
Received 25 November 2024, accepted 31 December 2024, date of publication 8 January 2025, date of current version 15 January 2025.

Digital Object Identifier 10.1109/ACCESS.2025.3527224

Hybrid-Hierarchical Synchronization for Resilient
Large-Scale SDN Architectures
ALESSANDRO PACINI 1, DAVIDE SCANO 1, ANDREA SGAMBELLURI1,
LUCA VALCARENGHI 1, (Senior Member, IEEE), AND ALESSIO GIORGETTI 2
1TeCIP Institute, Scuola Superiore Sant’Anna, 56124 Pisa, Italy
2Department of Information Engineering, University of Pisa, 56122 Pisa, Italy

Corresponding author: Alessandro Pacini (alessandro.pacini@santannapisa.it)

This work was supported in part by European Commission Horizon Europe Smart Networks and Services (SNS) Joint Undertaking (JU)
DESIRE6G Project under Grant 101096466; in part by European Union (EU)—Next Generation EU under Italian National Recovery and
Resilience Plan (NRRP), Mission 4, Component 2, Investment 1.3, Partnership on ‘‘Telecommunications of the Future’’
(PE00000001—Program ‘‘RESTART’’) under Grant CUP: J53C22003120001; and in part by Italian Ministry of Education and Research
(MUR) in the Framework of the FoReLab Project (Departments of Excellence).

ABSTRACT Interest in hierarchical Software-Defined Networking (SDN) controllers is growing recently
due to their ability to address the challenges associated with the SDN paradigm, such as responsiveness and
scalability. This design enables efficient domain control separation, which uses different child instances to
manage large-scale networks. Parent controller computational resources can be dedicated to cross-domain
decision making, exploiting network views provided by its children. In this context, the correctness of the
process fully relies on the network view synchronization mechanism, which should be fast and resilient. This
paper presents a hybrid synchronization model combining a hierarchical design with established resilient
cluster mechanisms. In this way, high-level control over large-scale networks can be guaranteed even with
failures affecting every level of the management plane. Specifically, two applications are developed for
the ONOS controller to share topology events using low-latency channels from child clusters to parent
clusters. The performance of both applications is measured under different cluster configurations, topology
sizes and number of generated topology updates. The results show that the proposed approach offers high
performance while being fully compliant with the platform for which it is designed. This makes the solution
easily extendable to heterogeneous child controllers. In fact, events are propagated from children to parents
using gRPC, achieving end-to-end latency of less than 10ms under normal conditions and 40-60ms under
high-rate event conditions. Consistency of network views is also guaranteed by strong event ordering and
delivery mechanisms. Failures are handled seamlessly at both cluster levels (i.e. parent and child controllers)
with a maximum synchronization delay of 2 seconds, which is quickly recovered.

INDEX TERMS Cluster, efficient, gRPC, hierarchical, hybrid, ONOS, software-defined networking,
synchronization, resiliency.

I. INTRODUCTION
The Software Defined Networking (SDN) paradigm has
revolutionized the way networks behave. With a centralized
control plane, the network can be seamlessly and automat-
ically configured. This increased flexibility allows network
administrators to quickly adapt and meet new business
requirements. At the same time, SDN controllers bring new

The associate editor coordinating the review of this manuscript and

approving it for publication was Nafees Mansoor .

challenges to the reliability and scalability of the architecture.
Indeed, the very nature of these controllers can lead to
single points of failure. For this reason, two options are
typically considered in SDN architectures [1]: centralized
and distributed. Centralized architectures, which use a single
SDN controller instance, are generally adopted for research
and education purposes. As well as being prone to failure,
they have scalability issues as the network grows.

Distributed architectures solve these problems by using
multiple controller instances. More specifically, a common

9032

 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 13, 2025

https://orcid.org/0000-0001-5092-6061
https://orcid.org/0000-0003-3049-215X
https://orcid.org/0000-0002-6695-5032
https://orcid.org/0000-0001-5017-1500
https://orcid.org/0000-0002-3408-237X


A. Pacini et al.: Hybrid-Hierarchical Synchronization for Resilient Large-Scale SDN Architectures

approach is to split large networks into multiple SDN
domains, each managed by a dedicated controller instance.
However, this separation should still allow the different
domains to be managed in a logically centralized manner,
ensuring the ability to control the entire network end-
to-end. As also reported by [2], distributed architectures
can be implemented using two different designs: flat and
hierarchical.

The flat design interconnects domain controllers as peers,
with each controller sharing its own topology view with
the others. In this way, each controller manages a subset
of network devices while participating in the global view.
An example of this design is the cluster configuration,
where multiple controller instances work together to manage
the same network domain. However, a flat design typically
requires strict synchronization between all controllers to
ensure consistency of the network view and fast fail-over.
It is therefore not suitable for controlling geographically
distributed networks where such strict synchronization
constraints cannot be met.

The hierarchical design vertically partitions the control
plane to further increase scalability [3]. Each network domain
is managed by a dedicated child controller, with each child
sharing its network view only with the parent controller. The
global network view is therefore only available to the latter.
Since only children are directly connected to network devices
(e.g. using the OpenFlow protocol), the parent can use its
computing resources to make high-level decisions.

Even though the flat design generally increases the work-
load of each instance, it potentially allows the management
of the entire domain from any of them. On the other hand,
the hierarchical design requires a dedicated instance to imple-
ment the parent entity, but allows for role-based workload
balancing. This paper describes a hybrid synchronization that
combines flat and hierarchical approaches. The aim of the
resulting architecture is to further increase the resilience of a
child-parent design, making it compatible with a per-domain
flat design (i.e. clusters). The proposed implementation,
preliminarily demonstrated in [4] and exploited in [5],
provides a fast and reliable gRPC-based synchronization
model where child clusters reactively exchange network
events with the parent cluster.

The solution is implemented and tested on top of the Open
Network Operating System (ONOS) [6] SDN controller,
which is widely considered to be the most reliable implemen-
tation of an open source SDN controller. It also provides a
clustering design that supports technologies typically used in
geographically distributed transport networks (e.g. disaggre-
gated optical networks) [7]. Two applications, to be deployed
on parent and child controllers respectively, are designed,
developed and evaluated under different cluster setups and
workload conditions. The applications communicate using
low-latency gRPC-based channels [8] and can therefore be
easily extended to support other controllers on the child side.
This allows the parent controller to extend its control to
domains based on different controllers and technologies (e.g.

radio access networks and disaggregated optical networks).
Both applications are released as open source projects,
enabling further development and community collabora-
tion [9], [10]. Therefore, the implemented system enables
a hierarchical design which is capable of interconnecting
heterogeneous domains while using the resiliency of the
cluster design. More specifically, this work provides:

• A reference synchronization model for resilient
large-scale SDN networks, mixing cluster and hierar-
chical designs.

• A topology sharing model based on gRPC, propagating
events from multi-instance children to multi-instance
parents.

• An open-source implementation of the presented
system, developed for the ONOS SDN controller.

• Ad-hoc benchmarks for the proposed solution and sim-
ilar, testing the resiliency and the scalability of an SDN
architecture in terms of topology view synchronization.

The paper is organized as follows. Section II provides an
overview of the existing cluster, flat and hierarchical designs
for SDN controllers, and then focuses on theONOS controller
architecture. Then, Section III presents the proposed solution,
showing details of the implemented applications and their
behavior. Section IV describes the experimental evaluation,
where several tests on the scalability and resilience of the
system are performed. Finally, in Section V, conclusions are
drawn, highlighting the advantages of the presented solution
and considerations for future work.

II. BACKGROUND AND RELATED WORKS
As presented in [1], several SDN controllers have been
proposed in recent years, each with its own features and
performance. Among those with a flat design, ONIX [12]
and Hyperflow [13] are the first to introduce this type
of architecture. ONIX instances use a distributed store to
replicate the Network Information Base (NIB) between them.
It implements two consistency options (strong/eventual), thus
optimizing performance according to the data to be stored.
On the other hand, Hyperflow uses a publish-subscribe
system to share network views using topology events.
In this way, instances recombine and align their views by
reorganizing the events generated in each local domain,
providing eventual consistency.

OpenDayLight (ODL) [14] and ONOS are currently the
most widely used open-source SDN controllers supporting
a multi-instance, flat design architecture. They are both
production oriented and therefore support a wide range of
network devices and protocols (e.g. NETCONF, OpenFlow,
P4). ODL implements a strong consistency model based
on the RAFT [15] consensus protocol to share information
across the cluster. ONOS combines a distributed database and
a gossip protocol to achieve both strong andweak consistency
models, ensuring performance and coherent network views.
Specifically, local topology events are optimistically repli-
cated to other instances, and occasionally aligned with the

VOLUME 13, 2025 9033



A. Pacini et al.: Hybrid-Hierarchical Synchronization for Resilient Large-Scale SDN Architectures

FIGURE 1. ONOS SB-NB subsystems relationship, as in ONOS documentation [11].

gossip protocol. This allows failure scenarios to be handled
smoothly at both data and control plane levels.

Strong consistency models provide up-to-date data across
all nodes, but inevitably have high latency and poor
scalability. For this reason, the implementation of mixed
consistency models supported by alignment mechanisms
is a good compromise. However, even in this case, strict
latency requirements must be guaranteed to ensure good
performance and correct behaviour within the cluster, making
the clustering solution inapplicable if the controller instances
need to be geographically distributed (e.g. in the case of wide
area networks).

To this end, a specific application is developed for ONOS
that supports a flat architecture and relaxes the low latency
requirements, i.e. ICONA (Inter Cluster ONOS Network
Application) [16], allowing remote and separate ONOS
clusters to share information about their managed networks
using the Hazelcast [17] publish-subscribe platform. It also
implements configuration policies between clusters, provid-
ing full control over services and events in different domains.
EachONOS cluster running ICONA shares the local topology
with remote clusters and receives abstracted network views
back from the others. In this way, ICONA preserves the
consistency performance of ONOS clusters while extending
their capabilities to the wide area network scenario.

On the other hand, regarding hierarchical design,
Kandoo [18] implements a two layer structure where selected
network events are propagated from child controllers to the
parent. However, fault tolerance is not implemented in this
project, so consistency is not fully addressed.

A similar concept is used by Orion [19], Google’s SDN
controller. It uses a hierarchy of instances that communicate
using RPC and exchange protobuf messages [20]. Like
Kandoo, it prioritises the isolation of failures at both
the data and control planes by assigning a single Orion
instance to each domain. Conversely, Google’s private WAN
intra-domain SDN controller, called B4 [21], uses the same

two-tier architecture but focuses on robustness. It implements
a combination of ONIX-based controllers for the lower-tier
sites and a global SDN gateway/TE server at the root,
implementing fault-tolerance mechanisms at both layers.
More specifically, it deploys a cluster at each site, managed
by Paxos [22], which selects primary and backup instances.
At the global level, the SDN gateway and TE server are
replicated across the WAN sites to ensure availability.

In these last years, a new SDN controller has emerged as
an open source project sponsored by ETSI, namely Teraflow
(TFS) [23]. TFS differs from previously presented projects in
that it is based on micro-services that delegate the scalability
and reliability of the controller to the underlying orchestration
tool (i.e., Kubernetes [24]). Preliminary work presented
in [25] demonstrated a hierarchical deployment of TFS, with
a parent instance acting as a network orchestrator and optical
network controller, and a child instance acting as an IP layer
controller. The reported results do not include an analysis of
the achieved network view consistency. However, this work,
which involves major telecom operators and vendors, reflects
the significant interest in providing SDN controllers with a
hierarchical design that introduces a high degree of flexibility,
enabling the control of domains using different technologies.
Another paper demonstrating the usefulness of hierarchical
design is [26], which shows how such a design can offer
advantages in terms of end-to-end path computation time
compared to a flat design. Therefore, these designs can be
beneficial for scaling heterogeneous and complex scenarios,
such the one presented in [27].

This paper proposes a hybrid synchronization solution that
enables a two-level hierarchical architecture between ONOS
clusters, which in turn use a flat design for local redundancy.
In this way, within each domain, scalability and reliability are
automatically guaranteed by the ONOSmulti-instance cluster
architecture, while at the network-wide level these features
are guaranteed by exploiting the hierarchical structure,
which also introduces the flexibility required to control

9034 VOLUME 13, 2025



A. Pacini et al.: Hybrid-Hierarchical Synchronization for Resilient Large-Scale SDN Architectures

heterogeneous wide area networks. Since communication
between parent and child controllers is implemented using
gRPC and relies on easily extensible protocol buffers/JSON
to serialize structured data, our work also provides a solid
foundation for connecting non-ONOS-based child controllers
to our ONOS-based parent controller.

A. ONOS CORE AND CLUSTER DESIGN
This work uses ONOS as a controller as it already provides a
reliable multi-instance cluster architecture and several tools
necessary for the development of the hybrid hierarchical
architecture (e.g. defined network device description in
protobuf). Furthermore, compared to other SDN controllers,
ONOS achieves the best performance in terms of message
processing, network topology change detection and reactive
path provisioning [28]. Finally, it is well established in the
open source SDN community. It emerged from an Open
Networking Foundation (ONF) initiative and is now part of
two Linux Foundation projects, AETHER [29] and P4 [30].
Fig. 1 shows the ONOS architecture, which natively

supports multi-instance clusters. A brief description of
this architecture is given below, as it forms the basis of
our development work and helps to better understand our
contribution. Specifically, the inter-tier boundaries in Fig. 1
represent the northbound and southbound APIs. At the very
bottom, a Provider component implements a protocol (e.g.
OpenFlow) used by the controller to manage the specific
network devices. This Provider is registered in an important
core component of ONOS called the Manager. The role
of the Manager is to receive information from one of
the various Providers and pass it on to Services (e.g. the
Topology Service) and Applications. In fact, an application
can receive updates from a specific service by implementing a
dedicated listener. TheManager also interacts with the Store
component. The Store indexes all relevant information and
makes it persistent by writing it to Atomix [31], a distributed
and scalable database. Sharing the same Atomix between
multiple ONOS instances is a way of sharing the network
state and is therefore necessary for implementing a cluster.
Furthermore, this framework uses a variety of replication
protocols (e.g. RAFT, Gossip) to share state across multiple
nodes, allowing it to be deployed as a cluster. In fact,
an ONOS cluster running on top of an Atomix cluster
achieves the best results in terms of both resilience and
scalability, as its state is both partitioned and replicated across
more than one Atomix node.

III. PROPOSED HYBRID-HIERARCHICAL
SYNCHRONIZATION MODEL
This section provides a detailed description of the proposed
hierarchical synchronization solution applied to SDN con-
troller clusters. The key idea is to propagate topology events
from child controllers to a parent controller while exploiting
the resiliency of the cluster configuration.

In this work, the proposed approach is applied to ONOS
through the development of specific Java-based applications.

These applications make use of a set of APIs exposed
by ONOS, allowing their coordination in the distributed
environment. By taking full advantage of this configuration,
it is then possible to increase the resilience and possibly
the scalability of the child-parent synchronization. The basic
structure of the applications is based on the open source
ONOS application Kafka-Integration [32], which is extended
and optimized for the proposed scenario.

Two applications are developed: Hierarchical Sync Child
(HSC), running on the ONOS child clusters, andHierarchical
Sync Parent (HSP), running on the parent cluster. These
applications, which are specifically designed to be resilient,
communicate via gRPC channels. The choice of gRPC is
driven by the need to share highly structured data in an
efficient way, such as ONOS Java objects. In fact, the
system developed works by reactively forwarding network
event objects. These events, generated on the children, are
seamlessly received by the parent through gRPC channels
embedded in the applications. In this way, the parent is able to
maintain the global topology view with updates coming from
its children.

This mechanism allows each child controller to focus on
managing the underlying devices by delegating inter-domain
functions to the parent controller. This approach enables a
number of further optimizations to be applied to the proposed
scenario. For example, each child could specialize in a partic-
ular domain (e.g. packet or optical) or protocol, thus reducing
the overall workload by concentrating its functionalities.
Furthermore, each child controller can choose the level of
network aggregation used to abstract its domain to the parent
controller, for example the full topology can be exported, or it
can be abstracted as a limited number of nodes (e.g. edge
nodes), or even abstracted as a single node to preserve domain
confidentiality [33].
On the other hand, the parent is relieved of the role of

managing the devices and can thus exploit its computational
resources by making cross-domain decisions (e.g. inter-
domain path computation). Moreover, the proposed approach
allows the development of a new set of applications at the
parent site, taking advantage of the global network view.
This is possible to the extent that the system is designed
to be fully transparent and compliant with the ONOS
architecture.

The hierarchical architecture allows easy integration
of technologically heterogeneous domains, as any device
supported by a child controller can be easily imported
into the parent view. For example, at the time of writ-
ing, the architecture is tested with Open vSwitch devices
(controlled using Openflow protocol), Reconfigurable Opti-
cal Add-Drop Multiplexers (ROADMs) and transponders
(NETCONF protocol), and BMv2 switches (P4Runtime
through gRPC). In this context, a variety of device types
can be considered at the parent level, but communication
protocol support to such devices is only required at the
child controllers, facilitating the integration of heterogeneous
domains.

VOLUME 13, 2025 9035



A. Pacini et al.: Hybrid-Hierarchical Synchronization for Resilient Large-Scale SDN Architectures

FIGURE 2. Hierarchical Sync Child application logic, deployed on a 3-instance ONOS child cluster.

Therefore, the resulting architecture from the proposed
synchronization model allow a modular management for
large and heterogeneous networks. Indeed, this work serves
as a starting point for the management of complex networks
by increasing both the number of child clusters and the
number of hierarchies. However, this approach can add
complexity to the system and waste many resources just by
communicating between different levels. The flexibility of
the data model in the proposed solution also enables the
transmission of abstracted/aggregated topology. Combining
the synchronization solution with these abstraction strategies
(e.g. limiting the propagation of certain events or aggregating
them) at child side, allows to limit the complexity of the
management of the parent network.

A. HIERARCHICAL SYNC CHILD
The Hierarchical Sync Child application has two main
functions:

• It listens for network events of its local cluster and
temporarily store them;

• It retrieves the events from the store and send them to
the parent via gRPC.

As the application is intended to be installed on a cluster,
these two functionalities are programmed to behave in a
coordinated way between ONOS instances. More specifi-
cally, ONOS exposes some APIs that allow consensus-based
leadership to be run on top of an Atomix distributed
primitive called topic. This means that the same functionality,
replicated on each controller instance application, can run
for leadership of the same topic. In this way, only one of
them becomes the leader, and thus actually runs it. The other
candidates can instead be programmed to take over if the
previous one withdraws for any reason (e.g. failure). In this
way, all application functions continue working as long as
there is at least one ONOS child running in the cluster.

Fig. 2 shows the logical structure of the HSC application,
replicated on three ONOS instances that form the child
cluster. Each instance runs the services that implement the
above functionality (primary services in blue and secondary
services in yellow). As an example of the management
concept, the primary services in darker blue represent the
active services, which are therefore selected with a leadership
process (represented in the figure by the dotted line with the
‘‘L’’ between services of the same level).

At the bottom, the very first service is the EventListener.
Its role is to capture all topology events that occur on the
managed devices. In ONOS, events are generated at the
instance that has mastership over the device that generates
them, and then dispatched to the others. For this reason,
only one EventListener needs to be active for the entire
cluster to avoid redundant events. There is therefore a
leadership process between these replicated services. The
events then pass through the EventConversion service: here
they are converted into Proto objects using the classes and
methods implemented for the µONOS project. In this way,
the application is able to seamlessly adapt to possible changes
or additions to the ONOS event objects by the open source
community. The converted events are then encapsulated into
an intermediate format called Encapsulated ONOS Event
(EOE). The EOE is the actual entity that travels from child
to parent instances and can be used to carry additional
information across the different services.

The active EventListener instance (i.e. the one on the right
in the Fig. 2) then calls the StorageManager service after
the event is converted. Its purpose is to interact with the
Distributed Work Queue that resides in the Atomix database.
More specifically, the lower part of the StorageManager is
used to put EOE items into this queue, while the upper part
is used to retrieve them. This approach has many advantages,
but the main one is that it allows the upper/lower services to
be decoupled. As shown in the figure, even the upper service

9036 VOLUME 13, 2025



A. Pacini et al.: Hybrid-Hierarchical Synchronization for Resilient Large-Scale SDN Architectures

FIGURE 3. Hierarchical Sync Parent application logic, deployed on a 3-instance ONOS parent cluster with N
children.

EventSender uses a leadership negotiation that is independent
of that of EventListener. This means that these two services
could be active in different ONOS instances, thus balancing
the application workload within the cluster. The shared queue
is therefore necessary to move EOEs from EventListeners
to EventSenders as all cluster controllers share access to it.
At the same time, it allows services to renegotiate leadership
(e.g. due to an instance failure), so that service leadership can
be passed from one instance to another without interruption.

On the upper part, the EventSender leader (i.e., the one on
the left in Fig. 2) implements a listener for the Atomix queue
using the StorageManager: as soon as a new EOE becomes
available, it is consumed from the queue and processed by
the service. If the service is somehow unable to complete
the processing, the current EOE is returned to the queue.
This Atomix feature guarantees that all items popped from
the queue are actually processed and not lost due to some
failure. The EventSender service handles this ‘‘completed’’
feedback part towards the StorageManager, and implements
some support mechanisms for the gRPC Client service. It is
configured to be aware of all the IP addresses of the parent
cluster instances: this allows some EOEs to be quickly
redirected to another controller if something goes wrong.
In fact, as will be discussed later, all HSP applications are
equipped with an available gRPC server. This means that if
a parent gRPC server instance becomes unreachable or the
latency to send a single EOE exceeds 30ms, the EventSender
reconfigures the gRPC client to a different parent instance.
In addition, this service initially takes a random selection
from the configured parent IPs. This helps to avoid multiple
children clustering to send EOEs to the same gRPC server
among those available at a parent. If the EOE is correctly
acknowledged by the parent gRPC server, it considers it
processed. Otherwise it retries until it succeeds.

The entire application enforces a transparent event for-
warding, preserving the order in which events are generated.
It also takes advantage of the cluster configuration to provide

resilience. Therefore, by increasing the number of instances
in the cluster, the management plane and the proposed system
itself can tolerate more failures at once.

B. GRPC COMMUNICATION AND MANAGED EVENTS
Before introducing the parent application, there are some
features of the implemented gRPC channels and managed
events that require further discussion. Applications use
synchronous and unary Remote Procedure Calls (RPCs): this
means that the client (child) sends a single request and waits
for the server (parent) to reply with a blocking call. This
enforces event delivery and ordering while sacrificing some
performance in high load scenarios. The message structure is
defined as it follows:

• EOE: the Protobuf event object;
• ClusterID: a unique identifier for each child cluster.

Thanks to the ClusterID, the parent application is able to
group events coming from the same child.

Furthermore, this work only handles topology events,
but it can be further extended to support core level
information (e.g. intents, applications). All events related to
up/down/updates of ports, devices or links are specifically
managed, except those related to port statistics. These
are handled at the EventListener level, which can easily
filter or abstract most of them to achieve higher system
scalability. It is important to note that using gRPC with
protocol buffers enforces a rigid data structure. This can
make data object modelling more difficult and reduce
flexibility compared to systems using formats such as JSON.
At the same time, this models enable several function-
ality which are implemented by default (e.g. data type
checking).

C. HIERARCHICAL SYNC PARENT
On a parent cluster, the Hierarchical Sync Parent application
implements the following functions:

VOLUME 13, 2025 9037



A. Pacini et al.: Hybrid-Hierarchical Synchronization for Resilient Large-Scale SDN Architectures

FIGURE 4. Hierarchical Sync Parent application GUI, showing the view of a single instance ONOS cluster with two imported and
interconnected topologies, each managed by two child clusters.

• It receives events via gRPC from the child clusters and
temporarily stores them;

• It retrieves events from the store and publishes them to
its local view.

Figure 3 shows the application logic on a 3-instance ONOS
parent cluster, synchronizing events from N different chil-
dren. The bottom service is represented by theEventReceiver,
which implements a gRPC Server. As previously anticipated,
HSC can autonomously switch between parent IPs to avoid
possible failures or major delays. For this reason, this service
must be running in all application instances. In fact, as shown
in the figure, no leadership process is configured between
EventReceivers, and more than one is collecting data from
child clusters (all are active, so coloured dark blue).

The EOE, once received by the gRPC Server service,
is placed in a dedicated Distributed Work Queue. This
queue has the same purpose as the one in the child appli-
cation, but belongs to the Atomix parent cluster. A similar
StorageManager service is therefore used to interact with it.
On the upper part, a leadership mechanism is implemented

between the EventPublisher services. As for the HSC, the
leader instance (i.e. the central one in the Figure 3) activates
a listener via StorageManager to retrieve and process new
EOEs added to the queue. Finally, the EventConversion
service converts the encapsulated events into ONOS event
objects using the reverse conversion functions of µONOS.
Finally, the events are pushed to the local topology view

of the parent cluster, following the order of generation
of the children. This process actually requires a set of
mechanisms to allow the imported views to be handled

correctly. Events cannot simply be pushed into the view, but
must be ‘‘translated’’ into actual actions (e.g. a DeviceAdded
update requires a new device instance to be inserted into the
view) using a combination of AdminServices and Providers
services (see Figure 1).

As devices and links cannot be directly accessed by the
parent instances, they can only be recombined as an abstract
representation using the information carried in the events (e.g.
device properties, link type). This is made possible by the
AdminServices component: it allows elements to bemanually
inserted into the topology view while preserving core ONOS
functionality (e.g. intra-cluster event propagation).

A custom provider is then required to prevent ONOS
from managing the devices as real devices. Since providers
implement management protocols and thus implement keep-
alive mechanisms, a real provider would mark the abstract
devices as unreachable after a few seconds. Instead, by imple-
menting a custom provider, each child device can be handled
without problems: no other provider can manage them, and
so only imported events can affect the parent view involved.
Furthermore, the implemented provider also avoids possible
mastership issues between cluster instances on the imported
child devices. In fact, the instance with the HSP application
that has the leadership for the EventPublisher service is
forced to be the only one in charge for the considered devices.
As a consequence of these mechanisms, there are no com-
patibility issues on the child managed topologies: all SDN
domain types (i.e. optical or packet) natively supported by
ONOS can be imported at the parent site without any loss of
information.

9038 VOLUME 13, 2025



A. Pacini et al.: Hybrid-Hierarchical Synchronization for Resilient Large-Scale SDN Architectures

In addition, since the aim of this work is to allow the
parent clusters to deploy applications that take advantage of
the imported views, an additional concept from ONOS is
used: Regions. They enable the logical separation of elements
within the same topology: in this case, a new region is
implemented for each child attached to the parent. Using the
ClusterID embedded in each received gRPC message, the
HSP sends the event to a different region. In this way, new
parent applications can implement listeners for one or more
regions, and thus react to events that occur only on specific
child views.

Finally, a GUI overlay is available at the parent application.
This overlay uses regions to graphically display useful
information in the ONOS topology view. For each child (or
region) it shows the number of devices or links currently
available and their original information. It is also able to
highlight network elements belonging to the same child by
applying a label showing their ClusterID. Fig. 4 shows a
screenshot of the HSP GUI in a single instance parent cluster
connected to two child clusters (i.e.; Cluster-2 on the left
topology page and Cluster-1 elements on the right). You can
also see that an inter-child link is highlighted in green. This
is done automatically by the HSP application, which colours
all inter-domain elements to emphasize their presence.

This is a crucial aspect of the hierarchical architecture: the
parent rebuilds and aggregates information that is partially
available in the children. Specifically, the link in the figure is
not shown in any child view, as the two switches at the ends
of the link do not belong to the same domain/cluster. Instead,
the parent is able to reconstruct it because it has knowledge
of both, even if they are in different regions. Therefore, the
HSP application uses the ONOS framework itself natively to
achieve this result.

As for the HSC application, the application is meant to
run on top of a cluster. The leadership processes across same
applications components enforce a resilient behaviour in case
of a failure in the parent cluster, thus avoiding a single point
of failure scenarios. Additional cluster instances can be added
to increase the number of simultaneous failures.

D. SYNC BEHAVIOUR
The synchronization system performs a continuous exchange
of events from the child topologies to the parent topology.
It therefore requires an initial alignment between these
views. This behaviour is implemented at the HSC: when
the application is installed on the child cluster, it artificially
generates Added events for all the elements currently present
in the network, as if they are connected to the controller. This
allows the HSP to retrieve the current view, which can now
be updated according to the real topology events. Implicitly,
this means that the parent application must be the first to run
on the scenario. After that, new children can be added in a
plug-and-play fashion. Once the HSP is uninstalled, imported
views are automatically deleted. If this is the case, all running
HSCs continue to enqueue events from their topologies while
active-waiting for an HSP to receive them.

FIGURE 5. Load Test logical and physical deployment. Two
single-instance ONOS clusters, one child and one parent, are used to
evaluate the impact on the system of increasing the number of events
and varying the workload of the ONOS child instance. Topologies I and II
are used to generate different numbers of events, while the child
workload is changed by increasing the size of Topology III.

IV. EXPERIMENTAL EVALUATION
This section presents the scenarios and the results of the tests
performed to evaluate the overall correctness, scalability and
resilience of the proposed solution. Event processing latency,
defined as the time required by each application to process an
event, is used as the Key Performance Indicator (KPI) across
the different scenarios.

The main services in each application are programmed to
insert a timestamp into each EOE carried at the following
moments:

• Event captured by HSC EventListener;
• Event successfully sent by HSC EventSender;
• Event received by HSP EventReceiver;
• Event published to parent view by HSP EventPublisher.

In this way, all timestamps are available at the parent,
allowing the different latency contributions of HSP and HSC
processing, as well as gRPC transmission latency, to be
estimated when possible.

A. SCENARIO
Figures 5, 7 and 9 describe the logical organization of
the tests performed. More specifically, these figures show
how the ONOS clusters and their respective applications are
configured and installed on five different machines. Up to
three equivalent servers (Server 1-3) are dedicated to the
deployment of the controller instances, each equipped with
Intel Xeon E5-2643v3, 6-core 3.40 GHz clock, 32 GB RAM
and Ubuntu 18.04. They are physically connected via a
Gigabit connection through a physical switch. On the other
side, two PCs with Ubuntu 18.04, Intel i5, 16GB RAM and a
Gigabit interface are used to emulate the network topologies
composed of OpenFlow switches using Mininet [34].

Each ONOS cluster is configured to be deployed using
Docker containers [35], with a variable number of ONOS (in

VOLUME 13, 2025 9039



A. Pacini et al.: Hybrid-Hierarchical Synchronization for Resilient Large-Scale SDN Architectures

FIGURE 6. Load Test results showing the end-to-end and per-app processing latency for each event generated within Topology I (A) and Topology II (B)
and propagated to the parent. Events are generated by repeatedly turning the central switch of the affected topology off (white background) and on
(gray background) while increasing the size of Topology III.

red) and Atomix instances (in green), and that are part of the
same L2 domain. Cluster deployment follows a simple rule:
same cluster instances belong to the same machine. In this
way, even when using multi-instance clusters, the correctness
of event latency can be guaranteed at least per application.
In fact, despite the different tests, it is always possible to
retrieve the latency contributions for each event traversing
HSC and HSP applications respectively.

Furthermore, the ONOS configuration changes according
to the type of cluster it belongs to: child clusters require
additional applications to run in order to manage the
OpenFlow switches (e.g. openflow, lldpprovider), while
parent clusters do not. In HSC and HSP, the leadership
of the main functions is controlled to create load-balanced
scenarios. For this reason, the ONOS instances in the figures
indicate how the running functions are distributed according
to the cluster instance type:

• HSC’s EventListener (EL in the figures);
• HSC’s EventSender (ES in the figures);
• HSP’s EventReceiver (ER in the figures);
• HSP’s EventPublisher (EP in the figures).

This only applies tomulti-instance clusters, as single-instance
clusters have to implement all the functions of the installed
HSC/HSP applications.

Scalability is assessed by generating different network
sizes, producing a variable number of topology events.
Mininet is used to generate custom star topologies only:
by switching the central switches up and down, ONOS
itself generates a burst of events, mainly related to links
and port status, coming from the edge switches. In this
way, it is possible to place a much higher load on the
system compared to the Mininet network generation process.
Topology producing events are shown in the figures with an
asterisk next to their name.

B. LOAD TEST
The first test (Fig. 5) considers a simple scenario with
a single-instance child cluster (C1 in Figure) and a
single-instance parent cluster (P in Figure). Both use the
same configuration, with oneONOS instance and oneAtomix
instance. The child and parent controllers run on the same
machine (i.e. Server 1) to keep them synchronized. The aim
of this test is to verify how the two applications perform
with a variable number of events and how this is affected
by the overall workload of ONOS. For this reason, a specific
network consisting of three subtopologies is attached to the
child:

• I: Single switch topology;
• II: 10x star topology (1+10 switches, 10 × 2 links);
• III: Variable-size star topology.

Topology I and II are used to generate a different number of
events while increasing the workload on ONOS with addi-
tional OpenFlow devices (the devices included in Topology
III). The test is therefore split into two parts:

• (A): turn on and off the switch of Topology I;
• (B): turn on and off the central switch of Topology II.

In both cases, the experiment is performed under 4 different
workload conditions, mainly determined by the size of
Topology III (0, 50, 100, 200 switches). Each experiment
is repeated 10 times for each workload scenario, with an
intermediate delay between the up and down phases. All other
events related to the setup of the topologies are filtered out.

The results of this test are presented in Fig. 6, showing
the latency affecting the event propagation from child to
parent clusters according to the scenario involved. In this
particular case, it is possible to obtain some additional
information other than the application latencies (child/HSC
in green, parent/HSP in dark blue) for each event. As both
child and parent run on the same server, the timestamps

9040 VOLUME 13, 2025



A. Pacini et al.: Hybrid-Hierarchical Synchronization for Resilient Large-Scale SDN Architectures

FIGURE 7. Single- VS Multi-Instance Test logical scheme, along with physical deployment. Four different 50x star topologies, generating a
fixed number of events, are used to evaluate HSC performance within a four single-instance child cluster setup (cases 1-2) against a two
dual-instance one (cases 3-4). The same is done for the HSP application, but comparing a single-instance parent setup (cases 1-3) against
a dual-instance setup (cases 2-4).

of the different applications are coherent. This also allows
us to estimate the latency of the gRPC communication
(in light blue) and therefore the overall end-to-end (E2E)
communication (in red). The average latencies for each
component are also shown in the upper right corner of each
plot. In addition, events generated by the up and down phases
of the central switch are distinguished in both plots by a
different background color: the white background represents
the down phases, while the grey background represents the
up phases.

For the Load Test (A) (Fig. 6.A), the Topology I generates
events. As this is a single switch topology, the down phase
generates a single event (device down), while the up phase
generates 3 events (device up and port updates). After
10 repetitions, the total number of events is 40. The latency
peaks visible in figure are mainly from the up phases, with an
overall maximum of 21ms. Although the average latencies of
the parent application are fairly balanced over the tests, those
of the child application appear to be inversely proportional to
the increase in workload. In fact, as the size of the Topology
III increases, latencies of the child applications decrease. This
could be due to some optimizations that ONOS may apply
to manage a larger set of devices. At the same time, some
services may also run in steady state condition, avoiding
sleeps and thus reducing the processing time of the ONOS
instance.

The Load Test (B) (Fig. 6.B) shows a general increase
in the average latencies. This is due to the number of
events processed, which is drastically higher compared to
(A). Indeed, the total number of events, now generated by

Topology II, from down phases (40 each, including link down
and port updates) and up phases (approximately 75 events
each) is of almost 1150. In these cases, both up and down
phases originates peaks, due to the burst of events generated.
The increasing latency that leads to each peak is a symptom
of a queuing delay, mainly determined by the ONOS child
instance itself handling the new topology updates. Indeed, it is
possible to see that the E2E latency is quite close to the HSC
processing latency. On the other hand, the HSP application
shows negligible values: a small peak is visible at the
beginning of almost every phase, but it quickly disappears as
the HSC reduces its transmission rate. The child application
again confirms that it is not affected by the increase in
Topology III size. Although there is a higher number of events
compared to the previous case (Load Test A), the highest E2E
latency is still recorded when the Topology III size is 0. For
bigger topology sizes, the latency shows slightly lower values
compared to size 0. This may be further evidence of some
existing mechanisms that optimize processing of ONOS as
the number of devices handled increases. At the same time,
there is not a smooth decreasing trend as before: the average
E2E latency with size 100 is slightly higher compared to size
50. For this reason, we may conclude that this optimization
does not offer consistent benefits with topology III with
size higher than 50. Indeed, the biggest latency gap can
be found among size 0 and size 50 in both test A and B.
It is still worth to mention that the worst peak in E2E is
less than 100ms (around 80ms) with Topology III of size 0,
with an average of 21ms and mainly dictated by the child
application.

VOLUME 13, 2025 9041



A. Pacini et al.: Hybrid-Hierarchical Synchronization for Resilient Large-Scale SDN Architectures

FIGURE 8. Single- VS Multi-instance Test results, showing per-application processing latency for each event generated by a
50x star topology and propagated to the parent. An equal number of events are generated by repeatedly turning the central
switch of the involved topology down (white background) and up (grey background) while changing the configuration of
the child and parent clusters. The performance of single and multi-instance application deployment is therefore compared
for both HSC (cases 1-2 vs cases 3-4) and HSP (cases 1-3 vs cases 2-4).

C. SINGLE- VS MULTI-INSTANCE TEST
The second test compares the performance of applications
running on single-instance clusters against multi-instance
clusters.

The four different configurations shown in Figure 7,
involving both child and parent controllers, are used while
managing the same network topology (e.g. handling the
same number of events). Each application is installed on two
different configurations:

• A single-instance ONOS cluster, with one Atomix
instance;

• A dual-instance ONOS cluster, with two Atomix
instances.

According to Fig. 7, the parent configuration changes
horizontally (cases 1-3 vs cases 2-4) while the child changes
vertically (1-2 vs 3-4). To evaluate the performance of the
child application, four ONOS instances are used, each equally
loaded with the same 50 star topology size. Therefore,
depending on the specific scenario, they are properly
rearranged into 4 single-instance clusters (C1-C4 in Figure,
with 4 separate HSC applications) or 2 dual-instance clusters
(C1 and C2 in Figure, with 2 replicated HSC applications)
with the same number of Atomix instances per server. On the
other hand, the load on the parent cluster (P in Figure)

is kept constant: regardless of the single or multi-instance
configuration, it is responsible for managing the global 200-
switch topology view imported from the children. In addition,
whatever application is installed on a multi-instance cluster,
its functionalities are forced to be distributed across its cluster
instances.

The topology attached to the cluster C1 is the one that
generates the events in the different cases. Therefore, the
results collected refer to the performance of the applications
running on the child cluster C1 and the parent cluster P,
both in single or multi-instance configuration. The children
running on the Server 3 are only used to load the system with
additional topologies to be managed.

The results of this test are shown in Figure 8. In this case,
the child and parent clusters run on two different servers,
so measuring gRPC transmission and E2E latency requires
very accurate clock synchronization. For this reason, only the
latency contributions of the child and parent applications are
shown for each event. Even in this case, events are divided
into up (grey background) and down (white background)
phases, which are generated by switching the central switch
of the topology up and down.

It is possible to see that the latency measured on the parent
application is still negligible compared to that measured
on the child controllers. However, in this specific case, the

9042 VOLUME 13, 2025



A. Pacini et al.: Hybrid-Hierarchical Synchronization for Resilient Large-Scale SDN Architectures

child latency peaks from the down phases show a significant
increase with respect to the up phases. This is due to the 50x
star topology used for this test, resulting in bursts of 200 and
325 events for down and up phases respectively. Therefore,
down phases appear to have a greater impact on the instance
workload for higher event rates.

Let’s start by comparing the performance of the child
application running on a single-instance and on a two-
instance cluster. So we need to compare the cases vertically
(Case1 vs Case3, Case2 vs Case4) for the same parent
configuration. In the first two scenarios (1-2), cluster C1
runs both HSC components on its single instance. In the
other two (3-4), C1 instead balances the child application
components between its two instances. The results show
that the event processing latency increases by about 30ms
in both comparisons, from an average latency of ±36ms in
cases 1-2 to ±65ms in cases 3-4. This may be due to the
overhead introduced by the HSC components sharing events
between distinguished instances. In fact, even though the
child application workload is distributed, the performance
is slightly worse than the single instance scenarios. On the
other hand, this configuration guarantees the isolation of
component failures, which can be handled better than in the
single instance cases. It is also important to note that in
the multi-instance cases (3-4), more events are generated by
ONOS (±800), evenly distributed in the up/down phases.
This is due to some redundant events that this configuration
may need to share in order to ensure coherent behaviour
across its instances. Indeed, the correctness of the parent view
is still achieved.

On the other hand, the performance of the parent applica-
tion in a single/multi-instance scenario can also be evaluated
by comparing cases horizontally (Case1 vs Case2, Case3 vs
Case4) for the same child configuration. In Case1 and Case3,
HSP runs on a single-instance ONOS cluster, while in Case2
and Case4 it runs on a two-instance cluster. In the latter cases,
the application components are still distributed among the
cluster instances.

Although the latency at the parent level is negligible
with respect to HSC (±1.5ms on average), a similar
trend of performance degradation is slightly visible in the
multi-instance scenario (latency more than doubled, ±2ms
difference from cases 1-3 to cases 2-4). Since HSC and
HSP applications share the same logical architecture, it is
clear that the overhead of the multi-instance setup is affected
by the instance workload. Indeed, this overhead is much
more pronounced on HSC than on HSP, since the former is
burdened by topology management.

Finally, from theHSP point of view, there are no significant
differences when changing the HSC configuration (cases 1-2
vs cases 3-4) and vice versa for the HSC (cases 1-3 vs cases
2-4).

D. FAILURE TEST
The third test aims to verify the resiliency and correct-
ness of the proposed implementation. More specifically,

it measures the impact of a failure in terms of event processing
latency on each application component, both at the child
and parent level. To this end, four different scenarios are
considered, as shown in Figure 9.

Each case has the same initial condition, with a 50x
star topology connected to a dual-instance child cluster
C1 running HSC components in a distributed fashion. The
Mininet switches are equally balanced between the two
instances from a mastership point of view. The parent cluster
P shares the same configuration as the child, so each instance
runs one HSP component. The topology then generates a
constant stream of events. This is achieved by disabling one of
the 100 interfaces on the central switch every 5ms. Halfway
through the script, after the 50th interface is disabled,
an ONOS instance is killed. This forces the remaining
instance in the cluster to manage the dead functionality
through the leadership mechanism.

The four cases considered cover all possible combinations
of application functionality running on the killed instance:

• Case1: child instance failure, running HSC’s EventLis-
tener;

• Case2: child instance failure, which runs HSC’s
EventSender;

• Case3: parent instance failure, handling HSP’s used
EventReceiver;

• Case4: parent instance failure, which executes HSP’s
EventPublisher;

In addition, a special Case0 with no failure is considered and
used as a baseline. In this way it is possible to determine
how much the failure of a particular application component
affects the performance of the system.

The results of this test are shown in Figure 10. Again, only
the latency contributions of the parent and child applications
can be measured. In Case0 it is possible to see how the
400 events are processed with very low latency from both
sides. In fact, the average latency is less than 3ms for both
HSC and HSP, with no samples exceeding 10ms. Case1 takes
into account the failure of the child instance managing the
EventListener. The event latency reflects that of Case0 for
both parent and child, but then increases for the latter after
the failure (200th event). It starts with an initial peak, but then
increases up to 75ms. This may be due to the fact that half
of the topology devices is handed over to the new instance,
which now has to manage them. Indeed, after a failure, events
are received by the new instance, which is now in charge of
the switches. It is also important to note that fewer events
are processed during this transition (80 less, pink area in the
graph). The inconsistency is not due to the EventListener
leadership process, but to the child itself. Although ONOS
handles this type of scenario autonomously by periodically
checking for inconsistencies with each device. Once found,
events are generated and the state becomes consistent.

Case2 takes into account the failure of the child instance
managing the EventSender component. In this scenario, the
delay due to the renegotiation of the leadership becomesmore
evident. As shown in the Figure, there is an immediate peak

VOLUME 13, 2025 9043



A. Pacini et al.: Hybrid-Hierarchical Synchronization for Resilient Large-Scale SDN Architectures

FIGURE 9. Failure Test logical scheme, along with physical deployment. The test considers a same starting setup composed of two
dual-instance ONOS clusters, one child and one parent. A continuous stream of events is then generated by a 50x star topology while
killing a different ONOS instance handling a different app functionality. Case1 and Case2 considers a failure affecting one of the child
cluster instances, thus HSC. Case3 and Case4 does the same at the parent one, and so HSP.

FIGURE 10. Failure Test results showing per-app processing latency for each event of a continuous stream generated
by a 50x topology. Halfway through this event stream (200th event), an ONOS instance handling an application
component is killed. This forces the missing functionality leadership to migrate to the other active cluster instance.
Case0 represents the baseline with no failure. Case1 and Case2 kill an ONOS instance on the child cluster C1 handling
one of the HSC application components, EventListener and EventSender respectively. Case3 and Case4 do the same,
but on the parent cluster P running HSP’s EventReceiver and EventPublisher components.

in latency (±2s) in the child application after the failure.
This is because events have to wait in the Atomix queue

before being picked up by the newly elected EventSender
on the other instance. Indeed, the latency then continues to

9044 VOLUME 13, 2025



A. Pacini et al.: Hybrid-Hierarchical Synchronization for Resilient Large-Scale SDN Architectures

decrease as the queued events are processed and the new
ones are processed until the system returns to a steady state
(±130 events). On the other hand, the performance of the
parent application is similar to Case0, as expected.

In Case3, the parent instance that handles the EventRe-
ceiver used to receive the event is killed. However, as shown
in the figure, this scenario does not have a significant
impact on the performance of the system. In fact, only a
small peak in processing latency is registered, but on the
child application. As mentioned earlier, the EventReceiver
component is the only one in the architecture that is
not managed by a leadership process. Therefore, multiple
EventReceiver components run in parallel on each parent
instance. After the failure of the one receiving the events,
the child EventSender component realizes that the gRPC
channel is no longer available (30ms deadline). So it redirects
the pending events to the other EventReceiver instance that
was ready to receive the data. Events in the middle of this
process reflect this delay on the child side, as the timestamp
of the HSC output is overwritten with each attempt. The first
event after the failure is therefore the only one to experience
increased processing latency (peak of approximately 50ms).

Finally, Case4 considers the failure of the parent instance
running the EventPublisher component. It is immediately
apparent that the results of this scenario are almost identical to
those of Case2, but reflected on the HSP application. Indeed,
they have in common that the component alive has to retrieve
events that are waiting in the queue during the leadership
renegotiation process. It shows the same immediate peak
of ±2s after the failure, which still decreases rapidly until
reaching the normal behaviour (±130 events).

V. CONCLUSION
This work presents and thoroughly evaluates a hybrid-
hierarchical synchronization solution for SDN architectures.
The resulting system achieves a strong two-level resilience
model, exploiting cluster configurations on both the child and
parent sides. It propagates events through gRPC channels,
enabling seamless integration with other child controllers,
and has demonstrated fast and responsive view alignment
from child to parent from a performance perspective.

The implementation on the ONOS controller shows excel-
lent performance. The developed applications achieve view
synchronization with an end-to-end latency averaging less
than 10ms in low event rate scenarios and around 40-60ms in
burst scenarios. This performance is verified while increasing
the number of devices managed by the controller, with no
noticeable impact on system performance. The applications
are also tested in both single and multi-instance clusters, with
a maximum overhead of 30ms for the child application in
the latter case. This replicated configuration improves fault
tolerance, with failures effectively managed at both levels.
In fact, component failures affect the synchronization latency
by up to 2 seconds, after which the system recovers quickly.
In addition, the implemented applications are released as

open source projects, enabling further development and
community collaboration.

Another major strength of the proposed solution is its com-
plete transparency with respect to the different technologies
and communication protocols used in the child domains (e.g.
OpenFlow, P4, NETCONF, etc.). Consequently, the resulting
architecture facilitates the development of new applications at
the parent level, using network views imported from the child
controllers, while completely delegating communicationwith
devices to the child controllers. This further emphasizes the
potential of the proposed solution to enable a range of new
scenarios, including those with multiple hierarchical levels,
where themanagement of increasingly complex networks can
be simplified.

REFERENCES
[1] F. Bannour, S. Souihi, and A. Mellouk, ‘‘Distributed SDN control: Survey,

taxonomy, and challenges,’’ IEEE Commun. Surveys Tuts., vol. 20, no. 1,
pp. 333–354, 1st Quart., 2018.

[2] T. Hu, Z. Guo, P. Yi, T. Baker, and J. Lan, ‘‘Multi-controller
based software-defined networking: A survey,’’ IEEE Access, vol. 6,
pp. 15980–15996, 2018.

[3] Y. Liu, A. Hecker, R. Guerzoni, Z. Despotovic, and S. Beker, ‘‘On optimal
hierarchical SDN,’’ in Proc. IEEE Int. Conf. Commun. (ICC), Jun. 2015,
pp. 5374–5379.

[4] A. Pacini, D. Scano, L. Valcarenghi, A. Sgambelluri, and A. Giorgetti,
‘‘Enabling event-based hierarchical synchronization in SDN ONOS
clusters,’’ inProc. IEEEConf. Netw. Function Virtualization Softw. Defined
Netw. (NFV-SDN), Nov. 2022, pp. 92–93.

[5] A. Pacini, A. Sgambelluri, C. Centofanti, A. Marotta, E. Paolini,
A. Giorgetti, and L. Valcarenghi, ‘‘Hierarchical software-defined control
for coordinated RAN and PON-based transport scaling,’’ in Proc. IEEE
Netw. Oper. Manage. Symp., May 2024, pp. 1–3.

[6] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow, and G. Parulkar, ‘‘ONOS:
Towards an open, distributed SDN OS,’’ in Proc. 3rd Workshop Hot Topics
Softw. Defined Netw. New York, NY, USA: Association for Computing
Machinery, Aug. 2014, pp. 1–6, doi: 10.1145/2620728.2620744.

[7] A. Giorgetti, A. Sgambelluri, R. Casellas, R. Morro, A. Campanella, and
P. Castoldi, ‘‘Control of open and disaggregated transport networks using
the open network operating system (ONOS) [invited],’’ J. Opt. Commun.
Netw., vol. 12, no. 2, pp. A171–A181, Feb. 2020.

[8] Google. gRPC. Accessed: Jan. 2025. [Online]. Available: https://grpc.io/
[9] Hierarchical Sync Child Repository. Accessed: Jan. 2025. [Online].

Available: https://github.com/Network-And-Services/HierarchicalONOS-
Child

[10] Hierarchical Sync Parent Repository. Accessed: Jan. 2025. [Online].
Available: https://github.com/Network-And-Services/HierarchicalONOS-
Parent

[11] Open Networking Foundation. ONOS Documentation. Accessed:
Jan. 2025. [Online]. Available: https://api.onosproject.org/2.7.0/apidocs/

[12] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker, ‘‘Onix: A
distributed control platform for large-scale production networks,’’ in Proc.
OSDI, 2010, vol. 10, no. 1, p. 6.

[13] A. Tootoonchian and Y. Ganjali, ‘‘HyperFlow: A distributed control plane
for OpenFlow,’’ in Proc. Internet Netw. Manage. Conf. Res. Enterprise
Netw. Berkeley, CA, USA: USENIX Association, Apr. 2010, p. 3.

[14] J. Medved, R. Varga, A. Tkacik, and K. Gray, ‘‘OpenDaylight: Towards
a model-driven SDN controller architecture,’’ in Proc. IEEE Int. Symp.
World Wireless, Mobile Multimedia Netw., Jun. 2014, pp. 1–6.

[15] D. Ongaro and J. Ousterhout, ‘‘In search of an understandable consensus
algorithm (extended version),’’ in Proc. USENIX Annu. Tech. Conf., 2014,
pp. 19–20.

[16] M. Gerola, F. Lucrezia, M. Santuari, E. Salvadori, P. L. Ventre, S. Salsano,
and M. Campanella, ‘‘ICONA: A peer-to-peer approach for software
defined wide area networks using ONOS,’’ in Proc. 5th Eur. Workshop
Softw.-Defined Netw. (EWSDN), Oct. 2016, pp. 37–42.

[17] Hazelcast. Accessed: Jan. 2025. [Online]. Available: https://github.com/
hazelcast/hazelcast

VOLUME 13, 2025 9045

http://dx.doi.org/10.1145/2620728.2620744


A. Pacini et al.: Hybrid-Hierarchical Synchronization for Resilient Large-Scale SDN Architectures

[18] S. Hassas Yeganeh and Y. Ganjali, ‘‘Kandoo: A framework for efficient
and scalable offloading of control applications,’’ in Proc. 1st Workshop Hot
Topics Softw. Defined Netw. New York, NY, USA: Association for Com-
puting Machinery, Aug. 2012, pp. 19–24, doi: 10.1145/2342441.2342446.

[19] A. D. Ferguson et al., ‘‘Orion: Google’s software-defined networking
control plane,’’ in Proc. 18th USENIX Symp. Netw. Syst. Design
Implement. (NSDI). Berkeley, CA, USA: USENIXAssociation, Apr. 2021,
pp. 83–98. [Online]. Available: https://www.usenix.org/conference/
nsdi21/presentation/ferguson

[20] Google. Protocol Buffers—Google’s Data Interchange Format.
Accessed: Jan. 2025. [Online]. Available: https://github.com/protocol
buffers/protobuf

[21] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata,
J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart, and A. Vahdat,
‘‘B4: Experience with a globally-deployed software defined wan,’’ in
Proc. ACM SIGCOMM Conf. SIGCOMM, Hong Kong, China. New York,
NY, USA: Association for Computing Machinery, 2013, pp. 3–14, doi:
10.1145/2486001.2486019.

[22] T. D. Chandra, R. Griesemer, and J. Redstone, ‘‘Paxos made live: An
engineering perspective,’’ in Proc. 26th Annu. ACM Symp. Princ. Distrib.
Comput., Aug. 2007, pp. 398–407.

[23] R. Vilalta, R. Muñoz, R. Casellas, R. Martínez, V. López, O. G. de Dios,
A. Pastor, G. P. Katsikas, F. Klaedtke, P. Monti, A. Mozo, T. Zinner,
H. Øverby, S. Gonzalez-Diaz, H. Lønsethagen, J.-M. Pulido, and D. King,
‘‘TeraFlow: Secured autonomic traffic management for a tera of SDN
flows,’’ in Proc. Joint Eur. Conf. Netw. Commun. 6G Summit (EuCNC/6G
Summit), Jun. 2021, pp. 377–382.

[24] Kubernetes. Accessed: Jan. 2025. [Online]. Available: https://kubernetes.
io/

[25] L. Gifre, R. Vilalta, J. C. Caja-Díaz, O. G. de Dios,
J. P. Fernández-Palacios, J.-J. Pedreno-Manresa, A. Autenrieth,
M. Silvola, N. Carapellese, M. Milano, A. Farrel, D. King, R. Martinez,
R. Casellas, and R. Muñoz, ‘‘Slice grouping for transport network slices
using hierarchical multi-domain SDN controllers,’’ in Proc. Opt. Fiber
Commun. Conf. Exhib. (OFC), Mar. 2023, pp. 1–3.

[26] M. A. Togou, D. A. Chekired, L. Khoukhi, and G.-M. Muntean, ‘‘A
hierarchical distributed control plane for path computation scalability
in large scale software-defined networks,’’ IEEE Trans. Netw. Service
Manage., vol. 16, no. 3, pp. 1019–1031, Sep. 2019.

[27] T.-C. Huang, C.-Y. Huang, and Y.-C. Chen, ‘‘Real-time DDoS detection
and alleviation in software-defined in-vehicle networks,’’ IEEE Sensors
Lett., vol. 6, no. 9, pp. 1–4, Sep. 2022.

[28] A. M. D. Tello and M. Abolhasan, ‘‘SDN controllers scalability and
performance study,’’ inProc. 13th Int. Conf. Signal Process. Commun. Syst.
(ICSPCS), Dec. 2019, pp. 1–10.

[29] AETHER. Accessed: Jan. 2025. [Online]. Available: https://aetherproject.
org/

[30] P4. Accessed: Jan. 2025. [Online]. Available: https://p4.org/
[31] J. Halterman. Atomix. Accessed: Jan. 2025. [Online]. Available:

https://github.com/atomix/atomix-archive
[32] Kafka-Integration ONOS App. Accessed: Jan. 2025. [Online]. Available:

https://wiki.onosproject.org/display/ONOS/Kafka+Integration
[33] B. Yan, Y. Zhao, X. Yu, Y. Li, S. Rahman, Y. He, X. Xin, and J. Zhang,

‘‘Service function path provisioning with topology aggregation in multi-
domain optical networks,’’ IEEE/ACM Trans. Netw., vol. 28, no. 6,
pp. 2755–2767, Dec. 2020.

[34] Mininet. Accessed: Jan. 2025. [Online]. Available: http://mininet.org/
[35] D. Merkel, ‘‘Docker: Lightweight Linux containers for consistent devel-

opment and deployment,’’ Linux J., vol. 2014, no. 239, p. 2, Mar. 2014.

ALESSANDRO PACINI received the bachelor’s
degree in computer science from the University of
Camerino, in 2018, and the joint master’s degree
in computer science and networking from the Uni-
versity of Pisa and Scuola Superiore Sant’Anna,
in 2021. He is currently pursuing the Ph.D. degree
in emerging digital technologies with the Scuola
Superiore Sant’Anna. During this time, he won
a one-year research fellowship at SSSA focused
on building a scalable and reliable monitoring

architecture for optical networks. His research interests include next-
generation software-defined networks, with a particular focus on reusing
existing network architectures to move toward a zero-touch paradigm.

DAVIDE SCANO received the B.S. degree in
telecommunication engineering from the Univer-
sity of Pisa, in 2017, and the joint M.S. degree in
computer science and networking from the Uni-
versity of Pisa and Scuola Superiore Sant’Anna,
in 2019, with a research thesis on SDN for guar-
anteeing QoS in network slicing. He is currently
pursuing the Ph.D. degree in emerging digital
technologies with Scuola Superiore Sant’Anna.
In 2020, he got a Research Scholarship at Scuola

Superiore Sant’Anna, Pisa. His research interests include software defined
networking, next generation software defined networking, optical networks,
and disaggregated networks.

ANDREA SGAMBELLURI has been an Assis-
tant Professor with Scuola Superiore Sant’Anna,
Pisa, Italy, since 2019. He has published around
100 papers (source Google Scholar, May 2021)
in international journals and conference proceed-
ings. His research interests include control plane
techniques for both packet and optical networks,
including software defined networking (SDN)
protocol extensions, network reliability, industrial
ethernet, switching, segment routing application,

YANG/NETCONF solutions for the dynamic management, telemetry,
(re)programming, and monitoring of optical devices. In March 2015, he won
the grand prize at the 2015 OFC Corning Outstanding Student Paper
Competition with the article ‘‘First Demonstration of SDN-Based Segment
Routing in Multi-Layer Networks.’’

LUCA VALCARENGHI (Senior Member, IEEE)
has been an Associate Professor with Scuola Supe-
riore Sant’Anna, Pisa, Italy, since 2014. He has
published almost 300 papers (source Google
Scholar, May 2020) in international journals and
conference proceedings. He received a Fulbright
Research Scholar Fellowship in 2009 and a JSPS
‘‘Invitation Fellowship Program for Research
in Japan (Long Term)’’ in 2013. His research
interests include optical networks design, analysis,

and optimization; communication networks reliability; energy efficiency
in communications networks; optical access networks; zero touch network
and service management; experiential networked intelligence; and 5G
technologies and beyond.

ALESSIO GIORGETTI received the Ph.D. degree
from Scuola Superiore Sant’Anna (SSSA), Pisa,
Italy, in 2006. In 2007, he was a Visiting
Scholar with the Centre for Advanced Photonics
and Electronics, University of Cambridge, U.K.
From 2008 to 2020, he was an Assistant Professor
with SSSA. From 2020 to 2024, he was a
Researcher with the Institute of Electronics and
Information Engineering of the Italian National
Council for Research (IEIIT-CNR). He has been

an Associate Professor with the University of Pisa, Italy, since 2024.
He is the author of about 200 international publications, including journal
articles, conference proceedings, and patents. He is an active software
contributor to Open Network Foundation projects. His research interests
include optical network architectures and control plane, industrial networks
design, software-defined networking, and quantum communications.

9046 VOLUME 13, 2025

http://dx.doi.org/10.1145/2342441.2342446
http://dx.doi.org/10.1145/2486001.2486019

