
to preferred learning styles improves the quality of education
and can create more effective and engaging learning expe-
riences for students [12], [13]. Tailoring instructional styles
to students’ learning preferences has also been shown to
reduce stress levels [14], resulting in more positive feedback
from students about their teachers, [15] and increased student
satisfaction in e-learning environments [16].
Opponents argue that there is insufficient empirical evi-

dence and rigorous research to justify the widespread use
of learning styles in education [17], [18], [19], [20]. Fur-
thermore, some studies have indicated that aligning teaching
methods with learning styles can lead to negative learning
outcomes [21]. The meshing hypothesis, introduced by Pash-
ler et al. [22], posits that students achieve optimal learning
outcomes when instruction is tailored to their preferred learn-
ing style. To experimentally validate this hypothesis, they
argue that specific evidence is needed: a cross-interaction
between learning style and instructional method, showing

that certain instructional methods benefit specific groups, but
not others. However, their literature review revealed that very
few studies have employed appropriate methodologies to test
this hypothesis.

Beyond learning styles, are there other educational fac-
tors that deserve greater attention to improve educational
outcomes Savage et al. [23] demonstrated that intrinsic
motivation is a key factor in higher academic performance,
suggesting that motivation is closely linked to engagement in
learning activities. This perspective raises another important
question: should educators prioritize increasing student sat-
isfaction and engagement during lectures, labs, and tutorials,
as several studies suggest [24], [25], [26], [27]?

Perhaps, the key to academic success lies in students’
study habits: the methods, frequency, and intensity with
which they study. Entwistle and Peterson [28] argued that a
deep and strategic approach to studying is far more effective
than simply aligning instruction with learning styles. Simi-
larly, Rabia et al. [29] highlighted the role of consistent and
well-structured study habits in achieving academic success
regardless of learning style preferences. Heffler [30] also
points out that while learning styles may affect how students
allocate their study time, they do not necessarily improve their
academic performance.

By identifying the key factors that influence academic
success, AI and machine learning can be employed to make
accurate predictions, allowing universities and faculty to
intervene early with at-risk students and to provide tar-
geted support. These predictions can also help institutions
allocate resources more effectively in areas such as instruc-
tional design, academic advice, and curriculum development.
Therefore, the use of machine learning to predict student
performance over the past two years has been a topic of
great interest. Doz et al. [31] used random forest regression
and fuzzy logic to predict performance and achieved an R2

of 0.391 for the national assessment scores. Nachouki et al.
[32] developed a CGPA prediction model with over 92%
accuracy using Random Forest (RF) based on high school
and key course grades. Asthana et al. [33] demonstrated
that learning coefficients derived from adaptive assessments
can serve as dynamic predictors, with their linear regression
model achieving a 97% accuracy in predicting academic
performance.

These debates about the factors that most influence
academic success and how they can be used to predict per-
formance are necessary to advance the field of engineering
education. To contribute to this discussion, we designed our
study to test the following hypotheses.

1. Adapting teaching methods to students’ preferred
learning styles will improve retention and understand-
ing in the short term, as measured by weekly tests, but
not in the long term, as measured by midterm and final
exam results.

2. Aligning teaching methods with students’ learning
styles will result in greater student engagement and
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satisfaction but will not have a significant effect on
long-term academic success.

3. Tutorials that integrate teaching methodologies from
both sides of each learning dimension in the FSLSM
(e.g., Active and Reflective in the AR weeks, Sens-
ing and Intuitive in the SI weeks) will result in the
highest academic performance and student engagement
compared to lectures that focus on only one side of a
learning dimension.

4. Study quality and habits have the greatest influence on
academic performance, and these data will be the most
effective in predicting midterm and final exam grades
through machine learning.

Testing these hypotheses makes our study unique, as it
combines an analysis of learning style alignment with a com-
prehensive assessment of students’ study behaviors, using
machine learning models to directly compare their respec-
tive impacts on academic success. This integrated approach
offers new insights into how teaching methods and student
habits contribute to the long-term outcomes of engineering
education.

The structure of this paper is organized as follows:
Section II details the design of the study, explaining the logic
behind each statistical test, and the setup of the regression
and prediction models employed. Section III presents and
interprets the findings of these analyses, contextualizing them
within the existing literature, and exploring their implications
for teaching practices in engineering education. Section IV
concludes the paper by summarizing the main findings and
providing future research directions.

Table 1 provides a list of the nomenclatures that were used
frequently in this article for ease of reference.

TABLE 1. Terms and abbreviations used in this study.

II. METHODOLOGY
This section outlines the research design, data collection
procedures, and analytical techniques used to explore the
relationships among learning styles, study habits, and aca-
demic performance.

A. PARTICIPANTS AND STUDY DESIGN
Our study involved 72 fourth-year engineering students from
the Universidad de Los Llanos, Villavicencio, Colombia.
Among the participants, 42 were enrolled in the electronic
engineering program, and 30 in the process engineering
program. during the 16-week semester, from September to
December 2023. To validate the adequacy of this sample size,
statistical power analyses were conducted with a significance
level (α = 0.05) and power threshold (1−β = 0.80), demon-
strating that the sample size was sufficient to detect medium
to large effect sizes in the statistical analyses, including
paired t-tests, ANOVA, regression models, and mixed-effects
models.

Initially, 102 students participated in the study, but only
86 attended all lectures and tutorials. To maintain consistency
and data integrity, only the 72 students who attended all
classes during the semester and scored 1–5 or 7–11 on the
Index of Learning Styles (ILS) survey were included in the
final dataset. Students who scored 6, indicating a balanced
preference, and those who did not attend all classes were
excluded to ensure that the analysis accurately reflected the
influence of learning style on academic performance. All
students completed and signed consent forms prior to the start
of the study, which was approved by the university’s research
and ethics board.

On the first day of class, students completed a Spanish-
language paper version of the ILS questionnaire, which
consists of 44 questions with answers marked as either ‘a’
or ‘b.’ Each set of 11 questions corresponds to one of the
four learning dimensions of the FSLSM. The FSLSM was
chosen for our study because it is the learning model most
targeted at engineering students [9]. Scores were calculated
on a scale of 0 to 11 for each dimension, where 11 indicated
a strong preference for one side of the dimension and 0 indi-
cated a preference for the opposite side. For example, in the
Active/Reflective (AR) dimension, a score of 11 indicates a
highly active learning student, while a score of 0 indicates a
highly reflective learning student. Scores from 0 to 5 were
labeled as right-side students of a dimension and scores
from 6 to 11 as left-side of a dimension students.

The first dimension, AR, differentiates between students
who prefer to actively engage with information through dis-
cussions, group work, or hands-on experiences (active), and
those who favor introspection and individual reflection before
interacting with the material (reflective). Active students
excel in collaborative environments, where they can phys-
ically engage with the content, whereas reflective students
perform better when they think independently [9].
The second dimension, Sensing/Intuitive (SI), identifies

students based on their preference for types of information.
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Sensing students favor concrete, practical details, and enjoy
real-world applications of knowledge. They respond well
to structured information and preferred consistency in their
learning environments. Conversely, intuitive students are
drawn to abstract theories, conceptual information, and inno-
vative ideas. They often prefer exploring possibilities and
connections rather than sticking to conventional or routine
tasks. This dimension is important in engineering education,
where both hands-on experimentation and theoretical under-
standing are required [9].

The third dimension, Visual/Verbal (VB), pertains to the
sensory modality through which students best receive infor-
mation. Visual learners retain and understand content more
effectively when presented through diagrams, flowcharts, and
other visual resources, while verbal learners respond better to
written and spoken explanations, such as lectures or textual
information. This distinction highlights the importance of
incorporating both visual and verbal instruction methods to
accommodate diverse preferences [9].

The final dimension, Sequential/Global (SG), describes
how students progress in learning. Sequential learners pre-
fer to present information in a linear, step-by-step manner,
progressively building their understanding. They excel when
the content is logically structured, allowing them to build on
prior knowledge incrementally. By contrast, global learners
comprehend information holistically and make intuitive con-
nections. They may struggle with step-by-step learning, but
excel when they grasp the big picture or broader context of the
material before delving into specifics. Global learners benefit
from seeing the end goal or wider context of the subjectmatter
before focusing on its details [9].
Standardized protocols were established to administer all

data collection instruments and assessments to ensure the
thoroughness of the data collection process and to minimize
potential biases. Each session included quizzes and surveys
distributed immediately following the instructional activities,
ensuring consistent timing and reducing the risk of memory
bias. The instruments were designed to measure engagement,
study behaviors, and learning outcomes in a uniform manner
across the 16-week semester. The midterm and final exams
were given outside of normal class time to ensure that they did
not interfere with the rotating structure of teaching method-
ologies or affect the balance in the number of classes allocated
to each learning dimension, thereby avoiding procedural bias
that could influence the consistency and fairness of the study
design. Variability in the data collection environment was
minimized by adhering to a consistent schedule and process.

Selection bias was addressed using strict inclusion criteria,
as only students who attended all classes and demonstrated
clear preferences in the ILS survey were included in the final
dataset. Excluding students with balanced preferences (scores
of six on the ILS scale) ensured the clarity of the matched
and mismatched conditions in the analyses. Additionally,
students who did not meet the attendance requirement were
excluded to maintain data integrity and to ensure that the

dataset accurately reflected the effects of the instructional
methods.

To further mitigate bias, all data were anonymized and pro-
cessed using automated systems to eliminate manual errors.
Questions within the surveys were balanced between pos-
itively and negatively worded items to reduce the risk of
response bias such as acquiescence or social desirability
effects. These measures ensured that the data collection pro-
cess was systematic and objective, thus providing a reliable
foundation for the study’s analyses and conclusions.

With a robust data collection framework in place, this study
implemented a structured instructional design focused on
aligning teaching methodologies with learning styles. Each
week of the semester focused on one of the four learning
dimensions of the FSLSM, with two lecture sessions and
one tutorial session, each lasting two hours. The first lecture
session focused on one side of the learning dimension (e.g.,
Active for AR), the second lecture session focused on the
opposite side (e.g., Reflective for AR), and the tutorial session
combined teaching methodology and classroom activities
from both sides of each dimension. This was rotated every
four weeks, so the AR dimension was tested at weeks 1, 5, 9,
and 13; the SI dimension at weeks 2, 6, 10, and 14; the VB
dimension at weeks 3, 7, 11, and 15; and the SG dimension
at weeks 4, 8, 12, and 16. The midterm and final exams were
conducted outside the normal class time.

The selection of teaching methodology and classroom
activities was guided by the course outlines of electronic engi-
neering and process engineering courses and was supported
by relevant academic literature.

For the AR dimension, we borrowed ideas from Free-
man et al. [34] and Prince et al. [35]. Active instruction,
which included group discussions and laboratory work, was
incorporated into the first lecture to promote engagement
and the immediate application of concepts, while reflec-
tive instruction involved the use of reflective journals and
individual problem-solving assignments, allowing time for
contemplation before applying the taught material. For the
SI dimension, we developed teaching methods and class-
room activities using the work of Felder and Silverman [36].
Sensory instruction included laboratory experiments and
real-world case studies to engage students in hands-on,
detail-oriented tasks. Conceptual discussions and open-ended
design tasks were conducted to foster creativity and forward
thinking.

For the VB dimension, we drew our ideas from Schneider
et al. [37]. For visual instruction, multimedia presentations,
diagrams, and flowcharts were used to explain complex con-
cepts, whereas verbal instruction included detailed reading
assignments and group discussions. For the SG dimension,
ideas were taken from the work of Prince and Felder [38],
where sequential instruction used structured problem sets and
flowcharts to understand the material in a logical and system-
atic way, whereas global instruction involved overviews and
interdisciplinary projects.
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A complete breakdown of each week is provided, includ-
ing topics taught, teaching methodology, and class activities
(see Appendix A). In both engineering courses, there was a
midterm exam in week five and a final exam at the end of
week 16.

B. QUIZ AND ENGAGEMENT SURVEY DEVELOPMENT
At the end of each lesson and tutorial, the students were allot-
ted 10minutes to answer a quiz. The quizzes were designed to
assess retention and comprehension of the material covered
in each teaching session. This allowed us to statistically
measure the effect of the fit and mismatch of the teaching
methodology with students’ learning styles as well as the
correlation with their exam scores. For the purposes of our
study, we defined retention as students’ ability to recall the
information they have learned, and comprehension as the
ability to understand themeanings or concepts of thematerial.
Based on the work of Maya et al. [39], the quizzes used a
combination of multiple-choice questions (MCQs) and short-
answer questions.

MCQs were used to assess students’ recognition memory
and understanding of key concepts, whereas short-answer
questions assessed their ability to apply and synthesize new
information. Each quiz consisted of six multiple-choice ques-
tions worth one point each and two short-answer questions
worth two points each, for a total of 10 points.

Following the questionnaire, students were given five min-
utes to complete the Engagement and Satisfaction Survey
(ESS). This survey was developed to assess how the stu-
dents felt about each teaching session. The survey, shown in
Appendix B, consisted of 10 questions, with responses scored
on a Likert scale from ‘‘Strongly Disagree’’ with a value of
1 point to ‘‘Strongly Agree’’ with a value of 5 points. The
points were summed to obtain a range of 10–50 points.

Guided by the literature on educational assessment and
measuring student engagement [40], [41], the survey was
designed to assess several aspects of engagement and sat-
isfaction, including clarity of material, relevance of activi-
ties, effectiveness of teaching methods, and overall student
motivation.

While the Likert scale provides a straightforward and
widely accepted method for capturing subjective perceptions,
such scales are subject to potential response biases, including
central tendency bias and acquiescence bias. These biases can
affect the interpretation of data by influencing the way stu-
dents respond to questions, particularly if they tend to avoid
extreme options or agree with statements, regardless of their
true feelings. To mitigate these limitations, the survey was
carefully designed to include a balanced set of positively and
negatively worded questions to minimize the likelihood of
patterned or biased responses. Additionally, the large sample
size and consistent administration of the survey across all
class sessions helped ensure reliable and interpretable data.

The results of this survey served as a feedback tool to
improve teaching and as a source of data for statistical

analysis. This also allowed us to measure the correlation
between student engagement and satisfaction with their
midterm and exam grades to test Hypothesis 4.

C. STATISICAL ANALYSIS
To test Hypotheses 1 and 2, we conducted paired t-tests
to assess the effect of matched and mismatched teach-
ing methodologies on student performance and engagement
across the four dimensions of the FSLSM learning styles. The
goal was to determine whether students performed better and
engaged more when the instructional approach was aligned
with their preferred learning style.

In this analysis, a match condition was defined as when the
student’s learning style matched the instructional approach
used (e.g., active learning for an active learner identified by
the ILS), whereas a mismatch condition occurred when the
instructional method did not align with the student’s learning
style.

In addition to paired t-tests, effect sizes were calculated
to assess the magnitude of differences. Cohen’s d was used
to measure the effect size, which represents the difference
between the two means in terms of standard deviations.

In this case, the mean difference refers to the average
score difference between thematch and non-match conditions
for each student, while the standard deviation of the differ-
ences represents the variation of those differences across the
dataset.

Effect size calculations were performed separately for each
learning dimension and for quiz and engagement scores. This
analysis was conducted using Python 3.11, with numpy and
scipy.stats libraries for data processing and statistical calcu-
lations.

To complement the paired t-tests, independent t-tests
were conducted to analyze differences in quiz scores and
engagement scores between the matching and non-matching
conditions. While paired t-tests focused on within-student
comparisons, independent t-tests examined performance dif-
ferences across groups, thus providing a broader perspective
on instructional alignment.

Independent t-tests were used, as they allowed for a direct
comparison of aggregated quiz performance and engagement
scores, validating the findings of paired t-tests at the group
level. This dual approach ensured a comprehensive analysis
by capturing both individual-level variability and broader
population trends, thus enhancing the robustness and gener-
alizability of the results.

The next part of our study was to further test Hypoth-
esis 1 against the argument put forward by Pashler et al.
[22], which states that the only way to validate the learning
styles hypothesis is to demonstrate a crossover interaction
between learning style and instructional method. This means
that the instructional method that produces the best learning
outcomes should vary depending on the student’s learning
style, leading to a crossover in performance when the data
are graphed. To test this, a two-way ANOVA was conducted
for each learning dimension, with two factors: the students’
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specific learning style (e.g., active vs. reflective) and the
instructional method used (Lecture 1 vs. Lecture 2). Themain
focus of the analysis was the interaction term, as a signifi-
cant interaction indicates that the most effective instructional
method depends on the student’s learning style.

Following the ANOVA analysis, interaction plots were
created using Python 3.11 to visually assess the presence
of cross-class interactions. In these plots, quiz scores are
placed on the y-axis and teaching methods on the x-axis, with
separate lines representing each learning style. A cross-class
interaction would be confirmed if the lines cross, indicating
that different teaching methods were more effective for dif-
ferent learning styles.

Mixed-effects models were employed to analyze the quiz
and engagement scores under matching and non-matching
conditions. The fixed effect in these models was the instruc-
tional alignment condition (MatchStatus: Matching vs. Non-
Matching), while random effects were included for StudentID
to account for repeated measures within the students. Sepa-
rate models were constructed for the quiz and engagement
scores to examine the impact of instructional alignment on
these outcomes while adjusting for individual variability.
The models were implemented using Restricted Maximum
Likelihood (REML) estimation, providing estimates for fixed
effects (condition) and random effects (StudentID variance).
This approach ensured that both between- and within-subject
correlations were accounted for in the analysis.

StudentID was included as a random effect to account for
individual differences in students’ baseline performance and
engagement, which remained constant across the different
conditions. This adjustment ensured that variations in scores
were correctly attributed to instructional alignment (matching
vs. non-matching) rather than to inherent differences between
students. By treating each student as their own ‘‘group’’ with
unique characteristics, the model focused on the effects of
instructional conditionswithout bias. This approach enhances
the accuracy and reliability of the analysis by acknowledging
that students are not the same, and prevents misattribution of
variability in the data.

The use of mixed-effects models was justified by the
hierarchical structure of the data, with repeated measures
nested within individual students across weeks and under
instructional conditions. These models complemented the
paired t-tests, independent t-tests, and Two-Way ANOVA by
corroborating the findings, accounting for individual vari-
ability, generalizing the results, and extending the analysis
depth. Unlike t-tests, mixed-effects models explicitly adjust
for baseline differences between students (random intercepts)
and potential variability in responses to instructional condi-
tions. By addressing dependencies in the data, mixed-effects
models strengthened the generalizability of the results, ensur-
ing that the observed effects of instructional alignment were
not artifacts of unaccountedwithin-subjects correlations. Fur-
thermore, while Two-WayANOVA focused on the interaction
effects between learning styles and instructional methods,
mixed-effects models incorporated individual differences as

random effects, offering a more comprehensive understand-
ing of the data. This dual approach strengthened the overall
reliability of the study’s findings.

The next part of our study aimed to test Hypothesis 3 by
analyzing whether students performed better on the quizzes
and showed higher engagement during tutorial sessions,
which combined teaching methodologies from both sides of a
learning dimension, compared to lectures that focused exclu-
sively on one side. The hypothesis for both analyses was that
integrating both teaching styles into the tutoring environment
would result in higher exam scores and engagement than
lectures that did or did not match students’ preferred learning
styles.

The quiz and engagement scores were compared under
three conditions: matched, unmatched, and tutorial across
the four learning dimensions of the FSLSM. The analysis
was performed using Python 3.11, including pandas for data
manipulation, statsmodels to perform statistical tests, and
scipy for post hoc analysis. For the quiz and engagement
scores, a repeated measures ANOVA was used to assess the
differences between these three conditions within each learn-
ing dimension. This method controls for individual variability
when comparing different teaching methods for the same
group of students. Data were reformatted to a long format
for analysis, and the AnovaRM function from the statsmodels
library was used to perform repeated measures ANOVA.

Post-hoc comparisons were performed using Tukey’s
Honest Significant Difference (HSD) test from the statsmod-
els.stats.multicomp module to identify statistically signifi-
cant differences between the conditions. This test was used
to make pairwise comparisons between conditions (match
vs. Tutorial, Match vs. No Match, Tutorial vs. no match)
considering multiple testing.

D. FACTORS THAT AFFECT ACADEMIC PERFORMANCE
To assess the relationship between quiz and engagement
scores under various instructional conditions (match, mis-
match, and tutorial) and their impact on midterm and final
exam performance, we used multiple linear regression and
RF models.

Based on the students’ learning styles across the four
learning dimensions, averages were calculated for weeks
1-4 for midterm predictions and weeks 5-16 for final exam
predictions.

We used multiple linear regression with the Python
3.11 scikit-learn library to analyze the predictive power of
quiz scores and engagement in midterm exam performance.
Each model used average scores from the match, mismatch,
and tutorial quizzes. as independent variables and midterm
and final exam scores as dependent variables. We further ana-
lyzed engagement scores, following the same methodology,
by calculating averages of match, mismatch, and tutorial con-
ditions to predict midterm and exam results. To address any
potential multicollinearity between the predictors, we calcu-
lated the Variance Inflation Factor (VIF) using the statistics
models library.

VOLUME 13, 2025 10983



L. G. I. Domínguez et al.: Data-Driven Approach to Engineering Instruction

We applied Random Forest after multiple linear regres-
sions to capture possible non-linear errors. relationships
between quiz scores and exam performance, which the linear
model might have missed. We used pandas for data manip-
ulation, scikit-learn to implement the regression model, and
Random Forest regressor for ensemble models; to evaluate
performance, we used mean_squared_error and r score.
To test Hypothesis 4, this part of our study explored the

relationship between students’ study habits and their per-
formance on midterm and final exams. The data collected
included exam scores, Study Quality Survey (SQS) scores,
and Moodle logs of total time and frequency spent studying.
The goal was to determine how study quality, frequency
of study sessions, and time spent studying before and after
the midterm exam predicted academic success. The SQS
assessed the effectiveness of students’ study habits across
multiple dimensions. It consists of 10 questions scored on
a 5-point Likert scale, addressing aspects of study behavior
such as study duration, consistency, review practices, and use
of additional resources such as professor-provided readings.
The total possible score ranged from 10 to 50 points, with
higher scores indicating better study habits. The survey was
administered thrice: on the first day of class, before the
midterm exam, and after the midterm exam. The average
score of these three points was used in the analysis, pro-
viding a stable and representative measure of study habits
throughout the semester. All the SQS questions are presented
in Appendix C.

The students recorded the time they spent studying and the
frequency of their study sessions using the university’s Moo-
dle platform. The frequency of study sessions was calculated
as the number of days per week that the students engaged in
study activities. These data provided information about the
consistency and distribution of study time before and after
the midterm exam.

While the SQS provided valuable data on students’ study
habits, the use of a Likert scale introduced certain limitations
that could influence the interpretation of the data. Response
biases, such as social desirability bias, may have led some
students to overreport positive study behaviors to align with
their perceived expectations. Additionally, the ordinal nature
of Likert-scale data can limit its sensitivity in capturing subtle
differences in study habits. To address these constraints, the
survey questions were carefully crafted to minimize lead-
ing language and ensure clarity. Furthermore, averaging the
scores across the three time points helped reduce the poten-
tial variability caused by isolated instances of inconsistent
responses, providing a more reliable measure of students’
study habits over time. These measures ensured that the SQS
scores remained meaningful in predicting academic success.

We used multiple regression analysis to quantify the extent
to which study habits influenced midterm and final exam
scores, compared to the learning style alignment models. Two
regression models were developed: one regressing midterm
exam scores on study quality, frequency of study sessions,
and time spent studying before the midterm exam and one

regressing final exam scores on study quality, frequency of
study sessions, and time spent studying after the midterm
exam. Multiple regression analysis allowed us to assess the
combined effect of these study behaviors on exam perfor-
mance, providing a direct comparison to the multiple linear
regression models used for learning style alignment.

E. PREDICTIVE MODELING OF ACADEMIC PERFORMANCE
Our study tested several machine learning models to predict
midterm and final exam scores using Moodle logs of study
frequency and amount, as well as SQS data including scores
for each question. The goal was to further test Hypothesis 4,
which posits that study habits are the strongest predictors of
academic success in both the midterm and final exams. The
goal was to identify the best-performing models for making
predictions and to determine the key drivers of academic
performance.

First, we tested tree-based models, including bagging
regressors, Decision Trees, and Random Forest, as these
models are well suited for handling complex, non-linear
relationships and providing insights into feature importances.
We used pandas for data manipulation, scikit-learn for model
implementation, and matplotlib for visualization. Specifi-
cally, for the Bagging model, we employed BaggingRegres-
sor from the sklearn.ensemble module, along with Decision-
TreeRegressor from sklearn.tree. The Bagging model was
used to reduce the variance by averaging multiple decision
trees, thereby providing more stable predictions. For the
Decision Tree model implemented using DecisionTreeRe-
gressor from sklearn.tree, the focus was on interpretability
and understanding the decision-making process behind the
predictions. The Random Forest model, implemented with
RandomForestRegressor from sklearn.ensemble, was used
for its robustness, as it creates an ensemble of decision trees
to improve accuracy and reduce overfitting. For all tree-
based models, hyperparameter tuning was performed using
RandomizedSearchCV from sklearn.model_selection, opti-
mizing parameters such as n_estimators, max_depth, and
min_samples_split. Five-way cross-validation was used to
evaluate the model performance on different data splits and
avoid overfitting.

Next, we tested instance-based models such as k-nearest
neighbors (KNN) and Support Vector Machines (SVM).
For these models, we used pandas for data handling,
scikit-learn for model implementation, and StandardScaler
from sklearn.preprocessing to scale input features. The
KNN model was implemented using KNeighborsRegres-
sor from sklearn.neighbors, with the number of neighbors
(n_neighbors) tuned to optimize the performance. KNN was
chosen for its ability to make predictions based on instance
similarity, making it a valuable model for understanding how
closely related study behaviors predict academic success.
The SVM model was implemented using Support Vector
Regression (SVR) from sklearn.svm with a Radial Basis
Function (RBF) kernel to capture non-linear relationships
between study behaviors and test scores. Hyperparameter
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tuning was performed using RandomizedSearchCV, with
parameters such as C (regularization strength) and gamma
(kernel coefficient) optimized to ensure that the models were
generalized well. Both models were evaluated using a five-
way cross-validation to ensure consistency in comparisons
across different data subsets.

We also tested a Voting Regressor that combined
predictions from RandomForestRegressor, Ridge, Lasso,
and ElasticNet to provide a balanced and robust pre-
diction. Voting Ensemble (VE) was implemented using
sklearn.ensemble ’sVotingRegressor, with fine-tuning per-
formed using RandomizedSearchCV to optimize hyperpa-
rameters for each individual model. This ensemble approach
enabled us to leverage the strengths of each component
model, with the final prediction being the average of the
individual model results. Cross-validation was applied to
ensure that the VE model provided consistent performance
for different subsets of the data.

For all the models, we employed a consistent set of met-
rics to assess their predictive performance. These metrics
included themean square error (MSE), rootmean square error
(RMSE), mean absolute error (MAE), and R-squared (R2).
The MSE was used to quantify the mean square difference
between the predicted and actual exam scores, providing a
general idea of the model’s accuracy. The RMSE was cal-
culated to present this error in the same units as the exam
scores, making it more interpretable. MAE represents the
meanmagnitude of prediction errors, offering amore intuitive
understanding of how far off the predictions were on average.
Finally, R2 was used to assess how much of the variance
in the midterm and final exam scores was explained by the
model. These metrics were calculated separately for midterm
and final-exam predictions, allowing for a comprehensive
comparison of model performance at different stages of the
semester.

Feature importance was calculated for models that offer
this functionality, specifically the Random Forest and VE
models. Feature importance was used to understand the rela-
tive impact of each study’s behavior on predicting academic
performance. The RandomForestRegressor and tree-based
components within the Voting Regressor, both from the
sklearn.ensemble library, were used to rank features based
on their importance to the predictions. For models such as
KNN, SVM, and Bagging Regressor, feature importance was
not applicable, as these models do not inherently offer such
functionality. In these cases, the performance was evaluated
based on predictive accuracy alone.

III. RESULTS AND DISCUSSIONS
This section presents and discusses the key findings of our
study by examining the influence of learning styles, study
habits, and predictive models on academic performance.
The results are then discussed in the context of the engi-
neering education literature. More detailed explanations for
Tables 2–10, including definitions of parameters and inter-
pretation of results, are provided in Appendix D.

A. SAMPLE SIZE AND STATISTICAL POWER
The sample size of 72 participants represented the eligible
population of fourth-year engineering students enrolled in
two programs at the Universidad de Los Llanos during the
study semester. To ensure data consistency and reliability,
only students who completed all sessions and met the specific
criteria for the ILS survey, as detailed in the Methodology
section, were included. Statistical power analyses were con-
ducted to confirm the adequacy of the sample size for the
various analyses. These calculations were performed using
the standard thresholds for significance (α = 0.05) and power
(1−β = 0.80). The results demonstrated that the sample size
was sufficient for detecting medium to large effects across the
statistical methods employed.

For paired t-tests, the power analysis indicated that a sam-
ple size of 34 participants was required to detect a moderate
effect size (d = 0.5), whereas 15 participants were sufficient
to detect a large effect size (d = 0.8). The sample size of
72 participants exceeded these thresholds, ensuring robust
power for these analyses. For ANOVA, which examined the
interaction effects between learning styles and instructional
methods, the required sample size for medium effects (f =

0.25) was 34 participants and for large effects (f = 0.4) was
15 participants. Thus, the sample size exceeded these require-
ments, providing confidence in the validity of the results.

In regression analyses, which were employed to predict
academic performance, the power analysis revealed that
33 participants were required to detect small effect sizes
(f 2 = 0.02) and 16 participants were sufficient for medium
effects (f 2 = 0.15). The inclusion of 72 participants satisfied
these requirements, ensuring that the analysis could detect
meaningful effects. Mixed-effects models, used to account
for repeated measures over 16 weeks, further increased the
statistical power by leveraging repeated observations. These
models incorporate both fixed and random effects, enhancing
precision and reducing variability, making them well suited
for smaller sample sizes.

The machine learning models employed in this study,
including ensemble methods such as voting regressors and
RF, were validated for dataset size using five-fold cross-
validation. This approach ensures that the models are trained
and tested on independent subsets, thereby enhancing their
generalizability. Additionally, the feature-to-sample ratio
remained within acceptable limits, with fewer than 15 predic-
tors, including study behaviors, such as time spent studying,
session frequency, and SQS scores. These factors mitigated
the risk of overfitting even with a modest sample size.

Although larger datasets could further improve gener-
alizability, the findings align with prior studies in educa-
tional research that successfully applied machine learning to
datasets of similar or smaller sizes. Studies byNachouki et al.
[32] and Asthana et al. [33] demonstrated successful aca-
demic performance predictions using datasets of comparable
or smaller sizes, and the sample size and robust statisti-
cal techniques used in this study ensured that the results
were both reliable and meaningful. Future research involving
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larger and more diverse populations could extend the gen-
eralizability of these findings; however, the current study
still provides valuable insights into the relationship between
learning styles, study behaviors, and academic performance
in engineering education.

B. STATISTICAL ANALYSES
Having established the adequacy of the sample size and
robustness of the statistical methods, the results of the anal-
yses are presented. As shown in Table 2, the paired t-test
revealed significant differences in quiz and engagement
scores between the matched and mismatched instructional
methods across all four learning dimensions. In the AR
dimension, active learners showed statistically significant
improvements in quiz scores (t = 4.04, p = 0.0002) and
engagement scores (t = 5.79, p = 8.56 × 10−7) when the
instructional method matched their learning style. Reflective
learners also demonstrated substantial improvements in quiz
scores (t = 8.94, p = 7.92× 10−10) and engagement scores
(t = 5.04, p = 2.26 × 10−5) under matching conditions.

TABLE 2. Scores and p-values for questionnaire and engagement scores.

A similar trend was observed in the SI dimension, where
sensory-perceptive students performed better on quizzes (t =
7.95, p = 4.09× 10−10), and intuitive students also showed
significant improvements (t = 5.74, p = 5.51 × 10−6)
under pairing conditions. These results were also consistent
across the VB and SG dimensions, where both types of
students within each dimension performed better when the
instructional method was aligned with their learning-style
preferences.

As shown in Figure 1, Cohen’s d effect size analysis
demonstrated moderate-to-large effects across most dimen-
sions, with 95% confidence intervals, confirming the robust-
ness of these effects. In the AR dimension, active learners
exhibited a moderate effect on quiz scores (Cohen’s d =

0.62, 95% CI: 0.19, 1.05), and a moderate to large effect on
engagement scores (Cohen’s d = 0.71, 95% CI: 0.19, 1.24).
The confidence intervals, particularly for engagement scores,
suggest that the effect of matching instructional methods on
learning styles is consistently moderate to high for active
learners. Reflective students showed large effects on test
scores (Cohen’s d = 1.63; 95% CI: 1.08, 2.17) and engage-
ment scores (Cohen’s d = 0.92; 95% CI: 0.41, 1.44), with

confidence intervals indicating the high reliability of these
effects.

In the SI dimension, sensory learners exhibited large effect
sizes for test scores (Cohen’s d = 1.17, 95% CI: 0.65, 1.70),
whereas intuitive learners showed large effects (Cohen’s
d = 1.13, 95% CI: 0.62, 1.65). The wide confidence inter-
vals, while still significant, suggest some variation in effect
sizes but maintain the conclusion that matching instructional
methods yields substantial improvements. Moderate-to-large
effect sizes were observed in the VB and SG dimensions,
with confidence intervals reinforcing the consistency of the
observed effects. Visual learners had a large effect size for
engagement scores (Cohen’s d = 1.39, 95% CI: 0.83, 1.96),
indicating a strong effect of the matched instruction.

FIGURE 1. Cohen’s D for questionnaire (a) and engagement scores
(b) with 95% confidence intervals.

The 95% confidence intervals, particularly for test scores,
indicate the precision of the effect size estimates, highlighting
the reliability of the improvements observed when instruction
was tailored to students’ learning style. This also suggests that
while there is some variability, the positive impact of tailoring
instruction on learning style is consistently observed across
all dimensions of learning.

An independent t-test was conducted to compare quiz
scores between the matching and non-matching conditions.
The null hypothesis Ho stated that there was no difference
in mean quiz scores and engagement scores between the two
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conditions, while the alternative hypothesis HA posited that
the mean quiz scores and engagement scores for the matching
condition would differ, specifically being higher than those
for the non-matching condition. A two-tailed t-test was used
to evaluate differences between groups.

The analysis yielded a t-statistic of t = 18.95 and a p-value
of p<1.49 × 10−74 indicating an extremely statistically sig-
nificant difference between the two conditions. The mean
quiz score for the matching condition was 8.63, compared to
7.62 for the non-matching condition. Similarly, for engage-
ment scores, the analysis yielded a t-statistic of t = 17.7 and
a p-value of p<7.03 × 10−66, also demonstrating a highly
significant difference. The mean engagement score for the
matching condition was 17.13, compared to 12.56 for the
non-matching condition. These results provide strong evi-
dence that instructional alignment with students’ preferred
learning styles significantly enhances both their short-term
quiz performance and student engagement.

A two-way ANOVA confirmed significant interaction
effects between learning style and instructional method
across all dimensions, as shown in Figure 2.
In the AR dimension, a highly significant interaction

effect (F(1,572) = 115.51, p < 0.0001) indicated that
active students performed better in lesson 1 (activity-focused
instruction), whereas reflective students performed better
in lesson 2 (reflection-focused instruction). These results
confirm the learning styles hypothesis, as the optimal instruc-
tional method depends on students’ style.

In the SI dimension, the interaction effect was also signif-
icant (F(1,572) = 122.45, p < 0.0001), with sensory learners
performing better in Lesson 1 and intuitive learners per-
forming better in Lesson 2. Similar interaction effects were
observed in the VB (F(1, 572) = 59.86, p < 0.0001) and
SG (F(1,572) = 89.51, p < 0.0001) dimensions, confirming
Hypothesis 1 that students perform better when instructional
methods are aligned with their learning styles.

A central aspect of Pashler et al.’s argument [22] is that,
for the learning styles hypothesis to be validated, studies
must demonstrate a cross-class interaction, whereby students
with different learning styles achieve the best results when
the instructional method aligns with their style, while others
achieve the best results with a different method. We believe
that our study meets the criteria for validating the learning-
style hypothesis. The results of our two-way ANOVA showed
significant cross-class interactions across all four learning
dimensions in the FSLSM. In each case, students performed
best when the instructional method matched their learning
style, while those with a different learning style performed
best when the opposite method was used.

The mixed-effects models revealed significant differences
in both the quiz and engagement scores between the match-
ing and non-matching conditions. For quiz scores, the fixed
effect of instructional alignment indicated that students in
the matching condition scored, on average, 1.01 points
higher than those in the non-matching condition. Similarly,
engagement scores were 4.57 points higher, on average,

FIGURE 2. Interaction effects graphed for each learning dimension
between learning style and instructional method in Lecture 1 vs.
Lecture 2.

under matching conditions compared to the non-matching
condition. Both effects were highly statistically significant,

VOLUME 13, 2025 10987



L. G. I. Domínguez et al.: Data-Driven Approach to Engineering Instruction

confirming that aligning instructional methods with students’
preferred learning styles positively influenced their short-
term academic performance and engagement.

These findings are consistent with the results of paired and
independent t-tests, corroborating the conclusion that instruc-
tional alignment enhances learning outcomes. However, the
mixed-effects models extended these results by accounting
for individual differences in students’ baseline performance
and engagement levels through random effects for Student-
ID. This adjustment ensured that the observed effects of
matching instructional methods were not confounded by the
inherent variability between students, thus strengthening the
validity of the findings.

The incorporation of mixed-effects models also provided a
deeper understanding of the data structure. By modeling both
within-subject correlations and between-subject variability,
the analysis confirmed that the observed differences were
generalized across the population. Furthermore, these models
complemented the Two-Way ANOVA by emphasizing the
role of individual differences, while confirming the broader
trends observed in the interaction effects between instruc-
tional methods and learning styles.

However, although our results support themeshing hypoth-
esis in our specific educational context, it is important to
note that these findings cannot necessarily be generalized to
all contexts. Further research using similar, randomized, and
robust methodologies as employed in our study is needed to
determine the broader applicability of these findings.

The next analysis compared quiz scores and engagement
across the three conditions (matching, unmatched and tuto-
rial) within each of the four learning dimensions. Hypothesis
3 was that tutorials that integrate both teaching styles would
yield higher quiz scores and engagement than either matched
or nonmatched conditions. Table 3 presents the results of quiz
scores.

The results showed that across all dimensions, tutoring
consistently outperformed both the matched and unmatched
conditions, supporting the hypothesis that combining teach-
ing styles improves students’ performance. For example,
in the AR dimension, the mean difference between the
matched and tutoring conditions was -0.70, indicating that
students performed better in tutoring sessions than in classes
tailored to their dominant learning styles. Similar trends were
observed for the SI (-0.53), VB (-0.51), and SG (-0.40)
dimensions.

TABLE 3. Tutorial quiz data summary.

The results show that across all dimensions, tutoring con-
sistently outperformed both the matched and unmatched
conditions, supporting Hypothesis 2 that matching teaching
styles improves student performance. For example, in the AR
dimension, the mean difference between the matched and
tutoring conditions was −0.70, indicating that students per-
formed better in tutoring sessions than in classes tailored to
their dominant learning styles. Similar trends were observed
for the SI (−0.53), VB (−0.51), and SG (−0.40) dimensions.

Tukey’s post-hoc HSD tests revealed that the tutorial con-
dition was significantly better than both the matched and
unmatched conditions across all the dimensions. The largest
differences were observed in the AR and SG dimensions,
where the tutorial approach led to significantly improved quiz
performance comparedwith both thematched and unmatched
conditions.

Engagement scores followed a similar pattern, as shown
in Table 4, where tutorials consistently resulted in higher
engagement across all dimensions.

TABLE 4. Tutorial engagement data summary.

In the AR dimension, for example, the mean difference
between the tutorial and pairing conditions was−5.73, show-
ing that students were significantly more engaged during the
tutorial sessions. Post-hoc tests also confirmed that tutori-
als significantly outperformed both pairing and non-pairing
conditions for all dimensions, with the largest differences
observed in the SG and VB dimensions.

These results are consistent with Felder’s [12] argument
that effective instruction must balance both sides of a learn-
ing dimension. Felder [12] points out that students respond
differently to specific forms of instruction, depending on
their learning style, and that the goal should not be to
exclusively tailor instruction to student preferences but to
provide a balance that engages all students. In our study, the
tutorial condition, which combined both sides of a learning
dimension, supported Hypothesis 2 and Felder’s view that
integrating diverse teaching methods can lead to better learn-
ing outcomes and increased engagement.

C. FACTORS THAT INFLUENCE EXAM PERFORMANCE
The results presented in Table 5 show the relationship
between the average quiz and engagement scores in different
instructional conditions (matched, mismatched, and tutorial)
and midterm and final exam scores. The VIF values for all
predictors were below five, indicating that there was no mul-
ticollinearity among the independent variables. This suggests
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that the predictors are not highly correlated, meaning that
each predictor contributes unique information to the model.

The R2 values for the midterm and final exam predictions
were negative: −0.3682 for the midterm exam model and
−0.0576 for the final exam model. A negative R-squared
value indicates that the models perform worse than a sim-
ple mean-based model, meaning that the predictors do not
explain the variance in exam scores effectively.

In terms of coefficients, the results for the midterm
model show that the coefficient for the mismatch question-
naire (1.3024) suggests a slightly positive relationship with
midterm exam performance, whereas the coefficient for the
tutorial questionnaire (−3.0471) indicates a stronger negative
association. Similarly, in the final exammodel, the coefficient
for the mismatch questionnaire (3.2247) suggests that higher
scores under mismatch conditions may be positively associ-
ated with final exam performance, whereas the coefficient
for the tutorial questionnaire (−3.3986) indicates a negative
relationship. These coefficients suggest that questionnaire
scores under tutorial conditions do not positively predict
exam performance, contrary to expectations.

TABLE 5. Average quiz and engagement scores vs. midterm and exam
scores.

The results of the RF model further highlight the inability
of the learning-style alignment-based questionnaire data to
effectively predict midterm and final exam scores. For the
midterm exam, the model produced an R2 of −0.6414 and an
MSE of 173.74, indicating a poor fit. Similarly, for the final
examination, R2 was−0.0335, with anMSE of 151.69. These
results suggest that the RF model, which is typically effective
at capturing nonlinear relationships, performed worse than
expected and was unable to explain the variance in the exam
scores. Despite the flexibility of the RF model, it did not
improve predictions over the linear regression model.

The negative R2 values in both models demonstrate that
neither the multiple regression model nor the RFmodel could
reliably predict midterm or final exam grades using quiz data
alone. High MSE values indicate significant errors between
predicted and actual exam grades, suggesting that the quiz
data, whether under matched, mismatched, or tutored con-
ditions, did not sufficiently capture the factors driving exam
performance.

One possible explanation for the poor performance of both
models is that exam scores and learning style alignment
may not be strong predictors of long-term academic success,
as measured by midterm and final exams. Exams typically
test accumulated knowledge, critical thinking, and the ability
to apply concepts in broader contexts, which may be more
dependent on factors such as study habits, revision practices,
and independent learning outside the classroom. Therefore,
learning style alignment, while useful for short-term engage-
ment and exam performance, may not directly influence exam
outcomes in the same manner.

The results of the multiple regression analysis, shown in
Table 6, further support the importance of study habits in
influencing exam success. For the midterm exam, the model
explained 34.4% of the variance in the scores (R-squared =

0.344, p < 0.001). Study quality was a significant predictor
(β = 0.537, p < 0.001), as was the frequency of study
sessions (β = 1.523, p= 0.060, marginal significance). How-
ever, the time spent studying before the midterm exam was
not a significant predictor (β = 0.198, p= 0.255). In contrast,
the model for the final exam explained 76.6% of the variance
in scores (R-squared = 0.766, p < 0.001), and the time spent
studying after the midterm exam emerged as the strongest
predictor (β = 0.660, p < 0.001). Study quality (β = 0.246,
p = 0.003) and the frequency of study sessions (β = 1.427,
p = 0.006) were also significant predictors of final exam
performance.

TABLE 6. Study habits vs. midterm and exam scores.

In summary, study habits, particularly time spent study-
ing, were significantly more effective in predicting academic
success than the scores obtained on quizzes and engagement
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surveys. The strong correlations and significant regression
results highlight the role of consistent study habits, high
study quality, and sustained study effort in determining exam
performance. These findings underscore the importance of
long-term study behaviors in achieving academic success,
particularly in the latter part of the semester.

D. PREDICTIVE MODELING OF ACADEMIC
PERFORMANCE
Our study evaluated the predictive ability of several machine-
learning models for midterm and final exam grades using
Moodle logs and SQS data. The models were evaluated using
the performance metrics MSE, RMSE, MAE, and R2, and a
feature importance analysis was performed to understand the
influence of different study behaviors.

The VE model outperformed other models in predicting
midterm exam scores, achieving an R2 of only 0.260 when
broader data such as Moodle logs combined with the total
SQS score were used, as shown in Table 7.

TABLE 7. Midterm model predictions from Moodle data and SQS score.

In comparison, when individual SQS question scores were
used as inputs, the model achieved the lowest MSE (10.38)
and highest R2 (0.861), as shown in Table 8. This higher R2

indicates that the model explained a substantial portion of
the variability in midterm exam performance. This contrast
highlights that the quality of study behaviors, as captured by
specific SQS question responses, played a more significant
role in predicting midterm exam success than simple study
duration or frequency. Using individual SQS item scores, the
model explained 86% of the variance, whereas the broader
measures explained only 26%.

TABLE 8. Midterm model predictions from SQS data.

The feature importance analysis, as shown in Figure 3,
further supports this observation; the total SQS score emerges
as the most critical factor (importance = 0.4921) when using
the combined entries from Moodle and SQS logs. The time
spent studying before the midterm exams also contributed
significantly (importance = 0.3209), while the frequency of
study sessions had a minor impact (importance = 0.1870).

FIGURE 3. Importance of characteristics of study frequency before
midterm exam (FBM), study time before midterm exam (TSBM), and study
quality survey (SQS) score.

This implies that the effectiveness of study practices,
as reflected in the SQS, has a greater influence on midterm
performance than the amount of time or consistency in study
habits.

When analyzing individual SQS item scores, as shown in
Figure 4, the most influential characteristic was reviewing
after class (importance = 0.4302), indicating that students
who systematically reviewed material shortly after class per-
formed better on the midterm exams. Other behaviors, such
as maintaining a distraction-free environment (importance =

0.1076) and utilizing classroom resources (importance =

0.1011) also played a role, highlighting the value of structured
and effective study habits before midterm exams.

FIGURE 4. Importance of each SQS question in predicting midterm grade.
Reading beyond course materials (RBCM), participation in class resources
(ECR), study pace (PS), effective study environment (ESE), after-class
review (RAC), preparation for class (PC), consistency of study sessions
(CSS), and study duration (SD).

In terms of the final exam predictions, the VE model
continued to deliver superior results. Using Moodle logs and
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the SQS total score as input data, the model achieved anMSE
of 18.29 and an R2 of 0.830, as shown in Table 9.

TABLE 9. Final exam model predictions from Moodle and SQS score.

This indicates a strong ability to predict final exam per-
formance, driven primarily by the time spent studying after
midterms, as seen by the feature importance of 0.8193 in
Figure 5. This highlights that as the semester progressed, the
amount of time spent studying became more influential on
final exam success, in contrast to midterm predictions, where
study quality was more important.

FIGURE 5. Importance of characteristics of frequency of study after
midterm (FBM), time of study before midterm (TSAM), and study quality
survey (SQS) score.

In comparison, using individual SQS question scores as
inputs, the model achieved a slightly lower R2 of 0.641,
with an MSE of 37.78, as shown in Table 10. While this is
still a reasonably good fit, it suggests that individual study
behaviors, while important, had less predictive power for final
exams than the total study time recorded after midterms.

TABLE 10. Final exam model predictions from SQS data.

Consistency of study sessions was the most predictive
behavior for final exam performance (importance = 0.2743),

followed by study duration (importance = 0.1643), as shown
in Figure 6.

FIGURE 6. Importance of the characteristics of each SQS question in
predicting the final exam grade.

The cross-validation results provide details on the perfor-
mance of the model for different prediction tasks. For pre-
dicting midterm grades using SQS questions, the VE model
achieved a Mean Cross-Validation (MCV) of 0.768 with
a standard deviation of cross-validation (SCV) of 0.0971,
demonstrating strong and consistent predictive power. When
using Moodle data and SQS total score to predict final exam
grades, the model yielded an MCV of 0.609 with an SCV of
0.163, indicating moderate performance with some variabil-
ity. The model struggled more when using SQS questions to
predict final exam grades, with anMCV of 0.158 and an SCV
of 0.1973, showing weak predictive power and inconsistency.
These data show the strength of the VE model in capturing
meaningful academic patterns and suggest that with further
refinement, it could be applied to a broader range of educa-
tional contexts to improve predictive accuracy.

All data and Python codes used in our study are available at
the links provided in the Data Availability section at the end
of the paper.

E. STATISTICAL AND PRACTICAL SIGNIFICANCE OF
RESULTS (HYPOTHESES 1 TO 3)
The results demonstrated a strong statistical significance
across all analyses, confirming the importance of aligning
instructional methods with students’ learning styles. Paired
t-tests revealed significant improvements in the quizzes and
engagement scores for matching conditions across all learn-
ing dimensions. For instance, in the AR dimension, reflective
learners performed significantly better under matching con-
ditions, with t = 8.94, p = 7.92 × 10−10 for quiz scores
and t = 5.04, p = 2.26 × 10−5 for engagement scores. The
two-way ANOVA results further supported these findings,
identifying significant interaction effects between learning
styles and instructional methods, such as F(1,572) = 115.51,
p<0.0001 in the AR dimension. These results support the
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learning style hypotheses by demonstrating crossover inter-
actions, where students performed best when instructional
methods aligned with their preferences. Mixed-effects mod-
els added further evidence, showing that quiz scores increased
by an average of 1.01 points and engagement scores by
4.57 points under matching conditions, both statistically sig-
nificant (p<0.001).

Beyond the statistical significance, the results have prac-
tical significance. The observed differences in quizzes and
engagement scores highlight improvements in short-term
academic performance and student motivation. These find-
ings are particularly relevant in educational settings such as
engineering, where engaging students with complex materi-
als is important. Furthermore, the tutorial condition, which
integrated both sides of each learning dimension, consistently
outperformed both the matched and non-matched conditions,
supporting Hypothesis 3. For example, Tutorials improved
quiz performance by an average of 0.70 points in the AR
dimension and engagement scores by 5.73 points compared
to matched conditions, demonstrating the practical benefits
of blending instructional approaches. These results suggest
strategies for educators to emphasize the value of person-
alized and integrated teaching methods to improve both
learning outcomes and student engagement.

F. STATISICAL AND PRACTICAL SIGNIFANCE OF RESTULS
(HYPOTHESIS 4)
Statistical analysis highlighted the role of study quality
and habits in predicting midterm and final exam perfor-
mance, as evidenced by the regression and machine learning
models. Multiple regression results demonstrated that, for
midterm exams, the model explained 34.4% of the variance
(R2

=0.344, p<0.001), study quality (β = 0.537, p< 0.001),
and frequency of study sessions (β = 1.523, p = 0.060)
emerged as significant predictors. For the final exams, the
model accounted for 76.6% of the variance (R2

= 0.766,
p < 0.001), where time spent studying after midterm was the
strongest predictor (β = 0.660, p < 0.001), along with study
quality (β = 0.246, p = 0.003) and session frequency (β =

1.427, p = 0.006).
Machine learning models further highlight the predictive

power of study behaviors. For midterm examinations, the
VE model achieved an R2 of 0.861when using individual
SQS question scores, capturing 86% of the variance. This
performance was significantly higher than using measures
such as Moodle logs and total SQS scores (R2

= 0.260). For
the final exams, the VE model achieved an R2

= 0.830 using
combined Moodle and SQS data, highlighting the increasing
importance of total study time as the semester progressed.

Feature importance analysis further emphasized the statis-
tical significance of specific study habits. Reviewing material
shortly after class was the most influential predictor of
midterm success (importance = 0.4302), while time spent
studying after midterm was the dominant predictor of final
exam performance (importance = 0.8193). These findings

highlight the consistency and reliability of study behaviors
as the key drivers of academic success.

While the statistical significance of the findings is robust,
their practical implications are equally important. The results
highlight the strategies for improving academic performance.
For midterms, the quality of study habits, such as review-
ing material after class and maintaining a distraction-free
environment, was a significant predictor, suggesting that
educators should emphasize structured study practices early
in the semester. These behaviors provide students with a
foundation for understanding and effectively applying course
content.

The results of the final exams demonstrated the role of
the time spent studying after midterm. This shift suggests
that students benefit more from sustained effort and consis-
tent study sessions in a cumulative exam approach. The VE
model’s ability to predict final exam performance with high
accuracy (R2

= 0.830) indicated that tracking and encourag-
ing total study time during the latter half of the semester could
lead to meaningful improvements in academic outcomes.

The findings also revealed the limitations of relying solely
on quiz scores or learning style alignment to predict long-
term success. Despite their value for short-term retention
of class material and engagement, these factors did not
significantly predict midterm or final exam performance,
as indicated by the negative R2 values in some models. This
suggests the need to prioritize study habits and behaviors
as long-term predictors of success, shifting the focus from
instructional alignment to creating effective student practices.

Educators can use these findings to design interventions
that promote effective study strategies, such as guided review
sessions or tools for tracking study time. The ability of
machine learning models to identify influential predictors,
such as study quality and time management, suggests the
potential for integrating predictive analytics into academic
support systems, enabling tailored feedback and resources to
help students succeed.

G. CONTEXT IN ENGINEERING EDUCATION
Our results are similar to those found in engineering educa-
tion literature, which showed that while learning styles can
influence study preferences, effective study habits and time
management are key drivers of academic success. Entwistle
and Peterson [28] found that strategic study approaches that
focus on understanding and applying knowledge have a
greater impact on academic outcomes than simply aligning
instruction with students’ learning styles. As mentioned in
the introduction, Heffler [30] concluded that while learn-
ing styles can affect how engineering students allocate their
study time, this does not necessarily lead to better academic
performance.

Kahu and Nelson [42] and Peterson et al. [43] also found
that in engineering education, students’ engagement and
strategic learning are more important than alignment with
the learning style. Their research highlighted the importance
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of cultivating effective study habits that prioritize consistent
effort and deeper engagement with the material rather than
rigidly adhering to learning style preferences.

Our study also showed that consistent study habits, espe-
cially time spent studying, were much more predictive of
midterm and final exam performance than quizzes or engage-
ment scores. This is in line with the findings of Rabia et al.
[29], who found that structured and regular study routines
contributed the most to academic performance regardless of
students’ learning styles. Regression analysis in our study
showed that the time spent studying after the midterm exam
was the most significant predictor of final exam success.

Burton and Dowling [44] and Protassov [45] emphasized
that high-quality study habits (such as active learning, time
management, and regular revision) are more effective in
achieving better academic outcomes than simply increas-
ing the time spent studying. Our study aligns with these
findings, highlighting the importance of well-managed study
times and the need for engineering students to develop
consistent and effective study strategies. The role of time
management, as identified by Adams and Blair [46], was
also supported by our study, which supports the idea that
engineering students who manage their time effectively and
maintain consistent study efforts are more likely to be aca-
demically successful. This observation is further supported
by Chitkara et al. [47], who found that higher-performing
students consistently follow planned schedules, regularly
review lecture materials, and prefer to study in organized,
distraction-free environments. These practices can contribute
to deeper understanding and better retention of course con-
tent, leading to higher academic performance.

Mazumder et al. [48] found a weak correlation between
classroom engagement and academic achievement, suggest-
ing that, while engagement is important, it may not be the
sole determinant of academic success. Their study indicated
that students who performed well academically often adopted
effective study habits outside the classroom, such as group
studies, independent studies, and thorough review of materi-
als, which may contribute more significantly to their success
than class engagement alone.

The results of our study are consistent with broader
research on predicting academic performance using machine
learning models in engineering education. While the random
forest model used in our study performed moderately well
in predicting mid-semester exams, explaining 25.9% of the
variance (R2

= 0.259), it significantly improved in predicting
the final exam, explaining 77.7% of the variance (R2

=

0.777). This change in model performance may indicate that
the importance of different study habits changes over time,
with study quality being more influential at the beginning of
the semester and time spent studying becoming the dominant
predictor near the end.

Other studies, such as ours, have shown that academic per-
formance can be predicted when the right variables are used
in education. Bithari et al. [49] applied ensemble methods

to predict academic performance in engineering students,
achieving an accuracy of 82% using DTs, SVMs, and logis-
tic regression. Their results emphasized the importance of
various educational and demographic attributes in predicting
student outcomes. Raceli andMaaliw ’s [50] study on predict-
ing bachelor’s exam results in electronic engineering found
verbal reasoning to be the most significant predictor with an
accuracy of 92.7%. This study further supports the idea that
cognitive attributes such as study habits can have a substantial
impact on short-term academic performance.

The role of time management in academic success was
also demonstrated in DeJong and Karadogan ’s [51] research,
where grade point averages (GPA) in mathematics and
physics were the strongest predictors of success in engi-
neering programs. In their study, random forest regression
achieved an R2 of 0.67 in predicting graduation GPA, demon-
strating the effectiveness of time spent in key subject areas on
long-term academic success.

Our study’s use of feature importance analysis is similar to
that of Nachouki et al. [52], where high school grades and
grades in key courses such as Discrete Mathematics were
identified as primary predictors of GPA in a four-year IT pro-
gram. Their study also highlighted how different predictors
vary in importance depending on the timing and nature of the
assessment, with consistent study habits playing an important
role in the ultimate performance.

H. CONTEXT IN OTHER ACADEMIC DISCIPLINES
While this study focused on engineering education, the signif-
icance of effective study habits and timemanagement extends
across various academic disciplines. Research indicates that
students in fields such as medicine, business, and the human-
ities also benefit from strategic learning approaches. For
instance, a systematic review by Lone [53] found a positive
correlation between structured study habits and academic
performance among medical students, emphasizing that con-
sistent study routines enhance learning outcomes regardless
of discipline. These findings align with the importance of
regular and well-managed studies, as identified in this study.

Furthermore, a study by Calonia et al. [54] on business stu-
dents demonstrated that time management skills significantly
predicted academic success, underscoring the universal appli-
cability of these competencies. While instructional methods
may vary across disciplines, foundational elements, such as
effective study habits and timemanagement, emerge as strong
determinants of academic achievement in diverse educational
settings. These parallels suggest that the principles identified
in engineering education may be relevant in broader educa-
tional contexts, highlighting the importance of transferable
strategies for fostering academic success.

Our study provides valuable findings that can be applied
to online teaching environments, webinars, and other remote
instructional formats. By adjusting teaching methods to align
with the diverse learning styles of the participants, educa-
tors can create more engaging and effective virtual learning
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experiences. For instance, integrating multimedia presen-
tations and interactive tools for visual-verbal learners or
offering structured discussion forums for active-reflective
learners can enhance learners’ engagement and comprehen-
sion. Furthermore, the predictive models developed in this
study, which use data on study habits and engagement met-
rics, can be adapted to track and support student performance
on virtual platforms, such as Moodle. These approaches
offer a pathway to improving remote education by using
technology and personalized teaching strategies, ultimately
encouraging better academic outcomes in a wide range of
educational contexts.

Machine learning and predictive analytics can also analyze
Moodle data to enhance educational outcomes by predict-
ing performance and identifying at-risk students. Tree-based
models, such as random forests and decision trees, can pin-
point key predictors, such as submission actions, while neural
networks might deliver high classification accuracy in e-
learning contexts. These methods can also address dropout
prediction by incorporating activity data, transcripts, and
demographic information. Integrating these approaches with
learning management systems can enable early interven-
tion and improve the precision of academic performance
predictions.

IV. CONCLUSION
Building on the existing literature, our study presented a
novel contribution to the field of engineering education by
combining an analysis of in-class learning style alignment
with an assessment of study behaviors using machine learn-
ing models to determine which had a greater influence on
academic success. While previous research has explored both
areas independently, our work provided a direct comparison,
suggesting that while aligning teaching methods with learn-
ing styles improved engagement and understanding of the
material in the short term, consistency of study habits and
time management were the strongest predictors of academic
success over the semester.

Aligning teaching methodology with learning styles,
specifically using the FSLSMmodel, led to higher quiz scores
and increased engagement, as demonstrated by the paired
t-test, Cohen’s d effect size, and the plotted crossover interac-
tions from the two-way ANOVA analysis. Furthermore, the
repeated measures ANOVA followed by post-hoc compar-
isons indicated that quiz scores and engagement levels were
highest during tutorials where multiple teaching method-
ologies were combined, suggesting that combining multiple
instructional approaches is more effective than adhering to
a single learning style. This supports the idea that learning
style alignment positively affects short-term comprehension
and retention.

However, the comparison of the learning conditions
aligned with performance on the midterm and final exams
showed no correlation according to the linear regression anal-
ysis. This suggests that the teaching methodology used in

the class has little or no influence on long-term academic
outcomes.

Instead, multiple linear regression indicated that study
habits, study frequency, and time spent studying played a
much larger role in success on the midterm and final exams.
Furthermore, using study behavior data as inputs to several
machine learning models allowed us to predict academic
performance with high accuracy. For example, the VE model
predicted final exam scores with an MAE of 3.18, meaning
that the predictions were, on average, within 3.18 points of
students’ actual scores, and the model explained 83% of the
variability.

This supports the argument that, while learning style align-
ment improves class engagement, which could contribute
to higher attendance and participation, it does not directly
lead to better academic success. Our results suggest that true
academic achievement, particularly in engineering education,
occurs outside of the classroom.

Without effective study habits and regular reviews, knowl-
edge is quickly lost after class. Our findings also indicate
that engineering is a discipline that requires constant practice
and dedication, as supported by our machine-learning fea-
ture analysis. Therefore, educators and policymakers should
focus on promoting good study practices, teaching students
to study effectively, and developing time-management skills
to achieve better academic results.

Future research should, therefore, focus on how students
learn on their own and what factors influence their ability
to learn and apply new materials. Studies could examine
how different learning environments (such as online, hybrid,
and in-person formats) affect the development and effective-
ness of study behaviors. Researchers should also re-evaluate
the role of learning styles in education, considering how
AI-created personalized learning tools can adapt to individ-
ual students’ needs without relying on traditional learning
style frameworks. Our recent study highlighted the poten-
tial of AI-driven learning environments to create adaptive
and resource-efficient educational strategies, which could
serve as a valuable foundation for further exploration in this
area [55]. Future work should focus on integrating study habit
tracking tools and AI-powered feedback systems to provide
students with personalized recommendations to improve their
study techniques and manage their time more effectively.

Furthermore, future studies should assess the long-term
impact of these interventions on academic outcomes. The
role of real-time data collection through learning manage-
ment systems could also be explored, offering personalized
resources and adaptive strategies as students progress through
university. Artificial intelligence and machine learning mod-
els should be further refined to develop more accurate
predictive models of academic success and to better iden-
tify at-risk students earlier in the semester. Finally, future
research should investigate the broader applicability of
these findings across various educational contexts and dis-
ciplines to ensure their relevance and effectiveness in diverse
settings.
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APPENDIX A
WEEKLY ACTIVITIES, TEACHING METHODOLOGY, TOPICS
AND CLASS BREAKDOWN
Tables 11 and 12 outline the weekly structure of the Process
Engineering and Electronics Engineering classes, detailing
the learning dimension from the FSLSM for each week,
topics covered, and corresponding teaching methodologies
used in each lecture and tutorial session. Lecture 1 each
week focused on the left side of the learning dimension (e.g.,
Active for AR), while Lecture 2 focused on the right side
(e.g., Reflective for AR). Tutorials have incorporated a com-
bination of teaching methodologies, providing a balanced
approach. The tables describe the specific class activities and
teaching strategies employed to align these learning styles

APPENDIX B
ENGAGEMENT/SATISFACTION SURVEY
The ESS was designed to assess students’ perceptions of
teaching methods, activities, and overall learning experience
each week. It uses a 5-point Likert scale to gauge agreement
with statements regarding clarity of instruction, relevance
of activities, involvement in class, and satisfaction with the
learning process.

A. STUDENT SATISFACTION/ENGAGEMENT SURVEY
INSTRUCTIONS:Please indicate your level of agreement
with the following statements about the week’s activities and
teaching methods. Use the scale provided:

1. Strongly Disagree
2. Disagree
3. Neutral
4. Accept
5. Strongly Accept
SURVEY QUESTIONS:
1. This week’s activities helped me better understand the

course material.
2. I felt involved during class activities this week.
3. The teaching methods used this week were effective in

helping me learn.
4. I enjoyed the class activities and felt motivated to par-

ticipate.
5. The material presented was clear and easy to under-

stand.
6. The instructor provided adequate support and guidance

during the activities.
7. The activities were relevant to the course objectives.
8. I was able to apply what I learned in practical tasks or

discussions.
9. The pace of the class was appropriate for my learning.

10. Overall, I am satisfied with my learning experience this
week.

APPENDIX C
SQS
The Survey on Quality of Studies evaluates students’ study
habits and behaviors throughout the course. It consists of

ten questions measuring aspects such as study duration, fre-
quency of review, preparation, study environment, and use
of additional resources. Responses were collected on a 5-
point Likert scale, providing insight into the quality and
consistency of students’ study practices.

SURVEY ON THE QUALITY OF STUDY
1. Duration of the study On average, how many hours do you
spend studying for this course outside of class each week?

1 = Less than 1 hour
2 = 1-2 hours
3 = 3-4 hours
4 = 5-6 hours
5 = More than 6 hours
2. Coherence of study sessions
How often do you study for this course each week?
1 = I usually study only before exams
2 = I study occasionally when I have time
3 = I try to study once or twice a week.
4 = I study several times a week
5 = I study almost every day
3. Review and repeat
How often do you review lecture material or previous

assignments?
1 = Just review before exams
2 = I check occasionally, but not regularly
3 = I try to review once or twice a week.
4 = I review the material several times a week
5 = I review the material almost every day
4. Preparing for class
How much time do you usually spend preparing for class

(e.g., reviewing notes and reading ahead) before each lecture?
1 = Less than 15 minutes
2 = 15-30 minutes
3 = 30-45 minutes
4 = 45-60 minutes
5 = More than 1 hour
5. Review after class
How long do you review the material covered in the lecture

after class?
1 = I don’t usually review after class
2 = I review it within a week before the next conference.
3 = I review it within 3-4 days after class.
4 = I review within 1-2 days after class
5 = I review the same day or immediately after class
6. An effective study environment
How often do you study in a distraction-free environment

(e.g., a quiet room or library)?
1 = Never
2 = Rarely (only before exams)
3 = Occasionally (once or twice a week)
4 = Regularly (several times a week)
5 = Always
7. Study pace
How often do you spread out your study sessions instead

of studying them all at once?
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TABLE 11. Weekly activities, topics, and class breakdown: process engineering class.
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TABLE 11. (Continued.) Weekly activities, topics, and class breakdown: process engineering class.

1 = I always get soaked at the last minute
2 = I usually study by heart, but sometimes I distribute my

study time.
3 = From time to time I distribute my studies
4 = I usually spread my studies over several days.
5 = I always distribute my studies
8. Interaction with classroom resources
How often do you use the class resources (e.g., office

hours, discussion forums, study guides) provided by the
instructor?

1 = Never
2 = Rarely (only before exams)
3 = Occasionally (once or twice a month)
4 = Regularly (once a week)
5 = Very regularly (several times a week)
9. Read beyond the course materials
How often do you read materials beyond those assigned in

the course to deepen your understanding?
1 = Never
2 = Rarely (only if assigned as extra credit)

3 = Occasionally (a few times a semester)
4 = Regularly (a few times a month)
5 = Always (frequently throughout the course)
10. Use of additional resources
How often do you use additional resources, such as case

studies and articles, in your study?
1 = Never
2 = Rarely (only if necessary for a project)
3 = Occasionally (once or twice during the semester)
4 = Regularly (a few times a month)
5 = Always (frequently throughout the course)

APPENDIX D
TABLE EXPLANATIONS FOR TABLES 2 TO 10
EXPLANATION FOR TABLE 2: PAIRED T-TEST RESULTS FOR
QUIZ AND ENGAGEMENT SCORES
A paired t-test was used to evaluate the differences in quiz
and engagement scores between matched and mismatched
instructional methods across the Felder-Silverman Learning
Styles Model (FSLSM) dimensions: Active/Reflective (AR),
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TABLE 12. Weekly Activities, Topics and Class Breakdown: Electronic Engineering Class.
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TABLE 12. (Continued.) Weekly Activities, Topics and Class Breakdown: Electronic Engineering Class.

Sensing/Intuitive (SI), Visual/Verbal (VB), and Sequential/
Global (SG). The t-score measured the size of the differ-
ence, and the p-value determined the statistical significance,
with values below 0.05 indicating non-random differences.
Students performed significantly better in both quizzes and
engagement scores when the instructional method matched
their learning styles. For instance, in the AR dimension,
active learners had a t-score of 4.04 (p = 0.0002) for
quizzes, while reflective learners achieved a t-score of
8.94 (p = 7.92 × 10 1

◦). Engagement scores followed
a similar pattern, with active learners scoring 5.79 (p =

8.56 × 10.7) and reflective learners scoring 5.04 (p =

2.26 × 10.5). High t-scores above 5 indicate strong effects,
and p-values below 0.01 confirm the reliability of these
results.

EXPLANATION FOR TABLE 3: TUTORIAL QUIZ DATA
SUMMARY
Table 3 compares the quiz scores across matched, unmatched,
and tutorial instructional conditions within the FSLSM
dimensions. The F-value was used to measure the variance
between conditions, and the p-value confirmed statistical sig-
nificance. Tutorials consistently outperformed the matched
and unmatched conditions. In the AR dimension, the mean
difference between the matched and tutorial conditions was
−0.70. Similar results were observed for the SI (−0.53),
VB (−0.51), and SG (−0.40) dimensions. Tukey’s post-hoc
test confirmed that tutorials significantly exceeded both the
matched and unmatched conditions, demonstrating the value
of combining diverse teaching methods to improve student
performance.

EXPLANATION FOR TABLE 4: TUTORIAL ENGAGEMENT
DATA SUMMARY
Table 4 summarizes engagement scores across matched,
unmatched, and tutorial conditions within the FSLSM
dimensions. Engagement was measured by student involve-
ment during sessions. Tutorials led to significantly higher
engagement across all the dimensions. For example, in the

AR dimension, the mean difference in engagement scores
between the tutorial and matched conditions was −5.73.
The largest improvements were observed in the SG (−7.07)
and VB (−7.46) dimensions compared to the unmatched
conditions. These results suggest that tutorials enhance
both academic performance and engagement, as evidenced
by the consistently high F-values and p-values below
0.0001.

EXPLANATION FOR TABLE 5: AVERAGE QUIZ AND
ENGAGEMENT SCORES vs. MIDTERM AND EXAM SCORES
Table 5 examines the relationship between quiz scores,
engagement levels, and exam performance under the
matched, mismatched, and tutorial conditions. Negative R-
squared (R2) values (−0.3682 for midterms and −0.0576 for
finals) indicate that the models performed worse than a
mean-based prediction, suggesting limited predictive power.
Coefficients varied in direction, with positive coefficients
(e.g., 1.3024 for mismatched quizzes in midterms) indicat-
ing a slightly positive relationship and negative coefficients
(e.g., −3.3986 for tutorial quizzes in finals) indicating
inverse relationships. All Variance Inflation Factor (VIF)
values were below 5, showing no significant multicollinear-
ity among the predictors. The results highlight that quizzes
and engagement scores are not reliable predictors of exam
outcomes.

EXPLANATION FOR TABLE 6: STUDY HABITS vs. MIDTERM
AND EXAM SCORES
Table 6 shows the impact of study habits onmidterm and final
exam scores. The model explained 34.4% of the variance in
the midterm scores (R2

= 0.344) and 76.6% of the variance
in the final scores (R2

= 0.766). For midterms, study quality
(β = 0.537, p < 0.001) and frequency of study sessions (β =

1.523, p = 0.060) were significant predictors, whereas time
spent studying was not (β = 0.198, p = 0.255). For finals,
all predictors were significant, with the time spent studying
(β = 0.660, p < 0.001) having the strongest influence. These
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findings emphasize the importance of consistent, high-quality
study habits for academic success.

EXPLANATION FOR TABLE 7: MIDTERM MODEL
PREDICTIONS FROM MOODLE DATA AND SQS SCORE
Table 7 evaluates the machine learning models predicting
midterm scores using combined Moodle log and Study Qual-
ity Survey (SQS) data. Metrics includeMean Squared Error
(MSE),Root Mean Squared Error (RMSE),Mean Absolute
Error (MAE), and R2. The Voting Ensemble (VE) model
performed best, with an MSE of 55.23, RMSE of 7.43, and
R2 of 0.260, demonstrating moderate predictive ability. The
Random Forest (RF) model performed similarly (MSE =

55.30, R2
= 0.259). The Decision Tree (DT) model had the

weakest performance, with an MSE of 237.53 and a negative
R2 (-2.182). These results indicate that, while VE and RF
moderately captured patterns, the broader dataset had limited
predictive power.

EXPLANATION FOR TABLE 8: MIDTERM MODEL
PREDICTIONS FROM SQS DATA
Table 8 evaluates the models using the individual SQS ques-
tion scores as the input. The VE model achieved the best
performance, with anMSE of 10.38, RMSE of 3.22, andR2 of
0.861, explaining 86% of the variance in the midterm scores.
K-Nearest Neighbors (KNN) and RF performed well, with
R2 values of 0.832 and 0.822, respectively. Support Vector
Regression (SVR)was less effective, with an R2 of 0.536 and
MSE of 34.63. These findings show that detailed SQS data
provide a stronger predictive power than broader measures.

EXPLANATION FOR TABLE 9: FINAL EXAM MODEL
PREDICTIONS FROM MOODLE AND SQS SCORE
Table 9 evaluates the models predicting final exam scores
using the combined Moodle logs and SQS data. The VE
model achieved the best results with anMSE of 18.29, RMSE
of 4.28, and R2 of 0.830, explaining 83% of the variance in
the final scores. KNN also performed well (MSE = 18.08,
R2

= 0.832). Models, such as SVR and DT, showed weaker
performance, with R2 values of 0.475 and 0.671, respectively.
These results highlight the robustness of the VE model in
predicting final exam performance.

EXPLANATION FOR TABLE 10: FINAL EXAM MODEL
PREDICTIONS FROM SQS DATA
Table 10 examines the models using individual SQS scores
to predict final exam outcomes. The VE model achieved the
best results with an MSE of 37.78, RMSE of 6.15, and R2 of
0.641, which explained 64% of the variance. Other models,
such asBagging, RF, andDT, showedmoderate performance,
with DT having an MSE of 39.49 and R2 of 0.624, while
KNN performed poorly (R2

= 0.016). These results indicate
that SQS responses are less effective than broader data in
predicting final-exam outcomes.

APPENDIX I. RECOGNITION
We would like to express our gratitude to the Universidad de
los Llanos for allowing us to conduct this project under the
endorsement granted on August 19, 2023. We also thank the
undergraduate students of the Faculty of Basic Sciences and
Engineering who participated in our study. Additionally, the
authors would like to acknowledge the support of the Spanish
Government (through the Cybersecurity Institute of Spain,
INCIBE), with the Strategic Research Project ‘‘Analysis of
mobile applications from the perspective of data protection:
Cyber-protection and Cyber-risks of citizen information’’
and the International Chair ‘‘Smart Rural IoT and Secured
Environments,’’ within the context of the Recovery, Transfor-
mation, and Resilience Plan financed by the European Union
(NextGenerationEU/PRTR). This contribution is also sup-
ported within the framework of the CiberCSI UNED research
groupwith the research project 2023-2024 LearnIoTOnCloud
(2023-PUNED-0018), as well as the CiberGID innovation
group.

DATA AVAILABILITY
The data supporting the findings of this study are openly
available in the Open Science Framework (OSF) repository at
https://osf.io/6edxb/view_only=3a10ccb8f0534503b07af3c
af3f88eb4. The repository contains three Excel files: (1)
Quiz and Engagement Survey Results, (2) Study Quality
Survey question answers, and (3) Study Data containing
exam grades, total time studying before and after midterm,
frequency of study sessions per week, and SQS scores.
All Python codes used for the predictive models and
analysis of our data are available on GitHub at the fol-
lowing link:https://github.com/lisaza88/All-codes-used-in-
study—A-data-driven-approach-to-engineering-instruction/
tree/d1c95804a55cb5baf3da9ed12ab613b70ad95f6a.

REFERENCES
[1] UNESCO. Accessed: Jun. 20, 2024. [Online]. Available: https://uis.

unesco.org/sites/default/files/documents/education-2030-incheon-frame
work-for-action-implementation-of-sdg4-2016-en_2.pdf

[2] S. J. Armstrong, E. R. Peterson, and S. G. Rayner, ‘‘Understanding and
defining cognitive style and learning style: A Delphi study in the context
of educational psychology,’’ Educ. Stud., vol. 38, no. 4, pp. 449–455,
Oct. 2012.

[3] N. D. Fleming and C. Mills, ‘‘Not another inventory, rather a catalyst for
reflection,’’ Improve Acad., vol. 11, no. 1, pp. 137–155, Jan. 1992.

[4] D. A. Kolb, Experiential Learning: Using Experience as a Source of
Learning andDevelopment. Upper Saddle River, NJ, USA: FT Press, 2014.

[5] P. Honey and A.Mumford, ‘‘Learning styles self-help guide,’’ Peter Honey
Publications, Tech. Rep., 2000.

[6] H. E. Gardner, Frames of Mind: The Theory of Multiple Intelligences.
New York, NY, USA: Basic Books, 2011.

[7] R. Dunn, K. Dunn, and G. E. Price, ‘‘Learning style,’’ J. Educ.
Strategies, vol. 82, pp. 1–13, Apr. 2009.

[8] A. F. Grasha and S.W. Riechmann, TeachingWith Style: A Practical Guide
to Improving Learning by Understanding Teaching and Learning Styles.
London, U.K.: Alliance Publishers, 1996.

[9] R. M. Felder and L. K. Silverman, ‘‘Learning and teaching styles in
engineering education,’’ Eng. Educ., vol. 78, no. 7, pp. 674–681, 1988.

[10] A. Latham, K. Crockett, D. McLean, and B. Edmonds, ‘‘A conversational
intelligent tutoring system to automatically predict learning styles,’’ Com-
put. Educ., vol. 59, no. 1, pp. 95–109, Aug. 2012.

11000 VOLUME 13, 2025



L. G. I. Domínguez et al.: Data-Driven Approach to Engineering Instruction

[11] M. K. H. Kanchon, M. Sadman, K. F. Nabila, R. Tarannum, and R. Khan,
‘‘Enhancing personalized learning: AI-driven identification of learning
styles and content modification strategies,’’ Int. J. Cognit. Comput. Eng.,
vol. 5, pp. 269–278, Apr. 2024.

[12] R. M. Felder and R. Brent, ‘‘Understanding student differences,’’ J. Eng.
Educ., vol. 94, no. 1, pp. 57–72, Jan. 2005.

[13] R. M. Felder and J. Spurlin, ‘‘Applications, reliability and validity of the
learning styles index,’’ Int. J. Eng. Educ., vol. 21, no. 1, pp. 103–112,
2005.

[14] T. L. Holliday and S. H. Said, ‘‘Psychophysiological measures of learning
comfort: Study group learning styles and pulse changes,’’ Learn. Assist.
Rev., Sci. Learn. Center, pp. 7–16, 2008, vol. 13. [Online]. Available:
https://files.eric.ed.gov/fulltext/EJ818223.pdf

[15] V. B. Deshmukh, K. J. Vivek, S. R. Mangalwede, and D. H. Rao,
‘‘Analysis of teacher–student learning style on student feedback
using Manhattan algorithm,’’ in Proc. Int. Conf. Electr., Electron.,
Commun., Comput., Optim. Techn. (ICEECCOT), Dec. 2018,
pp. 1767–1772.

[16] M. Alshammari, R. Anane, and R. J. Hendley, ‘‘Students’ satisfaction in
learning style-based adaptation,’’ in Proc. IEEE 15th Int. Conf. Adv. Learn.
Technol., Jul. 2015, pp. 55–57.

[17] B. A. Rogowsky, B. M. Calhoun, and P. Tallal, ‘‘Providing instruction
based on students’ learning style preferences does not improve learning,’’
Frontiers Psychol., vol. 11, pp. 11–23, Feb. 2020.

[18] J. S. Turner, ‘‘New directions in communications,’’ IEEE J. Sel. Areas
Commun., vol. 13, no. 1, pp. 11–23, Jan. 1995.

[19] K. Nancekivell, P. Shah, and S. A. Gelman, ‘‘Maybe they’re born
with it, or maybe it’s experience: Toward a deeper understanding
of the learning style myth,’’ Frontiers Psychol., vol. 10, pp. 1–11,
Apr. 2019.

[20] P. M. Newton and M. Miah, ‘‘Evidence-based higher education: Does
the ’myth’ of learning styles matter?’’ Frontiers Psychol., vol. 8, p. 444,
Mar. 2017.

[21] K. Aslaksen and H. Lorås, ‘‘The modality-specific learning style
hypothesis: A mini-review,’’ Frontiers Psychol., vol. 9, pp. 1–5,
Aug. 2018.

[22] H. Pashler, M. McDaniel, D. Rohrer, and R. Bjork, ‘‘Learning styles:
Concepts and evidence,’’ Psychol. Sci. Public Interest, vol. 9, no. 3,
pp. 105–119, 2008.

[23] N. Savage, R. Birch, and E. Noussi, ‘‘Motivation of engineering students
in higher education,’’ Eng. Educ., vol. 6, no. 2, pp. 39–46, Dec. 2011, doi:
10.11120/ened.2011.06020039.

[24] J. M. Foley, S. Daly, C. Lenaway, and J. Phillips, ‘‘Investigating student
motivation and performance in electrical engineering and its subdisci-
plines,’’ IEEE Trans. Educ., vol. 59, no. 4, pp. 241–247, Nov. 2016, doi:
10.1109/TE.2016.2523449.

[25] M. S. Zywno, ‘‘Optional activities as ameans of improving student engage-
ment and academic performance in a large engineering class,’’ in Proc. Int.
Conf. Eng. Educ., vol. 1, Sep. 2007, pp. 165–173.

[26] P. Yanik, C. Ferguson, S. Kaul, and Y. Yan, ‘‘Enhancing engineer-
ing student engagement through intensive mentoring and targeted co-
curricular activities,’’ J. Eng. Technol., vol. 34, no. 1, pp. 24–34,
Fall 2021.

[27] A. Tayebi, J. Gomez, and C. Delgado, ‘‘Analysis on the lack of
motivation and dropout in engineering students in Spain,’’ IEEE
Access, vol. 9, pp. 66253–66265, 2021, doi: 10.1109/ACCESS.2021.
3076751.

[28] N. Entwistle and E. R. Peterson, ‘‘Approaches to study and teaching prefer-
ences in higher education: Implications for student grades,’’ Instructional
Sci., vol. 32, no. 5, pp. 415–434, 2004.

[29] M. Rabia, M. J. Khan, and A. Mahmood, ‘‘Study habits and academic
performance of students,’’ Int. J. Educ. Res., vol. 45, no. 2, pp. 112–123,
2020.

[30] B. Heffler, ‘‘Individual learning style and learning styles inventory,’’ Educ.
Stud., vol. 27, no. 3, pp. 307–316, 2001.

[31] D. Doz, M. Cotič, and D. Felda, ‘‘Random forest regression in predicting
students’ achievements and fuzzy grades,’’ Mathematics, vol. 11, no. 19,
p. 4129, Sep. 2023, doi: 10.3390/math11194129.

[32] M. Nachouki, E. A. Mohamed, R. Mehdi, andM. A. Naaj, ‘‘Student course
grade prediction using the random forest algorithm: Analysis of predictors’
importance,’’ Trends Neurosci. Educ., vol. 33, Dec. 2023, Art. no. 100214,
doi: 10.1016/j.tine.2023.100214.

[33] P. Asthana, S. Mishra, N. Gupta, M. Derawi, and A. Kumar, ‘‘Prediction
of student’s performance with learning coefficients using regression based
machine learning models,’’ IEEE Access, vol. 11, pp. 72732–72742, 2023,
doi: 10.1109/ACCESS.2023.3294700.

[34] J. Freeman, ‘‘Active learning boosts student achievement in science, engi-
neering, and mathematics,’’ Proc. Nat. Acad. Sci. USA, vol. 111, no. 23,
pp. 8410–8415, 2014.

[35] M. Prince, ‘‘Does active learning work? A review of the research,’’ J. Eng.
Educ., vol. 93, no. 3, pp. 223–231, Jul. 2004.

[36] R. M. Felder and L. K. Silverman, ‘‘Intuitive understanding of differ-
ences,’’ J. Educ. Psychol., vol. 78, pp. 673–681, May 2005.

[37] E. Schneider, ‘‘The effectiveness of using sensor-based feedback to support
diverse learning styles,’’ Sensors, vol. 15, no. 2, pp. 4097–4123, 2015.

[38] M. J. Prince and R. M. Felder, ‘‘Inductive teaching and learning methods:
Definitions, comparisons, and research bases,’’ J. Eng. Educ., vol. 95, no. 2,
pp. 123–138, Apr. 2006.

[39] J. Maya, J. F. Luesia, and J. Pérez-Padilla, ‘‘The relationship between
learning styles and academic performance: Consistency among multiple
assessment methods in psychology and education students,’’ Sustainabil-
ity, vol. 13, no. 6, p. 3341, Mar. 2021.

[40] N. Zepke, P. Butler, and L. Leach, ‘‘Institutional research and improving
the quality of Student engagement,’’ Qual. Higher Educ., vol. 18, no. 3,
pp. 329–347, Nov. 2012.

[41] T. Vasileva-Stojanovska, M. Vasileva, T. Malinovski, and V. Trajkovik,
‘‘An ANFIS model for predicting the quality of experience in education,’’
Appl. Soft Comput., vol. 34, pp. 129–138, Sep. 2015.

[42] E. R. Kahu and K. Nelson, ‘‘Student engagement at the educational inter-
face: Understanding the mechanisms of student success,’’ Higher Educ.,
vol. 76, no. 5, pp. 665–681, 2018.

[43] E. R. Peterson, S. G. Rayner, and S. J. Armstrong, ‘‘Research into the
psychology of cognitive style and learning style: Is there really a future?’’
Learn. Individual Differences, vol. 19, no. 4, pp. 518–523, Dec. 2009.

[44] L. J. Burton and D. G. Dowling, ‘‘Key factors influencing the academic
success of engineering students: A longitudinal study,’’ in Proc. Eng. Educ.
Res. Symp., Palm Cove, QLD, Australia, 2009, pp. 1–6.

[45] E. A. Protassov, ‘‘Effective study skills and habits for undergraduates
majoring in science, technology, engineering, and mathematics,’’ in Proc.
UWP1Y, 2021, pp. 1–19.

[46] R. V. Adams and E. Blair, ‘‘Impact of time management behaviors on
undergraduate engineering students’ performance,’’ Sage Open, vol. 9,
no. 1, pp. 1–11, Jan. 2019.

[47] N. Chitkara, P. Aggarwal, and P. Singhal, ‘‘Study habits of higher perform-
ing engineering students: A survey,’’ Int. J. Comput. Appl., vol. 97, no. 2,
pp. 33–37, Jul. 2014.

[48] Q. H. Mazumder, S. Sultana, and F. Mazumder, ‘‘Correlation between
classroom participation and academic performance of engineering stu-
dents,’’ Int. J. Higher Educ., vol. 9, no. 3, pp. 240–247, Apr. 2020, doi:
10.5430/ijhe.v9n3p240.

[49] T. B. Bithari, S. Thapa, and K. C. Hari, ‘‘Predicting academic performance
of engineering students using ensemble method,’’ Tech. J.-Assoc. Eng.
Nepal, vol. 2, no. 1, pp. 89–98, Nov. 2020.

[50] R. R. Maaliw, ‘‘Early prediction of electronics engineering
licensure examination performance using random forest,’’ in Proc.
IEEE World AI IoT Congr. (AIIoT), May 2021, pp. 41–47, doi:
10.1109/aiiot52608.2021.9454213.

[51] B. P. DeJong and E. Karadogan, ‘‘Using machine learning to predict
student success in undergraduate engineering programs,’’ in Proc. IEEE
3rd Int. Conf. Comput. Mach. Intell. (ICMI), Apr. 2024, pp. 1–5.

[52] M. Nachouki and M. A. Naaj, ‘‘Predicting Student performance to
improve academic advising using the random forest algorithm,’’ Int.
J. Distance Educ. Technol., vol. 20, no. 1, pp. 1–17, Mar. 2022, doi:
10.4018/IJDET.296702.

[53] R. A. Lone, ‘‘Study habits and academic performance among students:
A systematic review,’’ Res. Rev. Int. J. Multidisciplinary, vol. 6, no. 5,
pp. 132–135, Jun. 2021, doi: 10.31305/rrijm.2021.v06.i05.019.

[54] J. T. Calonia, ‘‘Time management and academic achievement: Examining
the roles of prioritization, procrastination, and socialization,’’ Int. J. Innov.
Sci. Res. Technol., vol. 8, no. 6, pp. 766–770, Jun. 2023, doi: 10.21659/rup-
katha.v8n2.02.

[55] L. G. Isaza Domínguez, F. Velasquez Clavijo, A. Robles-Gómez, and
R. Pastor-Vargas, ‘‘A sustainable educational tool for engineering educa-
tion based on learning styles, AI, and neural networks aligning with the UN
2030 agenda for sustainable development,’’ Sustainability, vol. 16, no. 20,
p. 8923, Oct. 2024, doi: 10.3390/su16208923.

VOLUME 13, 2025 11001

http://dx.doi.org/10.11120/ened.2011.06020039
http://dx.doi.org/10.1109/TE.2016.2523449
http://dx.doi.org/10.1109/ACCESS.2021.3076751
http://dx.doi.org/10.1109/ACCESS.2021.3076751
http://dx.doi.org/10.3390/math11194129
http://dx.doi.org/10.1016/j.tine.2023.100214
http://dx.doi.org/10.1109/ACCESS.2023.3294700
http://dx.doi.org/10.5430/ijhe.v9n3p240
http://dx.doi.org/10.1109/aiiot52608.2021.9454213
http://dx.doi.org/10.4018/IJDET.296702
http://dx.doi.org/10.31305/rrijm.2021.v06.i05.019
http://dx.doi.org/10.21659/rupkatha.v8n2.02
http://dx.doi.org/10.21659/rupkatha.v8n2.02
http://dx.doi.org/10.3390/su16208923


L. G. I. Domínguez et al.: Data-Driven Approach to Engineering Instruction

LAUREN GENITH ISAZA DOMÍNGUEZ was
born in Villavicencio, Colombia, in 1988. She
received the bachelor’s degree in electromechan-
ical engineering from the Universidad Antonio
Nariño, Villavicencio, Colombia, in 2011, the
master’s degree in educational technology man-
agement from the Universidad de Santander,
Colombia, in 2015, and the Ph.D. degree in sus-
tainability from the Universidad Centro Panamer-
icano de Estudios Superiores (CEPES), Mexico,

in 2021. She is currently pursuing the Ph.D. degree in industrial technology
with the Universidad Nacional de Educación a Distancia (UNED), Madrid,
Spain.

She had experience in both academia and industry. She is currently
an Electromechanical Engineering Professor with the Universidad de los
Llanos, Villavicencio. She has taught and conducted research at higher
education institutions and has been presented at international conferences.
She has published in indexed journals on topics, such as educational robotics,
air quality, educational technology, and machine learning. In industry, she
was a HSEQ and an Electrical Works Inspector of the Aviation Fuel System
Modernization Project with CACOM2, Villavicencio, overseeing the execu-
tion of activities within the contracted budget and ensuring compliance with
the Industrial Safety, Environmental, and RETIE Regulations.

ANTONIO ROBLES-GÓMEZ (Senior Member,
IEEE) was born in Albacete, Spain, in 1980.
He received the M.Sc. and Ph.D. degrees in com-
puter science engineering from the University of
Castilla-La Mancha, in 2004 and 2008, respec-
tively. He is currently an Associate Professor with
the Control and Communication Systems Depart-
ment, UNED. He is currently a Vice-Dean of
Technology, Infrastructures, and Economics with
the Computer Science Engineering Faculty. He has

also been the Coordinator of the official master’s degree in computer science
engineering. He has participated in a large number of projects financed
in public calls, some of which have special relevance for companies and
administrations with an international scope, international journals, and con-
ferences. He teaches graduate and postgraduate courses related to network
interconnections and security domains. His research interests include quality
of service support in distributed systems and the development of infrastruc-
ture and algorithms for e-learning and cybersecurity. He is currently the
Vice-Chair of the IEEE Spain Section Board. He belongs to the Blockchain
and Cybersecurity local groups in this section.

RAFAEL PASTOR-VARGAS (Senior Member,
IEEE) received the M.Sc. degree in physics from
Complutense University, Madrid, Spain, in 1994,
and the Ph.D. degree in computer science from
UNED, Madrid, in 2006. He is currently an
Associate Professor with the Control and Com-
munication Systems Department, UNED. He is
currently the Dean of the Faculty of Computer
Science Engineering. He was an Innovation Man-
ager with the Innovation and Development Center,

UNED, from 2004 to 2009, and a General Manager for incorporating inno-
vative services into UNED’s learning model, from 2009 to 2011. He is
currently an Associate Professor with the Control and Communication Sys-
tems Department (UNED). He has participated in a large number of projects
financed in public calls, some of which have special relevance for compa-
nies and administrations with an international scope, international journals,
and conferences. He teaches graduate and postgraduate courses related
to network interconnections and security domains. His research interests
include quality of service support in distributed systems, applied machine-
learning algorithms, and the development of infrastructure and algorithms
for e-learning and cybersecurity. He is the current Chair of the Blockchain
Local Group and belongs to the Cybersecurity Local Group of the IEEE
Spain Section.

11002 VOLUME 13, 2025


