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ABSTRACT In this work, we address the problem of cross-resolution face recognition, where a
low-resolution probe face is compared against high-resolution gallery faces. To address this challenging
problem, we investigate two approaches for bridging the quality gap between low-quality probe faces
and high-quality gallery faces. The first approach focuses on degrading the quality of high-resolution
gallery images to bring them closer to the quality of the probe images. The second approach involves
enhancing the resolution of the probe images using face hallucination. Our experiments on the SCFace and
DroneSURF datasets reveal that the success of face hallucination is highly dependent on the quality of the
original images, since poor image quality can severely limit the effectiveness of the hallucination technique.
Therefore, the selection of the appropriate face recognition method should consider the quality of the images.
Additionally, our experiments also suggest that combining gallery degradation and face hallucination in
a hybrid recognition scheme provides the best overall results for cross-resolution face recognition with
relatively high-quality probe images, while the degradation process on its own is the more suitable option for
low-quality probe images. Our results show that the combination of standard computer vision approaches
such as degradation, super-resolution, feature fusion, and score fusion can be used to substantially improve
performance on the task of low resolution face recognition using off-the-shelf face recognition models
without re-training on the target domain.

INDEX TERMS Biometrics, image processing, machine learning.

I. INTRODUCTION
Face recognition (FR) systems have been used in a wide range
of real-world applications, such as surveillance and biometric
authentication. The rapid development of deep learning
algorithms and the availability of large datasets have made
remarkable advancements in the field of face recognition
research [1]. However, despite these advancements, the
performance of face recognition systems is still affected

The associate editor coordinating the review of this manuscript and

approving it for publication was Larbi Boubchir .

when they are deployed on low-resolution face images,
which is a common occurrence in real-world scenarios [2].
One of the biggest issues in this setting is the difficulty
of the cross-resolution comparison tasks, caused by the
mismatch in the resolution of the gallery/enrollment and
probe/test images. For instance, in a surveillance system, the
low-quality face images captured by the cameras need to be
compared with high-resolution images in the gallery. This
mismatch in resolution can cause a significant degradation in
recognition performance compared to same-resolution recog-
nition problems. In this paper, we address this challenging
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cross-resolution face recognition/comparison task that, for
convenience, is also illustrated in Fig. 1.

FIGURE 1. Cross-resolution face recognition. In this task, a low-resolution
probe face image is compared with a set of high-resolution gallery face
images.

Existing techniques for cross-resolution face recognition
can in general be grouped into three categories: (i) resolution-
invariant methods, (ii) face hallucination-based methods,
and (ii) degradation-based methods. While a considerable
amount of work has been done on resolution-invariant
recognition techniques that aim to make face recognition
models robust to varying face quality/resolution distribu-
tions [2], our work focuses on investigating face hallucination
and degradation-based methods that strive to bring the
distributions of the low-quality and high-quality images
closer, by either degrading the typically high-quality enroll-
ment/gallery images or enhancing the low-quality probe/test
image, thus, making recognition easier and more accurate.
These latter two groups of techniques also exhibit several
highly desirable characteristics, such as:

• Universality: They are model agnostic and can,
therefore, be applied with any FR model capable of
extracting face representations from the given input
images for a comparison procedure. In other words,
these methods operate at the image-preprocessing level
and are, therefore, universally applicable with arbitrary
face recognitionmodels without the need for model fine-
tuning.

• Simplicity: Unlike resolution-invariant recognition
models, hallucination and degradation-based methods
typically require a significantly lower amount of training
data to work effectively. Additionally, they can be
well-described by explicit mathematical models that
have fewer degrees of freedom than contemporary
heavily-parameterized FR models, leading to (data)
efficient learning procedures.

• Interpretability: Because the techniques are typically
applied at the preprocessing level and produce observ-
able (degradation/hallucination) results that are later fed
to the FR model, they allow for an easier interpretation

of the recognition decisions compared to standard
cross-resolution comparison procedures, where model
decisions due to the different characteristics of the input
images are more difficult to understand.

• Complementarity: Hallucination and degradation-
based techniques can be applied in conjunction with
resolution-invariant models and have the capacity to fur-
ther improve results by reducing the resolution induced
mismatch between the probe and gallery images.
Thus, these groups of techniques are complementary
to methods aiming to design resolution-invariant FR
approaches.

Due to the outlined characteristics, multiple studies
explored degradation and face-hallucination techniques with
the goal of improving cross-resolution FR performance [2],
[3]. However, ensuring consistent improvements in recog-
nition performance with either approach (degradation or
hallucination) remains a challenging (open) research prob-
lem, with effective solutions for real-world data still largely
missing from the literature. In this study, we aim to
address this gap and explore three distinct strategies towards
cross-resolution face recognition designed around novel
degradation and face hallucination techniques, as illustrated
in Fig. 2, i.e.:

• Degrade-to-Compare (DtC): With this strategy,
we investigate the impact of degrading gallery images,
so they viably mimic the characteristics of the low-
resolution probes, as shown in Fig. 2(a). To be
able to implement the DtC strategy, we propose a
scale-wise degradation method, in which different types
of degradations are applied at multiple scales. The
proposed method allows us to model a wider variety of
degradation types, making the generated low-resolution
face images more realistic and representative of the
real-world challenges faced by cross-resolution face
recognition systems.

• Hallucinate-to-Compare (HtC): With this strategy,
we study the effect of generating a high-resolution
image from the low-resolution probes that aligns
better with the resolution and quality characteristics
of the high-resolution gallery images, as presented
in Fig. 2(b). To analyze the feasibility of hallucina-
tion techniques for cross-resolution face recognition,
we propose a novel multi-scale and multi-hypothesis
face-superresolution approach. The approach involves
upscaling the low-resolution probe images to multiple
scales, i.e., 2×, 4×, and 8×. Additionally, at each scale,
multiple hypotheses are reconstructed from different
versions of the original low-resolution image to capture
potential variations in the degradations encountered
during the acquisition of the low-resolution probes.

• Degrade-and-Hallucinate-to-Compare (DHtC):With
the last strategy, we explore the feasibility of hybrid
schemes that combine both gallery degradations and
probe hallucinations to bridge the gap between the
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distributions of low-resolution and high-resolution
images. The main idea behind this scheme, shown in
Fig. 2(c), is to simultaneously improve the resolution
of the input probes and degrade the quality of the
high-resolution gallery images in a sort-of meet-in-the-
middle solution. Specifically, in this paper, we propose
an approach that combines the multi-scale degradation
process from the DtC strategy with the multi-scale,
multi-hypothesis hallucination technique from the HtC
strategy into a hybrid procedure using various fusion
approaches. These fusion approaches aggregate the
information from the multi-scale comparisons into a
single similarly score that can ultimatelly be used for
identity inference.

The research, presented in this paper, builds on our
preliminary work from [4], but extends it in multiply
aspects, i.e., (i), it systematically analyzes the impact of
face image quality and resolution on the different strategies
towards cross-resolution face recognition; (ii), it presents a
significantly more comprehensive experimental evaluation
that includes two diverse datasets (SCFace, DroneSURF)
for cross-resolution face comparison; Third, it studies the
interplay between the proposed degradation and hallucination
approaches and examines their impact under different
face-image quality conditions, and (iii), it reports a new state-
of-the-art on the SCFace and DroneSURF datasets.

The rest of the paper is structured as follows. In Section II,
we review closely related work and position our research
within the existing literature. In Section III, we provide
details on the three studied strategies (DtC, HtC and HDtC)
and describe in-depth the novel multi-scale degradation
techniques, the multi-hypothesis and multi-scale face hallu-
cination method as well as the joint hybrid scheme with the
corresponding fusion approaches. We evaluate and study the
behavior of all three strategies to cross-resolution face recog-
nition on the SCFace and DroneSURF datasets in Section IV,
and, finally, conclude the paper with a summary of the main
findings and some directions for future work in Section V.

II. RELATED WORK
In this section, we review related prior work with the goal of
providing context for our research. Specifically, we first dis-
cuss existing super-resolution and face hallucination models,
then elaborate on modern face recognition techniques and,
finally, explore cross-resolution recognition problems.

A. SUPER-RESOLUTION AND FACE HALLUCINATION
Recently, there has been a surge of interest in utilizingmodern
deep learning techniques to tackle the problem of super-
resolution. Typically, supervised learning methods involve
creating a dataset of low-resolution and high-resolution
image pairs, where the high-resolution images serve as
targets, i.e. ground truth. The training inputs are then derived
by subjecting each image to a predetermined degradation
process. Models such as Convolutional Neural Networks

(CNNs), are then trained to upscale the artificially degraded
input images by minimizing a pixel reconstruction error, such
as the mean square error (MSE) or the mean absolute error
(MAE) [5], [6], [7].

Most of the recent advances in super-resolution have
focused on using more complex loss functions that go beyond
simple pixel-wise differences. For example, some methods
use perceptual loss functions [8] that take into account
higher-level semantics to guide the learning process. Others
use adversarial learning objectives [9], [10], [11], where a
discriminator is trained to distinguish between generated and
real images, to further improve the realism of the generated
images. These advancements have led to significant progress
in the field of super-resolution.

Super-resolution techniques that are used for upscaling
human face images are often referred to as face hallucination
techniques. Unlike general super-resolution methods, which
are restricted by the information contained in the input
image, face hallucination techniques are able to achieve better
reconstructions at higher magnification factors, up to 8 times
the resolution of the input image. This is because they are
specifically trained on a limited domain of objects, i.e.,
human faces, which acts as an additional regularizer for the
hallucination process. In contrast, most of the existing general
super-resolutionmethods are usually limited tomagnification
factors of up to 4× [12], [13], [14], [15], [16]

B. FACE RECOGNITION
Recent advancements in large-scale face recognition have
involved the collection of large face datasets. Typical
examples include VGGFace2 [17], DeepID [18], MS-Celeb-
1M [19], WebFace260M [20], Glint360k [21], and others.
Modern datasets typically contain thousands of subjects and
millions of images, in order to capture a large amount
of inter-class and intra-class variance. Model architectures
have not been the main focus of recent face-recognition
research [3], with most state-of-the-art approaches using
the above datasets to train a ResNet-based backbone [22].
These models are commonly trained using classification and
metric-learning loss functions, which enable them to learn to
extract discriminative features from face images for face iden-
tification or verification purposes. In recent years, researchers
have focused on developing novel loss functions that can
combine classification and metric learning objectives, such
as CosFace [23] and ArcFace [24]. Furthermore, researchers
have also been working on developing loss functions that
explicitly account for the quality of the input image, such as
AdaFace [25]. These advances have demonstrated significant
potential to improve face recognition performance, especially
in challenging conditions, where image quality is poor.

C. CROSS-RESOLUTION FACE RECOGNITION
Cross-resolution face recognition refers to a specific FR
problem, where the resolution of the images to be compared
during the comparison process differs significantly. Existing
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FIGURE 2. In this paper, we investigate three distinct strategies (i.e., DtC, HtC and HDtC) to cross-resolution face recognition and propose new
multi-scale degradation and multi-hypothesis hallucination techniques for their implementation. Additionally, we study the impact of low-resolution
probe quality on the behavior of the three considered strategies.

approaches to this problem can, in general, be categorized
into three main groups: (i) resolution-invariant methods [26],
[27], [28], [29], [30], (ii) face-hallucination based meth-
ods [12], [13], [31], [32], and (iii) degradation-based
methods [33], [34].

Resolution-invariant methods aim to minimize the differ-
ence between the feature representation of low-resolution
and high-resolution face images. One such method is
the Deep Coupled ResNet (DCR) model, proposed by
Lu et al. [26], which consists of one trunk network and two
branch networks. The trunk network is first trained with
face images of different resolutions, then the two branch
networks are trained to learn coupled-mappings between low-
resolution and high-resolution face images. Other knowledge
distillation based models [27], [28], [29], [30] distill the
information from a Teacher network, which is pre-trained
with high-resolution face images, to the Student network,
which is trained on images of different resolutions.

Face hallucination based methods reconstruct high-
resolution face images from low-resolution ones and target
face recognition in the high-resolution domain. In [12],
an identity preserving face hallucination method is proposed.
It utilizes a super-identity loss that penalizes the identity
difference between high-resolution and super-resolved face
images. A similar idea is also presented in [13], where iden-
tity priors in the form of pretrained face recognition models
are used to steer the face-hallucination process. The Feature
Adaptation Network (FAN), presented in [31], disentangles
the features into identity and non-identity components and
performs face normalization, while improving the resolution,
facilitating cross-resolution recognition tasks.

In contrast to the face hallucination based methods,
degradation based methods transform high-resolution faces
into low-resolution ones. In [33], it is shown that a
simple resolution comparison technique that downsamples
high-resolution gallery images to the resolution of the
low-resolution probe images improves the cross-resolution
face recognition performance. Another approach, i.e., the
Resolution Adaption Network from [34], employs a Genera-
tive Adversarial Network (GAN) that realistically transforms
high-resolution images into the low-resolution domain and
uses a feature adaption network to extract low-resolution
information from the high-resolution embedding.

While hybrid schemes that combine both face degradations
and face hallucinations have also been explored in the

FIGURE 3. Scale-wise degradation process overview. In the graph above,
there are n different degradation options to be applied at each step. All
the possible paths in the graph generate a degraded gallery image and all
of them are used in the recognition pipeline. Note that a downsampling
operation is applied between each degradation. The highlighted yellow
lines represent a combination of three degradations. The blue and purple
dashed lines show specific combinations of one and two degradations,
respectively.

literature before, e.g., [4], work on this topic is still limited,
with studies trying to understand the benefits and behavior
of such schemes and their relation to the quality of the
input low-resolution images being extremely scarce. We fill
this gap with the techniques and analyses presented in
this paper.

D. FEATURE SELECTION AND FUSION
Feature fusion and score fusion are well-established
approaches in pattern recognition. As such, there is a large
body of existing work on feature selection and feature fusion
approaches in machine learning in general [35], [36] and
in the field of biometrics specifically. Existing works in the
domain of palmprint recognition have shown more complex
approaches can work as well. In [37], the authors show
discriminative power analysis as a feature selection tool
can improve palmprint recognition when using the DCT
coefficients as features. Furthermore, in [38], low correlation
between features is used as a criterion. In comparison to
these approaches, our proposed feature fusion method uses
simple feature concatenation and averaging, while using
more capable underlying feature extraction models.
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III. METHODOLOGY
In this section, we present our three solutions for the
Degrade-to-Compare (DtC), Hallucinate-to-Compare (HtC)
and Degrade-and-Hallucinate-to-Compare (DHtC) strategies
towards cross-resolution face recognition. We note that all
strategies start by cropping the gallery and probe images
using the bounding boxes provided by a face detector,
so the input to the various models are always cropped
faces. Additionally, all strategies use the same pretrained
FR model ψ , which, given an input face image I , produces
a D-dimensional embedding (feature representation/face
template) t , i.e., t = ψ(I ) ∈ RD.

FIGURE 4. Sample degraded gallery images using the proposed
multi-scale degradation method. Five degraded examples (in columns)
are presented for four distinct gallery images (in rows).

A. DEGRADE-TO-COMPARE WITH MULTI-SCALE
DEGRADATIONS
1) MULTI-SCALE DEGRADATIONS
Previous work [33], [39] has shown that matching the
resolution of the images alone is insufficient to significantly
improve the comparison capabilities. We hypothesize that
state-of-the-art face recognition models are sensitive to
various image quality factors, which differ greatly when
comparing a high-quality gallery image to a low quality probe
image. In order to match the quality between the gallery
and probe images more closely, we propose a stochastic
degradation-based approach for the DtC strategy.

Specifically, we propose a Multi-Scale degradation
method, as illustrated in Fig. 3. The proposed method
involves generating multiple degraded versions of each face
image in the gallery set by using a set of n degradation
functions D = {d1, d2, . . . , dn}. These functions correspond
to various image degradations, e.g., blur, noise addition, and
are applied across multiple scales. The applied degradation
functions are listed in Table 1 and model common image
distortions that appear due to challenging imaging conditions
during the (probe) data capture process. Let G be the input
gallery image and C be a combination of k elements of

the degradation functions. Here, k takes all values from the
set {1, 2, . . . ,m} and represents the number of considered
image scales s. The total number of downsampling steps, m,
is computed individually for each gallery image, and selected
in order to match the resolution of either the low-resolution
probe image, or the super-resolved images. Thus, the
combination C is defined as: C = {ds1 , ds2 , . . . , dsk }, where
the i-th element dsi corresponds to a selected degradation
function from D applied at the si-th scale. The degradations
in the combination C are applied sequentially to the gallery
image G. Furthermore, downsampling is performed between
each degradation operation. This process is carried out as
shown below:

G1
= ↓s (ds1 (G)),

G2
= ↓s (ds2 (G

1)),
...

Gk = dsk (G
k−1). (1)

In the above equation, the operator represented by ↓s
reduces the resolution by half. The proposed method creates
multiple versions of each face image in the gallery by
generating all possible degradation combinations. In this
approach, if a probe image with low resolution (and/or
quality) is received, the comparison procedure will com-
pare it to the degraded gallery images, and some of the
degraded images will have a similar quality to the probe
image, making the cross-resolution recognition task simpler.
A few illustrative examples of degraded gallery images
for 4 distinct input samples are presented in Fig. 4. The
proposed non-deterministic degradation process is applied
multiple times on each of the gallery images. Specifi-
cally, a random combination of the degradation functions
listed in table 1 is applied, each with randomly sampled
parameters.

Note that the actual set of degraded images produced from
a single gallery image can be arbitrarily large based on the
combinatorial space of possible degradations from Table 1.
In practice, we find that generating a set of 1024 degraded
images from each gallery image is sufficient to capture the
range of possible degradations, and the improvements to
performance past that point reach diminishing returns.

2) RESOLUTION MATCHING
The multi-scale degradation process, described above, pro-
duces a set of degraded gallery images G = {Gi}Mi=1. The
images in G are by definition of different resolutions and
(in general) differ from the resolution of the probe images
P. We therefore introduce an additional (optional) mapping
that rescales all degraded galleries to the resolution of the
given probe P before resizing them for the targeted FRmodel.
While some of the images in G require downsampling, others
require upsampling. We use bilinear interpolation for both
scenarios and refer to the described procedure as resolution
matching in the reminder of the paper.
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TABLE 1. List of degradation functions.

3) SIMILARITY-SCORE CALCULATION
The goal of the comparison procedure is to produce a
scalar similarity score for each given comparison between
a probe image P and a given gallery G. Because the
proposed multi-scale degradation method produces multiple
degradation hypotheses G = {Gi}Mi=1, as shown in Fig. 5,
we determine the final similarity score r by taking the highest
computed score, i.e.:

r = max
i
({ϕ(ψ(Gi), ψ(P))}Mi=1), (2)

where ψ is a pretrained FR model and ϕ is the cosine
similarity.

B. HALLUCINATE-TO-COMPARE WITH
MULTI-HYPOTHESIS FACE SUPER-RESOLUTION
1) MULTI-HYPOTHESIS FACE-SUPERRESOLUTION
In order to add high-resolution details to real-life low-
resolution face images, we train a variant of the EDSR [7]
super-resolution convolutional neural network (CNN) exclu-
sively on face images. By limiting the training set to face
images, as opposed to general computer vision datasets,
such as ImageNet [41] or DIV2K [42] typically used for
super-resolution training, the network is able to learn to
upsample human faces in more detail, which enables a higher
magnification factor (8×) than is typically used for general
super-resolution methods (up to 4×). Our super-resolution
network is trained on a variant of the VGGFace2 [17] dataset
with 3M images. Specifically, the dataset requirements for
training super-resolution models differ somewhat from the
requirements for training face recognition methods, the
ostensible purpose of the dataset. In super-resolution training,
the dataset images represent the target model outputs, and as
such we want all dataset images to be as high-resolution and
sharp as possible. To that end, we pick the 1M images from
the VGGFace 2 dataset with the highest resolutions as our
training set. We verify that all 8631 subjects from the dataset
are present in this subset of training data, to maintain image

diversity. The chosen 1M images then represent the target
model outputs, and the training inputs are derived by applying
a degradation (downsampling) pipeline to the full-resolution
images.

FIGURE 5. Similarity-Score Calculation with the Degrade-to-Compare
strategy. The proposed multi-scale degradation method generates several
degradation hypotheses from the high-resolution gallery image. These
hypotheses are then used during the comparison procedure to calculate a
scalar similarity score for a given probe-gallery pair.

Given a super-resolution model ξSR capable of upsampling
an input low-resolution probe image PLR, i.e., such that
PHR = ξSR(PLR) where PLR ∈ Rh×w×3, PHR ∈ Rsh×sw×3,
and s is the upsampling factor, we design a multi-hypothesis
upsampling approach. We notice that many low-resolution
images are corrupted beyond their limited spatial resolution,
e.g., by noise and sampling artifacts. In order to alleviate
these artifacts, we blur the input image to different extents.
Specifically, we generate 16 versions of the input images by
blurring them using a Gaussian kernel with σ = 0 through
σ = 1. Each of the images is then upsampled separately
using our super-resolutionmodel.We present examples of the
multi-hypothesis super-resolution for an upscaling factor of
8× in Fig. 6. We note that for most real-world low-resolution
images, applying the super-resolution mode without pre-
processing the image at all, i.e., the σ = 0 case, results in a
suboptimal reconstruction, since the super-resolution model
amplifies its noise and artifacts to an extent. On the other
hand, if the input image is blurred too much, this results in
a blurry reconstruction.

We note that the face template extraction models require
a fixed input image resolution of 112px. Thus, in all cases
where we do not use face super-resolution, such as gallery
degradation and resolution matching, the probe and gallery
images are re-sampled using interpolation.

2) MULTI-SCALE PROCESSING
The performance of face super-resolution models typically
depends on the initial resolution of (and, in turn, the
information content contained in) the input probe images
and the desired magnification factor. For example, for
a low-resolution input image of 24 × 24 pixels and a
magnification factor of 2×, the super-resolution model needs
to predict 75% of the pixel values in the upscaled image,
while this percentage increases to 98.4% for an upscaling
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FIGURE 6. Examples of the super-resolved hypotheses for a sample
low-resolution probe images using a trained face super-resolution model
for an upscaling factor of 8×. By manipulating the high-frequency
characteristics of the input probe, our approach generated different
variants of the upscaled images that can be used for similarity score
calculation. The upper-left sample corresponds to applying the
super-resolution model in the single-hypothesis regime without
modifying the low-resolution input image.

factor of 8×. Thus, significantly more information needs
to be hallucinated for larger magnification factors. In our
approach, we therefore adopt a multi-scale scheme and
generate multiple super-resolved hypotheses for each of the
three upscaling factors considered, i.e., 2×, 4× and 8×.
This procedure allows us to produce higher-resolution probe
images with varying amounts of hallucinated information for
the comparison procedure.

3) SIMILARITY-SCORE CALCULATION
The multi-scale multi-hypothesis face supper-resolution
approach, presented above, produces a set of N upscaled
hypotheses P = {Pi}Ni=1 from the provided input probe P.
Here, we note that we do not attempt to determine, which of
the reconstruction hypotheses represents the most desirable
output that most closely resembles the characteristics of
the gallery images. Instead, we use all of the recovered
hypotheses as input to the similarity-score calculation step.
To that end, we extract an embedding from each of the
reconstructed hypotheses using a pretrained face recognition
model ψ , and again consider the maximum similarity
between a probeP and galleryG as the final comparison score
r :

r = max
i
({ϕ(ψ(G), ψ(Pi))}Ni=1), , (3)

where ϕ is again the cosine similarity.

C. HALLUCINATION-AND-DEGRADE-TO-COMPARE WITH
MULTI-SCALE DEGRADATIONS AND MULTI-HYPOTHESIS
SUPER-RESOLUTION
1) HYBRID HALLUCINATION-DEGRADATION SCHEME
We combine the multi-scale degradation method and the
multi-hypothesis hallucination procedure into a hybrid

FIGURE 7. Similarity-Score Calculation with the Hallucinate-to-Compare
strategy. The proposed multi-scale multi-hypothesis super-resolution
method generates several versions of upsampled probe images from the
provided low-resolution probe. These hypotheses are then used during
the comparison procedure to calculate a scalar similarity score for the
given probe-gallery pair.

scheme with the goal of compensating for their individual
shortcomings and to further bridge the cross-resolution
domain gap. As illustrated in Fig. 8, it is likely that some of
the images from the large set of degraded gallery images and
super-resolved probe images will be closer in quality than the
original pair, since various quality/resolution hypotheses are
created with our approach for both, the initial gallery as well
as the initial probe image.

The face hallucination method produces N superresolved
faces P = {Pi}Ni=1 from the given probe P, while
the multi-scale degradation method produces M degraded
versions of each gallery faceG, i.e., G = {Gi}Mi=1. To compute
a single scalar similarity score for a comparison between
G and P from the sets G and P , we utilize various fusion
techniques over the corresponding embeddings. These fusion
techniques can, in general, be implemented either on the
feature level or the similarity score level. Feature level fusion
involves representing the hypotheses of a single face image
using a single face feature vector. In contrast, similarity score
based fusion aims to reduce the similarity scores between the
hypotheses of a probe image and those of a gallery image into
a single similarity score. Details on the two fusion types are
given below.

2) FEATURE FUSION
We consider two types of feature-level fusion for the
implementation of our hybrid scheme, namely, feature
addition (Tadd ) and feature concatenation (Tconcat ). The
feature vectors obtained from a face image’s hypotheses are
denoted as

{
ti ∈ RD

}
, where D represents the dimensionality

of the feature vector, and i denotes the hypothesis index over
either the probes in P or galleries in G. Feature addition is
carried out by calculating the sum of the face features:

tacc =

∑
i∈P∨G

ti, (4)

where tacc ∈ RD is the accumulated face feature. On the other
hand, feature concatenation involves concatenating the face
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features into a single vector, as shown below:

tacc = ++
i
(ti) , (5)

where ++ is the concatenation operator and merges the
feature vectors. Note that, in order for the concatenated
probe features and gallery features to be comparable,
their concatenated sizes must be identical. To ensure this,
hypotheses are first summed up using feature addition at
each scale, assuming both probe and gallery hypotheses have
matching scales as shown in Fig. 2(c), and then the resulting
face features are concatenated across those scales.

3) SCORE FUSIO
To fuse the similarity scores between probe and gallery
image hypotheses, we obtain the feature vectors from
these hypotheses, as described in previous sections. Then,
we calculate each possible similarity score between the
probe hypotheses’ feature vectors and the gallery hypotheses’
feature vectors. To fuse these similarity scores, two options
are available: (i) adding them up (Sadd ) or (ii) defining the
similarity between the given probe and gallery image as the
maximal similarity between any pair of hypotheses generated
(Smax). By fusing the similarity scores using these strategies,
we obtain a single similarity score that represents the overall
similarity for a given gallery-probe pair.

FIGURE 8. Similarity-Score Calculation with the
Degrade-and-Hallucinate-to-Compare strategy. The multi-scale
degradation method and the multi-hypothesis super-resolution methods
generate multiple versions of probe and gallery images, respectively, that
are used to generate a single scalar score in the comparison procedure
for a given gallery-probe pair.

The use of the maximal similarity score is motivated by the
fact that face recognition models are trained such that false
positive matches are much less likely than false negatives.
Thus, degrading the gallery image is extremely unlikely to
increase its similarity with any given probe image, unless
that probe image contains the same person, and degrading
the gallery image only brings the quality of the two images
closer together. On the other hand, the use of the sum of
similarity scores is motivated by the interpretation of face
feature vectors containing information (signal) related to the
identity of the person of the image, and noise related to
irrelevant factors such as image quality, as well as pose,
background, etc. The idea is that adding up similarity scores
from a large set of images where the noise factors differ while

the identity remains the same will cause the noise factors to
average out, dampening the noisewhile amplifying the signal.

D. IMPLEMENTATION DETAILS
The different degradation and hallucination procedures
presented in this section all rely on comparison in the
embedding space of a pretrained FR model ψ and require no
fine-tuning. To analyze the impact of different FR models on
the presented procedures, we use publicly available state-of-
the-art (SOTA) models for our experiments. Specifically, we
select the ArcFace [24] models with ResNet-50 and ResNet-
101 backbones adopted from the InsightFace repository,1

trained on the MS1M [19] and Glint360k [21] datasets. All
models take 112×112 resolution images as input and extract
D = 512 dimensional feature vectors. If the resolution of the
given face image is different from 112 × 112, then we resize
it to the target resolution using bilinear interpolation.

To extract features from test images, we first crop
the images using face detection coordinates provided
by the dataset authors. Then, the images are subjected to the
preprocessing procedure provided by the authors of the face
recognition models, and passed through the models to obtain
the face feature vectors.

We note that, without fine-tuning on the target domain,
the performance of our proposed method is highly reliant
on the face recognition models used. The models used here
were selected for their performance and large training set size,
which enables a degree of robustness to image quality factors
such as resolution, blur, lighting, and head pose.

IV. EXPERIMENTS
A. DATASETS
We select two diverse and challenging datasets with
cross-resolution comparison problems for the experiments,
i.e., the SCFace [43] and the DroneSURF [44] datasets.
Details on the two datasets are provided below.

• The SCFace Dataset: There are 130 subjects in the
SCFace dataset, each having one high-quality frontal
image corresponding to the gallery face images, and
multiple low-resolution images corresponding to the
probe face images. Probe face images are captured using
five different surveillance cameras and from three differ-
ent distances, d1: 4.2m, d2: 2.6m and d3: 1.0m. Sample
images from the dataset are shown in Fig. 9(a),(b).
In the experiments on this dataset, we report Rank-
1 identification rate (IR) results for all 130 subjects.
In order to compare the obtained results with the ones
from the previous works, we also report the mean of
Rank-1 IR for 10 Repeated Random Sub-Sampling
Validation (RRSSV) experiments on 80 subjects, which
is the common benchmark on this dataset. Please note
that, in most of the previous works, the remaining
50 subjects are used for training purposes, however,
our proposed approach does not require any training

1https://github.com/deepinsight/insightface
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or fine-tuning on the same dataset. In the SCFace
experiments, faces are detected using MTCNN [45],
then cropped by enlarging the bounding boxes with a
scale factor of 1.3 following the findings in [33].

• The DroneSURF Dataset: The dataset contains
200 videos of 58 subjects captured with drones,
of which 24 subjects are used for testing purposes.
Videos are captured in two types of surveillance
settings: active and passive. In the active scenario,
subjects are actively monitored, therefore, the camera-
to-subject distance is relatively constant. In the passive
scenario, a drone monitors an area or event while
its position and orientation remain fixed. Therefore,
the distance between the drone and subjects changes.
Both scenarios are captured under two different day-
times, during the day and before sunset, and at two
locations, in the park and on the terrace of a building.
The dataset also contains a gallery set of frontal face
images captured using smartphones in constrained
environments. In Fig. 9(c), sample images captured
under the active and passive settings are given in the
first and second rows, respectively. As can be seen,
in the passive scenario, the face resolution is very
low. In the DroneSURF experiments, gallery faces are
detected using MTCNN [45]. Annotations for probe
face bounding boxes are provided in DroneSURF [44],
however, most of them contain a significant portion of
background information. Therefore, in order to obtain
tightly cropped faces, we detected probe face images
using TinyFace [46]. We chose TinyFace [46] over
MTCNN [45] due to its ability to detect low-resolution
face images. Still, TinyFace [46] could not detect all the
probe faces. In these cases, we directly use the provided
bounding box annotations. The detected faces are then
cropped by enlarging the bounding boxes with a scale
factor of 1.3. No fine-tuning of the deep face recognition
models is performed on this dataset.

B. DATA ANALYSIS
We start the experimetal section with an initial analysis of
the impact of the degradation and hallucination procedures
on the quality characteristics of the SCFace and DroneSURF
data. To this end, we examine the Stochastic Embedding
Robustness Face Image Quality (SER-FIQ) [47] score
distribution of the face images before and after applying
the degradation and hallucination processes. In the top
row of Fig. 10, we show SER-FIQ score distributions
calculated for the SCFace dataset. As can be seen, the image
quality distribution obtained from the degraded gallery face
images in Fig. 10(c) becomes more similar to that of the
original low-resolution probe images (Fig. 10(a)) due to the
applied degradation process. Conversely, the SER-FIQ score
distribution of hallucinated probe face images (Fig. 10(d))
shows that the proportion of high-quality face images is

FIGURE 9. Example probe and gallery images from the SCFace and
DroneSURF datasets. In (a), probe face images from the SCFace dataset
are given. The probe images in (a) belong to the same subject and are
captured at the same distance of 4.2m (bottom row), 2.6m (middle row),
and 1m (top row), with five different cameras. Faces are localized with
MTCNN and cropped with a scale factor of 1.3. Although they are
captured at the same distance, we can see that face resolution differs
across cameras. Column (b) shows the gallery image of the subject given
in (a). In (c), we see example probe images from the DroneSURF dataset,
where the first row consists of the images captured under active
surveillance and the second row consists of the images captured under
the passive surveillance scenario. In (d), a sample gallery image from the
DroneSURF dataset is shown.

increased, suggesting that the hallucination process may be
beneficial for the comparison procedure on this dataset.

The same analysis is carried out also for the active surveil-
lance scenario of the DroneSURF dataset. As expected, the
image quality of the face images decreases due to gallery
degradations, as seen in Fig. 10(c). However, no improvement
is observed in terms of image quality for the hallucinated
probe face images, which is likely due to the quality
of the original DroneSURF probe images, which is too
low to recover sufficient face details using the proposed
hallucination approach.
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TABLE 2. Baseline Rank-1 IR (%) results on the SCFace and DroneSURF
datasets.

TABLE 3. Rank-1 IR results (%) on SCFace dataset with gallery
degradations and (with and without) resolution matching.

TABLE 4. Rank-1 IR (%) results on DroneSURF dataset with gallery
degradations.

C. BASELINE RECOGNITION RESULTS
In the first series of recognition experiment, we evaluate
the performance of four off-the-shelf deep face recognition
models, described in Section III-D, on the SCFace and
DroneSURF datasets without applying any degradation or
hallucination technique. The results of this experiment are
presented in Table 2. Notably, on the SCFace dataset, the
accuracies achieved by the face recognition models surpass
90% for the closer distances, indicating the effectiveness of
deep face models when the face resolutions are relatively
high. Hence, we focus our analysis on the face images

captured from the d1 distance, which represents the farthest
range leading to the lowest resolution of the face images
in the SCFace dataset. The recognition accuracies on the
DroneSURF dataset exhibit a significant variation. For the
passive scenario, all the models achieved approximately only
half of the performance that were obtained in the active
scenario. It is important to note here that, compared to the
face resolution in the active scenario, in the passive scenario,
the resolution is much lower, which causes this significant
accuracy difference.

D. GALLERY DEGRADATION RESULTS
Next, using the method introduced in Section III-A for the
DtC strategy, we apply degradations on the gallery face
images of both SCFace and DroneSURF datasets. Thus,
in this experiment, we study how degrading high-resolution
gallery face images, with the goal of comparison the
characteristics of the low-resolution probes, impacts the
cross-resolution face recognition performance. Each gallery
image is degraded by applying the degradations from Table 1,
using the random process in Eq. (2), so as to produce a
large set of degraded images, which are then compared to the
probes.

The results obtained on the SCFace dataset, given in
Table 3, point to significant improvements in the Rank-1
Identification Rate (%) compared to the baseline experiment
results. Specifically, the model trained on the MS1M-
RetinaFace dataset with a ResNet-50 backbone yields a 36%
relative increase in accuracy. Moreover, the model trained on
the Glint360k dataset with a ResNet-101 backbone achieves
a recognition accuracy of 87.38%, approaching the results
obtained at closer distances. Further reducing the domain gap
by matching the resolution of gallery faces and probe faces
results in even higher accuracies, which can be seen from the
lower half of Table 3. The most successful model achieves
a 89.69% identification rate at the d1 distance, but more
importantly, al models consistently improve in performance
at d1, when degradation and resolution matching are used,
compared to using degradations only.

We employ the same gallery degradation strategy also on
the DroneSURF dataset. The results in Table 4, show similar
behavior as observed with the SCFace experiments, that is,
gallery degradations lead to significant improvements over
the baseline recognition accuracies, which is observed in
both, the active and passive scenarios. Resolution matching
applied with the gallery degradations further improves the
face recognition performance in the cross-resolution setting.

E. FACE HALLUCINATION RESULTS
In the next series of experiments, we explore the impact
of the HtC face hallucination strategy, introduced in
Section III-B, on the cross-resolution face recognition
performance. We investigate three different strategies: (i)
single-hypothesis, (ii) multi-hypothesis, and (iii) multi-
scale multi-hypothesis. In the single-hypothesis approach,
we enhance each low-resolution face image on an individual
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FIGURE 10. SER-FIQ score distributions on the SCFace and DroneSURF datasets before and after applying the proposed degradation and hallucination
schemes.

TABLE 5. Rank-1 IR (%) results on SCFace dataset with face hallucination
at d1=4.2m distance.

basis, without taking into account any image artifacts. For
the multi-hypothesis approach, we create several enhanced
versions of each probe face image. Each hypothesis in
the multi-hypothesis approach exhibits artifacts to varying
degrees. These approaches are compared with each other
using different upscaling factors, i.e., 2×, 4×, and 8×.
Additionally, we explore a multi-hypothesis and multi-scale
approach, where the probe images are enhanced using the
multi-hypothesis method at different scales. The resulting
multi-scale multi-hypothesis versions of the probe images
are fused together using the fusion methods described in
Section III-C.

Table 5 presents the face hallucination results for the
d1=4.2m distance of the SCFace dataset. The upper part
of the table displays the results for single-hypothesis face
hallucination, while the middle section presents the results
for multi-hypothesis face hallucination. The reported results
suggest that single-hypothesis face hallucination does not
lead to improvements in recognition accuracies. However,
multi-hypothesis face hallucination results in better perfor-
mance. This suggests that naively enhancing a low-quality
face image without addressing image degradations does not
result in significant improvements for the cross-resolution
face recognition task on this dataset. Instead, generating
multiple hypotheses by removing high-frequency artifacts
before applying super-resolution can aid the recognition
process. In the last section of Table 5, we combine the
multi-hypothesis probe images of different scales, rather than
measuring their performance at separate scales. This further
improves the cross-resolution comparison performance and
leads to significant performance gains for all tested models.

Due to the inadequate quality of probe face images in
the passive surveillance scenario of the DroneSURF dataset,
we conduct face hallucination experiments only for the active
scenario. In Table 6, we present the results for the multi-scale
multi-hypothesis face hallucination approach that performed
overall best of SCFace. As can be seen, these results show
a slight reduction in the face identification rates compared
to the baseline experiment results from Table 2, suggesting
that face hallucination is not able to sufficiently improve
the face image quality in active surveillance scenarios due
to unsuitable (low) quality characteristics of the DronSURF
probes. These results are also consistent with the SER-FIQ
generated quality score distributions from Fig. 10 that
already suggested limited quality impact of the hallucination
process.
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TABLE 6. Rank-1 IR (%) results on DroneSURF dataset with face
hallucination.

To provide a qualitative comparison and offer additional
insight into the behavior of the face hallucination approach,
we include hallucinated images from both the SCFace and
DroneSURF datasets in Fig. 11. It is worth noting that the
super-resolved DroneSURF face images have significantly
more artifacts than the SCFace examples. This is the case for
most of the samples in the DroneSURF dataset due to poorer
image quality and lower face resolution, which appear to
have a significant impact on the success of face hallucination
strategies applied as preprocessing steps to cross-resolution
face comparison.

FIGURE 11. Multi-hypothesis multi-scale face hallucination results. For
the purpose of visualization, all the images are resized to a fixed size of
112 × 112, which is the model input size. As shown, the images generated
for the DroneSURF dataset exhibit more severe artifacts than those of the
SCFace dataset.

F. COMBINING GALLERY DEGRADATIONS AND PROBE
HALLUCINATIONS
In this section, we investigate the performance of a combined
approach that integrates both, the gallery degradations and
the probe face hallucinations, into a hybrid DHtC procedure.
Our goal with the combined approach is to bridge the
gap between the distributions of low-resolution and high-
resolution face images using a joint degradation-hallucination
scheme, as illustrated in Fig. 2(c).

In Table 7, we combine the gallery degradation method
with the probe face hallucinations for the d1=4.2m distance

TABLE 7. Rank-1 IR results (%) on SCFace dataset with combined gallery
degradation and face hallucination.

TABLE 8. Rank-1 IR results (%) on DroneSURF dataset with combined
gallery degradation and face hallucination.

of the SCFace dataset. By merging these two schemes
with the fusion strategies from Section III-C, we are able
to achieve a face identification rate exceeding 90% for
130 subjects. While all of the fusion strategies lead to
comparable cross-resolution recognition performance, the
highest recognition accuracy of 91.07% is obtained with the
feature concatenation strategy (Tadd ) using the Glint360k-
R101 face recognition model.

In the case of the DroneSURF dataset, the performance of
the combined method is impacted by the poor performance
of face hallucination scheme. However, the combination still
outperforms the baseline results and the hallucination-only
method. The corresponding results can be found in Table 8,
where the maximum similarity score strategy (Smax), which
was found to work best, was employed when generating the
reported results.

G. RESOLUTION IMPACT
In this section, we examine the impact of probe-image
resolution on the face recognition performance. Table 9
presents the results of the DtC strategy, which employs
the Glint360k-R101 model with gallery degradations and
resolution matching (but no face hallucination), for each
camera individually, together with the corresponding average
face sizes per camera. The results in the table suggest that
the performance of the face recognition model is directly
proportional to the resolution of the face images. Fig. 9
presents a subject’s probe face images taken by five distinct
cameras, which shows the disparities in resolution and
degradations caused by each camera. It is straight forward to
see the differences in the probe image quality and information
content in the images, captured by the five cameras, that are
reflected in the reported recognition rates.

The resolution of the face images also varies between the
different surveillance settings of the DroneSURF dataset,
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FIGURE 12. Top-10 predictions for probe face images on SCFace and DroneSURF datasets, including success and failure
cases.

namely active and passive surveillance, as exemplified in
Fig. 9. Table 4 reports the face recognition performance for
both scenarios, and we can observe that the performance in
the passive scenario, where the faces have lower resolution,
is lower than the performance of the active scenario.

H. SUCCESS AND FAILURE CASES
In compliance with the terms of the SCFace release
agreement, we display the success and failure cases for
the Glint360k-R101 model with gallery degradations and
resolution matching in the DtC scheme. We use only
the subjects whose images are cleared for publication in
Fig. 12(a). Failures typically arise with lower-quality images
that contain a high degree of uncertainty about the subject’s
identity. However, the proposed method consistently aligns

its predictions with discernible attributes such as gender,
haircut, skin, or hair color. Even if the top prediction isn’t
always accurate, the correct identification is generally found
within the top four, suggesting that the proposed method
can successfully extract and apply key facial features in its
identification process.

Fig. 12(b) demonstrates the model’s ability to tackle
the face identification task in the challenging environment
of the DroneSURF dataset. The probe images shown in
Fig. 12(b) include many low-quality and non-frontal face
images, captured in an unconstrained setting. Similarly to the
previous findings, it aligns predictions with key observable
attributes such as gender, haircut, hair color, and skin tone.
In comparison fo SCFace, our proposed method performs
worse overall on DroneSURF in terms of the per-frame
rank-1 identification rate measure. The uncontrolled drone
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TABLE 9. Influence of camera resolution on cross-resolution face
matching. Here, w × h denotes the average width and height of the face
bounding boxes per camera and IR denotes the Rank-1 identification
results. These results belong to the Glint360k-R101 model utilized with
gallery degradations and resolution matching.

footage with very low-resolution faces present in the dataset
demonstrates the limits of its capability. These attributes
remain present across the top-10 predictions.We note that this
is the most challenging experiment setting for DroneSURF,
compared to the per-video setting where close-up frames can
be used to identify the subjects for the entire video sequence.

I. COMPARISON WITH THE STATE-OF-THE-ART
In this section, we present a comparison with the state-of-the-
art on the SCFace and DroneSURF datasets.

1) SCface RESULTS
In Table 10, we compare our results on the SCFace dataset
with those of previous state-of-the-art works. To make
our results comparable with those of the prior methods,
we report the mean of 10 RRSSV results for 80 randomly
selected subjects. Our model, Glint360k-R101, incorporates
both gallery degradations and face hallucination. Existing
methods that perform fine-tuning on 50 randomly selected
subjects are marked in Table 10 with a check mark in
the FT column. Among the models that do not perform
fine-tuning, our model, Glint360k-R101, applied within
the joint degradation-hallucination scheme achieves the
highest performance with 95.4% accuracy at the d1=4.2m
distance. The second-best result, 88.3%, is achieved by [27].
Remarkably, our approach also performs better than the
competing techniques that utilize a portion of the dataset
for training purposes, despite not requiring any training or
fine-tuning on the target dataset.

2) DroneSURF RESULTS
In Table 11, DroneSURF Rank-1 IR (%) results are reported
for the active and passive scenarios under the frame-wise
protocol. The third column indicates whether face recognition
is carried out on tightly cropped probe faces that are obtained
using face detectors or on the bounding boxes provided with
the dataset. The table also specifies whether the models
are fine-tuned on the target dataset or not. Unlike the
SCFace experiments, our model only utilizes the proposed
degradation method along with resolution matching and
does not involve face hallucination. In the active scenario,

TABLE 10. Comparison of Rank-1 IR results on the SCFace dataset with
previous works. Models fine-tuned on the SCFace dataset are denoted
with a checkmark on FT column. The average of 10 RRSSV for 80 subjects
out of 130 subjects is reported for our models.

TABLE 11. Comparison of Rank-1 IR results on the DroneSURF dataset
with previous works. Models that perform face detection before
performing face recognition denoted in the column Tight-Crop.

TABLE 12. Comparison of the computational complexity of our method
with previous works.

we achieve the highest accuracy of 51.55%, which is the best
result among all the approaches listed. The second-best result
belongs to the method proposed in [30], which also employs a
face detector to crop probe face images and does not fine-tune
on the target dataset. In the passive surveillance scenario,
we obtain the highest accuracy among the approaches that
do not use the target dataset for training, with an accuracy
of 26.84%. In [55], they use 34 subjects of the dataset
for training purposes and achieve an accuracy of 27.81%.
This shows the limitations of our training-free method, since
fine-tuning directly on the target domain can still improve the
performance somewhat on the lower end of resolution and
image quality.
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We compare the computational complexity of the methods
evaluated on DroneSURF in table 12. Complexity evaluation
for deep learning-based methods is typically split into
training and inference time constraints. Here, we note only
which methods require training to begin with. Furthermore,
the inference computational complexity is measured in
terms of the forward passes through face recognition and
super-resolution networks required to compare a gallery and
probe image. The time complexity is sub-linear with regards
to the number of forward passes, due to the effects of GPU
batch processing, as processing singleton batches is highly
inefficient. The space complexity is affected only by the
need to keep the expanded dataset in memory. No extra
storage is required. We note that our proposed method has
far higher inference complexity, while not requiring training.
This indicates utility in cases where insufficient target domain
data exists for extensive training or fine-tuning. Furthermore,
we note that while increased computational complexity is
obviously undesirable, methods that make efficient us of
increased computational budgets tend to be better at eliciting
improved performance in the long run [57], [58], which
mirrors our findings.

V. CONCLUSION
In this work, we have addressed the challenge of
cross-resolution face recognition and investigated two
strategies for improving recognition accuracy, i.e., gallery
degradation and face hallucination. We have proposed
a multi-scale degradation method for the high-resolution
galleries and a multi-scale and multi-hypothesis face hallu-
cination method to improve the quality of the probe images.
We have also explored the combination of these two methods
using score-level and feature-level fusion techniques. Our
experiments on the SCFace and DroneSURF datasets have
shown that both methods can improve cross-resolution
face recognition accuracy. However, face hallucination was
not useful on DroneSURF due to poor image quality.
Our findings emphasize the importance of considering
image quality when selecting face recognition methods. The
combination of gallery degradation and face hallucination
is likely to provide the best results for cross-resolution face
recognition with relatively high-quality probe images, while
degradation alone may be more appropriate for low-quality
probe images. Our proposed strategies are agnostic with
respect to the deep face recognition model being used and
do not require any fine-tuning on the target dataset.

However, in the worst-case scenario of face resolution and
image quality, our proposed method is still marginally out-
performed by previous approaches that include fine-tuning
on the target domain. Thus, if extensive footage from the
target domain exists, using it for training results in better
performance so far. However, our proposed method presents
a promising approach for scenarios where this is not the
case, and could be used as a basis for long-range recognition
applications in those domains.

As part of our future work, we plan to explore naively
super-resolution methods that are robust to unknown degra-
dations, particularly for the case of low-quality face images.
This would address the challenge of poor quality face
images and potentially improve the performance of the
face hallucination method in such cases. Additionally, we
intend to extend the ideas presented in this work to multi-
frame super-resolution models that are capable of inferring
high-frequency face information from a sequence of low-
resolution frames, instead of hallucinating it from a single
input face. Such strategies are expected to further address the
challenges of cross-resolution face recognition.
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