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ABSTRACT Vehicles become more advanced and smarter due to advancements in technology in the modern
world. Every person now a days, demand a smart vehicle due to their automobility and smart controls. This
is all possible through advancements in VANET (Vehicular Adhoc Network) and the Internet of Vehicles
(IoV). Vehicles in the VANET are highly connected to each other and this thing can cause security, safety,
and privacy risks for the asset itself and driver also. It can become a reason of major threat. And these
threats can occur due to tracing the location of the vehicle. Existing techniques like group-based shadowing
schemes, obfuscation, silent periods, and mix-zone have preserved privacy of location somehow, but don’t
have a good QoS and optimized efficient security. To overcome these issues, we introduced a new privacy
framework, which is an improvement of the existing shadowing scheme. We proposed a computationally
efficient group leader selection process based on centeredness, rule obeyed, and OBU resources, reducing
overhead by 20%, integrating FL. with DP to preserve data privacy without sacrificing utility, and achieving
a 15% improvement in location accuracy under privacy constraints, validating the scalability and robustness
of the framework through extensive simulations involving up to 300 vehicles. Group Leader is used as an
optimization of the overall framework including efficiency and implementation of the scheme. This scheme
increases privacy if the number of vehicles also increases, and this thing makes our scheme more scalable.
This scheme overcomes the many drawbacks of existing techniques like a higher tracing ratio in shadowing
schemes, totally depending on the group leader, and reduced utility of all schemes based on distances. The
most important thing, the single point of failure in the group leader base shadowing scheme is overcome by
using local federated learning with differential privacy. Validation results of our proposed scheme showed
that it outperformed the current schemes mainly based on group leader.

INDEX TERMS Privacy, federated learning, differential privacy, LBS, data utility.

I. INTRODUCTION

The Intelligent Transportation Systems (ITS) have ushered in
anew era of connectivity and efficiency in vehicular commu-
nication, epitomized by Vehicle Ad hoc Networks (VANETS)
and the Internet of Vehicles (IoV). These paradigms, built
upon a foundation of advanced communication technolo-
gies, enable seamless data exchange and collaboration
among vehicles, infrastructure, and smart devices. Within
VANETs, vehicles communicate using a blend of Dedicated
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Short-Range Communication (DSRC) and cellular networks,
facilitating applications such as traffic management and
collision avoidance. Similarly, IoV extends the concept of
IoT to the automotive domain, fostering a dynamic ecosystem
where vehicles interact with each other V2V, roadside
infrastructure V2I, and it can also be a hybrid approach [1] as
shown in Figure 1. Vehicles with more advanced technology
give more convenience to the people inside the car and outside
having increased sales globally expected by 18% in 2023.
These advancements also raise privacy and security issues [2].

As the vehicles become smarter, with high mobility and
autonomous functionality, VANET becomes more vulnerable

© 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

VOLUME 13, 2025

For more information, see https://creativecommons.org/licenses/by/4.0/ 13507


https://orcid.org/0000-0002-3210-1100
https://orcid.org/0000-0003-0123-3554
https://orcid.org/0000-0001-5083-0019
https://orcid.org/0000-0002-8972-0949
https://orcid.org/0000-0003-1026-191X

IEEE Access

M. Adnan et al.: Framework for Privacy-Preserving in loV Using FL With Differential Privacy

to outside attacks [1]. There are three main things which
are needed to be addressed while designing a security-proof
IoV VANET, these are trust, security, and privacy. Many
researchers have proposed many techniques to address this
issue in different ways. However, the location privacy in
VANET needs to be addressed uniquely.

The networks used in VANET are not similar to other
types of networks, like Internet networks. Due to the
different nature of networks used in VANET, a different
approach is needed to avoid issues like malicious attacks
and eavesdropping while sharing sensitive information like
location data. Without proper protection or encryption of
data, it can be led to a serious issue in the VANET system.

Researchers have done a lot of research on VANET as it’s
the most demanding and trending in the field of intelligent
transport systems (ITS). And this is a need of current
and future trends also to modernize and make transport
smart. Due to the increase in population, vehicles need and
demands also increase and due to this, road accidents are
also increasing day by day. 1.3 million people die annually
having the age of 15-29 as reported by the World Health
Organization (WHO) [3]. We can use the latest and smart
technology to avoid road accidents in IoV and secure more
lives from accidents of vehicles. The latest technology helps
to provide smart controls, road health, weather forecasts,
traffic jams, and some emergency services. As the need for
technology increases in VANET, privacy concerns mainly
location privacy also come into consideration because of
having more vehicles communicating with each other and
sharing information in the network. With the need for
technology, the onboard device was also upgraded with high
specifications. There are a lot of privacy solutions introduced
by many researchers. Some solutions are somehow good or
acceptable to be used for LBS applications. In recent years,
there’s been a lot of interest from researchers in the field of
location privacy in-vehicle networks. With advancements in
technology, like GPS in cars and mobile devices, it’s become
easier to track vehicles. Researchers have come up with
various solutions to protect privacy in location-based services
(LBS). For example, Levy and Schneier [4] proposed a
method to confuse attackers by deviating from the usual route.
Ullah and colleagues [5] suggested using “silent periods™,
where vehicles stop sending signals, making it harder to track
them.

Other methods include group signatures, mix zones, and
changing identifiers [6]. However, simply changing IDs
might not be enough to stop tracking, as attackers could still
figure out a vehicle’s home address. There are also safety
concerns with some privacy methods, like using fake data.
Liang and his team [7] have looked at how capable attackers
are of breaching location privacy. This research paper looks
at how to protect privacy in the Internet of Vehicles.
It explains how using group leaders, federated learning,
and differential privacy can keep sensitive information safe
while still benefiting from connected vehicles. We have
introduced a computationally efficient group leader selection
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FIGURE 1. A typical VANET system.

process based on centeredness, rule obeyed, and On-board-
unit resources, by reducing overhead by 20%, and by
integrating FL. with DP to preserve data privacy without
sacrificing utility, and achieving a 15% improvement in
location accuracy under privacy constraints, validating the
scalability and robustness of the framework through extensive
simulations involving up to 300 vehicles.

The major focus of our study is to maintain privacy while
enabling the vehicles to make accurate LBS requests and
utilize these requests in real-time scenarios. In Figure 2 we
have visualized our proposed system architecture also. Our
major contributions to this research are these:

Introducing the group leader with a more optimized
selection process. Adding the group leader will optimize the
scheme, decrease implementation time, and also utilization
of requests in VANET.

Preserving privacy while maintaining the trade-off
between utility and location privacy by using Federated
Learning with Differential Privacy.

Our proposed model not only maintains privacy, but it also
provides scalability of the model of very complex scenarios.

By using our proposed model, vehicles can now ask for
LBS (Location Based Services) in the VANET and get
accurate responses faster, more timely, and in a more private
way.

We have also done a comparison of different privacy-
preserving schemes in VANET or IoV and demonstrated the
comparison in the form of a table and also shown an analysis
of these technique’s effects.

We have organized this research paper in the following
way: In Section I, we introduce the research problem
the objective of our research, and then our methodology.
In Section II, we have made related work reviews. In
Sections IIT and IV, we have provided our proposed methods
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in more practical detail, And in the next Section, we provide
the experiment details of our proposed methodology. Finally,
in Section V we concluded our work and also mentioned
future works.

Il. LITERATURE REVIEW

In the literature review, we have presented different research
techniques and directions which are about preserving location
privacy in IoV.

A. SILENT PERIODS

Sampigethaya et al. [10] Introduced a scheme known as
CARAVAN, which handles pseudonym changes by using
group-forming mechanisms and silent-periods intervals. This
method suggests using silent periods and forming groups
to reduce unnecessary transmissions among vehicles, thus
enhancing privacy. However, it assumes scenarios where
some vehicles don’t send messages for a while, which might
not work for safety applications needing frequent broadcasts.
Huang et al. [11] propose using silent periods either at
specific places or randomly to improve privacy. However, this
approach relies on individual decisions made by edge devices
(Vehicles), which could lead to synchronization issues. Swing
Protocol by Li et al. [12] This protocol focuses on users
reducing tracking by changing pseudonyms when speed or
direction changes. Attackers find it hard to link movement
with positions. The Swap scheme increases location privacy
by having vehicles [15] exchange pseudonyms. However,
only vehicles that work together and start the change can
achieve complete anonymity. CPS Scheme by Wahid et al.
[13] This scheme aims to protect vehicle locations. Unlike
other plans, CPS says vehicles should only talk when they
really need to. They always keep their radios on in case
something urgent happens. This plan uses a Roadside Units
(RSU) to figure out how far a vehicle can go and how fast it’s
moving. Then, it sets a timer based on that and the vehicle
doesn’t send any messages until that time is up.

B. OBFUSCATION

The goal of this technique is to mess with tracking of location.
They do this by messing with how accurate the location
data is and by making the time between signals from On-
Board-Units (OBUs) longer. Takbiri et al. [16] propose using
Markov chains, a type of math model, for an information-
theory method. They came up with a smart idea to handle
mistakes in locations. They use Markov chains to make errors
that were already figured out before. This helps when testing
Location-Based Services (LBS) because it makes the position
less exact and gives a different name.

Mutual Offscale Path (MOP) is a method described by [17]
that gets real-time location [14] info without needing users’
paths to cross. It uses DSRC radios to mix things up when
2 vehicles chat with the LBS nearby server. MOP needs help
from nearby vehicles to mess up the routes for everyone
involved. Zhou et al. [18] came up with a way to change
how likely it is for each user to be somewhere, without using
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past user info. Other studies, like the one mentioned by [19],
suggest many ways to keep someone’s location private.

C. GROUP-BASED AUTHENTICATION

In a study by Lu et al. [22], they suggest a way to keep
your location private using a system called the NTRU cryp-
tosystem. They also use something called a post-quantum
safe transfer forget protocol. While Location-Based Services
(LBS) are really useful, they also make people worried
about their privacy. That framework is not hard to put into
action [23], but it makes the leader of the group do more work
compared to others in the network.

Wahid et al. [I3] came up with another way to
keep your location private called the Synchronized
Pseudonym-Changing Protocol (SPCP). This plan works
with groups and makes sure they all change their fake names
at the same time. The plan has six parts, like signing up your
car and giving it the right settings at the start, joining a group,
and swapping fake names at the end. The researchers tested
their plan with computers, and they say it works better at
keeping your location private compared to other plans like
Silent Period, AMOEBA, and Random Encryption Period
(REP).

D. MIX-ZONES
Mix-context strategy proposed by Asuquo et al. [20] In
which Vehicles change pseudonyms synchronously at certain
triggering points. This means cars change their fake names at
the same time when they reach certain points. PCS scheme
proposed by Ni et al. [21] Short-life keys are generated for
vehicles, and pseudonyms are changed at specific locations.
Heuristic pseudonym change method proposed by
Guo et al. [9] which maximizes anonymity. They suggested
a way to change fake names that make sure cars stay
anonymous. Different ideas were put forward to keep where
cars are private, like the silent period trick [9], the Mix group
plan [3], [24], the Path confusion idea [8], the obfuscation
trick [25], and the Shadowing method [26]. It’s really
important to make a plan that keeps where cars are private
without messing up Location-Based Services, makes sure
cars stay anonymous, and makes it hard to track them. Also,
it’s important to keep the records about cars safe and secret.
A study introduced by Li et al. [27] the Fog computing-
based Pseudonym Management Program (FPMP). It’s like a
special system for managing fake names for vehicles. Instead
of having one place in charge of giving out these fake names,
it moves the job to a layer called the fog. This helps make
things easier for the people who give out certificates and
makes it quicker for vehicles to get their fake names. To keep
things safe, they create an algorithm called the dynamic
pseudonym swap program (DPSP).

E. CRITICAL REVIEW

We have made Table 1 to compare different Techniques and
Services for Location Privacy. The research gap that we have
identified in our proposed paper is that the Group-Leader
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TABLE 1. Summary of Location-Based Services (LBS) techniques.

Ref LBS Technique Pseudonyms used | Cryptography | Certificate Authority | Limitations
[8] Path confusion X X X Disclosure control; Segmentation;
Perturbation. Intersection
challenges in achieving accurate
routes.
[91 [10] [11][12] [13] Silent-Period X X v CSMA/CD unsuitable for real-time
location due to collision delays.
[14] Tracking-Approach v X v Multi-Hypothesis Tracking ineffec-
tive against GPA attacks.
[6] Endpoint Protection v X v Increased resource consumption
and crash risks due to Parrots.
[15] [16] [17] [18] [19] Obfuscation Scheme X X X MOP. Location entropy.
[3]1[8] [9] [20] [21] Mix-Zone v v v Pseudonyms Exchange Algorithm
relies on excessive assumptions.
[3] [13] [22] [23] Group-Based Auth v v v Heavy work load on group leader.

Based Scheme totally depends upon the leader. If the leader
fails to work and compromises then the scheme won’t be
functional. And data sent toward group leaders and servers
can be vulnerable to attacks. Different proposed solutions
are still not satisfactory enough to compare privacy methods
related to safety, privacy, and security levels against an
adversary.

TABLE 2. Notations and symbols.

Symbol Description

D Dataset

D; Local dataset on device i

0 Model parameters

0; Model parameters at iteration ¢

0; Model parameters from device i

Oglobal Aggregated global model parameters
€ Privacy parameter in Differential Privacy (DP)
Af Sensitivity of function f
Lap(p,b) | Laplace distribution with mean y and scale b

Ill. PRELIMINARIES

The advent of the Internet of Vehicles (IoV) has revolution-
ized transportation systems, enabling seamless connectivity
and communication among vehicles and infrastructure. IoV
facilitates real-time data exchange, leading to enhanced
safety, efficiency, and convenience for commuters. However,
alongside these advancements come challenges related to
privacy and security, particularly concerning the sensitive
nature of location-based data.

Background: As the need for technology increases in
VANET, privacy concerns mainly location privacy also
come into consideration because of having more vehicles
communicating with each other and sharing information in
the network. With the need for technology, the onboard
device was also upgraded with high specifications. Problem
Statement: Many researchers have introduced a lot of
privacy solutions. Some solutions are somehow good or
acceptable for use in LBS applications. With advancements in
technology, like GPS in cars and mobile devices, it’s become
easier to track vehicles.

Research Objective: Our research’s main objective is
to propose a comprehensive methodology for preserving
location privacy in IoV networks. By leveraging optimized
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TABLE 3. Abbreviations.

Abbreviation | Description
FL Federated Learning
DP Differential Privacy
IoV Internet of Vehicles
LBS Location-Based Services
VANET Vehicular Ad hoc Network

group leader selection techniques and federated learning with
differential privacy, our proposed scheme aims to maintain
the balance between privacy preservation, and data utility
while also enabling the vehicles to make accurate LBS
requests and utilize these requests in real-time scenarios.
We have proposed an efficient location privacy preservation
scheme using FL with DP in IoV VANET.

Significance of the Study: By using our proposed model,
vehicles can now ask for LBS (Location Based Services) in
the VANET and get accurate responses faster, more timely,
and in a more private way.

We have also done a comparison of different privacy-
preserving schemes in VANET or IoV and demonstrated the
comparison in the form of a table and also shown an analysis
of these technique’s effects.

A. FEDERATED LEARNING
Federated Learning (FL) is a method where data stays on
local devices (like phones or vehicles), and only the trained
model updates are transferred to the central server. This way,
privacy is maintained as the data never leaves the device.
In our vehicular network, the global model 6 is updated by
aggregating the contributions from multiple vehicles while
maintaining privacy. The objective is to train a global model
without sharing raw data.

Global Model Update:

l n
6ra1=0,—1"~ _Z]“w,w,)
1=

where:
o 6; is the global model at iteration ¢.
« 1 is the learning rate.
o Ji(6;) is the loss function of the i-th vehicle’s model.
o VJi(6;) is the gradient of the loss function for vehicle i.
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Local Model Update (Per Vehicle):

0! = 0! —n - V(6]
where:
o 0] is the local model for vehicle i at iteration ¢.
« Each vehicle updates its local model independently

using its own data.

B. DIFFERENTIAL PRIVACY

DP is a technique that adds random noise to data to
protect individual privacy. By using the Laplace mechanism,
we ensure that the output does not reveal specific details
about any individual in the dataset. To preserve privacy during
model updates and location-based service (LBS) requests,
differential privacy is applied using the Laplace mechanism.

Differential Privacy Applied to Model Updates:

~ Ab;
Gl.H'l = 9;“ + Lap (Tl)

where:
. éf Histhe differentially private model update for vehicle
i.

o A0, is the sensitivity of the model update.

e € is the privacy parameter controlling the amount of
added noise.

Differential Privacy Applied to LBS Requests:
~ AR;
Ri=R;+Lap| —
€

where:
o R, is the differentially private LBS request for vehicle i.
e R; is the original request.
« Adding Laplace noise ensures the privacy of sensitive
location data.

IV. PROPOSED METHODOLOGY
In the Proposed Methodology section, we will discuss the
two major parts of our proposed scheme: An optimized group
leader selection process, and the implementation of federated
learning with a differential privacy process. To ensure both
privacy and scalability, we integrate Federated Learning
(FL) with Differential Privacy (DP) in the IoV context. Our
methodology comprises two major components: decentral-
ized training and noise injection for privacy preservation.
First, we describe the completely optimized process of
selection of the group leader and then after that introduce
the Federated Learning with the addition of differential
privacy in our proposed scheme. A good understanding of
two main phases is necessary for complete deployment,
and implementation of our introduced scheme in IoV and
Vehicular Adhoc network (VANET). In Figure 3 we have
visualized major components of our proposed architecture.
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A. SELECTION OF GROUP LEADER

The inclusion of a group leader in the framework makes
it somehow complex, causes extra costs of maintenance,
and deployment, but also helps in the optimization of the
overall framework. As IoV has different types of applications
usage of a group-leader-based shadowing scheme may not be
suitable for every usage in IoV systems. It also depends upon
the suitability of usage in IoV applications. In the previous
group leader-based shadowing scheme, if vehicles increase
in the network, then that scheme will become less efficient.
And that the previous scheme totally depends upon the group
leader. If the group leader fails or is compromised, then the
whole scheme group will not work as described. Because the
group leader is the main central point the scheme didn’t work
without group leader inclusion as the privacy and security of
the VANET were also compromised.
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FIGURE 3. Components of proposed architecture.

In Figure 4 the process of group leader selection, we have
made some optimizations with the comparison of the previous
group leader-based shadowing scheme. The previous scheme
used a very complex method for group leader selection and
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it took some time also because it needed more calculations
to do in the selection process. Previous shadowing-based
scheme uses Direct trust, indirect trust, centeredness, and
OBU resources in the process of group leader selection.
We have optimized this to only take these three parameters;
the rules obeyed, centeredness, and OBU resource features of
vehicles for the leader selection process. It makes our scheme
group leader selection simpler, and optimized.

In our approach, we simplified the group leader selection
criteria by focusing on centeredness, rules obeyed, and
OBU resources. This was done to reduce the computational
complexity and improve efficiency. The previous method
relied on direct and indirect trust calculations, which
were time-consuming and prone to manipulation. By using
straightforward and measurable parameters, our method is
faster, more robust, and better suited to the dynamic nature
of vehicular networks. Table 5 shows the comparison of the
previous and our proposed method of group leader selection.

Algorithm 1 Process of Group Leader Selection
1: Start
2: while For a time T, collect all the messages from
vehicles V; do
3:  Initialize SelGL; = C; + RO; + OR; for each vehicle
Vi

4:  Broadcast SelGL; to all other vehicles
5. Receive SelGL; from all other vehicles V;
6:  for each vehicle V; do
7 if received message contains a leader announcement
then
8: Compare SelGL; with SelGL; for all j # i
9: if SelGL; > SelGL; then
10: Assign GL; = V; (vehicle V; as the new leader)
11: else
12: Maintain current leader GL; = V;
13: end if
14: end if

15:  end for

16:  Consensus step: Each vehicle V; broadcasts its selected
leader GL;

17:  Final leader Vz is determined as:

VoL, = argmax SelGL;
VieV

18:  Announce the vehicle with the highest SelGL score as
the group leader

19:  Repeat the process after a specific interval to ensure
dynamic adaptation

20: end while =0

Making cells is necessary to let every vehicle know about
their range and other nearby vehicles. The size of the cell may
also be dependent on the range of vehicles. As if the vehicles
have more range of transmission power and other related
features, then we can make cells wide enough. This can also
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be calculated by the dedicated short-range communication
(DSRC) standard. This process repeats after some time to
update the cells of the vehicle they are in, so everyone now
communicates with their own cell, not the others one to avoid
the communication collision and make the scheme more
effective, dynamic, and feasible.

L1} (1]
[ [ ini

" L1}
i T

RSU A Trusted
Authority (TA)

Group Leader: Vehicle

Vehicle Vehicle

‘:Z:&

FIGURE 4. Process of group leader selection.

This process starts with broadcasting a message from every
vehicle in the cell to other vehicles in the very beginning,
as they have to choose a leader. So it’s very important to
first know each other, then selecting a leader is easy for them.
When first each broadcasts the message, then it returns with
the other vehicle’s information. First, every vehicle assigns
itself a leader, but we just want only 1 leader in a cell.

Algorithm 1 shows all the processes for selecting a group
leader in a cell. Also, algorithm 1 contains the nodes
(vehicles) in the network, and from these nodes, only solo
nodes will be selected and take charge of leader activities to
perform. For this, as the broadcast messages are received,
algorithm 1 starts collecting this response from different
nodes. This process only happens in a specific amount of
time. As specified in algorithm 1, when broadcast responses
are collected and if they contain the leader information, then
the algorithm checks all other responses and if didn’t find
any leader information, it assigns the first leader message
received as a leader. And this process repeats, if sometimes
a response doesn’t contain the leader information, then the
response receiving node will assign itself the leader.

In another case, if the leader’s responses are more than 1,
then it compares all leader’s information like we have defined
centeredness, rules obeyed and OBU resources, and having
more positive numbers node will be selected as a group
leader node and the message with leader selected info will be
broadcasted so every node can know about the newly elected
leader. The reason to do all of this process is to make sure the
selection of the group leader node will be on a more positive
number and the selection of a solo node as a group leader.
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TABLE 4. Critical parameters of the proposed method.

Parameter

Description

Explanation/Values

C; (Centeredness)

Measures how centrally a vehicle is located in its
respective cell.

Ci = \/xi2 +y2 — r, where (x;,y;) is the vehicle’s position, and r is
the reference distance from the center of the cell. Lower values indicate
better centrality.

RO; (Rules Obeyed)

Represents the compliance of a vehicle with traffic
rules.

RO; = 37T WiRyj, where Wj is the weight of rule j, and R = T if
the rule is followed, otherwise R;j = 0. Higher values indicate better
compliance.

OR; (OBU Resources)

Denotes the computational and storage resources of
the vehicle’s On-Board Unit (OBU).

OR; = Pcomp,i + Cstorage,i» Where Peomp,; is the computational power,
and Cstorage,i is the storage capacity of the vehicle’s OBU.

SelGL; (Selection Score)

Combined score for selecting the group leader.

SelGL; = C;+ RO;+ OR;. The vehicle with the highest score is selected
as the group leader.

€ (Privacy Parameter)

Controls the amount of noise added for differential
privacy.

Lower e provides higher privacy but may reduce utility. Used in the
Laplace mechanism for model updates and LBS requests.

Af (Sensitivity)

The maximum change in a function’s output when a
single data point in the input dataset changes.

Scales the noise in the Laplace mechanism: Noise ~ Lap(Af/e).
Depends on the specific function being used.

D (Dataset)

Represents the local dataset available on each vehicle
for federated learning.

Denoted as D; for each vehicle i.

6 (Model Parameters)

Parameters of the global model trained via federated
learning.

0 represents the model at iteration 7, and Ogopar represents the aggre-
gated model after updates from all vehicles.

AS4 (Anonymity Set Size)

Set of locations indistinguishable from a vehicle’s true
location due to privacy-preserving mechanisms.

Size increases with travel time or traffic density. Larger sizes indicate
better privacy.

H (Entropy)

Measures uncertainty in a vehicle’s location within the
anonymity set.

H=— Zii‘l pilog, (pi), where p; is the probability of a vehicle being
the target. Higher values indicate stronger privacy protection.

P4 (Tracking Success Ratio)

Probability that a vehicle’s anonymity set size equals

P4 = Pr(|AS| = 1). Lower values indicate better privacy.

1 (uniquely tracked).

TABLE 5. Comparison of previous method and proposed method for
group leader selection.

Metric Previous Method Proposed Method
Trust Calculation De- | High Low

lay

Susceptibility to At- | High (trust manipula- | Low (verifiable crite-
tacks tion) ria)

Adaptability Low High

Selecting a group leader in a cell of nodes (vehicles) is
very important to do the tasks of a cell more effectively
and collaboratively. Figure 5 shows how the group leader
is selected in a cell. This way, the performance of a cell
is increased in a VANET as every node knows who to
communicate with for which purpose. As demonstrated in
Algorithm 1, with respective of time, the comparison of the
currently selected group leader node in a cell will be made to
other nodes as well, if the best leader node then the current
leader node will be replaced with the other node having more
centeredness, rules obeyed and OBU resources and message
with the new leader selection information broadcasted in
the cell so everyone know the new leader. This process of
checking the leader repeats after a certain period of time. Only
vehicles with more power and they also consider them to be
a leader will only broadcast the message in a cell to become
a group leader.

In a vehicular network, from a set of vehicles within a
specific area or cell, the vehicle with the maximum score
based on centeredness, compliance with traffic rules, and
onboard unit (OBU) resources is selected as the group leader.
Let we prove it how a vehicle is selected as a group leader on
the bases of different properties and selection criteria.

Let:

o A setof n vehicles V = {V, Vs, .

e ieN,i={1,2,3,...,n}.

.., Vy}inacell.
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FIGURE 5. Group leader selection in a cell.

« Vs the attributes given.

o As general form V; = {Vy, Vo, ..., V,}

« For each vehicle Vi, its position is (x;, y;).

o C; is the Centeredness of each vehicle V;, which can be
calculated as according to the distance formula:

Ci=,/xi2+yi2—r
e Whereie N

o And, r is the reference distance from the center of the
cell.

e RO, is Rules Obeyed by each vehicle V;, which can be
calculated as:

m
RO; = > WiRy
j=1
o where W; is the weight assigned to rule j, R; = 1 if

vehicle V; follows rule j, otherwise R;; = 0, and m is the
total number of rules.
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e« OR; OBU Resources of each vehicle V;, which can be
calculated as:

OR; = Pcomp,i + Cstorage,i

o where Pcomp,; is the computational power and Citorage, i
is the storage capacity of the onboard unit.
Theorem 1: The vehicle Vigager with the highest group
leader selection score SelGL; is selected as the group leader,
where selection criteria based on this formula:

SelGL; = Cij 4+ RO; + OR;

Proof: For each vehicle V; (where i € {1, 2, ..., n}), the
selection score SelGL; is:

SelGL; = C; + RO; + OR;

Here:

o C; represents centeredness (lower values are better).

o RO; represents rules obeyed (higher values are better).

o OR;represents OBU resources (higher values are better).

To select the group leader with the maximum score of
selection properties than all other vehicles, we first perform
that properties calculation by their formula’s.

As we know C; Centeredness of each vehicle V; can be

calculated as:
Ci:,/xl.2+y?—r

And RO; is Rules Obeyed by each vehicle V; can be
calculated as:

m
RO; = Z WiR;;
j=1

And OR; OBU Resources of each vehicle V; can be
calculated as:

ORi = Pcomp,i + Cstorage,i

So, as we know every property and how it can be
calculated: SelGL;:

Vieader = arg max  SelGL;
ie{l,2,...,n)

The vehicle with the highest score has the best balance of:

o Centeredness (ideal positioning),

o Rules obeyed (reliability),

o OBU resources (technological capability).

A high SelGL; indicates the vehicle is centrally located,
follows more rules, and has sufficient resources.

Thus, the vehicle Vigaqer With the maximum SelGL; is the
optimal choice for the group leader.

1) CENTEREDNESS

The centrality of a vehicle within the network can be
determined by various factors such as its position, connec-
tivity, and influence. A more centralized vehicle, which has
better connectivity with other vehicles and is strategically
positioned within the network, is more likely to be selected as
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a group leader. It is the location of vehicles in the respective
cell. The vehicles are divided into cells on the basis of their
GPS location and the vehicle will instantly know its cell when
the cell division is made. A vehicle that is in the center of
the cell and has good reach to other vehicles in the cell will
be better for our group leader. The more the location of the
vehicle in the center, the more the chances to be selected as
group leader. This will be a dynamic because vehicles move
with speed and change their locations. We can also check
the centeredness of a vehicle by Eq. 1 which is a distance

formula:
NECE s (1)

Figure 4 shows how the distance between vehicles is
calculated and the vehicle which is most in the center of the
cell will be selected as the group leader with other features
considered too.

. —>
L=<
[ ] ﬂ Group Leader

® _ Vehicle2Vehicle

RSU to Cloud/Server
Leader to RSU

Cloud/Server

RSU
T+
o o
A

FIGURE 6. Proposed federated learning scheme.

2) RULES OBEYED

A cell has a number of vehicles in it, and all vehicles won’t
follow all the traffic rules. Let Rj, R», ..., R, be the set of
traffic rules, and let Wi, W3, ..., W, be the weights assigned
to these rules based on their importance. A vehicle with a
greater number of rules followed and positive numbers from
others have more chances of being selected as a leader. The
Rules Obeyed (RO) score for each vehicle can be calculated
as the sum of the weights of the rules it follows.

3) OBU RESOURCES

Onboard unit resources or OBU is a field with a Beacon
message transmitted by a vehicle. Let Peomp denote the
computational power (measured in some units) and Ciorage
denote the storage capacity (measured in some units) of a
vehicle’s onboard unit. A vehicle with more OBU resources,
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represented by higher computational power and storage
capacity, has a greater ability to handle requests and perform
calculations in less time. We do this resource checkup for the
sake of flexibility; if more vehicles are added to the cell, then
the group leader with more power can handle it.

Dist = \/(xz —x1)% + (2 —y1)? ()

A group leader selection can be done by Eq. 3, incorporat-
ing the metrics of centeredness (C), Rules Obeyed (RO), and
OBU Resources (OR).

Selgl, = C + RO + OR 3)

Eq. 2 shows the formula to calculate the distance of each
vehicle in a cell. Finally, the group leader is chosen based on
Eq. 3.

B. FEDERATED LEARNING

Introduced by Google in 2017, addresses privacy concerns
associated with traditional centralized machine learning
approaches, particularly when sensitive data is involved.
Unlike conventional methods where training data is cen-
tralized, FL distributes the model training process across
multiple devices, preserving data privacy while enabling
model improvement.

In traditional machine learning, a global model 6 is trained
using a centralized dataset D through optimization of a loss
function J(0). This process involves transmitting the entire
dataset to a central server, which poses privacy risks and
scalability challenges.

However, in federated learning, the training data remains
decentralized on individual devices D;. The goal is to
optimize the global model parameters 6 without directly
accessing raw data. The process can be formulated as follows:
Initialization: Initialize a global model 6y and distribute
it to participating devices. Local Model Training: Each
device i trains the global model using its local dataset D; by
minimizing its local loss function J;(0): 6;1.1 = arg ming J;(6)
Model Aggregation: The updated models 6;; are sent to a
central server for aggregation, where the global model 6 is
updated by aggregating the parameters: Oglobal = Ilv Zf’zl 0;
Iterative Improvement: Steps 2 and 3 are repeated for
multiple rounds until convergence or a predefined stopping
criterion is met.

FL offers several advantages, including: - Privacy Preser-
vation: User data remains on local(edge) devices, that reduce
the risk of data breaches. - Reduced Latency: Model
updates occur locally, minimizing communication overhead
and latency. - Lower Power Consumption: Devices per-
form local computations, reducing the need for centralized
processing. - Collaborative Learning: Multiple devices
contribute to model improvement, fostering collaboration and
diversity in training data.

In Figure 6 our proposed scheme, we leverage feder-
ated learning to enhance the performance and privacy of
location-based services (LBS) requests. By decentralizing
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model training and incorporating techniques such as dif-
ferential privacy, we ensure both data utility and privacy,
making our approach suitable for real-world applications.
In Figure 10a, 10b, 10c, and 10d we have demonstrated the
FL with different levels of noise addition on model updates
using DP.

Algorithm 2 Applying Federated Learning on Model
Updates Process

1: Initialization

2: Central server initializes the global model 6

3: Distribute 6y to all participating devices D;

4: while not converged or stopping criterion not met do

5. for each device D; do

6: Receive global model 6; from the central server
7: Update 9[’“ = arg miny J;(0) using local dataset D;
8: Send updated model 9; *+1 to the central server

9:  end for
10:  Central server aggregates the updated models:

1 n
t+1 t+1
gglobal - n Zei
i=1

11:  Distribute the updated global model Gggllml to all
devices

12: end while = 0

13: End

In a vehicular network, federated learning (FL) is
employed to enhance model training while preserving data
privacy. Vehicles equipped with onboard units (OBUs)
participate in a decentralized training process. The goal is
to train a global model 8 across multiple devices without
centralizing the data, thereby ensuring privacy and efficiency.

Let:

e Asetof ndevicesD = {D{,D,,...,D,}.

o Each device D; has its local dataset D;.

o The objective is to train a global model parameter 6

without accessing raw data from individual devices.

o The federated learning (FL) process optimizes the global

model 8 while preserving data privacy and scalability.

Theorem 2: The global model is trained iteratively using
federated learning without compromising data privacy.

Proof:

o The central server initializes the global model 8y and

distributes it to all devices.

o Each device D; receives the initial model 6y and

performs local updates using its dataset D;:

0! = arg min Ji(6)

where J;(6) represents the local loss function for device
D;.

o After local training, each device D; sends its updated
model 9; *+1 to the central server. The server aggregates
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these updates as:
1 n
+1 +1
eglobal - ; Z 91’
i=1

This aggregation allows the global model to be updated
based on collective knowledge from all devices.

o The process is repeated by redistributing the updated
global model Qgtf;ll)al to all devices for further local
training. This iteration continues until convergence is
achieved or a stopping criterion is met.

So, In this way, the global model 6 is optimized in a
decentralized fashion, which enhances privacy and scalabil-
ity. Federated learning minimizes the global loss function
J(0) while preserving the privacy of local datasets.

C. DIFFERENTIAL PRIVACY

Federated learning facilitates decentralized model training by
leveraging data stored on edge devices such as computers
and phones. The process entails sending models to these
devices for local training, ensuring data privacy as the data
never leaves the device. Updated model parameters are
aggregated by a central server using algorithms like Federated
Averaging. As demonstrated in Algorithm 3. While this
approach safeguards client data to a certain extent, concerns
persist regarding the privacy of the updated parameters
transmitted from the device to the central server. To address
this, differential privacy can be employed, adding noise to the
parameters prior to transmission. This ensures a high level
of privacy and security for client information. Figure 7 and
Figure 8 show the effect of different levels of differential
privacy on accuracy and noise in data.

0.995 -—m

0.990

0.985 \

0.980

Accuracy

0.975

0.970

0.965 —— Request Accuracy
Response Accuracy

0.2 0.4 0.6 0.8 1.0

Privacy Level (Epsilon)

FIGURE 7. Accuracy of LBS request with different levels of DP noise.

DP provides a rigorous framework for quantifying and
preserving individual privacy in statistical analysis. One
common method to achieve DP is the Laplace mechanism.
Let f (D) represent a function computed over a dataset D. The
Laplace mechanism adds random noise to the output of f(D)
to achieve differential privacy:

A
fD)+ Lap(?f)

where Af denotes the sensitivity of the function f, and €
represents the privacy parameter that quantifies the level
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of privacy protection. The Laplace distribution, denoted by
Lap(u, b), is defined by its probability density function:

1 I — ul
Lap(x|u, b) = = exp (———

Another approach involves employing algorithms that
group similar data together, sharing summaries of data
groups instead of individual data points. Let G denote the
grouping function that maps individual data points to a
group. DP makes it sure that the output of G remains
indistinguishable even when individual data points are
modified. Formally, for any pair of neighboring datasets D
and D' that differ by a single data point, and for any subset S
of possible outputs, the following condition holds:

Pr[G(D) € S] < ¢° - Pr{G(D) € S]

where € represents the privacy parameter.

Incorporating DP into FL ensures that the aggregation of
model updates at the central server does not compromise
individual data privacy. By introducing noise or grouping
mechanisms, federated learning achieves the delicate balance
between privacy and model utility, thereby enabling effective
model training while preserving data privacy.

—— Request Noise
Response Noise

Noise

\—/’\

0.2 0.4 0.6 0.8 1.0

Privacy Level (Epsilon)

FIGURE 8. Noise effect with different levels of privacy.

In our proposed scheme, differential privacy (DP) is
employed to protect the privacy of location-based service
(LBS) requests sent from vehicles to the group leader, as well
as the responses returned by the group leader. The Laplace
mechanism is applied to achieve differential privacy, ensuring
that the inclusion or exclusion of any vehicle’s data does not
significantly affect the overall output.

Let:

e AsetofnvehiclesV ={V, Vo,..., V,}.

o Each vehicle V; has its LBS request data R;.

o A group leader G processes these requests and returns

responses while applying differential privacy.

Theorem 3: Differential privacy can be applied to both
LBS requests and responses using the Laplace mechanism to
protect individual data points while maintaining the utility of
the aggregated information.

Proof:
« We have to prove that for any two neighboring datasets
D and D’ that differ by a single data point, and for
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any subset S of possible outputs, the differential privacy
condition will be maintained:

Pr{G(D) € S] < ¢ - Pr[G(D') € S]

o We have set of n vehicles V = {V, V5, ..., V,}.

« And each vehicle V; has its LBS request data R;.

o Each vehicle V; sends an LBS request R; to the group
leader. The request is processed by a function f (R;), and
Laplace noise is added to the output to ensure differential
privacy:

~ Af
J(Ri) = f(R;) + Lap (T)
where Af is the sensitivity of f and € is the privacy
parameter.

o The group leader processes the differentially private
requests and generates a response S, processed by a
function g(S). Laplace noise is added to the output
of g(5):

- Ag

8(S) = g(S) + Lap (?)
where Ag is the sensitivity of g and € is the privacy
parameter.

« Asall the requests go to group leader G, which processes
these requests and returns responses while applying
differential privacy.

o For any two neighboring datasets D and D’ that differ
by a single data point, and for any subset S of possible
outputs, the differential privacy condition is maintained:

Pr[G(D) € S] < €€ - Pr[G(D') € S]

This ensures that the outputs for D and D’ remain
indistinguishable, preserving privacy.

Hence proved that, by applying differential privacy to
both LBS requests and responses, the scheme ensures that
individual data points are protected while maintaining the
utility of the overall data.

V. EXPERIMENTS AND RESULTS

A. EXPERIMENTAL SETUP

A desktop system is used for all the practical experiments
of this proposed scheme. System specifications were these:
Intel Core 15-4570 with Base speed of 3.20GHz, with 4 cores
and 4 logical cores having 6.0 MB L3 cache. 16 GB of RAM
with 1600 MHz speed and 2.5 inch 256 GB Liteon SSD with
Windows 10 pro operating system were used. Python version
3.8x was with SUMO version 1.18x.

For the Group Leader Selection, we need to have data
on vehicles. So, for vehicle data collection, we have done
a simulation of vehicles within the selected area, of Seoul,
South Korea as it was selected by the base paper technique.
Then using the SUMO Urban Mobility tool, we gathered
vehicle data. For Differential privacy and Federated learning
processes, I have used the EMNIST handwritten letters
dataset.
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Algorithm 3 Differential Privacy for LBS Requests and
Responses

1: Initialization

2: Set privacy parameter €

3: for each LBS request from a vehicle do

4:  Compute request function f (D)

5 Add Laplace noise to the request:

Af
JD)+Lap | —
6:  Send the differentially private request to the group
leader
7: end for

8: for each response from the group leader do
9:  Compute response function G(D)
10:  Add Laplace noise to the response:

AG
GD)+ Lap | —
€
11:  Send the differentially private response to the vehicle

12: end for
13: End =0

B. SIMULATION PROPERTIES

SUMO simulation tools were used for traffic simulation
in the selected area. We used the Open Street Map for
area selection. The area for simulation we selected is Seoul
location South Korea with spans of 2.5%1.5 km. We selected
this area because it contain more than 30 interactions which
were enough to use for simulation and experimentation on
the data being gathered. Different properties of vehicles
were gathered and used in the simulation process, these
include the position of vehicles(posm), timestamp at it starts
or stops, speed of vehicles (speed), vehicle ID, lane ID,
latitude(xm) and longitude(ym). In addition, other properties
metrics were used like cell id, centeredness of vehicles in the
specified cell, acting frequency, transmission power, traffic
rules obeyed, processing power, and storage available of each
vehicle. We followed the specific method for the group leader
selection process, and we used some specific vehicle features
like centeredness of vehicles in the cell, resources available
of OBU, and traffic rules obeyed.

We have done the simulation of 100, 200, and 300 devices
to check the time taken for the scheme on different numbers
of vehicles to be implemented. Figure 9 shows SUMO
tool visualization during the simulation of vehicles in a
selected area. For 100 vehicles the implementation of the
proposed scheme took 3.5 seconds without the group leader
and 2.0 seconds with the group leader. For 200 vehicles it
takes 3.0 seconds with the group leader 4.5 seconds without
the group leader 5.5 seconds without the group leader and
4 seconds with the group leader for 300 vehicles respectively.
The proposed scheme shows the importance of group leaders
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FIGURE 9. A view of SUMO tool during vehicle simulation in selected
area.

with less time in implementation and more time without a
group leader because then each vehicle must have to do its
own task which is time taken obviously. The selected group
leader has more resources and power to perform the task
required for the proposed model. This way, our proposed
scheme with an optimized group leader selection process and
task management improves the scalability and performance
of the model. Table 6 shows the performance of our proposed
method with other techniques.

TABLE 6. Demonstration of different schemes based on performance.

Technique Location Low Real Time Privacy
Accuracy | Traceability | Accuracy | Preservation
Mx-zone No Yes No Yes
Silent Period No Yes Yes No
Spatial Obfuscation Yes No No No
Cui Shadowing Yes Yes No Yes
Proposed Scheme Yes Yes Yes Yes

C. ANONYMITY SET SIZE

Anonymity set size refers to how effectively an adversary
can distinguish a specific vehicle from other vehicles in the
vicinity. It considers the probabilities associated with the
target vehicle and potential vehicles that could be mistaken
for it. Let’s denote the actual route taken by a vehicle VA
as LocA, and the set of all possible locations that could be
confused with LocA as LocN. The anonymity set of LocA,
denoted by ASA, comprises all such potential locations where
the adversary might mistakenly identify the target vehicle.
The size of the anonymity set, denoted by IASAl, indicates the
number of items in this set. Mathematically, the anonymity set
can be expressed as:

ASA = {Locy : P(A, N) # 0} 4)

In our proposed technique, the anonymity set size of
vehicle VA increases with its travel time. At first, when travel
time t = O, the size of IASAl is small. As vehicle VA moves,
it creates a shadow effect, making it harder for attackers to tell
the real route from the shadows. This makes the size of IASAI
grow over time. In areas with high traffic, the anonymity set
size increases significantly.
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For example, in busy urban areas with 400 vehicles, the
anonymity set size reaches about 1.5 bits. At first, with
200 vehicles, the size is around 1.08 bits, but it rises quickly
as the number of vehicles reaches 400. Beyond this, the set
continues to grow. A larger anonymity set size means a more
effective privacy scheme, assuming each vehicle is equally
likely to be targeted.

Our proposed scheme performs better than the base paper
scheme in both sparse and dense conditions. Figure 10b
shows how our scheme either outperforms or matches other
schemes in terms of anonymity set size.

D. ENTROPY OF ANONYMITY SET SIZE

Entropy is a measure of uncertainty that shows the relation-
ship between the actual location of a vehicle, V1, and the
locations of other vehicles, Vn, that create shadows. Even
though it may not always be practical to assume all vehicles
are equally likely to be targeted, entropy is a useful way to
measure the strength of the privacy scheme. The higher the
probability that vehicles are equally targeted, the higher the
entropy.

To measure location privacy, we use entropy as a metric
for global anonymity. We denote the anonymity set as N,
where each vehicle is represented by an index i. The total
number of vehicles is INI, and pi is the probability that vehicle
i is the target. The entropy H of an individual vehicle within
the anonymity set N can be calculated using the following
equation:

IN|

H=—>"pilog(pi) ©)

i=1

Looking at the figure, initially, the entropy is around
1.1 bits when the size of the vehicle set is 100. However,
as more vehicles, up to 400, enter the network, the entropy of
the anonymity set progressively increases. Notably, there is a
sudden and sharp rise in entropy as the number of vehicles
in the set increases, as illustrated in Figure 10c. In terms
of this metric, our proposed scheme demonstrates superior
performance compared to the base paper scheme.

E. TRACKING SUCCESS RATIO

The tracking success ratio refers to how effectively a vehicle
can be continuously tracked, with 90% of its trace available
to potential adversaries. Continuous tracking is essential for
compromising privacy, as adversaries require the complete
trajectory of a vehicle, including known endpoints, for de-
anonymization purposes. Let’s denote the tracking success
ratio as PA, which is the probability that the anonymity set
size IASAl for a vehicle VA is 1. Mathematically, it is defined
as: PA =Pr(AS =1)

PA =Pr(JAS| = 1) (6)

PA will be one at a time only when anonymity set also 1.
As the number of elements in the anonymity set increases,
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FIGURE 10. Analysis of proposed FL scheme on different noise levels.

PA decreases. The tracking success ratio measures the threat
level posed by network attackers.

In Figure 10d, we compare our proposed scheme with the
base paper scheme for different sets of vehicles. For example,
with 100 vehicles, the base paper scheme has a tracking ratio
of 20%, while our proposed scheme has a tracking ratio of
37% in the same scenario.

Similar improvements are observed for other sets of
values, indicating enhanced privacy protection for vehicles.
Furthermore, the computational overhead of both schemes
is shown in Table 5. Comparative analysis reveals that our
framework offers security features with minimal compute
and communication overheads, as demonstrated through
experimental and analytical findings.

F. SECURITY ANALYSIS

1) THREAT MODEL

In our tests, we looked at various potential threats to see how
strong our system is for the IoV and VANET. We focused on
two main types of attacks:
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Sybil Attack: A bad actor creates many fake identities to
mess up network operations or get unauthorized access.

Message Tampering: This means including wrong location
information or changing the routing process to damage the
system’s integrity.

2) SYSTEM RESILIENCE
Our proposed scheme employs several strategies to mitigate
these threats:

Group Leader Selection: The process of selecting a group
leader within each cell of vehicles ensures that only trusted
nodes with sufficient resources and adherence to traffic rules
are assigned leadership roles. This minimizes the potential
for Sybil attacks by ensuring that malicious entities are not
designated as leaders.

Shadowing Scheme: By creating a shadow effect through
the movement of vehicles, our scheme enhances privacy and
makes it difficult for adversaries to discern the real route of a
vehicle from the shadows. This effectively mitigates message
tampering attacks by obfuscating the true location of vehicles.
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Base Station Verification: While Road Side Units (RSUs)
do not directly participate in detection, they serve as
authorities capable of verifying a vehicle’s origin. This
adds an additional layer of security by ensuring that only
authenticated vehicles are granted access to the network.

3) EVALUATION METRICS
To assess the efficacy of our system against these threats,
we considered several key metrics:

False Positive Rate: This measures how often real vehicles
are wrongly identified as bad. Lower false positive rates mean
the detection system is more accurate and better at resisting
Sybil attacks.

Anonymity Set Size: This shows how well an adversary
can tell one vehicle from others nearby. A larger anonymity
set size means better privacy protection and better defense
against message tampering attacks.

Entropy of Anonymity Set Size: Entropy measures the
uncertainty associated with the anonymity set, providing
insight into the level of privacy afforded by the system.
Higher entropy values signify increased privacy protection
and make it more challenging for adversaries to track
individual vehicles.

Tracking Success Ratio: This metric evaluates how
effectively a vehicle can be continuously tracked, with a
higher ratio indicating greater difficulty for adversaries in
compromising privacy through continuous monitoring.

G. COMPARATIVE ANALYSIS

We tested our new method by comparing it to existing
techniques. We looked at how well it chose group leaders,
false positive rates, sizes of anonymous groups, entropy, and
tracking success rates. Our method worked better, reducing
implementation time and balancing privacy with accurate
location services. Figure 11 shows the time taken for group
leader selection in the original paper and our method.
In conclusion, our method provides an efficient and secure
way to communicate data for IoV and VANET. Using trusted
group leader selection, shadowing schemes, and base station
verification, we ensure data security, reliability, scalability,
and privacy, making it suitable for the needs of modern
vehicular networks.

V1. DISCUSSION

The proposed framework successfully combines Federated
Learning (FL) with Differential Privacy (DP) and an
optimized group leader selection mechanism to enhance
privacy and scalability in IoV. Simulation results demon-
strate significant improvements, including a 20% reduction
in computational overhead in group leader selection and
enhanced privacy protection, evidenced by larger anonymity
set sizes and reduced tracking success ratios. However, the
framework has limitations, the trade-off between privacy and
utility due to DP noise, and scalability challenges in networks
with thousands of vehicles. Also, the proposed method
does not explicitly address scenarios like network partitions
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or abrupt vehicle failures, which could impact real-time
operations. Future directions can include hierarchical group
leader selection, failure detection and recovery, user-specific
privacy control mechanisms, and different levels of privacy
on different metrics. And using lightweight, energy-aware
optimizations for FL. and DP implementations, ML tech-
niques for group leader selection, privacy parameters, and
resource allocation dynamically, based on real-time and
historical data.

VIl. CONCLUSION

An optimized privacy preserved unique framework is intro-
duced in our research, which protects the privacy of location,
and LBS service, especially in the IoV. The proposed scheme
uses Federated learning with differential privacy and an
optimized group leader selection process to preserve location
privacy before sending any data to the server while providing
accurate location-based services (LBS). For maintaining
privacy in routes followed and real-time location proposed
scheme uses differential privacy. Our scheme maintains the
balance between the accuracy of LBS requests in VANET and
in the privacy of location to make it provide accurate results.
Collection of data and model training will be on edge devices
and only updated model aggregation will be shared to the
group leader with the addition of differential privacy on each
request and model update. Federated Learning ensures model
training on edge devices while differential privacy provides
privacy in VANET making the overall scheme scalable,
distributed, secure, and more private in the context of IoV.
It introduces an optimized performance while maintaining
the privacy of data and LBS requests. Our proposed method
achieves the best trade-off between utility, performance, and
privacy.
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