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ABSTRACT A person retrieval system (PRS) in video surveillance identifies an individual based
on descriptive attributes, a task that employs several computationally intensive deep learning models.
We implement and analyse a PRS for pre-recorded videos on a graphics processing unit (GPU) and Nvidia
Jetson Orin AGX. This paper presents a new Person Attribute Recognition (PAR) architecture, CorPAR,
using three backbone networks, ConvNext, ResNet-50, and EfficientNet-B0. It enhances the F1-score by
4.1% with ConvNeXT-Base, 1.63% with the ResNet, and by 8.07% with EfficientNet-B0, surpassing the
performance of the state-of-the-art Weighted-PAR method. The proposed method uses model compression
techniques like quantisation and pruning with L1 regularisation to assess their impact on person retrieval. The
study reveals that the PRS utilising EfficientNet-B0, with 32-bit quantisation, achieves the best performance,
delivering a throughput of 22 frames per second and a True Positive Rate of 71% on Nvidia Jetson Orin AGX
matching the performance of a model implemented using GPU.

INDEX TERMS Edge device, model compression, person attribute recognition, person retrieval, pruning,
quantization, surveillance.

I. INTRODUCTION
Traditional video surveillance is crucial in maintaining
public order and monitoring criminal activities. However, its
effectiveness is compromised by labour-intensive and error-
prone manual review processes. These methods are difficult
to scale with the growing network of cameras and video
databases and often do not meet real-time requirements.
Artificial Intelligence (AI) based surveillance solutions are
emerging with the potential to overcome these limitations.
This development is driven by training deep learning models
on Graphics Processing Units (GPU) with large amounts of
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data, enabling real-time insights and automating security and
surveillance methods.

This paper addresses the challenge of person retrieval,
particularly its deployment on edge devices. Person retrieval
involves identifying an individual in surveillance footage
based on discrete attributes extracted from a natural language
description. This description typically consists of attributes
such as gender, upper body clothing type and colour, and
lower body clothing type, each of which may have multiple
values. For example, a description like ‘‘A person with a
white shirt and black pants’’ will have discrete attributes
as upper body clothing: shirt, upper body clothing colour:
white, lower body clothing type: pant, lower body clothing
colour: black.
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FIGURE 1. Overview of the person retrieval system. The input is a query with discrete attributes and a video
frame. The output in a frame is a person(s) matching the query.

The Person Retrieval System (PRS), illustrated in Figure 1,
integrates several vital components, including query pro-
cessing, detection, person attribute recognition (PAR), and
a person ranking algorithm (PRA). The input to the system
is a video and a query specifying discrete attributes of
the target individual. A detection module first detects all
persons within the frames, after which the PAR model
extracts specified attributes for each detected individual. The
PRA then ranks the detected individuals by comparing their
predicted attributes against the query attributes to retrieve the
closest match.

The proposed system is primarily evaluated on two
hardware platforms: the Nvidia Jetson Orin AGX, an edge
device, and the NVIDIA RTX A5000 GPU. It is designed
as a local inference system to reduce latency, enhance data
privacy, and enable real-time decision-making. This makes
the system well-suited for deployment in edge environments
with limited or unreliable network connectivity. This study
represents the first to investigate the deployment of PRS on
edge devices.

A. MODEL COMPRESSION
Deep learning models trained on GPUs require massive
datasets to improve their generalisation and consume signifi-
cant energy despite their impressive abilities [1]. These disad-
vantages limit the accessibility and scalability of AI-powered
surveillance on edge devices. However, Model Compression
(MC) techniques like pruning, quantisation, knowledge
distillation, and low-rank factorisation can overcome these
challenges [2]. These techniques enable the execution of the
models on edge devices [2].
Quantisation compresses the original network by reducing

the number of bits required to represent each weight. The
process involves converting a neural networkmodel’s weights
and activation values from high precision to low precision.
It lowers memory overhead, bandwidth requirements, and
power consumption and provides faster computation speed.
Typically, parameter quantisation is carried out by either
absolute max quantisation or zero point quantisation [1], [3].

Pruning is a technique used in deep learning to reduce
the size of a neural network by removing redundant or
less essential weights, thereby improving computational
efficiency without significantly sacrificing performance.
Structured pruning removes entire units, such as neurons,
channels, or filters, resulting in a more organised and
structured reduction of the network. This method is more
accessible to implement on standard hardware, as it preserves
the overall architecture of the model, making it more
efficient for practical deployment [1]. Unstructured pruning
eliminates individual redundant or non-contributory weights,
streamlining themodel and potentially increasing sparsity. L1
regularisation encourages sparsity in the model’s parameters,
further reducing model complexity and improving execution
speed [1].

B. LITERATURE REVIEW
The PRS employs convolutional neural networks (CNNs)
to extract features and create embeddings. Attributes are
detected step by step using linear filtering [4], but this
approach often suffers from inefficiency due to noise build-
up. Improvements like adaptive torso patch extraction and
bounding box regression enhance the detection and retrieval
process [5]. Bekele et al. [6] proposed a ResNet backbone for
PAR, showing that deeper networks improve classification
accuracy and generalisation. In a study, Galiyawala et al.
[7] introduced a single network model combining PAR with
Mask R-CNN for person detection. This model achieved an
average True Positive Rate (TPR) of 85.30% by optimising
attribute weights.

In unified person attribute recognition (UPAR), the
baseline method allows for developing large-scale, gen-
eralisable attribute-based person retrieval [8]. Approaches
mentioned by Specker et al. [9] simultaneously improve
single-attribute-based recognition and retrieval using spatial
projection and normalisation modules. A novel recurrent
neural network with a gated neural attention mechanism
established a baseline performance over CUHK-PEDES,
a large-scale person re-identification dataset containing
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Natural Language Descriptions (NLDs) with images [10].
However, segmentation-based methods are computationally
expensive and sensitive to variations.

The techniques described above primarily focus on GPU
training models but often lack discussions on their deploy-
ment on edge devices with low resources. Understanding
these methods’ practical utility is essential to evaluate their
performance under edge devices’ constraints.

Parate et al. [11] emphasises optimal real-time perfor-
mance for CPU-only edge devices in residential video
surveillance, utilising a Long Range Radio network for
privacy-preserving anomaly alerts. Gaikwad et al. [4] con-
ducted person re-identification using the CEERI-VREID
dataset, achieving real-time performance of 30 frames per
second (FPS) on a distributed setup of NVIDIA Jetson
Nano and TX2 with a cloud server. Suzen et al. [12] assess
the performance of single-board computers, specifically
NVIDIA JetsonNano, Jetson TX2, andRaspberry Pi4, in exe-
cuting a CNN algorithm for fashion product categorisation.
Ullah et al. [13] conducted a comprehensive performance
benchmarking of Jetson platforms, exploring the impact of
algorithm optimisation and hardware acceleration across var-
ious data types, including dense, deep learning architectures
and hyperspectral images.

These studies collectively contribute to understanding
real-time intelligent surveillance and the efficiency of edge
devices in diverse applications. However, existing edge
device benchmarking studies predominantly focus on single
modules, such as detection. More so, multi-model modules
are not deployed fully on a single edge device, as they are
partly implemented on a cloud-edge distributed network [4],
[13], [14]. It is worth examining the deployment of a
PRS with multiple modules wholly on edge device. The
contributions are summarised as follows:

1) We introduce a new CorPAR architecture for attribute
recognition.

2) We investigate and analyse the deployment of complete
PRS on NVIDIA Jetson Orin AGX edge device.

The remainder of the paper is outlined as follows:
Section II elaborates on the proposed system for person
retrieval. Section III provides a detailed discussion of the
results and findings, with the conclusion given in Section IV.

II. PROPOSED PERSON RETRIEVAL SYSTEM
The PRS involves three stages: person detection, PAR and
person ranking, which are briefly discussed in each module
below.

A. PERSON DETECTION MODULE
The ideal characteristics for the detection module should
include robustness to occlusion, varying poses, illumination
conditions, and portability for edge devices. Chaudhari et al.
[15] showed that the detector You Look Only Once (YOLO)
v8 performs better than YOLOv7 on the GPU. Hence,
we picked the readily available YOLOv8n model [16]

pre-trained on the Microsoft COCO dataset for preliminary
investigations. It resulted in the mean average precision
(mAP) of 37.3. Further on qualitative analysis, we observed
that YOLOv8n failed to detect all the persons in the low lights
or if the personwas occluded bymore than 50%. To improvise
the detection, we selected a different model from the
YOLOv8 suite and fine-tuned it on a benchmark person
detection dataset. Considering the small size, we selected
YOLOv8s.

We used the CrowdHuman dataset [17] for evaluating
person detection in a crowd. It is a large, richly annotated
dataset with 15,000, 4,370, and 5,000 images for training,
validation, and testing. The dataset covers various scenarios
with 470,000 human instances, averaging 22.6 persons per
image, and includes multiple occlusions. Scenes range from
streets, parks, and markets to stadiums, with individuals often
partially obstructed by others, objects, or the background.
YOLOv8s is fine-tuned for 100 epochs on the CrowdHuman
dataset, with a split 90:10 between training and testing.
Performance is evaluated using mAP, considering precision
and recall across different confidence thresholds. When
tested, it resulted in a better map of 45.6. On the qualitative
comparison between YOLOv8n and YOLOv8s, we observed
that YOLOv8s provided better detection with a higher
confidence score for the same subject. With only 11.1 million
parameters [15] on the CrowdHuman dataset [17], the
YOLOv8s model has evolved to be robust and efficient.
Therefore, YOLOv8s is employed in the proposed PRS.

B. PERSON ATTRIBUTE RECOGNITION MODULE
Weighted-PAR (W-PAR) [18] is inspired by the DeepMAR
architecture [19]. However, the W-PAR model possesses the
following limitations:

1) Attribute correlation: Attributes are often dependent;
for example, certain types of clothing are more likely to
be worn together, and models need to understand and
leverage these correlations without becoming overly
reliant on them.

2) Inter-attribute interference: The recognition of one
attribute can interfere with the presence or absence of
another. For instance, the presence of glasses might
make it more challenging to recognise eye colour
accurately.

3) Large number of parameters: Each attribute has an
independent model, increasing the parameters and
leading to overfitting.

As shown in Figure 2, we introduce CorPAR, a new
architecture for PAR. It builds on the existing W-PAR
model, addressing its limitations. The architecture uses a
multitask learning approach with skip connections between
attribute models. These connections transfer attribute model
output as supplementary inputs for subsequent models,
concatenated with image features. This cascading flow of
information improves learning efficiency, reduces parameters
and enhances the model’s ability to infer attributes.
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The major challenge for PAR is the imbalance distribution
of the attributes. Figure 3 shows the imbalanced distribution
of upper body clothing type attributes in AVSS+RAP
dataset [15] used in the proposed work. For example, there
are 32.8% samples of females whereas 67.15 % samples of
males in the AVSS+RAP dataset. Similar The imbalanced
distribution of the dataset is handled by introducing focal loss
for each attribute [20]. The following subsection discusses the
proposed CorPAR architecture and AVSS+RAP dataset.

1) CorPAR ARCHITECTURE
The CorPAR Architecture is trained on the AVSS+RAP
dataset customised by Galiyawala et al. [18]. The
AVSS+RAP dataset combines the AVSS 2018 Challenge II
[21] dataset with 14,000 annotated images and the RAPv1
[22] dataset with 41,585 images. The attributes in the
AVSS+RAP dataset include gender, age, upper body clothing
type, Upper body clothing colour, lower body clothing type,
and lower body clothing colour.

Given a dataset D = {(X1,A1), . . . , (XN ,AN )}, where
each Xi ∈ RH×W×3 represents an image, and Ai =

[ai1, ai2, . . . , aiM ] denotes the corresponding attribute vector
with M attributes, the goal is to train a model f such that for
any input image Xi, the model predicts the attribute vector
Âi = f (Xi), where Âi = [âi1, âi2, . . . , âiM ].
The imageXi is first passed through a pre-trained backbone

network, such as EfficientNet-B0, which is represented as
a function fbase. This function maps the input image to a
1000-dimensional feature vector:

xbase = fbase(Xi), xbase ∈ R1000 (1)

The model includes sequential attribute-specific branches
that predict each attribute. These branches are denoted by
functions fbranchm for each attribute m. The input to each
branch m is the concatenation of the base feature vector xbase
with the output of the previous branch, enhancing feature
representation through intra-skip connections.

For the first attribute (e.g., gender):

ygender = fgender(xbase) (2)

For the second attribute (e.g., upper body clothing type),
the input includes the concatenated vector of xbase and ygender:

yubody = fubody([xbase, ygender]) (3)

This process continues for each subsequent branch:

ybranchm = fbranchm ([xbase, ybranchm−1 ]) (4)

where: ybranchm ∈ R64 is the output of the m-th branch.
For each attribute m, the model uses a linear output layer

to generate the final prediction âim. This is done by applying
a linear transformation on the output of the corresponding
branch:

âim = Wm · ybranchm + bm (5)

where: Wm ∈ R64×1 is the weight vector for the m-th
attribute. bm ∈ R is the bias term.

Thus, the predicted attribute vector Âi for the image Xi is:

Âi = [âi1, âi2, . . . , âiM ] (6)

The focal loss FLi for each attribute m is defined as:

FLim =

{
−αm(1 − âim)γm log(âim), if aim = 1
−αmâ

γm
im log(1 − âim), if aim = 0

(7)

where: αm and γm are hyperparameters specific to the m-th
attribute. aim is the true label for the m-th attribute of the i-th
image. âim is the predicted probability for the m-th attribute.
The total focal loss for all attributes across the dataset is

given by:

FLtotal =

N∑
i=1

M∑
m=1

FLim (8)

The experiments for the proposed CorPAR have been
carried out using three backbone models - the ConvNeXT-
Base [24], ResNet-50 [25], and EfficientNet-B0 [26] pre-
trained on ImageNet [23]. ConvNeXT-Base [24], which
builds on ConvNet architectures with enhancements inspired
by Transformer models, typically has 89M parameters,
15.4G FLOPs and top1 accuracy of 83.8% on ImageNet
1K dataset [23]. ResNet-50 [25], a model known for
balancing performance with computational efficiency, com-
prises around 25.6M parameters with 3.8G floating-point
operations per second (FLOPs). In contrast, EfficientNet-B0
[26], designedwith a focus on efficiency through a compound
scaling approach, boasts a significantly lower parameter
count of approximately 5.3M and requires about 0.39G
FLOPs per inference with top-1 accuracy of 77.1%. Based on
the comprehensive literature review, it is evident that these
three backbone models have strong feature extraction capa-
bilities, particularly in multi-attribute recognition. Therefore,
we have selected these backbones for feature extraction in our
system.

The training includes pre-processing, which involves
resizing the images to 224 × 224. The data is normalised
using the standard ImageNet mean (0.485, 0.456, 0.406) and
standard deviation (0.229, 0.224, 0.225) values for the three
channels. A batch size of 128 is used for training, with two
worker threads to speed up the data-loading process.

The optimiser used for training this network is stochastic
gradient descent (SGD) with momentum (0.9), and weight
decay (0.0005) is utilised. A two-tier learning rate schedule
is applied, where new parameters have a higher learning rate
of 0.005 and fine-tuned parameters (pre-trained layers) use a
lower rate of 0.001. A staircase decay schedule is introduced,
which reduces the learning rate by a factor of 0.1 at epoch
51, facilitating fine-tuning towards the later stages of training.
The model is trained over 150 epochs with focal loss.

C. PERSON RANKING ALGORITHM MODULE
Various distance metrics assess person rankings in the
AVSS 2018 Challenge-II dataset [21]. These metrics include
cosine similarity, Hamming distance, their combination,
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FIGURE 2. CorPAR model architecture. It uses transfer learning with
backbones - ConvNeXT-Base, ResNet-50, and EfficientNet-B0 trained on
ImageNet [23].

and shallow neural networks. These distance-based methods
failed to establish a non-linear relationship between the two
vectors. We employ a shallow neural network for PRA as it
performs better than the distance-based metrics [15], [18].
The shallow network considers a single colour for upper and
lower clothing, and therefore, in the case of multi-colour
clothing, the colour with the highest probability given by the
CorPAR is considered.

III. RESULTS AND DISCUSSION
The GPU used for the development of the system is
Nvidia Quadro P5000 [27]. It is a unit with 16 GB of
GDDR5X memory on a 256-bit interface, delivering a
memory bandwidth of up to 288 GB/s. It has 2560 NVIDIA
CUDA cores and interfaces through PCI Express 3.0 × 16.
It has an active thermal solution with a maximum power
consumption of 180 W.

The edge device used to infer the models is the Nvidia
Jetson Orin AGX Developer Kit [28]. The 32GB variant
offers 200 trillion operations per second (TOPS) (INT8)
performance and has NVIDIA Ampere architecture GPU
with 2048 cores and 64 tensor cores. Its GPU frequency
reaches up to 1.3 GHz. The CPU consists of a 12-core Arm
Cortex-A78AE 64-bit processor with 3MB L2 + 6MB L3

FIGURE 3. Imbalance of the attributes of upper body clothing type in
AVSS+RAP dataset [15].

cache and a maximum frequency of 2.2 GHz. Deep Learning
acceleration is provided by 2xNVDLA v2.0 with a maximum
frequency of 1.4 GHz, and a PVA v2.0 is included for vision
acceleration.

TABLE 1. Libraries and framework used in the developing PRS.

All experiments for each subsystem were conducted
on the Nvidia Jetson AGX Orin AGX under the 15 W
power mode configuration, and it can use a maximum of
2K cores. This power mode was chosen to evaluate the
system’s performance under realistic, resource-constrained
scenarios, reflecting typical deployment conditions for edge
devices. The results reported include metrics that account
for both computational efficiency and accuracy, ensuring a
comprehensive assessment of each subsystem’s capabilities
in this constrained power environment.

A. PERSON DETECTION
The PRS is built using the Pytorch Library. The PyTorch
weights are converted into the TensorRT engine format
using Nvidia’s TensorRT library [29]. It optimises and
accelerates the inference performance of deep learning
models. To further enhance system efficiency, threading
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is introduced, bifurcating the workload into three distinct
threads. One thread is dedicated to person detection, the
second handles PAR, and the third handles person ranking
and image saving for storage. Table 1 shows the versions of
the libraries used in the present work.

We quantise the YOLOV8s model’s weight to different
precision levels: FP32, FP16, and INT8. Table 2 shows a
quantitative evaluation of the test set on the CrowdHuman
dataset on mAP@50 and mAP@50-95 metrics on the person
detection task. The results in the first two rows are for
unquantised models deployed on GPU and edge devices with
a precision of FP64, and the next three areweight quantisation
with a precision of 32, 16, and 8 bits deployed on the Nvidia
Jetson AGX Orin.

The performance metrics of the quantised models reveal
a difference between FP32 and FP16 precision implemen-
tation. Further decline in performance is observed when the
model is quantised to INT8, with the mAP@50-95 dropping
from 0.51 to 0.48, as mentioned in Table 2. This reduction
is attributed to the loss of information when model weights
are quantised from floating-point to integer representation.
Quantisation from FP32 to FP16 and INT8 yields higher FPS
(from 40 in FP32 to 43 in FP16 and 46 in INT8), indicating
that lower bit representation enhances processing speed.
However, the mAP@50 and mAP@50-95 metrics decline
with lower precision, showing a loss in detection accuracy.
For instance, the mAP@50-95 metric falls from 0.51 in
FP32 to 0.48 in INT8, showcasing that INT8 quantization
sacrifices detailed detection capability for faster processing.
The qualitative analysis of the numbers shown in Table 2 is
observed in Figure 4a and Figure 4b.

TABLE 2. Performance metrics for the test set of the CrowdHuman
dataset for person detection by weight quantisation method [17] using
YOLOv8s.

The person detection module in the PRS is one of the
most essential parts, as the person detected in the video
will be propagated to subsequent modules. A false positive
or negative leads to noise propagation and system failure.
As illustrated in Figure 4, limitations can arise from MC,
particularly regarding precision and the ability to handle low-
quality images. Figure 4a demonstrates that when using INT8
precision, the YOLOv8s model does not successfully detect
all individuals in the scene. In Figure 4b, the YOLOv8s
model, under the INT8 precision, produces false positives,
incorrectly identifying objects as persons.

Additionally, Figure 4c reveals that even while operating in
FP32 precision mode, the detection model struggles to recog-
nise a person obscured by a lamp, with excessive lighting in
the scene further compounding detection difficulty. Further

FIGURE 4. Issues of YOLOv8s with MC - missing detection, false positive
and false negative.

analysis during inference highlighted an issue in the bounding
boxes with the FP16 model. It is noted in Figure 4c that
the bounding boxes are consistently smaller than expected,
failing to cover the entire person, leading to significant
information loss. Additionally, the model’s performance is
adversely affected in scenarios involving persons occluded by
more than 50%

We apply only weight quantisation to YOLOv8s and have
not applied layer pruning, as when the redundant weights
are reduced to zero, introducing sparsity made the model
error-prone and led to a deterioration in performance.
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B. PERSON ATTRIBUTE RECOGNITION
The PAR model extracts attributes from the detected images.
Considering the computational complexities, such as the
number of parameters and FLOPs, is essential. The PAR
module has them due to two factors: 1. a pre-trained
backbonemodel. 2. fine-tuning it on the AVSS+RAP dataset.
Therefore, understanding the computational complexities
and accuracy is crucial for assessing PAR’s efficiency and
resource requirements.

1) ATTRIBUTE RECOGNITION USING CorPAR
Table 3 presents a comparative analysis between CorPAR
and the existing state-of-the-art W-PAR across several
backbone architectures on GPU, revealing notable enhance-
ments CorPAR achieves. In terms of detection quality,
CorPAR consistently improves the F1 score across all
backbones, with ConvNeXT-Base showing a 4.1% increase
to 80.64%, ResNet-50 achieving a 1.63% rise to 77.56%,
and EfficientNet-B0 benefiting the most with an 8.07%
improvement, reaching 79.04%. These F1 score enhance-
ments underscore CorPAR’s superior attribute recognition
capability across diverse model architectures.

CorPAR also demonstrates substantial reductions in
model parameters, reflecting its efficiency in minimizing
redundant weights. For ConvNeXT-Base, CorPAR reduces
parameters by 1.69 million, bringing the total to 92.15M.
ResNet-50, the reduction is even more pronounced, with
a decrease of 11.02M, resulting in streamlined 29.11M
parameters. EfficientNet-B0 also benefits by reducing
2.4M parameters down to 8.84M. This efficiency is
largely due to the intra-skip connections within CorPAR,
which facilitate feature reuse among attribute models with-
out redundant relearning, effectively streamlining model
complexity.

Moreover, CorPAR significantly reduces the model
weight-file size (MWS), emphasizing its compactness and
efficiency. ConvNeXT-Base experiences a 28.8MB decrease,
lowering the MWS from 728.8MB in W-PAR to 700MB in
CorPAR. Similarly, ResNet-50’s MWS decreases by 9.6MB
to 233.4MB, and EfficientNet-B0 sees a 1.7MB reduction,
reaching 70.1 MB. This storage efficiency makes CorPAR
particularly suitable for deployment in resource-constrained
environments. Additionally, the intra-skip connections that
allow feature reuse reduce the training time by 10% compared
to W-PAR, making CorPAR both computationally and
time-efficient.

Table 4 illustrates the attribute-wise performance com-
parison between CorPAR and W-PAR across different
backbones. For the ConvNeXT-Base backbone, CorPAR
achieves an overall average accuracy of 94.5%, surpassing
W-PAR’s 93.28% by 1.22%. Similarly, with the EfficientNet
backbone, CorPAR records a higher average accuracy of
94.65%, outperforming W-PAR’s 92.08% by 2.57%. While
W-PAR shows a marginal advantage over CorPAR with the
ResNet backbone, with a difference of only 0.12%. CorPAR

demonstrates overall accuracy superiority, mainly when used
with ConvNeXT-Base and EfficientNet-B0 models.

2) MODEL COMPRESSION EVALUATION
MC strategies like quantisation and pruning are implemented
to deploy models on edge devices. Specifically, we consider
the application of unstructured pruning techniques with L1
regularisation.

A comprehensive evaluation of these MC techniques
demonstrates their impact on the model’s performance,
as shown in Table 5. Across all three backbones, there is no
significant difference between the performance of NVIDIA
Quadro P5000 or Jetson Orin AGX when running uncom-
pressed models with FP64 trained with native PyTorch.
Applying quantisation decreases accuracies compared to
their corresponding full-precision uncompressed models.
In the ConvNeXT-Base model, the conversion from uncom-
pressed FP64 to quantised FP32 resulted in an accuracy
change of 1.27%. Similarly, for the ResNet-50 model, the
change observed from an uncompressed format to a quantised
FP32 is 2.05%. In the case of EfficientNet-B0, the observed
shift after quantisation to FP32 was 1.4%. The Nvidia Jetson
platforms use FP32 as the default precision setting in Nvidia
TensorRT [29] to accelerate model inference and deployment
on its hardware. So, converting FP64 to FP32 leads to some
loss of precision, affecting the accuracy.

The reduction in accuracy with quantisation varies among
backbones. For instance, with a change of precision from
FP32 to FP16, the accuracy in CorPAR based on ConvNeXT-
Base [24] drops by 2.76%,while it drops by 1.73% in ResNet-
50, and by 1.7% in EfficientNet-B0 backbones. As expected,
while quantising from FP32 to INT8, the drop in accuracy
of CorPAR is even more: 5.78% (ConvNeXT-Base), 4.45%
(ResNet-50), and 4.8% (EfficientNet-B0). This shows that
the impact of quantisation is highest on the ConvNeXT-Base
backbone and lower on ResNet-50 and EfficientNet-B0
models.

The results in Table 5 reveal that quantisation to FP32 and
FP16 levels impacts the model’s performance less. However,
a significant reduction in the accuracy and F1 score is
observed when the model is quantised to INT8.

We observed that CorPAR’s backbones exhibit a high
proportion of weight sharing - 95.48% are shared in
ConvNeXT-Base [24], 83.96% for ResNet-50 [25], and
67.34% for EfficientNet-B0 [26]. Therefore, the model
can be further compressed by removing redundant layers
for better computational performance. We employed two
successive compressions - L1 pruning with quantisation
(L1PQ) to compress the model more. The results are
shown in Table 5. We observe that at FP32 precision with
higher compression, the accuracy of CorPAR (compared
to the uncompressed value and FP64 precision on GPU)
drops across all backbones - 6.33% (ConvNeXT-Base),
4.03%(ResNet-50), 1.54% (EfficientNet-B0). The change of
accuracy from 32-bit (FP32) to 8-bit (INT8) results in a
further drop for the model by 4% (ConvNeXT-Base), 5.71%
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TABLE 3. Comparison of F1 score, parameters, and model weight-file size (MWS) between W-PAR [15] and CorPAR using AVSS+RAP dataset on GPU. Refer
to p as parameters and. The boldface indicates superior results. ↑ shows increase in quantity and ↓ shows decrease in quantity.

(ResNet-50), 14.46% for EfficientNet-B0. We observe that
accuracy drops most for the model with an EfficientNet-B0
backbone and least for ConvNeXT-Base. This is because the
model with EfficientNet-B0 has the lowest weight sharing
of 67.34%, and further compression causes information
loss. On the other hand, CorPAR with ConvNeXT-Base
has 95.48% of weight sharing, so it can tolerate additional
compression without significant loss in accuracy. However,
one must note that accuracy and F1-score are not the only
metrics used to evaluate PAR; one should also consider
memory usage, FPS, and TPR.

C. PERSON RETRIEVAL
Subsections III-A and III-B show a trade-off for individual
modules when MC techniques are implemented on Jetson
Orin AGX.

A comparison between CorPAR and W-PAR [15]
systems, showing that CorPAR consistently outperforms
W-PAR across two backbone architectures, ConvNeXT
and ResNet-50, in terms of True Positive Rate (TPR) and
Intersection over Union (IoU). For ConvNeXT, CorPAR
achieves a TPR of 71 and an IoU of 72, surpassing W-PAR’s
68 TPR and 70 IoU. Similarly, with ResNet-50, CorPAR
records a TPR of 70, significantly higher than W-PAR’s 55,
although W-PAR slightly edges out CorPAR in IoU, with
73 compared to CorPAR’s 71. This comparison highlights
CorPAR’s superior performance in attribute recognition tasks
across backbone configurations.

Applying MC techniques to the PRS to implement
over-edge devices brings various challenges. The following
points elaborate on their effects, and quantitative performance
is enumerated by the performance data in Table 6.

1) Model’s TPR: The data shows that MC affects PRS
models differently. For example, the ConvNeXT-Base
PRS model shows a TPR of 71% without compression.
However, post-compression, a 7% decline to 65% TPR
is observed for model INT8 with L1PQ TensorRT
on Jetson Orin AGX. Similarly, ResNet-50 PRS
models start with a TPR of 71% but experience an
8% drop to 63% with L1PQ and INT8 TensorRT
on Jetson Orin AGX. In the EfficientNet-B0-based
PRS, designed for high efficiency, an uncompressed
PRS has a TPR of 72% but sees a reduction (of
12%) to 60% with INT8 and L1PQ, highlighting the
balance between performance and efficiency, albeit
with a challenge in maintaining accuracy under heavy
compression. Again, the PRS with ConvNeXT-Base

(Highest weight sharing) backbone has the lowest drop
in TPR,while EfficientNet-B0 (Lowest weight sharing)
has the highest TPR drop.

2) Resource Constraints: Deploying models on edge
devices is impacted by resource limitations, as shown
by the effects on different models. The PRS with
ConvNeXT-Base, for instance, reduces GPU memory
usage significantly from 1.5GB (GPU and uncom-
pressed) to 700MB (L1PQ and INT8 TensorRT Jetson
Orin AGX) through compression, but at a cost
to real-time performance, with FPS rates dropping
from 22 to 12. The PRS with ResNet-50 also sees
memory reduction from 990MB (GPU, uncompressed)
to 300MB (L1PQ and INT8 TensorRT Jetson Orin
AGX), with FPS dropping from 30 to 10, underscor-
ing the complex trade-off between the model size,
computational efficiency, and real-time performance.
EfficientNet-B0 sees a minor reduction in memory use
(558MB to 380MB) and maintains a higher FPS (26),
demonstrating its suitability for edge devices.

3) Dependency Management: The dependency on spe-
cific deep learning libraries tailored for edge devices,
like Nvidia Jetpack [30], poses challenges in versioning
and compatibility, potentially hampering the deploy-
ment of new model innovations and optimisations on
edge devices. For example, the current Nvidia Jetpack
version is 6.0, which is supported by the Jetson Orin
AGX but is not supported by Jetson Nano.

4) Data Pipeline Bottlenecks: In the PRS system, which
employs multiple models, ensuring a seamless data
flow across various hardware components, including
model synchronisation, RAM, and CUDA, is critical.
Lack of synchronisation among the models results
in bottlenecks. It is observed that the PRS based on
ResNet-50, after L1PQ to INT8, led to an uneven
performance, resulting in a 1.1-millisecond asynchrony
between the detection and the PAR model. This is
reflected in a reduced frame rate of only 10 FPS.

5) Thermal Management: The continuous operation of
larger models leads to thermal issues, as inferred from
GPU memory and FPS in the PRS with ConvNeXT-
Base model. High GPU utilisation exacerbates thermal
conditions, resulting in performance throttling and
reduced system performance over time. For example,
when running the ConvNeXT-Based system on a Jetson
OrinAGXdevice using FP64 in a Pytorch environment,
the temperature rose to 61°C. Compared to the limited
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TABLE 4. Attribute-wise comparison of W-PAR and CorPAR accuracy. Here, ub refers to upper body, lb refers to lower body, and Avg refers to Average. The
boldface represents superior values. The averages are rounded to the nearest decimals.

available power and resources, the high computational
demand leads to performance degradation.

Based on the highlights in Table 6, we observe that
with FP32 and FP16 quantisation, TPR on Jetson Orin
AGX remains consistent (68%-72%) through all the back-
bones with the lowest GPU memory usage (540MB) and
highest FPS (22-24) in EfficientNet-B0. Considering the

performance on train and test sets, the impact of quantisation,
smaller memory footprint and real-time implementation,
we found that the PRS using CorPAR with EfficientNet-B0
is most suitable for implementation on Nvidia Jetson Orin
AGX.

Figure 5 highlights the robustness of the PRS with
EfficientNet-B0 backbone, L1PQ (two-level compression) at
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TABLE 5. Quantitative performance evaluation of PAR model using MC techniques. Refer to Quantisation as Quant and L1 layer Pruning + Quantisation
as L1PQ. in the Table.

TABLE 6. Quantitative performance evaluation of PRS using MC techniques. The person detection module is quantised to the precision of FP32. The
values of metrics are rounded to the nearest integers.

FP32. The green-coloured bounding box is the ground truth,
and the white-coloured bounding box is the retrieved person
based on the given query. Figures 5a and 5b demonstrate
the system’s capability to function effectively in low-light
conditions. Figure 5c illustrates the system’s robustness in
accurately retrieving a person amidst multiple individuals

wearing similar colour clothing. Figure 5c showcases the sys-
tem’s ability to identify the target person from compromised
viewpoints correctly. Furthermore, Figure 5e and Figure 5f
highlight the proficiency of the PRS in dealing with scenarios
involving dense crowds, effectively navigating and extracting
information from such complex environments.
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FIGURE 5. Successful retrievals under challenging conditions by CorPAR.
Figure 5a and 5b represents poor illumination. Figure 5c person with
similar clothing colour. Figure 5d shows a difficult viewpoint. Figure 5e,
and 5f have a dense crowd.

IV. CONCLUSION
This paper has thoroughly analysed the performance of the
PRS on Nvidia Jetson Orin AGX. We introduced CorPAR,
a novel architecture that can be deployed within the Pytorch
environment on such devices. CorPAR minimises parameter
load and boosts the F1-Score, demonstrating a strategic
balance between computational efficiency and accuracy.

Our investigation into various MC techniques highlighted
their impact on critical performance metrics like TPR
and IOU. Extensive experimentation (Table 6) revealed
that while the ConvNeXT-Base backbone generally demon-
strated robustness, it showed a marked decrease in TPR
under combined L1 regularisation and quantisation. The
ResNet-50 backbone exhibited even more significant per-
formance declines under similar conditions, highlighting a
vulnerability to extensive pruning and quantisation. CorPAR
with EfficientNet-B0 backbone achieved superior outcomes
compared to the W-PAR model. Its FP32 implementation for
PRS resulted in a TPR of 72% at 22 FPS and GPU memory
usage of 540 MB for real-time performance.

Interestingly, the disparities in performance between the
NVIDIA Quadro P5000 and Jetson Orin AGX platforms
are minimal, suggesting relative consistency across hardware

in handling compressed models. However, we observed
that pruning beyond 20% led to uneven model behaviour
and a consequent drop in frame rate performance on both
platforms. Our recommendations based on the performance
investigation of the PRS are as follows:

1) Balancing TPR and Frame Rate: It is critical to
achieve an optimal balance between the model’s
accuracy and the frame rate to meet the demands of
real-time edge deployment. Our observations indicate
that quantisation to INT8 precision increases false posi-
tives. From our findings in Table 6, the EfficientNet-B0
system quantised to FP32 precision demonstrated a
delicate balance between TPR and FPS, leading to real-
time performance. However, combining pruning with
L1 regularisation and quantisation to INT8 precision
while improving FPS resulted in poor TPR and IOU
metrics. Thus, adjustments in this balance should be
tailored to the specific criticality of the application,
ensuring that the deployment is efficient and effective.

2) Model Compression and Memory Usage: It is
advantageous to employ strategic compression to
effectively decrease the model’s parameter count,
reducing memory demands and computational load.
Table 3 shows that ConvNeXT-Base has the biggest
while EfficientNet-B0 has the smallest MWS. Also,
ConvNeXT-Base has more weight sharing than
ResNet-50 and EfficientNet-B0. Considering FP32
weight quantisation and implementation on Jetson Orin
AGX, the CorPAR with ConvNeXT-Base achieves a
compression ratio (CR) of 1.27, ResNet has a CR of
1.58 CR, and EfficientNet-B0 has the smallest CR
of 1.09. Therefore, it is crucial to maintain a balance
between model compression and memory usage to
prevent degradation in performance metrics.

3) Model Acceleration: In our case, TensorRT by
NVIDIA significantly accelerated the model perfor-
mance by 10x-20x. Such acceleration frameworks are
designed to efficiently use the hardware, optimising
the deployment and operation of models on edge
devices. As inferred from Table 6, for a system with
Resnet-50, The Pytorch Jetson model has an FPS of
10, and for the FP32 TensorRT on the Jetson model,
it went to 14 frames. Similarly, for EfficientNet-B0,
when accelerating the model using TensorRT, the
performance shot up by ten frames. Therefore, it is
advantageous to use frameworks like TensorRT.

4) Multi-Model Synchronisation and Data Pipeline
Bottlenecks: Managing multiple models for person
retrieval requires effective synchronisation, which we
achieve through threading in this study. It is crucial
to optimise the batch size for each model to prevent
memory overflow, which can disrupt the data flow
pipeline. In this paper, we have used a batch size of
32 for PAR, ensuring that it helps maintain a smooth
and efficient system operation, avoiding bottlenecks in
the data pipeline.
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The future work of this study focuses on transitioning the
person retrieval system from offline processing to an online,
real-time video streaming framework, which presents several
specific technical challenges. Key objectives include optimis-
ing edge devices to handle high computational demands, such
as processing high-resolution video streams with minimal
preprocessing latency. Addressing network latency and jitter
will ensure smooth, consistent data transmission during
real-time operations. Another challenge for real-time video
streams is processor utilisation, which exceeds acceptable
thresholds and creates a continuous overhead on edge
devices. Implementing robust data compression and transmis-
sion protocols will be vital for managing large-scale video
streams effectively. Additionally, integrating this system
with existing surveillance or monitoring infrastructures shall
be seamless while ensuring compatibility and real-time
responsiveness. Successfully overcoming these challenges
will enable a scalable and efficient real-time person retrieval
system for unstructured environments.
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