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ABSTRACT The emergence of large language models (LLMs) has revolutionized various fields, including
education, finance, marketing, healthcare, and medicine. In this review, we aim to explore the application
of LLMs in the healthcare sector, with a specific focus on disease diagnostics. The review highlighted the
widespread use of LLMs, such as GPT-4, ChatGPT, GPT-3.5, and LLaMA, with GPT-4 being the most
frequently used in disease diagnostics due to its diverse applications, improved accuracy, and efficiency. This
review shows that LLMs have utilized a variety of medical data sources, including general medical databases,
specialized documents, medical images, and genomic data. Moreover, the focus of these LLMs spans a broad
spectrum of healthcare fields, addressing chronic conditions, respiratory diseases, cancer, and rare diseases.
The performance evaluation of LLMs involves both qualitative and quantitative measures assessing their
diagnostic accuracy. The findings highlight the evolving nature of LLMs in improving diagnostic accuracy.

INDEX TERMS Large language models, health care applications, ChatGPT, GPT-4, GPT-3.5, BARD,
BERT, ChatGLM, LLaMA, rare diseases, PaLM.

I. INTRODUCTION
Large Language Models (LLMs), represent an important
advancement in Artificial Intelligence (AI), designed to
process and generate human-like text. These models mainly
support transformer-based encoder-decoder frameworks,
enabling them to excel in natural language tasks such as trans-
lation, summarization, and content generation [1], [2]. LLMs
may have just stacks of only encoders or only decoders, using
the mechanism for considering the importance of different
words in a sentence. This self-attention is imperative for the
capturing of context, meaning, and dependencies in the text.
Figure 1 was created to demonstrate the general architecture
of an encoder-decoder-based LLM.

This figure shows the architecture of a transformer model,
containing both the encoder and decoder components. The
input embedding layer gets the input, which is then passed
to Positional Encoding. Positional Encoding maintains the
original sequence of words in input sentences. Both encoder
and decoder have multi-head attention units, which are
responsible for conserving the contextual meaning of input
vectors through normalization functions and feed-forward
neural networks. After encoding, input embeddings are
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moved to the decoder, a linear layer, and a softmax function
to generate output probabilities [3].

These models require substantial computing power often
utilizing specialized hardware like Graphic Processing Unit
(GPU) or Tensor Processing Unit (TPU). Despite their
complexity, they can generalize to a wide range of natural
language tasks such as translation and summarization. Pre-
training involves training on a general corpus, followed by
fine-tuning on a specific task, enhancing their versatility [4],
[5]. They use numerous layers of neurons that capture diverse
levels of abstraction ranging from simple syntactic structure
to complex semantics. The output layer of the LLMs predicts
the next word in a sentence or produces a response to a
query. In the training phase, the weights of LLMs are adjusted
through backpropagation to reduce the gap in the predicted
and actual output [6].

In healthcare, LLMs are powerful AI systems, such as
GPT-4; that have been trained on enormous volumes of
textual data, covering patient records, clinical recommen-
dations, medical literature, and more. These models are
capable of producing, comprehending, and processing human
language in ways that are highly relevant to the field
of medicine [7], [8]. Their capacity to both produce and
interpret medical language allows them to assist medical
professionals in making well-informed decisions, resulting in

VOLUME 13, 2025

 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 8225

https://orcid.org/0009-0005-0735-501X
https://orcid.org/0000-0003-0128-4052


I. Almubark: Exploring the Impact of Large Language Models on Disease Diagnosis

FIGURE 1. Architecture of transformer model.

improved patient outcomes and enhanced healthcare service
efficiency [9].

LLMs have transformed the medical and healthcare
field by providing modern solutions to natural language
processing. For healthcare professionals, they are invaluable
tools that can assist in examining patient records and clinical
notes for disease diagnosis [9]. They can also contribute to
advanced informed decision-making through the formulation
of evidence-based recommendations that are based on the
patient’s relevant medical history [10], [11]. Further, through
the understanding and interpretation of subtle descriptions of
symptoms and a patient’s medical history, they can propose
differential diagnoses, offer a customized treatment plan, and
suggest medicines based on clinical diagnostics [12]. The
support of LLMs in various areas within the medical sector is
shown by the authors in Figure 2.

FIGURE 2. Support of LLMs in healthcare.

Moreover, they can assist in detecting rare diseases by
identifying complex patterns that may escape the eye of
the human clinician [13]. Based on their predictive analysis,

LLMs can perform risk assessments to estimate the course of
the diseases and the condition of the patients. Additionally,
LLMs can summarize the advanced research of medical
science, hence keeping clinicians updated with advancing
treatment protocols [14]. The processes involved in disease
diagnosis differs significantly between the traditional health-
care practices and LLMs. Traditional approaches depend on
heavily on clinician expertise and manual analysis of patient
records, while LLMs integrate advanced computational
methods to automate and enhance decision-making [15].
The key steps involved in both traditional and LLM-based
diagnostic approaches are shown by the authors in Figure 3.

FIGURE 3. Traditional and LLM-based disease diagnostic process.

LLMs can diagnose a variety of diseases including
cancer, cardiovascular disease, neurological conditions, and
respiratory diseases; as well as dermatological, metabolic,
psychiatric, and musculoskeletal disorders [16], [17]. The
diagnostic support provided by LLMs for various diseases is
shown by the authors in Figure 4.
Various literature reviews have been conducted on

the implementation of LLMs in the field of healthcare.
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FIGURE 4. Disease diagnostic support is provided by LLMs.

Hart et al., the researchers primarily focused on pathology
informatics [18]. The authors explored the infrastructure and
organizational changes required to support LLMs’ imple-
mentation, along with the considerations for education, data
management, and security. Other aspects of healthcare such
as oncology, cardiology, or mental health were not covered
in the review. Another systemic survey was conducted by
Wang et al., [19], where researchers explored pre-trained
language models in the biomedical field. The study focused
upon pre-trained languagemodels and their usage in perform-
ing various tasks involving natural language processing, such
as text classification, information extraction, and question-
answering. However, the study did not specifically categorize
the fields of healthcare where LLMs were being employed
for disease diagnostics. Moreover, it lacked a comprehensive
assessment of performance measures explicitly focused upon
disease diagnosis.

Similarly, the study by Yuan et al., [20] was conducted
to explore the potential of LLMs in knowledge retrieval,
research support, clinical workflow automation, and diag-
nostic assistance. This study did not extensively break down
the types of medical data employed or their distribution
across various studies. Moreover, the specific fields of
health care and the explicit categorization of performance
measures across targeted studies were missing. Likewise, the
study by Nazi and Peng [21] explored the implementation
of LLMs in the healthcare sector. The paper highlighted
the transformative role of LLMs in improving clinical
decision support, patient care, medical literature analysis,
drug discovery, and virtual medical assistants. Their research
included a general discussion and exploration of the broader
applications of LLMs rather than listing specific models, data
sources, or fields of healthcare targeted.

This current review aims to analyze the application of
LLMs in the field of healthcare, specifically focusing on the
disease diagnosis process. The primary studies have been
collected from four renowned repositories including IEEE
Xplore, ACM Digital Library, SpringerLink, and Science
Direct. After a careful review, twenty studies have been
selected for inclusion in this review, as these studies closely

match our research domain and criteria. A summary of these
studies regarding which digital repositories they were located
in is included in Table 1.

TABLE 1. Summary of primary studies.

II. RESEARCH OBJECTIVES
The key objectives of this review are to:

1. Identify the specific LLMs that have been employed in
the disease diagnosis process.

2. Investigate and classify the data sources employed by
the LLMs for disease diagnosis.

3. Determine the specific fields of healthcare targeted by
LLMs for disease diagnosis.

4. Examine the performance measures applied to assess
the performance of LLMs in disease diagnosis.

To the best of our knowledge, this is the first review that
explores the use of diverse LLMs in disease diagnostics
and has a particular focus on elucidating specific fields of
healthcare, particular data sources, and explicit performance
measures.

The research questions addressed by this review, along
with the motivation behind each question are presented in
Table 2.

TABLE 2. Research questions and motivation.

The main contributions of this study are given as:
• Identify the implementation of advance LLMs in the
field of medical diagnosis.

• Specify the diverse applications of LLMs to deal with
diagnostic scenarios.

• Measure the effectiveness of LLM-based disease diag-
nosis.

This review is organized as follows: Section V will explore
the LLMs identified by the primary sources found in the
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literature. Section VI will discuss the answers to the above
questions along with the analysis of each research question.
Section VI explores the issues and challenges associated with
the application of LLMs in healthcare. Finally, section VII
concludes the paper along with recommendations and areas
of future work and research investigation.

III. PRELIMINARIES
The following section will introduce the LLMs identified
within the current study as being employed within primary
research.

GPT-4 is a highly advanced multimodal LLM with better
computational power and human-like reasoning [22]. Users
can send visual or textual queries to interact with GPT-4.
This kind of LLM finds its applicability in almost every
domain including healthcare, research, problem-solving,
education, administration, and other industrial areas [23].
It is more reliable, and able to utilize training from real-
world experience, compared with previous variants (GPT-2,
GPT-3, GPT-3.5).

GPT-3.5 is a newly advanced large-scale model in the field
of natural language processing, with human-understandable
text generation abilities. Much more precise, faster, and more
capable than the pre-existing models. It houses encyclopedic
knowledge and can be applied in many fields including
education, healthcare, dataset generation, text creation, and
translation [24].

ChatGPT is an advanced form of natural language pro-
cessing and an application of conversational AI. It responds
by generating human-like responses. ChatGPT is popular
in multiple platforms, for example chatbots, virtual assis-
tants, problem-solving businesses, and customer service
platforms [25]. This model is aligned with user intentions
to provide in-context responses. It can understand the tones,
styles, and requirements of its users.

GPT-2 is an LLM that was generated to produce
human-like text using the potential of natural language
processing with unsupervised learning. Though small in size,
it is more capable of generating valuable text from prompts.
This model finds most of its applications in the field of
education, where it can generate examination questions and
other study materials. It can also act as a virtual assistant and
automation in customer services [26].

BARD (Biomedical Artificial Intelligence Research and
Development) is a language model developed within medical
and health-oriented niches. The model is trained utilizing
large-scale medical data to respond accordingly to the queries
raised [17]. In specific terms, it tends to benefit researchers,
medical students, and healthcare assistants whenever they
require verifiable and valid information. This information
can then further be used for the diagnosis and treatment of
disease.

PaLM (Pathway Language Model) is an advanced lan-
guage model of a general nature built for multiple tasks.
PaLM has been trained for handling complex and technical
terms and is, hence, not domain-specific. Thus, the present

model finds wide applicability in diverse fields including
law, industry, education, science and technology, and other
businesses [16]. It can help professionals in, analyzing,
drafting, revisiting, and generating text documents of various
kinds.

LLaMA (Large LanguageModel forMultilingual Applica-
tions) has been designed for worldwide applications that span
different languages and cultures. It is used in multilingual
translation and content generation. It is very important
for international organizations as well as in education and
research [27].
BERT (Bidirectional Encoder Representations from Trans-

formers), was considered a revolution in natural language
processing with the introduction of bidirectional train-
ing [15]. It allows the model to understand the full context
of a word within a sentence and how it relates to all other
words. BERT is widely used in text classification, sentiment
analysis, and named entity recognition. It is a powerful tool
for voice assistants and search engines.

ChatGLM is a specialized generative language model that
dynamically makes the conversation interesting and engaging
by providing responses contextually linked to inputs. Such a
model applies to a chatbot, virtual assistant, or social media
interaction. This model is also applied in medical diagnosis
and education, answering questions and providing useful
guidelines [28].
GPT-Neo is an open-source LLM similar in capabilities,

both in understanding and generating responses, to other
LLMs. It has gained lots of fame in research, development,
and practical applications in the field of natural language
processing aswell as a variety of industries. It is developed for
study and includes adjustments by the developer to improvise
advancements and reduce complications, famous in the field
of research, development, and several practical applications
including chatbots and virtual assistants [29].

The following section will delve into a discussion focused
upon answering the research questions detailed above.

IV. DISCUSSION OF RESEARCH QUESTIONS
A. RQ1: WHICH LLMS HAVE BEEN EMPLOYED IN
MEDICAL DIAGNOSTIC APPLICATIONS?
The emergence of LLMs in healthcare is increasing the
adaptation of LLM-based diagnosis. These models can
play a significant role in clinical decision support, medical
record analysis, patient interaction, and medical knowledge
synthesis.

L. Caruccio et al., conducted a comparative study between
traditional predictive models and LLMs to highlight the
significant role of LLMs in medical diagnosis [25]. They
introduced an intelligent diagnosis by implementing multiple
advanced LLMs namely ChatGPT, Google BARD, and
GPT-Neo. The results indicated that ChatGPT-based models,
specifically text-davinci-003 and GPT-3.5-turbo-0301, per-
formed better in disease diagnosis. However, Google BARD
outperformed ChatGPT and GPT-Neo in some scenarios,
particularly thosewith high variability in handling symptoms.

8228 VOLUME 13, 2025



I. Almubark: Exploring the Impact of Large Language Models on Disease Diagnosis

Z.Wang et al., proposed a novel framework named Radiology
Report Generation with Frozen LLMs (R2GenGPT) by
implementing the LLaMA2-7B LLM [27]. The authors
integrated visual encoder, visual mapper, and Llama2-7B to
translate visual features from medical images into coherent
textual reports. The framework mainly addressed the chal-
lenges associated with medical report generation using three
Llama2-7B-based feature visualization methods (shallow
alignment, deep alignment, and delta alignment). The authors
concluded that the deep alignment variant outperformed
state-of-the-art methods to align visual features with LLM.

C. Liu et al., explored the potential of Artificial Gen-
eral Intelligence models (AGI), LLMs, and Large Vision
Models (LVMs) in the field of Radiation Oncology [30].
The study particularly implemented LLMs, namely GPT-4
and PaLM2, and LVMs namely Segment Anything Model
(SAM), to examine diverse aspects of radiation therapy. The
applications of these models were assessed across multiple
stages, including initial consultation, simulation, treatment
planning, delivery, verification, and follow-up. The study
concluded that GPT-4 exhibited remarkable performance
compared with other models, specifically for the tasks
that demand interpretation and standardization of complex
medical data. A novel tool named MoŒil was developed
to educate patients in ophthalmology [31]. The researchers
utilized the exceptional capabilities of GPT-4 to provide
a platform that supported accessible, precise, and com-
prehensive information about ophthalmology-related topics.
GPT4 was further fine-tuned to focus on ophthalmology-
related material, educating patients without diagnoses or
treatment recommendations. The experiments indicated that
MonŒil was a highly effective tool to educate patients in
ophthalmology, specifically those with Advanced Muscular
Degeneration (AMD).

H. Zhang et al., introduced a novel LLMs to enhance
the accuracy of automated medical diagnostics [32]. They
integrated Markov Logic Networks (MLNs) with external
knowledge extracted using multiple LLMs - including
ChatGPT-3.5-turbo for summarizing disease knowledge,
GPT-4 to formalize disease knowledge, and text-embedding-
ada-002 for document integrations. The proposed approach
comprised three stages: knowledge acquisition, knowl-
edge formalization, and iterative optimization. LLMs were
employed in combination with a search engine which
provided structured external medical knowledge. This knowl-
edge was further interpreted into first-order logic rules
which were passed to the MLN-based diagnostic system that
produced final predictions. The statistical results indicated
that the proposed approach outperformed several baseline
methods in terms of enhanced accuracy and interpretability.
A further study developed and utilized a novel advanced
Java-based Android application to support medical diagno-
sis using GPT-3.5 [33]. The application required disease
symptoms through input and provided diagnosis and advice
through a user-friendly interface. The study concluded

that the application offered users satisfactory results with
significant accuracy and informed healthcare decisions.

D. P. Panagoulias et al., proposed a rule-augmented-
based patient-doctor communication system using Chat-
GPT [34]. They streamlined diagnostic procedures using
various external machine learning and analytical Application
Programming Interfaces (APIs) to offer diagnostic sugges-
tions. The system aimed to improve healthcare diagnosis
and reduce costs by leveraging the enhanced capabilities of
ChatGPT. The proposed approach was demonstrated through
various cases which revealed that ChatGPT-based patient-
doctor system could perform precise disease diagnosis with
further diagnostic exams. A. E. Saddik et al., integrated
ChatGPT with Metaverse to provide enhanced medical
consultancy [35]. They proposed a model named ChatGPT-
Metaverse-Medical (CMM) that combined the metaverse
environment, ChatGPT, and the healthcare sector to design
a novel approach for digital medical consultancy. The
proposed model could visualize organ anatomy, examine
body morphology, and offer remote surgery. CMM also
supported patient privacy and data security while provid-
ing healthcare services at economical prices. The study
concluded that the proposed ChatGPT-based model could
deliver real-time consultancy with efficient medical advice.
J. Kim et al., examined the use of both commercial and
non-commercial LLMs to support doctors in the medical
field [36]. The commercial LLMs included BARD and a
series of GPT-3.5 series comprising text-davinci-003, GPT-
3.5-turbo, and davinci-002. While non-commercial LLMs
included two fine-tuned versions of LLaMA, named Alpaca-
7B and Alpaca-7B LoRA. To assess the effectiveness of the
models, the authors employed a list of synonyms. The study
concluded that the disease prediction by these models was
correct if it was the synonymof the disease belonging to broad
categories. The experimental results showed that GPT-3.5-
turbo, achieved the highest accuracy among all the models
while other models struggled to produce accurate diagnoses.

D. P. Panagoulias et al., integrated a rule-based deci-
sion approach, external APIs, and GPT-4 for improved
medical diagnosis [37]. They also implemented natural
language processing-based algorithms to extract domain-
specific knowledge. The study focused on user interactions
with LLM-based systems to provide precise medical advice.
The system was evaluated using pathology-based multiple-
choice questions. The statistical analysis showed that the
approach achieved remarkable accuracy and offered reli-
able diagnostic services. An open-source LLM, named
ChatGLM-6B, was employed for fine-tuning medical appli-
cations [28].The study proposed an innovative framework
named MOELoRA (Mixture-of-Experts and Low-Rank
Adaptation) which could handle various medical tasks. These
tasks included named entity recognition, diagnosis predic-
tion, clinical report generation, and doctor recommendation.
The study conducted a comparative analysis of MOELoRA
with other baselinemethods named LoRAHub andMoLoRA.
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The results revealed that MOELoRA outperformed these
other methods. A Chinese medication system named Shen-
nongMGS was presented by Y. Dou et al., [38]. They
employed a Chinese language expert LLM, called ChatGLM-
6B LLM, to design ShennongMGS. It was pre-trained on
preprocessed data to build the medical knowledge base.
This knowledge base was continuously updated using a
web crawler to ensure the latest medication guidance. Shen-
nongMGS was fine-tuned using doctor-patient dialogues and
various medical cases to produce efficient results. The study
concluded that ShennongMGS could offer rational advice
based on user communication.

A. Ríos-Hoyo et el., evaluated the effectiveness of two
LLMs, namely GPT-3.5 and GPT-4, to diagnose complex
medical cases [39]. These cases were published between
2022 and 2023 and were selected based on their exclusion
from training data. The models were examined using three
distinct prompts. The experiments demonstrated that GPT-
3.5 producedmore diagnoses with less accuracy, while GPT-4
produced fewer diagnoses with precise results with persistent
accuracy. The study concluded that GPT-4 outperformed
GPT-3.5 in precisely diagnosing intricate medical conditions.
A novel system was designed and named SkinGPT-4 with the
aim of enhancing dermatological diagnosis using LLaMA-2-
13b-chat as a LLM [40].The system was pre-trained using
a vision transformer for image encoding. SkinGPT-4 was
fine-tuned using comprehensive clinical notes and doctors’
remarks to improve the system’s diagnostic abilities. The
system allowed users to upload images of skin diseases,
with the result that it could identify skin conditions along
with the medical recommendations. The assessment ensured
that SkinGPT-4 offered a reliable diagnosis in comparison
with traditional dermatologists. S. Zhang et al., designed a
question-answer-based system, named Chat Ella, using the
GPT-2 model [41]. Chat Ella offered a user-friendly interface
to provide patients with an interactive environment. The users
could provide disease symptoms through a conversational
interface and Chat Ella was able to produce remote and
efficient healthcare consultancy. The front-end system was
developed using React while the back-end system was
designed through the flask framework. The study revealed
that Chat Ella was an efficient tool for diagnosing chronic
diseases with accessible remote services. C. Shyr et al.,
focused on analyzing and phenotyping rare diseases using
two advanced LLMs (ChatGPT and BioClinicalBERT) [42].
They extracted disease phenotypes hidden in unstructured
text, which is a critical part of rare disease treatment. The
study employed two approaches, 1) training the system
using ChatGPT and 2) fine-tuning it using a BERT variant
LLM named BioClinicalBERT. The assessment showed
that BioClinicalBERT outperformed ChatGPT in extracting
phenotypes.

X. Hu et al., analyzed the diagnostic capabilities of
GPT-4 to identify rare eye diseases [43]. The researchers
focused on three user groups patients, family physicians, and
junior ophthalmologists. GPT-4 was provided with diverse

inputs including only main complaints for patients, main
complaints, and disease history for family. The input for
junior ophthalmologists comprised main complaints, disease
history, and descriptions of ophthalmic assessments. The
analysis found that GPT-4 could effectively diagnose eye
disease based on the detailed disease description specifically
for junior ophthalmologist cases. S. Rau et al., examined
the diagnostic accuracy of a vision-enabled LLM named
ChatGPT-4V [44]. The study focused on three diagnos-
tic categories–chest CT scans for COVID-19, non-small
cell lung cancer, and control cases. The study evaluated
ChatGPT-4V using sixty CT scans extracted from a cancer
imaging archive. The results suggested that ChatGPT-4V
could extract useful insights from radiographic features.

S. Bushuven et al., assessed the diagnostic capabilities of
ChatGPT and GPT-4 to deal with pediatric emergencies and
acute medical emergency scenarios [45]. An analytical study
was conducted usingCross-sectional investigative evaluation.
The content was validated by five emergency physicians who
examined multiple diseases including airway obstructions,
anaphylaxis, asthma, bronchiolitis, pneumonia, shock types,
and cardiac problems. The investigation revealed that both
models effectively diagnosed most of the diseases, except
septic shock and pulmonary embolism. A further study
performed a comparative analysis between a conversational
LLM, ChatGPT, and a traditional diagnosis tool, named
Isabel pro differential diagnosis generator, to diagnose
ophthalmic diseases [46]. Both models were provided with
detailed ophthalmic cases having multiple ophthalmic condi-
tions. Each case was fed into both models where ChatGPT
was inquired about the most likely diagnosis and differential
diagnosis. Isabel was analyzed based on the list and free
text comprising disease symptoms. The findings indicated
that ChatGPT was more efficient at diagnosing ophthalmic
conditions.

A graphical representation of the frequency of LLMs found
in the primary research is presented in Figure 5. The summary
of primary studies along with the LLM employed by each
study is presented in Table 3.

FIGURE 5. Frequency of LLMs employed by primary studies.

Analysis: This literature review found a variety of LLMs
being employed in the field of healthcare for disease
diagnostic purposes. GPT-4 was found to be the most popular
LLM, highlighting its exceptional capabilities in medical
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TABLE 3. Summary of primary studies.

diagnosis. Other LLMs, including ChatGPT, GPT-3.5, and
LLaMA, are also widely adopted by researchers indicating
their key role in diagnosing diverse diseases. Additional
LLMs, such as BARD, ChatGLM, GOT-Neo, and PaLM,
are employed less commonly. This, perhaps, suggests a
shift towards utilization of newer LLMs within the disease
diagnostic process. The implementation of GPT-2 reveals that
there is still research going ongoing in healthcare using legacy
models. These experiments with legacy models provide a
baseline for state-of-the-art models showing the evolution
of diagnostic capabilities within LLMs over time. Some
studies also employed a combination of LLMs, providing
a comparative analysis of disease diagnostic abilities of
multiple LLMs and offering insights into their strengths and
weaknesses. This diverse implementation of LLMs highlights
the evolving nature of the field of healthcare, alongside
continued efforts to achieve improved accuracy for medical
diagnosis.

B. RQ2: WHAT TYPES OF MEDICAL DATA ARE USED TO
TRAIN LLMs FOR DIAGNOSTIC PURPOSES?
Training of LLMs requires vast and diverse amounts of
medical data, this is most commonly obtained from electronic
healthcare records, clinical notes, medical images, and
genomic data. LLM-based training data considers data
quality, data privacy, data biases, and data annotation. The
primary medical data employed by each primary study in this
review is mentioned below.

Caruccio., employed two datasets, namely the disease
prediction dataset and the medical diagnosis dialogue
dataset [25]. The first dataset comprised 132 symptoms and
4,663 symptom combinations, while the second dataset was
designed using real-world patient records covering explicit
and implicit symptoms related to twelve types of diseases
and 118 symptoms. Wang et al., utilized two datasets,
IU-Xray and MIMIC-CXR, to assess the performance of
R2GenGPT [27]. IU-Xray included 3,955 de-identified
radiology reports from the Indiana University Chest X-ray
Collection. MIMIC-CXR is the biggest publicly available
dataset containing chest X-ray images and respective reports
obtained from patients inspected at the Beth Israel Medical
Center.

Liu et al., employed multiple datasets, including Medical
Information Mart for Intensive Care (MIMIC-III), Amster-
dam Open MRI Collection (AOMIC), The Cancer Imaging
Archive (TCIA), Cytopathological data (SIPaKMeD), as well
as genomic data from the national center for biotechnology
information [30]. Xompero et al., performed experiments
using patient interactions with the proposed MonŒil sys-
tem [31]. A. S. et al., employed medical knowledge and
diagnostic data to improve knowledge based on medical
terminology and symptom descriptions [33]. Zhang et al.,
combined real-world and synthetic datasets split into train-
ing and testing data [32]. The datasets included Muzhi,
DXY, and synthetic datasets containing separate cases
for training and testing. The researchers employed datasets
from blood exams to analyze the diagnostic abilities of
ChatGPT [34]. They analyzed patients’ blood variables and
further processed them using machine learning models to
classify metabolic syndrome and patients’ weight groups.

Saddik and Ghaboura examined the diagnostic ability of
ChatGPT by assessing its performance in the US Medical
Licensing Examination (USMLE) [35]. The study also
analyzed the responses generated by ChatGPT with medical
disease diagnosis. Kim et al., employed PolyMed to train a
test dataset that comprised symptoms, diseases, age, gender,
departments, and family history [36]. This dataset included
patient-doctor conversations obtained from a healthcare
platform. GPT-4 was fused with domain-specific rules by
Panagoulias et al., [37] for medical diagnosis professionals
where it proved its effectiveness in accurate. The performance
of the LLM was evaluated using domain-specific knowledge
and ground-truth comparisons. The Prompt CBLUE Chinese
dataset was employed for training and testing in the work
of Liu et al., [28] which comprised eighteen distinct tasks.
This dataset included name entity recognition, medical text
classification, medical report generation, diagnostic word
normalization, as well as several other tasks.

The authors of a 2024 study employed a combination
of distilled and real-world data [38]. Distilled datasets
include food and drug data, PubMed, DrugBank¸ Drugs.com,
UpToDate, PubMedQA, ChatMed, and Med-ChatGLM
data. Whereas, real-world data contains patient-doctor
conversations and real-world knowledge of questions and
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answers. Massachusetts General Hospital Case Records were
employed by Ríos-Hoyo et al., to evaluate GPT-3.5 and
GPT-4 [39]. The included records were medical cases
reported between 2022-2023. Zhou et al., employed skin
disease images to train LLM [40]. The included dataset
had both public and proprietary dermatological data. The
proposed model, SkinGPT-4, was tested using real-life
cases examined by board-certified dermatologists. Publicly
available raw data was acquired for training and testing
from Kaggle [41]. The dataset was pre-processed to organize
chronic disease symptoms. Researchers extracted rare disease
data from the RareDis corpus for training and testing [42].
The dataset had descriptions of rare diseases in textual form.

In another study, differential diagnosis was performed
using training data from radiographic documents [44]. While
self-created gastrointestinal pathological cases were used to
test the diagnostic approach. Basic life support and pediatric
advanced life support cases were utilized to examine the diag-
nostic capabilities of ChatGPT and GPT-4 [45]. The study by
Balas and Ing randomly selected cases from the EyeRounds
service provided by the University of Iowa’s department
of ophthalmology and visual science [46]. Hu et al., used
ophthalmic case descriptions obtained from the EyeRounds
service [43]. These case descriptions were provided by the
University of Iowa’s Department of Ophthalmology and
Visual Sciences.

The results of the current investigation show that data
sources utilized by primary studies can be classified into
specific categories-as shown in Table 4. The distribution
of data sources across various categories is graphically
presented in Figure 6.

FIGURE 6. Distribution of data sources across various categories.

Analysis: This review of primary studies revealed that
researchers have employed data from diverse sources to
perform LLM-based disease diagnosis. The included primary
sources were found across general medical knowledge
databases i.e., PubMed, DrugBank, and Drugs.com to
specialized sources, such as radiographic documents and
gastrointestinal pathological cases. The nature of data used
varies across the included studies, comprising medical
images, doctor-patient conversations, blood samples, and
genomic data. Moreover, researchers have also employed

TABLE 4. Classification of data sources across diverse categories.

synthetic and real-world datasets, including Muzhi and DXY,
which allow the LLMs to learn from both genuine clinical
cases and controlled, hypothetical, scenarios. These insights
are helpful to both researchers and practitioners wishing to
integrate artificial intelligence into the medical field. The
detailed breakdown of data sources used in each primary
study highlights the importance of varied data sources. The
researchers are encouraged to combine both structured and
unstructured medical data to train the LLMs for efficient

8232 VOLUME 13, 2025



I. Almubark: Exploring the Impact of Large Language Models on Disease Diagnosis

disease predictions. They are also provided with future
guidance to explore the latest data sources and generate
synthetic data sources.

Moreover, practitioners get insight into the inclusion
of diverse datasets from various medical sources, cultural
backgrounds, and real-world interactions. Thus, giving them
confidence that LLM-based disease prediction systems are
better prepared to support informed decision-making in the
field of healthcare.

C. RQ3: WHICH SPECIFIC FIELD OF HEALTHCARE IS
FOCUSED ON LLMs-BASED DISEASE DIAGNOSTIC
APPROACHES?
LLMs can be trained on a vast variety of medical healthcare
data. They can diagnose a wide range of diseases efficiently,
saving both time and money. The primary studies found
within the current review found LLM utilization across
various healthcare fields. These are highlighted below.

The study by L. Caruccio et al., focused on various
low- and medium-risk diseases for diagnosis by LLMs [25].
The low-risk diseases included jaundice, hepatitis, fungal
infection, and dermatitis, but were not limited to this list.
The medium-risk diseases included asthma, coronary heart
disease, pneumonia, thyroiditis, and traumatic brain injury,
among others. The researchers targeted thoracic diseases
to be diagnosed by LLMs [27]. The dataset employed by
the study comprised distinct categories related to thoracic
diseases and support devices. A further study performed
cancer-based experiments with LLMs to analyze various
cases in radiation oncology [30]. The researchers specifically
focused on neck cancer, hepatocellular carcinoma, prostate
cancer, and pulmonary neoplasm. Macular degeneration was
diagnosed by LLMs in the work of Xompero et al., [31]. The
researchers designed an advanced system, named MonŒil),
which was customized for ophthalmology-related queries.

The study by A. S et al., focused on diagnosing various
chronic diseases through the use of GPT-3.5 [33]. The
researchers particularly analyzed the response of LLM for
promoting healthy lifestyles, for example, smoking cessation
and medication adherence. Zhang et al., were primarily
focused on diagnosing three diseases: pulmonary neoplasm,
tuberculosis, and influenza through utilizing GPT-3.5 [32].
The study by Panagoulias et al., was dedicated to diagnosing
multiple diseases, including alcoholic liver disease, metabolic
syndrome, gout, and hyperlipidemia [34]. Alcoholic liver
disease is characterized by liver damage due to chronic
heavy alcohol consumption. Similarly, metabolic syndrome
increases the risk of heart disease, stroke, and type 2 diabetes.
Gout is a type of arthritis caused by uric acid crystals; while
hyperlipidemia is a major risk for developing cardiovascular
disease and is caused by elevated cholesterol levels.

The study by Kim et al., focused on diagnosing multi-
ple diseases, these included respiratory infections, allergic
diseases, along with chronic and acute conditions [36].
These diseases were diagnosed based on patient medical
records, including symptoms, age, sex, family history, and

underlying diseases?. Various medical cases were addressed
by the researchers in a 2024 study [35]. They aimed
at providing mental health support, rehabilitation, and
gynecological consultations using ChatGPT along with the
Metaverse. The study by Panagoulias et al., targeted various
medical cases for effective diagnosis using GPT-4 [37].
These cases belonged to cardiology, neurology, psychiatry
and psychology, dermatology, endocrinology, and general
pathology. Liu et al., focused on various healthcare tasks to
be performed by ChatGLM [28]. These tasks included doctor
recommendation, diagnosis prediction, medicine recommen-
dation, medical named entity recognition, and clinical report
generation.

In the study by Dou et al., adverse drug reactions were
predicted using ChatGLM [38]. The LLM also provided
personalized guidance, and treatment plans utilizing mul-
tiple drugs. The researchers diagnosed various complex
medical diseases across various groups of patients [39].
The first group included neurology and psychiatry, while
the second group included oncology and hematology. The
third group comprised infectious diseases, internal medicine,
endocrinology, and toxicology. The fourth group involved
rheumatology, allergy, and autoimmune diseases. The fifth
group belonged to the category of ‘others’ where multiple
diseases were included such as cardiology, gastroenterology,
genetic diseases, dermatology, nephrology, and pediatrics.
The study by Zhou et al., was focused on dermatological
conditions [40]. These conditions included skin cancer,
onychomycosis, alopecia areata, mpox virus infection, actinic
keratosis, and eczema.

The work of Zhang et al., was devoted to diagnosing
24 distinct diseases using GPT-2 [41]. These diseases were
grouped around similar diseases; including cardiovascular
diseases, respiratory diseases, metabolic and endocrine disor-
ders, neurological and psychiatric disorders, musculoskeletal
disorders, gastrointestinal disorders, and chronic organ dis-
eases. A further study by Shyr et al., focused on diagnosing
rare diseases using ChatGPT and BioClinicalBERT [42]. The
rare diseases included neurofibromatosis type I (also called
Von Recklinghausen’s disease) and primary antiphospholipid
syndrome. Rau et al., diagnosed a variety of abdominal
pathologies with the study investigating various gastroin-
testinal cases including malignancies, inflammatory disor-
ders, obstructive disorders, benign neoplasms, and vascular
pathologies [44]. Basic and advanced life support cases were
evaluated in the study by Bushuven et al., [45]. The study
focused on diagnosing respiratory conditions, cardiovascular
and shock conditions, neurological and muscular conditions,
and toxicological conditions.

Researchers focused on diagnosing diseases in a study
published in 2023 [46]. Multiple ophthalmic diseases were
diagnosed within the study, including optic neuritis, aden-
oviral conjunctivitis, orbital cellulitis, tuberculosis uveitis,
and corneal and external eye conditions. Rare eye diseases
were diagnosed by LLMs in the work of Hu et al., [43]. The
study specifically focused on inflammatory and autoimmune
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disorders, genetic and congenital disorders, and oncological
disorders.

The diseases diagnosed by LLMs in the primary literature
can be classified into diverse categories - shown in Table 5.
The graphical distribution of the diseases against each
category is shown in Figure 7.

TABLE 5. Disease classification into distinct categories.

Analysis: The analysis of primary studies with a focus on
specific diseases diagnosed by LLMs shows that researchers
are working on a broad spectrum of diseases. The prime
attention is drawn towards chronic conditions, respiratory and
pulmonary diseases, and cancer. These disease groups con-
stitute significant public health challenges, so it is, perhaps,
unsurprising that research is focused on these areas and the
development of treatment plans for them. Both common and
less prevalent conditions are addressed by LLMs, including
categories such as mental health support, rehabilitation,
and rare diseases. This trend highlights a commitment to

FIGURE 7. Distribution of diseases against each category.

general and specialized healthcare services provided by
LLMs. Adverse drug reactions are also considered by LLMs
ensuring patient safety and recommending personalized
medication. Additionally, the presence of diseases, including
metabolic syndrome and alcoholic liver disease shows how
lifestyle and environmental factors affect public health and
are also a focus of LLM-focused research. This analysis
also reflects an integrated method of health care, which
involves cardiology, neurology, and endocrinology. Overall,
the current study suggests that LLMs can prove helpful in
shaping a well-rounded healthcare system that prioritizes
a broad spectrum of diseases while considering emerging
trends in healthcare.

D. RQ4: HOW IS THE PERFORMANCE OF LLMs
MEASURED IN DISEASE DIAGNOSIS?
Measuring the effectiveness of LLMs in diagnosing various
diseases across diverse medical cases is a crucial aspect
of current research. The studies included herein apply a
variety of measures to evaluate the effectiveness of LLMs
in the disease diagnostic process. The performance measures
implemented by primary research to examine the efficiency
of LLMs are explored in the below section.

In the study by Caruccio et al., the performance of the
ChatGPT-based disease diagnostic process was measured
using precision, recall, accuracy, and F-measure [25]. Several
performance measures have been adopted in further studies,
for example in the work of Wang et al., [27], including
bleu scores, rouge-l, cider, meteor, precision, recall, and f-
measure. Bleu scores, rouge-l, cider, and meteor provide a
detailed assessment of LLMs by considering the overlap in
generated and reference text over linguistic variety.While
precision, recall, and f-measures examine the clinical effi-
ciency of LLMs in producing relevant reports. A variety
of qualitative measures have also been employed to assess
the diagnostic process [30]. These measures include patient
outcome prediction, clinical decision support post-treatment
analysis, standardization, and data labeling. Patient outcome
prediction further involves measures such as tumor control,
toxicity levels, and overall survival rate.

A system usability scale questionnaire was employed by
Xompero et al., to examine ophthalmology patient outcomes
[31]. The scores achieved from this questionnaire revealed the
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patients’ usability experience. The medical diagnosis process
was evaluated in the study by A. S. et al., using diagnostic
accuracy, adaptability to rareness, handling incomplete
responses, and interpretations of symptom descriptions [33].
Moreover, a statistical analysis was also performed using
response accuracy rate, and response time. The performance
of the diagnostic process was measured using accuracy and
interpretability by Zhang et al., [32]. The interpretability
is derived using Markov logic networks to get first-order
logic rules. The study by Panagoulias et al., employed
reliability and precision measures to examine the diagnostic
process [34]. The response produced by ChatGPT was
assessed based on the accuracy of the answer, usefulness for
doctor and patient, and economic value produced by LLM.

The study by Saddik and Ghaboura, measured the effec-
tiveness of ChatGPT using accuracy and reliability [35].
The study mainly employed qualitative measures, such as
user understanding and patient engagement. A further study
employed both qualitative and quantitative measures to
examine the response of LLMs [36]. The qualitativemeasures
included the overall quality of responses along with consis-
tency and format of responses, while the quantitative analysis
was performed using top-1, top-3, and top-5 Accuracy. This
top-n accuracy analysis presents whether the LLMs predicted
correct diagnosis in the first 1, 3, or 5 responses. The study
by Panagoulias et al. employed a variety of performance
measures, including response correctness and action abil-
ity [37]. Moreover, the study performed a holistic assessment
to examine the medical reasoning capabilities? of GPT-4.
The response was also measured using precision categories
including precise, generic, or misleading?. A scoring scale
was employed to assess performance measures including
correctness, action ability, and precision. The LLM was
also examined using a multiple-choice questions-based quiz
comprising pathology questions.

Researchers employed micro and macro-F1 scores, aver-
age scores, and Rouge-L in a further study [28]. The
average score measured overall performance against all tasks
performed by ChatGLM. The performance criteria utilized
in the study by Dou et al., were primarily focused on
qualitative analysis [38]. The performance measures involved
the comprehension of the query, situation analysis,rationality
of medication advice, flagging potential adverse reactions,
and comprehensive description. The performance of LLMs
was also examined using the average score obtained against
fifty questions regarding pertinentmedical guidance provided
by LLMs. Both qualitative and quantitative measures were
implemented in the work of Ríos-Hoyo et al., to assess
the performance of LLMs [39]. The qualitative measures
included the correctness of diagnosis order and list overlap
with case discussants. The quantitative measures involved the
Jaccard similarity index, the inclusion of correct diagnosis,
accuracy of top diagnoses, intraclass correlation coefficients,
fisher’s exact test, Mann–Whitney U test, and odds ratios.

Two tests were conducted to examine the performance of
LLaMA to perform statistical analysis between groups in the

study by Zhou et al., [40]. These tests included a two-tailed
student’s t-test and a consistency test. The LLMwent through
multiple trials to assess the response consistency. Moreover,
the researchers also performed qualitative evaluation by
dermatologists using a Likert scale. The studymainly focused
on statistical analysis of GPT-2 using multiple performance
measures, such as precision, recall, accuracy, F-measure, and
AreaUnder the Curve (AUC). The researchers also conducted
a user satisfaction survey to highlight the medical guidance
provided by LLM.

A variety of performance measures were employed by
Shyr I including precision, recall, F-measure, exact match,
and relaxed match [42]. Additionally, an error analysis was
also conducted to understand the nature of the error produced
by LLM. This analysis divided error into five categories:
incorrect boundary, incorrect entity type, incorrect boundary
and entity type, spurious entities, and missed entities.

The differential diagnosis by LLM was analyzed using the
accuracy of the main diagnosis, top-3 differential diagnosis,
response time, and cost per case in the work of Rau et al., [44].
The explanations and clinical soundness were also assessed
by experienced radiologists. The study by Bushuven et al.,
conducted both quantitative and qualitative analysis to
examine the diagnostic capabilities of ChatGPT and GPT-4
[45]. The quantitativemeasures included diagnostic accuracy,
inter-rater reliability,and Fleiss’ kappa, while the qualitative
measures included patient safety and advice quality. The
primary metrics used to analyze performance in a 2023 study
included diagnostic accuracy, differential diagnosis inclu-
sion, and rank of correct diagnosis [46]. The study also
employed statistical measures - means, standard deviations,
medians, and interquartile ranges - to summarize the data.
The researchers analyzed the diagnostic abilities of ChatGPT
using accuracy and suitability. Responses generated by
ChatGPT were labeled ‘appropriate’ if they contained no
misconceptions while accuracy measured the correctness of
responses against ground truth. The performance measures
applied for effective disease diagnosis are further classified
into sub-categories as shown in Table 6 The distribution of
performance measures across various categories is shown in
Figure 8.
Analysis: This review of primary studies with a focus on

performance measures reveals that a comprehensive range of
measures have been employed within the research on LLMs
for efficient disease diagnostics. These measures include
both qualitative and quantitative measures showing a diverse
assessment of LLMswithmultiple perspectives of healthcare.
Quantitative assessment has been performed mostly using
precision, recall, accuracy, and F-measure. These measures
represent LLMs’ effectiveness in making correct predictions
and identifying the factual extent of medical conditions. Sta-
tistical measures, including AUC, BLEU scores, ROUGE-L,
CIDEr, and METEOR, were applied to examine the coher-
ence and relevance of the generated text. The Jaccard
similarity index was implemented to assess the similarity
between actual and predicted diagnoses. Similarly, Fisher’s
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TABLE 6. Classification of performance measures across distinct
categories.

FIGURE 8. Distribution of performance measure across specific
categories.

exact test, Mann–Whitney U test, odds ratios,intraclass
correlation coefficients, and Fleiss’ kappa were also imple-
mented to examine the efficacy, consistency, and clinical
utility of LLM-based disease diagnosis. Descriptivemeasures
like mean, standard deviation, median, and interquartile
range were employed to summarize the statistics offering
insights into the patterns and variability in the generated
results.

Additionally, the analysis of primary literature undertaken
here indicates that numerous qualitative measures have also

been implemented to highlight the dimensions that surpass
quantitativemeasures. Thesemeasures include system usabil-
ity scale, overall quality of responses, consistency and format
of responses, interpretations of symptom descriptions, com-
prehension of the query, situation analysis, and rationality
of medication advice. These are particularly key metrics for
assessing the ability of a model to make clinical decisions
and ensure that the provided recommendations are safe to
apply.

Holistic assessment and expert evaluation conducted by
radiologists or dermatologists using a Likert scale, provide
invaluable insights into the performance of LLMs in terms
of reliability and relevance to healthcare. Measures such
as patient safety, as well as the quality of advice, add an
extra dimension by considering non-adherence to ethical and
practical standards in healthcare.

V. ISSUES AND CHALLENGES
The utilization of LLMs in medical diagnostics poses several
difficulties and challenges. The bias in the training data
is the most crucial concern. LLMs are designed using
enormous amounts of data that may fail to accurately
represent all populations, or individuals within populations.
Thus, biased predictions may have a negative impact on
under-represented communities [47], [48]. These biases may
lead to incorrect diagnoses and inadequate access to medical
care. Completing training data with a diverse range of
demographic, geographic, and socioeconomic backgrounds
further complicates the process of creating unbiased LLMs
in the healthcare industry [49].

The LLMs’ interpretability and transparency are the
additional significant issues. They are called black box
models, as in most cases experts find it difficult to understand
or justify the reasoning behind the decisions they make.
Furthermore, transparency in diagnosis is critical to the
medical sciences to establish patient trust and follow ethical
medical standards [50], [51]. Since LLMs are unable to
provide a justification for the findings of the model, clinicians
may be reluctant to depend upon their results. In addition,
it may be difficult to identify and fix problems with the
models as a result of the absence of this transparency, leading
to incorrect diagnosis and treatment suggestions [52].

Risks about data security and privacy are also brought
up by integrating LLMs in therapeutic environments [53].
Sensitive patient information may be found in the majority
of medical data used for LLM training and implementation.
Hence, it might be challenging for professionals to efficiently
protect and maintain data confidentiality in an era where
cyber threats are constantly evolving. Moreover, there are
ethical concerns associated with the utilization of data with
patient consent to uphold patient trust [54]. To balance
the benefits of advanced diagnostic tools, such as GPT-4,
ChatGPT, and LLaMA, there is also a need to protect patient
privacy and maintain legal standards.

Moreover, preserving the accuracy and reliability of LLMs
while integrating them in clinical workflows is also a
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challenging scenario raising concerns for both researchers
and practitioners.

An important challenge in the present literature is the
lack of discussion on the application of LLMs in specific
areas, such as disease diagnosis. Although prior surveys [1],
[2], [12], [18], [19], [20], have provided valuable insights
into general LLM applications in healthcare, they do not
sufficiently address their role in diagnostic processes or
their use across various medical data sources. Our survey
links these gaps by offering a detailed analysis of LLMs
applications in disease diagnostics, offering novel views on
their performance and challenges in real-world healthcare
scenarios.

VI. CONCLUSION AND FUTURE WORK
This review highlights the transformative role of LLMs in
disease diagnostics, highlighting their adaptability across
diverse healthcare fields such as chronic diseases, mental
health, and rare conditions. Key models, including GPT-4,
ChatGPT, and LLaMA, utilized in disease diagnosis in
healthcare. Medical data from diverse data sources, from
general to specialized datasets, support thesemodels’ training
and application. LLMs were found to be implemented
across various healthcare fields, including chronic diseases,
mental health, and rare conditions. These LLMs were
assessed using variousmeasures comprising both quantitative
and qualitative measures, highlighting the complexity of
evaluating the LLMs. Our findings emphasize the potential
of LLMs to improve diagnostic accuracy and contribute to a
more comprehensive healthcare system. Continued research
and exploration of new models and data sources are essential
for advancing medical diagnostics. The analysis of primary
studies reveals that researchers aim to enhance the utilization
of LLMs by monitoring patients’ health through wearable
or home monitoring devices to diagnose various diseases.
In the future, the scope of this literature review can be
enhanced by exploring the application of LLMs in other areas
of healthcare, for example, treatment planning and patient
monitoring.
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