
Received 17 October 2024, accepted 29 December 2024, date of publication 9 January 2025, date of current version 15 January 2025.

Digital Object Identifier 10.1109/ACCESS.2025.3527506

Event-Triggered Asynchronous Dissipative
Control for Markov Jump Systems With
Unknown Probabilities
HUIYING CHEN 1, MINGSHUAI JIANG 1, RENWEI LIU 1, ZUXIN LI 2,
AND YANFENG WANG 3
1Huzhou Key Laboratory of Intelligent Sensing and Optimal Control for Industrial Systems, School of Engineering, Huzhou University, Huzhou, Zhejiang
313000, China
2School of Intelligent Manufacturing, Huzhou College, Huzhou, Zhejiang 313000, China
3School of Mechanical and Electrical Engineering, Suqian University, Suqian, Jiangsu 223800, China

Corresponding author: Huiying Chen (hychen@zjhu.edu.cn)

This work was supported in part by Zhejiang Provincial Public Welfare Technology Application Research Project of China under Grant
LGG21E020001, in part by the Natural Science Foundation of Huzhou under Grant 2022YZ24, in part by Huzhou Key Laboratory of
Intelligent Sensing and Optimal Control for Industrial Systems under Grant 2022-17, in part by Zhejiang Key Laboratory for Industrial
Solid Waste Thermal Hydrolysis Technology and Intelligent Equipment, and in part by Suqian Basic Research Program of Natural Science
Foundation Project under Grant K202224.

ABSTRACT This paper investigates the issue of the event-triggered asynchronous dissipative control for
Markov jump systems with unknown probabilities and packet losses. A hidden Markov model is used
to describe the asynchronous problem. A Bernoulli model and an event-triggered scheme are adopted to
address the packet loss and reduce the transmission rate of sampled signals, respectively. Furthermore,
there exists unknown probability information of the controller. Then, Lyapunov functions are constructed to
obtain sufficient conditions for the stochastic stability and dissipative performance of the closed-loop system.
Moreover, a design method for controller parameters and event-triggered matrices is proposed. Finally, the
effectiveness of the proposed approach is verified through a three-modal numerical example.

INDEX TERMS Markov jump systems, asynchronous control, event-triggered mechanism, packet losses,
unknown probabilities.

I. INTRODUCTION
In recent years, Markov jump systems (MJSs) have been
widely concerned in various fields. These systems consist of
multiple subsystems, which dynamic characteristics change
with the alterations in the external environment or the
internal structure of the system. At any given time, only
one subsystem operates with stochastic jumps occurring
among subsystems based on specific transition probabilities.
Researchers have not only explored the theoretical aspects
of MJSs, but also applied them to practical engineering
controls [1], [2]. In [3], MJS was applied to mobile
communication, ensuring the continuity of communication.
In [4], the adaptive strategy of MJSs under mixed attack
was used in the mass-spring model. In addition, MJSs have
also been used in the automotive industries and biological
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systems, reflecting that MJSs have been applied in different
fields in recent years, especially in the control field.

With the in-depth integration of control theory and
communication technology, the networked control system
has been developed rapidly. At the same time, the continuous
expansion of the control scale has brought many new prob-
lems such as communication delays and packet losses, which
inevitably lead to asynchronous patterns. However, previous
researches [5], [6], [7] mainly focused on modal indepen-
dence or modal complete synchronization, ignoring that
achieving complete synchronization in real-world systems is
very difficult. Aware of these limitations, scholars focused
on the research of asynchronous control. The hidden Markov
model (HMM) in [8], [9], and [10] was favored by many
scholars for its excellent performance in modeling asyn-
chronous phenomena. Subsequently, researchers explored
the sliding mode control of discrete semi-MJSs under
asynchronous conditions. They described the asynchronous
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relationship between the controller and system modes by
using the HMM in [11]. Another work [12] expressed the
advantage of using the HMM by researching the generalized
non-fragile asynchronous controller in the neutral MJS.
Similarly, in T-S fuzzy MJSs, an HMM in [13] was
established to characterize the asynchronous modes between
the controller and system modes, effectively addressing the
issue of incomplete premise matching in output tracking
asynchronous control.

On the other hand, due to the large scale and complex
structure of modern industrial control, researchers have
focused on the analysis of limited network bandwidth in
recent years. Event-triggered data transmissionmethods were
proposed to reduce communication time, avoid network
communication congestion and make reasonable use of
network resources. These methods were extensively applied
in [14], [15], and [16]. The proposal of a fixed lower
bound event-triggered scheme in [17] has avoided the Zeno
problem caused by external interference. Researchers further
introduced the zero-order holder and adopted Lyapunov
functions to reject DoS interference attacks and maintain the
control performance of the closed-loop system. The proposed
event-triggered sliding-mode control method was applied to
aircraft engine systems in [18], minimizing the convergence
region in the vicinity of the sliding surface. In [19], the
dynamic event-triggered mechanism was studied for singular
MJS, and the traffic was further reduced by introducing a
dynamic auxiliary variable.

As a critical parameter of mode-switching in MJSs, the
probability information inevitably affects the performance
of the system. Many previous studies often assumed that
conditional probabilities in MJSs are completely known
in [20], [21], and [22]. However, many practical engineering
applications are located in complex network environments,
which makes it difficult to obtain accurate probability
information. To deal with this issue, control problems with
partially unknown probabilities in MJSs were considered
in [23], [24], and [25]. For example, in [23], the sliding mode
control method was applied to a Markov jump system with
partially known transition probabilities under the premise
of time-varying actuator failures. The stability problem of
MJS with partially unknown transition probabilities was
investigated in [25] under the presence of time-varying delays
and deceptive attacks.

Over the past decades, the packet loss issue in network
control systems has been extensively focused on by many
scholars, and different handling methods have been proposed
in [26], [27], [28], [29], [30], and [31]. For example, the
asynchronous dynamic system in [26] regarded the packet
loss as an event to design a filter with H∞ performance.
The packet loss issue in [29] was modeled as a binary
exchange sequence, with its values being governed by a
Bernoulli probability distribution. For the fuzzy networked
system in [30], the packet loss was described by a random
variable that obeys a Bernoulli distribution. By constructing

suitable Lyapunov functions, the sufficient conditions for
the existence of fuzzy filters were proposed. In [31], packet
loss and reception were described by a Markov chain, better
illustrating the influence of the packet loss situation at the
current moment in a real network on that at the next moment.

To our knowledge, many studies have separately con-
sidered the cases of asynchrony, the packet loss, and the
unknown probability. However, there are few works that
simultaneously address all three scenarios, which is the
motivation of this paper. The primary contributions of this
paper include the following:

1) In this paper, a more practical model is established.
On this basis, a dissipative control scheme based on the
event-triggered mechanism is proposed.

2) Using Lyapunov functions and relaxation matrix
technology, the collaborative designmethod of the con-
troller and event trigger is further simplified. Compared
with the existing work [27], a more reasonable packet
loss model is adopted to effectively avoid the long-term
zero input phenomenon between the controller and the
actuator.

The subsequent content of this paper is structured as
follows. Section II describes a series of studied mod-
els. Section III provides sufficient conditions and related
parameter settings for the closed-loop system to meet two
performance requirements. Section IV presents simulation
results to verify the effectiveness of the scheme. Section V
summarizes the work of this paper and provides prospects for
further work.

A. NOTATIONS
Please refer to Table 1 for the symbols and their meanings.

TABLE 1. Symbols and their meanings.

II. PRELIMINARIES
In this paper, consider the following Markov jump plant
model: {

xk+1 = Aιk xk + B1ιkuk + B2ιkwk
yk = Cιk xk + D1ιkuk + D2ιkwk

(1)

where xk ∈ Rnx , yk ∈ Rny , uk ∈ Rnu indicate the system
state, the controlled output, the control input, respectively,
and wk ∈ Rnw refers to the disturbance input with wk ∈

l[0, +∞). Aιk , B1ιk , B2ιk , Cιk , D1ιk , D2ιk are known real
matrices with appropriate dimensions. The Markov jump
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process of system (1) is described by the modal parameter
ιk (ιk ∈ L, L = {1, 2, · · · , l}) and conforms to the transition
probability matrix 2 = [θst ], which the transition probability
θst is defined as:

Pr{ιk+1 = t|ιk = s} = θst (2)

apparently, θst ∈ [0, 1] and
∑L

t=1 θst = 1, for ∀s, t ∈ L.

FIGURE 1. Asynchronous control structure block diagram.

In practice, the limitation of network communication
bandwidth may cause network congestion. In this paper,
the event trigger is introduced to reduce the transmission
frequency of sampled signals. The main event-triggered
mechanism is given by:

(xtk − xk )TG(xtk − xk ) ≤ εxTk Gxk (3)

we attempt to compare the previously transmitted state xtk
with the current system state xk . If the relationship between
xtk and xk conforms to (3), the current system state xk will not
be transmitted, otherwise it will be transmitted. Among them,
ε > 0 stands for the trigger threshold parameter and G is the
positive definite weighting matrix to be designed.

By utilizing a zero-order holder, the signal received by the
controller is ensured to meet the following requirements.

x̂k = xtk , k = [tk , tk + 1, · · · , tk+1) (4)

The transmission error is defined as

ek = x̂k − xk (5)

The inequality (3) can be stated as

ekTGek ≤ εxTk Gxk (6)

Remark 1: The trigger’s transmission time {t0, t1, t2, · · · }
falls within the sampling time {0, 1, 2, · · · }. By utilizing the
event-triggeredmechanism (3), data transmission occurs only
at certainmoments, effectively reducing the frequency of data
transmission. Especially, when ε = 0, the sampled signal will
be transmitted periodically. Besides, a performance indicator,
denoted as the data transmission rate TP = tS/tT × 100%,
is appointed to evaluate communication performance, where
tS and tT are the transmission times of sampled data when
using the event-triggered mechanism and without using it,
respectively. A lower data transmission rate indicates better
communication performance.

By utilizing the theory of HMM, the following asyn-
chronous controller is employed:

uk = Kσk x̂k (7)

where Kσk represents the controller gain that needs to
be determined. The controller operates asynchronously in
comparison to the original systemmode. The controller mode
σk is affected by the mode ιk of system (1) and meets the
conditional probability matrix 8 = [φsg]. The conditional
probability φsg is defined as:

Pr{σk = g|ιk = s} = φsg (8)

which indicates the probability of the controller operating in
mode g when the system (1) operates in mode s. Apparently,
φsg ∈ [0, 1] and

∑L
g=1 φsg = 1, for ∀s, g ∈ L.

Remark 2: In this paper, the asynchronous problem
between the controller modes and the system modes is
described by HMM. Their modal transitions are controlled by
ιk and σk , respectively, where the controller modal parameter
σk is indirectly affected by the original system modal
parameter ιk through the conditional probability matrix 8.
It should be noted that the HMM asynchronous model also
encompasses both synchronous (i.e. 8 = I ) and pattern-
independent (i.e. σk ∈ {1}) in [32], so the asynchronous
controller under the HMM scheme covers a wider range.

Note that the controller (7) and the original system (1) are
transmitted information through the network. Deliberating
issues such as unstable network signals and blockages,
the system status information may not be successfully
transmitted to the controller, resulting in the packet loss.
Therefore, this paper introduces a Bernoulli stochastic
process to characterize the packet loss process:

ûk = αkuk + (1 − αk )ûk−1 = αkKσk
x̂k + (1 − αk )ûk−1

(9)

where αk indicates the Bernoulli process, when αk = 1,
namely, successful transmission, ûk = uk ; When αk = 0,
namely, transmission failed, ûk = ûk−1. we assume that αk
satisfies

Pr{αk = 1} = α,Pr{αk = 0} = 1 − α (10)

it can be concluded that

E{αk} = α,E{α2
k } = α (11)

Further defining ᾱk = αk − α, therefore

E{ᾱk} = 0,E{ᾱ2
k } = ᾱ2 (12)

where ᾱ =
√

α − α2.
Remark 3: Note that in most literature, the packet loss

model ûk = αkuk sets the input of the actuator to zero
when the controller output is lost. However, in this paper,
the final input is not set to zero, which is a more reasonable
approach. Specifically, in cases of continuous packet losses,
setting the actuator input to zero for a long timewill inevitably
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degrade system performance. Therefore, the packet loss
model adopted in this paper is worth studying.

Deliberating the complexity of the actual system,
we assume that conditional probabilities are partially
unknown, that is, in the following form:

8 =

φ11 ? ?
? ? φ23
? φ32 ?

 (13)

where ‘‘?’’ means the probability is unknown. For ∀s ∈ L,
we define ℓ = ℓsK + ℓsU , in which ℓsK =

{
g : φsg is known

}
ℓsU =

{
g : φsg is unknown

} (14)

Remark 4: In the field of asynchronous control of
Markov jump systems based on HMM, most research
assumes that conditional probabilities are known. How-
ever, obtaining complete information about the conditional
probability is extremely challenging. Hence, this paper
explores a more complex scenario where conditional
probabilities are partially unknown. It is worth mention-
ing that under this framework, there are two special
cases: (1) Conditional probabilities are completely known
(i.e. ℓsU = ∅); (2) Conditional probabilities are completely
unknown (i.e. ℓsK = ∅).

For the following, we define ιk = s, ιk+1 = t , σk = g to
express conveniently.

Combining (1), (5), (7) and (9), the following closed-loop
dynamic system is gained:

xk+1 = Āsgxk + αkB1sKgek + (1 − αk )B1sûk−1

+B2swk
yk = C̄sgxk + αkD1sKgek + (1 − αk )D1sûk−1

+D2swk

(15)

where Āsg = As + αkB1sKg, C̄sg = Cs + αkD1sKg.
To foster the work of this paper, some vital lemmas and

definitions are listed as follows.
Definition 1 [33]: The system (15) is stochastically

stable, if wk ≡ 0 and the following condition is fulfilled for
the arbitrary initial condition (x0, ι0)

E

{
∞∑
k=0

||xk ||2|x0, ι0

}
< ∞ (16)

Definition 2 [33]: For a scalar γ > 0, matrices µ ≤ 0,
ν and symmetric ϖ , the closed-loop system (15) is strictly
(µ, ν,ϖ )− γ− dissipative, for any positive integer N , when
wk ∈ l[0, +∞) and the following condition is satisfied under
the zero initial condition

N∑
k=0

E {G (wk , yk)} ≥ γ

N∑
k=0

wT
kwk (17)

where G(wk , yk ) = yTkµyk + 2yTk νwk + wT
kϖwk and µ =

−UT
1 U1 is negative semi-definite.

The main focus of this paper is to design an asynchronous
controller in the form of (7) in order to ensure that the
closed-loop control system (15) satisfies both conditions (16)
and (17). This will make the closed-loop system (15)
stochastically stable and strictly (µ, ν,ϖ ) − γ− dissipative.

III. MAIN RESULTS
Based on the principles of the stochastic stability and
dissipation, we attempt to study two types of performance
of the closed-loop system (15) and derive the corresponding
sufficient conditions as follows.
Theorem 1: The closed-loop system (15) is fulfilled for

Definition 1 and Definition 2, if there contains a matrix Kg ∈

Rnu×nx , positive definite matrices Ps ∈ Rnx×nx , G ∈ Rnx×nx ,
Hsg ∈ Rnx×nx , for ∀s ∈ L, g ∈ ℓsU , satisfying

5K
s +

(
1 − φKs

)
Hsg < Ps (18)

and for ∀s, g ∈ L, satisfying[
℘̄1 ϑsg
∗ πsg

]
< 0 (19)

where 5K
s =

∑
g∈ℓsK

φsgHsg, φKs =
∑
g∈ℓsK

φsg,

℘̄1
s = diag

{
−P̄−1

s , −P̄−1
s , −I , −I

}
,

ϑsg =

 Ā∗
sg αB1sKg (1 − α)B1s B2s

f B1sKg f B1sKg −f B1s 0
U1C̄∗

sg αU1D1sKg (1 − α)U1D1s U1D2s
f U1D1sKg f U1D1sKg f U1D1s 0

 ,

πsg =


εG− Hsg 0 0 −C̄∗T

sg ν

∗ −G 0 −(αD1sKg)T ν

∗ ∗ −I −
(
(1 − α)D1s

)T
ν

∗ ∗ ∗ Qs

 ,

Ā∗
sg = As + αB1sKg, C̄∗

sg = Cs + αD1sKg,

Qs = −DT
2sν − νTD2s + γ I − ϖ,

f =

√
α − α2, P̄s =

l∑
t=1

θstPt .

Proof: First, we derive some useful conditions from (18)
and (19). From (18), we have

l∑
g=1

φsgHsg − Ps < 0 (20)

when φks < 1
l∑

g=1

φsgHsg − Ps

= 5K
s + (1 − φKs )

∑
g=ℓsU

φsg

1 − φsg
Hsg − Ps

=

∑
g=ℓsU

φsg

1 − φsg

{
5K
s + (1 − φKs )Hsg − Ps

}
(21)

and when φks = 1, apparently, (18) is equivalent to (20).
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Next, adopting Schur complement to (19), we have{
ϒ1sg

1
= ℘1

sg − ϑT
sg
(
℘̄1
s
)−1

ϑsg < H̃sg

ϒ2sg
1
= ℘2

s − h̄Tsg
(
℘̄2
s
)−1

h̄sg < Ĥsg
(22)

where Ĥsg = diag{Hsg, 0, 0}, H̃sg = diag{Hsg, 0, 0, 0},

℘1
sg =


εG 0 0 −C̄∗T

sg ν

∗ −G 0 −(αD1sKg)T ν

∗ ∗ −I −
(
(1 − α)D1s

)T
ν

∗ ∗ ∗ Qs

 ,

℘2
s =

 εG 0 0
∗ −G 0
∗ ∗ −I

 , ℘̄2
s = diag

{
−P̄−1

s , −P̄−1
s

}
,

h̄sg =

[
Ā∗
sg αB1sKg (1 − α)B1s

f B1sKg f B1sKg −f B1s

]
.

Subsequently, we introduce the following modal-
dependent Lyapunov-Krasovskii function

Vk = xTk Pιk xk (23)

Introducing ς1k =
[
xTk eTk ûTk−1

]T
, ςk =

[
ςT1 wTk

]T
and indicating 1Vk which is the forward difference of Vk ,
we have

E {1Vk} = {Vk+1 − Vk |xk , ιk = s}

= E
{
xTk+1Ptxk+1 − xTk Psxk

}
= E


l∑

t=1

l∑
g=1

θstφsgxTk+1Ptxk+1 − xTk Psxk


=E


l∑

g=1

φsgς
T
k

[
h̄Tsg
BT2s

]
P̄s
[
h̄sg B2s

]
ςk − xTk Psxk


(24)

Based on the event-triggered mechanism (6), we know

εxTk Gxk − eTk Gek ≥ 0 (25)

Substituting (25) into (24), we have

E {1Vk} ≤ E{

l∑
g=1

φsgς
T
k

[
h̄Tsg
BT2s

]
P̄s
[
h̄sg B2s

]
ςk

+ ςT1k℘
2
s ς1k − xTk Psxk} (26)

Noticing that wk ≡ 0 in the definition of stochastic
stability, thus combining (26), it is easy to gain that

E {1Vk} ≤ E


l∑

g=1

φsgς
T
1kϒ2sgς1k − xTk Psxk


< E

ςT1k

l∑
g=1

φsgĤsgς1k − xTk Psxk


< E

xTk
 l∑
g=1

φsgHsg − Ps

 xk



≤ δE
{
xTk xk

}
(27)

where ‘‘<’’ is gained from (22), and

δ = λmax
s∈L

(
l∑

g=1
φsgHsg − Ps

)
. Hence

E

{
∞∑
0

1Vk

}
= E {V∞ − V0} ≤ δE

{
∞∑
0

xTk xk

}
(28)

From (18) and (20), we get that δ < 0; therefore,

E

{
∞∑
0

xTk xk

}
< ∞ (29)

which conforms to Definition 1; namely, the stochastic
stability of the system (15) is verified.

Besides, the system (15) will be proven to be strictly
(µ, ν,ϖ ) − γ− dissipative. The performance indicator J is
described as below:

J =

∞∑
k=0

E
{
wT
k (γ I − ϖ)wk − yTkµyk − 2yTk νwk

}
(30)

Under the zero initial condition, we have

J ≤

∞∑
k=0

E{wT
k (γ I − ϖ)wk − yTkµyk − 2yTk νwk

+ 1Vk + εxTk Gxk − eTk Gek}

≤

∞∑
k=0

E


l∑

g=1

φsgς
T
k ϒ1sgςk − xTk Psxk


<

∞∑
k=0

E

ςTk

l∑
g=1

φsgH̃sgςk − xTk Psxk


=

∞∑
k=0

E

xTk
 l∑
g=1

φsgHsg − Ps

 xk

 < 0 (31)

The two ‘‘<’’ can be gained from (22) and (20),
respectively.Moreover, byDefinition 2, condition (17) is met.
Thus, this proof is validated.
Remark 5: By utilizing the sufficient condition provided in

Theorem 1, we can ensure that the closed-loop system (15) is
stochastically stable and strictly (µ, ν,ϖ ) − γ− dissipative.
However, the nonlinear term and a high-dimensional gain
matrix make the operation complex, and we simplify the
conditions by introducing a relaxation matrix. Among them,
linearization processing is more convenient for controller
design.

Next, we present a solution method for determining the
parameters of the event-triggered asynchronous controller
based on Theorem 1, using a relaxation matrix. This method
is detailed in Theorem 2.
Theorem 2: The closed-loop system (15) is fulfilled for

stochastically stable and strictly (µ, ν,ϖ ) − γ− dissipative,
if there contain matrices K̄g ∈ Rnu×nx , E ∈ Rnx×nx , positive
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definite matrices P̄s ∈ Rnx×nx , H̄sg ∈ Rnx×nx , for ∀s ∈ L,
gj ∈ g ∈ ℓsK , g̃j ∈ g̃ ∈ ℓsU , j = 1, 2, · · · L, satisfying−P̄s 01sg 02sg̃

∗ �sg 0
∗ ∗ �sg̃

 < 0 (32)

and for ∀s, g ∈ L, satisfying4sg Nsg Msg
∗ −I 0
∗ ∗ ∂

 < 0 (33)

where

01sg = [
√

φsg1 P̄s · · ·
√

φsgj P̄s · · ·
√

φsl P̄s],

02sg̃ = [02sg̃1 · · · 02sg̃j ],

02sg̃j =

√
1 −

∑
φsgj P̄s,

�sg = diag{−H̄sg1, · · ·, −H̄sgj, · · ·, −H̄sl},

�sg̃ = diag{−H̄sg̃1, · · ·, −H̄sg̃j, · · ·, −H̄sl},

C̃sg = CsE+αD1sK̄g,

4sg =


εḠ+H̄sg − ET − E 0 0 −C̃T

sgν

∗ −Ḡ 0 −
(
αD1sK̄g

)T
ν

∗ ∗ −I −
(
(1 − α)D1s

)T
ν

∗ ∗ ∗ Qs

,

Nsg=

[
U1C̃sg αU1D1sK̄g (1 − α)U1D1s U1D2s

f U1D1sKg f U1D1sKg −f U1D1s 0

]T
,

Msg =
[√

θs1M̄T
sg

√
θs2M̄T

sg · · ·
√

θslM̄T
sg
]
,

M̄sg =

[
AsE+αB1sK̄g αB1sK̄g (1 − α)B1s B2s

f B1sK̄g f B1sK̄g −f B1s 0

]
,

∂ = diag{−P̄1, −P̄2, · · ·, −P̄l}.

When there is a feasible solution to (32) and (33), the
controller gain and the event-triggered weighting matrix can
be expressed as bellow:

Kg = K̄gE−1,G = (ET )−1ḠE−1 (34)

Proof: First, we define

P̄s = P−1
s , H̄sg = H−1

sg , K̄g = KgE, Ḡ = ETGE (35)

where E is an invertible slack matrix. Adopting a congruence
conversion to (32) by diag{Ps, I , · · · , I }, we have−P̄s 0̄1sg 0̄2sg

∗ �sg 0
∗ ∗ �sg̃

 < 0 (36)

where 0̄1sg = [
√

φsg1 I · · ·
√

φsgj I · · ·
√

φslI ],

0̄2sg̃ = [ 0̄2sg̃1 · · · 0̄2sg̃j ], 0̄2sg̃j =

√
1 −

∑
φsgj I .

Next, adopting Schur complement, we know that (36) is
equivalent to (18). Besides, the following inequality holds:

(H̄sg − E)TH̄−1
sg (H̄sg − E) ≥ 0 (37)

hence

−ETH̄−1
sg E ≤ H̄sg − ET

− E (38)

Then, (33) is written as 4̄sg Nsg Msg
∗ −I 0
∗ ∗ ∂

 < 0 (39)

where

4̄sg =


εḠ− ET H̄sgE 0 0 −C̃T

sgν

∗ −Ḡ 0 −(αD1sK̄g)
T
ν

∗ ∗ −I −((1 − α)D1s)T ν

∗ ∗ ∗ Qs


Ordering 9 = diag{(ET)−1, (ET)−1, I , · · · , I }, and using

a congruence conversion to (39) by 9, we get 4̃sg Ñsg M̃sg
∗ −I 0
∗ ∗ ∂

 < 0 (40)

where

4̃sg =


εG− Hsg 0 0 −C̄∗T

sg ν

∗ −G 0 −(αD1sKg)T ν

∗ ∗ −I −((1 − α)D1s)T ν

∗ ∗ ∗ Qs

 ,

Ñsg =

[
U1C̄∗

sg αU1D1sKg (1 − α)U1D1s U1D2s

f U1D1sKg f U1D1sKg −f U1D1s 0

]T
,

M̃sg =

[√
θs1M̂T

sg
√

θs2M̂T
sg · · ·

√
θslM̂T

sg

]
,

M̂sg =

[
As + αB1sKg αB1sKg (1 − α)B1s B2s
f B1sKg f B1sKg −f B1s 0

]
.

By using Schur complement and (40), we derive (19).
Thereby, this proof is verified.
Remark 6: In Theorem 2, we introduce a relaxation matrix

E , and then use inequality transformation techniques such
as matrix scaling to obtain linear matrix inequalities, so as
to solve the nonlinear problem in Theorem 1 with the LMI
toolbox of Matlab.
Remark 7: The parameter γ reflects the dissipative

performance of the system. The larger the parameter,
the better the system’s dissipative performance. Therefore,
we can optimize the parameter γ to obtain the optimal
performance γ ∗: {

min
s.t.

−γ

(32), (33)
(41)

It should be noted that the analysis of dissipative perfor-
mance encompasses two special properties:

(1) H∞: let µ = −I , ν = 0, ϖ = (γ 2
+ γ )I in (32)

and (23).
(2) Passivity: when Rny = Rnw ,let µ = 0, ν = I , ϖ =

2γ I in (32) and (33).
Remark 8: The algorithm proposed in this paper is as

follows:
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Algorithm 1. Co-Optimization Algorithm
1: Input: System parameter, trigger threshold ε, packet loss

rate α, transition probability φg
2: Output: Optimal performance parameters γ ∗, controller

gain Kg, the data transmission rate TP and trigger matrix
G

3: Initialization: Dissipative performance parameters
(µ, ν,ϖ )

4: Step 1: Use the convex optimization of (41) to solve the
optimal performance parameters γ ∗, controller gain Kg,
and trigger matrix G

5: Step 2: The value of TP was calculated based on the
triggered times and the total time

IV. NUMERICAL EXAMPLE
In this section, we will demonstrate the effectiveness of the
proposed design method by using the example with three
modes.

A1 =

[
0.2 0
0 0.2

]
,A2 =

[
0.1 0
0 0.3

]
,

A3 =

[
0.2 0
0 0.3

]
,B11 =

[
0.3
0.1

]
,B12 =

[
0.3
0

]
,

B13 =

[
0.3
0

]
,B21 =

[
0.1
0.2

]
,B22 =

[
0.6
0.3

]
,

B23 =

[
0.4
0.2

]
,C1 =

[
0.17 0.18

]
,

C2 =
[
0.42 0.9

]
,C3 =

[
0.12 0.5

]
,

D11 = D12 = D13 = 0,D21 = 0.1,D22 = 0.8,D23 = 0.3.

Letting the system transition matrix 2 as below:

2 =

 0.85 0.5 0.1
0.2 0.5 0.3
0.5 0.1 0.4


Then, we assume the dissipative parameters µ = −1, ν =

1, ϖ = 5, separately, the parameter α = 0.9, and the error
threshold ε = 0.1.
Besides, four different situations of the conditional proba-

bility matrix will be simulated and compared.

Situation 1: 8 =

 0.9 0.05 0.05
0.1 0.9 0
0.1 0.1 0.8

 ,

Situation 2: 8 =

 0.9 ? ?
0.1 0.9 0
0.1 0.1 0.8

 ,

Situation 3: 8 =

 0.9 ? ?
? 0.9 ?
0.1 0.1 0.8

 ,

Situation 4: 8 =

 ? ? ?
? ? ?
? ? ?

 .

Observing from Situation 1 to Situation 4, we notice
a gradual decrease in the amount of known conditional
probabilities.

FIGURE 2. Dissipative performance γ ∗ under four cases.

First, based on Theorem 2 and Remark 7, we can simulate
the above four cases and obtain the corresponding dissipative
performance parameter as shown in Figure 2. It can be seen
from Figure 2 that the more information about the unknown
conditional probability, theworse the dissipative performance
of the system. In addition, the controller solved in Case 4 is
equivalent to the controller that is strictly mode independent,
that is, under any mode, the controller gain is:

Kg =
[
1.5286 0.9644

]
Next, we will further investigate Case 3, and obtain the

event-triggered weighting matrix by solving linear matrix
inequalities in Theorem 2:

G =

[
1.0553 0.6845
0.6845 0.4468

]
The controller gain:

K1 =
[
1.5170 0.9871

]
K2 =

[
1.3660 0.8944

]
K3 =

[
1.3626 0.8864

]
We consider that the initial value x0 =

[
0.3 0.2

]T of
the system and disturbance input wk = 0.9k sin(k), and
subsequently, we apply the obtained feasible solution to
the proposed event-triggered asynchronous control scheme
for simulation. The response curves of the system state,
output, and control input are shown in Figure 3 and the
time interval of the event-triggered mechanism is shown
in Figure 4. As we can observe, these curves gradually
tend to equilibrium, indicating that the closed-loop system
is stochastically stable. Meanwhile, the data transmission
amount is significantly reduced, showing a reduction in com-
munication consumption. Furthermore, Figure 5 illustrates
the asynchronous behavior between the modes of the system
and the modes of the controller.
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FIGURE 3. System status, outputs, and control input.

FIGURE 4. Event-triggered transmission interval.

FIGURE 5. Original system and controller modes.

Furthermore, we analyze the influence of the event-
triggered threshold ε on both system performance and

TABLE 2. Dissipative performance γ ∗ and data transmission rate.

communication performance by varying its value. Based
on Theorem 2, we conduct simulations and present the
results in Table 2. It is evident that as the threshold ε

increases, the dissipative performance decreases slightly,
while the communication performance improve significantly.
Therefore, in practical application, considering the balance
between two kinds of performance, an appropriate event-
triggered threshold can be selected to obtain better commu-
nication performance and more satisfactory comprehensive
performance under the premise of ensuring that the system
meets the actual dissipation requirements.

TABLE 3. Dissipative performance γ ∗ under different packet loss rates.

Next, we change α to study the impact of packet loss
rate on system performance, where the smaller α, the higher
packet loss rate. As shown in Table 3, when α = 1 indicates
no packet loss, the dissipative performance of the system is
optimal. With the increase of packet loss rate, the dissipative
performance decreases. The dissipative performance of the
two packet loss models is shown in Figure 6. It can be seen
that the dissipative performance based on the packet loss
model given in this paper is better than that in [27].

FIGURE 6. Comparison of dissipative performance γ ∗ between two
packet loss models.

V. CONCLUSION
This paper has addressed the problem of asynchronous and
event-triggered control for discrete Markov jump systems
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with packet losses and partially unknown conditional prob-
abilities. Firstly, an event-triggered mechanism is introduced
to reduce the data transmission rate of the network channel.
Additionally, a Bernoulli packet loss model with non-zero
actuator input is considered to handle packet loss issues.
Then, by utilizing Lyapunov stability theory and dissipation
theory, sufficient conditions for the stochastic stability and
strict dissipation of the closed-loop system have been
derived, even there exist the packet loss and partially
unknown conditional probabilities. The controller gain is
obtained in the form of linear matrix inequalities. Finally,
the designed controller has been validated through an
example with three modes, demonstrating its compliance
with stability theory and dissipation theory. For issues such
as time-delay, quantization, and dynamic event-triggered
mechanisms, further researches in the future will be worth
considering.
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