
Received 22 November 2024, accepted 27 December 2024, date of publication 7 January 2025, date of current version 13 January 2025.

Digital Object Identifier 10.1109/ACCESS.2025.3526751

On the Stability of the Kubernetes Horizontal
Autoscaler Control Loop
BERTA SERRACANTA 1, ANDOR LUKÁCS 2, ALBERTO RODRIGUEZ-NATAL 3,
ALBERT CABELLOS1, AND GÁBOR RÉTVÁRI 4, (Member, IEEE)
1Department of Computer Architecture, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain
2Faculty of Mathematics and Computer Science, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania
3Cisco, 28108 Madrid, Spain
4Department of Telecommunications and Artificial Intelligence, Budapest University of Technology and Economics, 1111 Budapest, Hungary

Corresponding author: Berta Serracanta (berta.serracanta@upc.edu)

This work was supported in part by the Spanish I+D+i Project TowaRds fully AI-empowered NetwoRks, subproject A (TRAINER-A),
funded by Ministerio de Ciencia e Innovación (MCIN)/Agencia Estatal de Investigación (AEI)/10.13039/501100011033 under Grant
PID2020-118011GB-C21; in part by the Catalan Institution for Research and Advanced Studies (ICREA) through the Secretariat for
Universities and Research of the Ministry of Business and Knowledge of the Government of Catalonia; in part by the European Social
Fund; and in part by the National Research, Development and Innovation Fund of Hungary under Grant OTKA/ANN-135606, Grant
OTKA/FK-135074, and Grant OTKA/FK-134604.

ABSTRACT Kubernetes is a widely used platform for deploying and managing containerized applications
due to its efficient elastic capabilities. The Horizontal Pod Autoscaler (HPA) in Kubernetes independently
adjusts the number of pods for each service, yet these services often operate in an interconnected manner.
This study aims to understand the effects of autoscaling events on a graph of interconnected services.
To achieve this, we apply control theory to model the HPA’s behavior. We analyze the stability of this
model, perform numerical simulations, and deploy a real testbed to evaluate the performance. Our findings
demonstrate that the control theory-based model accurately predicts the HPA’s behavior, ensuring system
stability with CPU utilization meeting desired thresholds and no traffic loss after a transitional period.
The model provides insights into optimizing resource scheduling and improving application performance
in Kubernetes environments. Additionally, we extend our model to the whole service graph to understand
how individual scaling decisions influence the complex graphs of cloud applications.

INDEX TERMS Cloud autoscaling, control theory, Horizontal Pod Autoscaler, Kubernetes, microservices
architecture, numerical simulations, system stability.

I. INTRODUCTION
Kubernetes1 has emerged as a preferred platform for
deploying and managing containerized applications, credited
largely to its efficient elastic capabilities. This has allowed
the platform’s widespread adoption across diverse industries,
with many leading organizations depending on its robust
features, which is a testament to its effectiveness. It was
reported in 2023 that 66% of cloud service consumers were
using Kubernetes in production [1], highlighting its pervasive
adoption and significant impact on the industrial landscape.

The associate editor coordinating the review of this manuscript and

approving it for publication was Libo Huang .
1Kubernetes: http://kubernetes.io/

Kubernetes runs distributed applications that are typically
implemented using the microservice architecture [2]. Each
microservice is designed to perform a specific business
function and can be developed, deployed, and scaled
independently. With this, one can describe the architecture
in terms of a service graph, a collection of loosely-
coupled microservices. In the service graph each node is
a microservice and edges exist when two nodes exchange
information. In this context Kubernetes’ elastic resource
allocation system allocates/deallocates resources (e.g, CPU)
to each node using the Horizontal Pod Autoscaling (HPA)
algorithm [3].

Specifically, HPA automatically adjusts the number
of pods, replicas of the same service, by continuously

7160

 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 13, 2025

https://orcid.org/0000-0003-3195-2576
https://orcid.org/0000-0003-0043-1591
https://orcid.org/0000-0002-4239-5309
https://orcid.org/0000-0002-5958-7817
https://orcid.org/0000-0002-8307-6742


B. Serracanta et al.: On the Stability of the Kubernetes Horizontal Autoscaler Control Loop

monitoring specific metrics and scaling the service up or
down. This allows dynamic scaling to match the demand,
providing better application performance and resource uti-
lization for each of the individual services in a service graph.
Each service in the graph has its own independent HPA
control loop, ensuring that scaling decisions are tailored to
its own specific metrics.

Despite the benefits of HPA in dynamically managing
resources, research on scaling complex applications fol-
lowing service-based architectures has highlighted several
challenges. One significant issue is the lack of accurate
resource estimation models, which causes current approaches
to frequently involve cautious and iterative adjustments to
resource allocations [4]. In this paper we present a model for
Kubernetes services and use it to analyze the stability of the
application service graph when operated by HPA’s Kuber-
netes algorithm. We aim to understand if the autonomous
scaling decisions made to individual services can collectively
lead to a stable scaling effect for the entire application,
or some unwanted effects such as large-scale oscillations
emerge. Even if a large chunk of cloud applications rely on
Kubernetes, and a lot of focus has been put on improving
the resource allocation and performance optimization when
performing autoscaling events [4], [5], little research effort
has been devoted to formally model Kubernetes’ HPA
behavior. Our model specifically focuses on CPU-intensive
applications, demonstrating that properly managing CPU
bottlenecks is key to maintaining performance and ensuring
system stability.

For this we employ control theory principles. This model
treats each service as a plant and the HPA algorithm as the
controller, with the control signal being the adjustment of
the number of pods based on the CPU utilization feedback.
The main contributions of this paper are (1) the formal
verification of the stability of the Kubernetes HPA control
loop for the single-service scenario and (2) an experimental
analysis of the stability and efficiency of HPA in the multi-
service scenario.

The remainder of this paper is structured as follows:
Section II dives into related work, Section III presents the
service model, Section IV discusses the control theory frame-
work and stability analysis, Section V provides experimental
results, and Section VI presents the conclusions.

II. RELATED WORK
In this paper, we model the functionality of the Kubernetes
Horizontal Pod Autoscaler (HPA). We examine how the
addition or removal of pods impacts the performance and
stability of the targeted service. Once we understand how
these affects a particular service, we extrapolate the findings
to the entire service graph to study how an autoscaling event
propagates throughout it.

There is extensive literature on models of the entire service
graph. These models can be classified into two main types:
white-box and black-box models, which respectively show or
hide the complexities of the units being modeled. To capture

all the layers involved in a microservice application, white-
box models often use computationally complex solutions
such as layered queuing networks [6]. Another interesting
approach is to model the service mesh sidecar attached to
each microservice in the graph [7] as an abstraction of the
whole microservice. Black-box models, on the other hand,
typically apply reinforcement learning (RL) techniques, such
as GNNs or SVMs, combined with online metrics tracing [8],
[9], [10]. In both cases, these models focus on applying
optimization techniques directly to the modeled application,
either to achieve better resource allocation guaranteeing
stronger Service Level Objectives (SLO) or to run simulations
in a digital twin. However, we do not intend to model all the
complexities and layers of a service graph application, from
the kernel to user space. Instead, we focus on modeling the
behavior of the HPA in each individual microservice and their
interconnections.

Rather than modeling, many studies focus on enhanc-
ing the HPA through modifications and optimizations to
overcome the traditional approach of overprovisioning to
avoid SLO violations. These can be classified into four
different categories [4], [5] (and the references therein):
(i) rule-based autoscaling, common among cloud providers;
(ii) time series data analysis; (iii) queuing network models;
and (iv) RL-based optimizations or a combination of several
of the techniques above [11]. As pointed out in [8], many
existing autoscalers manage resources for each microservice
individually, which means there is a possibility of cascading
effects propagated along the graph and, in turn, performance
degradations. This is because these autoscalers are agnostic
to changes in the workload of the graph until it reaches them
directly, becoming more severe the deeper the microservice
is located.

We do not aim to modify the existing autoscaler but
rather seek to understand the particularities and robustness
of the de facto Kubernetes HPA. This research models CPU
fluctuations driving HPA autoscaling events, not only on
individual microservices but across the entire graph. Long
Short-Term Memory (LSTM) and Gated Recurrent Units
(GRUs) could be used to predict these changes by forecasting
incoming traffic load. However, their effectiveness is limited
when clear correlations, like seasonal patterns, do not exist.
To the best of our knowledge, no prior work has focused on
this specific objective.

III. SERVICE MODEL
We first present the basic entities of the Kubernes autoscaling
system: the pod, the service and the Horizontal Pod
Autoscaler. These are the entities that we model using control
theory, firstly for a single service, and then generalized to a
whole service graph.

A. THE KUBERNETES HORIZONTAL AUTOSCALER
A pod is the smallest deployable unit in Kubernetes and can
be thought of as a wrapper around a single container. It is
deployed based on its specified resource requirements and

VOLUME 13, 2025 7161



B. Serracanta et al.: On the Stability of the Kubernetes Horizontal Autoscaler Control Loop

FIGURE 1. Microservice model.

TABLE 1. Variables and signals used in our model.

limits. A microservice, also referred to as service, groups
multiple pods that perform the same functions, presenting
them as a single entity.

The Kubernetes Horizontal Pod Autoscaler (HPA) dynam-
ically adjusts the number of pods allocated to a service.
Each service has one dedicated HPA control loop, which
manages the number of pod replicas running based on
resource configuration and real-time resource consumption
metrics. By default, HPA can scale pods using CPU or
memory utilization metrics, with CPU usage being the most
commonly used. HPA continuously monitors the service’s
CPU usage: if it exceeds a threshold it adds new pods,
whereas if the CPU usage drops below the threshold ite HPA
decreases the number of running pods to optimize resource
use. Managing the number of pods running in a service can
be viewed as a control system, where the service represents
the plant and HPA functions as the controller, as illustrated in
Figure 1.

Table 1 summarizes the notation used in the paper.
Variables related to a single microservice system are denoted
without a subscript (e.g., x[k]). Variables with the same
meaning but pertaining to a specific microservice within the
service graph G(V ,E) are denoted with a subscript i, i ∈ V
(e.g., xi[k]). Where V represents the set of microservices and
E the set of directed edges indicating interactions between
them.

B. MICROSERVICE MODEL
Below, we provide a formal model to describe each of the
components in the HPA control loop. First we introduce a

model for describing the service’s response to the input load
in terms of CPU consumption.

When considering different approaches to modeling, it is
important to account for the trade-off between the ease
of analysis and the modeling capabilities and power. For
example, a simple memoryless model describing how the
average CPU utilization of an service x[k] [percentage] varies
with respect to the system’s incoming load q[k] [req/sec] and
the total amount of CPU (number of pod replicas times CPU
per pod) assigned by the HPA control loop to the service u[k]
[mcore], would be the following:

x[k + 1] =
γ (q[k])
u[k]

(1)

Here, γ (.) [mcore/req/sec] is a generic function that
describes the ideal CPU requirement the service needs to
process a given load. In general, γ may be linear (see below),
it may describe a diminishing returns characteristics often
found in practice [12], or it may be any monotonically
increasing function. The essence of the microservice model is
then that the average CPU utilization x[k] in the k-th timestep
equals the total amount of CPU γ (q[k]) required to serve the
current load q[k] divided by the total CPU u[k] assigned by
the HPA controller.

Unfortunately, this model, while formally analyzable,
is memoryless (i.e., the output depends only on the state
at the current timestep k). Thus, it does not account
for critical parameters shaping system dynamics, like the
impact of queue buffering (which is dependent on the state
in earlier timesteps). Therefore, below we use a slightly
more complex non-linear recursive model inspired by Finite
Impulse Response (FIR) systems in control theory [13].

Equation 2 gives the general form of the microservice
model used throughout this paper. Here, N denotes the order
of the system and αn are the coefficients that weigh the
contribution of CPU utilization in the previous timestep k−n
to the current state. For brevity, we assume that γ (.) is linear
henceforth.

x[k + 1] = γ

N∑
n=0

(
αnq[k − n]
u[k − n]

)
(2)

In the following we assume a minimum threshold for the
number of CPU units of 1 assigned per each service. This
means that each service retains at least one pod, even in
the absence of incoming traffic. This assumption is based
on the practical need to ensure service availability and
responsiveness.

C. CONTROLLER MODEL
Next, we formally model the Kubernetes Horizontal Pod
Autoscaler (HPA) control loop. The HPA control loop aims
to maintain the CPU utilization around a target level by
continuously adjusting the number of pods based on the
CPU utilization measured from the service. If the CPU
utilization exceeds a given upper threshold then HPA assigns
more pods to the service. Conversely, if the CPU utilization

7162 VOLUME 13, 2025



B. Serracanta et al.: On the Stability of the Kubernetes Horizontal Autoscaler Control Loop

FIGURE 2. Service graph model as a 2-service chain.

is below a lower threshold, HPA reduces the number of
pods to optimize resource usage. This closed-loop system
ensures that the microservice adapts to varying loads while
maintaining performance and resource efficiency.

In our model we represent the upper and the lower
thresholds with a single reference threshold R (a user-
configurable parameter). Our HPA model is then a direct
formal representation of the HPA control law specified in the
official Kubernetes documentation [14]:

u[k + 1] = u[k]
x[k + 1]

R
(3)

Here, u[k] [mcore] denotes the control input, which deter-
mines the total CPU units assigned to the microservice.

We quantify the amount of traffic y[k] at the service output
in response to a given input load and the available compute
resources as follows:

y[k + 1] = min(q[k],
q[k]
x[k]

) (4)

D. SERVICE GRAPH MODEL
Next we extend the model to a conceptual application
constituted by multiple linked microservices, as illustrated in
Figure 2. This composite model supposes a distinct plant and
an HPA control loop for each microservice. These elements
form a microservice graph G(V ,E), where G represents a
rooted Directed Acyclic Graph (DAG) with the root denoted
by r ∈ V .
In this model, the instantaneous propagation of traffic

across microservices can be expressed as in Equation 5,
which takes into account that the system can not process more
traffic than the input load.

qj[k] = λijyi[k] (i, j) ∈ V (5)

Here, λij : (i, j) ∈ V defines the intensity of requests
transmitted from microservice i to j.

E. TRAFFIC LOSS
The stability of stability of the proposed model will be
evaluated based on a traffic loss metric, which describes the
resource deficit of the current CPU allocation. The traffic loss
metric di[k] quantifies the amount of requests the application

is unable to process due to the lack of available CPU
resources:

di[k] = qi[k] − yi[k] (6)

In general, di[k] = 0 means a perfect CPU allocation,
while di[k] > 0 indicates service degradation and/or
interruption, affecting the overall application performance.
The target of the HPA control loop is to drive the system to a
state where the loss is zero.

Similarly, the aggregated traffic loss metric for the service
graph model, represented by the set V , is computed as the
sum of each of the loss at each service at a given time step k:
d[k] =

∑
i∈V di[k]. Here, di[k] is the single service quality

metric as previously defined.

IV. STABILITY ANALYSIS
In this section, we present the main contribution of the paper:
a formal stability analysis of the single-service HPA control
loop in terms of the traffic loss metric. In the subsequent
section we extend the analysis to the multi-service model
using numerical evaluations.

First, we introduce a simplification. In particular, since
our approach is highly non-linear we reduce the general
microservice model to a second-order model. This means
that the CPU dynamics is fully described by the coefficients
α0 and α1, plus the input q[.] and u[.] This simplification
allows us to incorporate both the current CPU value and the
value from the previous time step into the model, providing a
balance between model accuracy and ease of analysis. The
proposed control model has a time complexity of O(N 2),
where N represents the evaluated time steps.
Theorem 1: Consider the system described by the

second-order application dynamics (2), the HPA control
law (3), and let the input be a step function:

q[k] =

{
1 if k ≥ 0
0 otherwise.

Assume x[k] ∈ (0, +∞) and u[k] ∈ (0, +∞), u[0] = 1.
Then, the control system is globally asymptotically stable,
i.e.:

1) The steady state error is zero: limk→∞ x[k] − R = 0.
2) The steady state traffic loss is zero: limk→∞ d[k] = 0.
These conditions define stability as a system that allo-

cates the exact amount of resources required to meet the
corresponding load by aligning the CPU consumption with
the desired threshold R. When there is a mismatch between
the incoming load and the allocated resources, the system
compensates by either adding or removing pods ensuring that
in steady state there are the necessary resources.

In order to demonstrate the previous stability definitions
we start by analyzing the system boundaries and convergence
of the control signal u[k] and later extrapolate the results to
find the steady-state error and traffic loss.

Proof: Using B =
γ q[k]
R to define b0 = Bα0 and

b1 = Bα1. Let b0, b1, u[0], u[1] ∈ (0, +∞) and define the

VOLUME 13, 2025 7163



B. Serracanta et al.: On the Stability of the Kubernetes Horizontal Autoscaler Control Loop

sequence (u[k])k∈N by the recursion:

u[k + 2] = b0 + b1
u[k + 1]
u[k]

, ∀k ∈ N (7)

Then (u[k])k∈N converges to b0 + b1.
Using the transformation u[k] = b0(1+z[k]), the recursion

becomes:

b0(1 + z[k + 2]) = b0 + b1
1 + z[k + 1]
1 + z[k]

,

1 + z[k + 2] = 1 +
b1
b0

1 + z[k + 1]
1 + z[k]

,

z[k + 2] =
b1
b0

1 + z[k + 1]
1 + z[k]

, ∀k ∈ N. (8)

Next, we introduce a Lemma from prior work that we use
to establish the main result:
Lemma 1 (Theorem 6.3.3 of [15]): Let us consider the

variables p, q, z0, z1 ∈ (0, +∞) and define the sequence:

z[k + 2] =
p+ qz[k + 1]

1 + z[k]
, ∀k ∈ N. (9)

The unique positive equilibrium of this recursion is globally
asymptotically stable if one of the following two conditions
holds:

1) q < 1;
2) q ≥ 1 and either p ≤ q or q < p ≤ 2(q+ 1).
Using the notations of Lemma 1, we have p = q =

b1
b0
.

The case b0 > b1 translates to q < 1, and the case b0 ≤

b1 translates to q ≥ 1 and p = q. Thus, the sequence (z[k])k∈N
converges for every b0, b1, z0, z1 ∈ (0, +∞) to the unique
positive equilibrium of the recursion which is b1

b0
. This means

that the sequence (u[k])k∈N converges to b0 + b1.
Finally, by undoing the substitutions we obtain that

(u[k])k∈N converges to γ q
R (α0 + α1). In turn, the control

signal makes the plant (x[k])k∈N converge at the desired
steady-state:

x[k] = γ

(
α0Rq[k]

γ q[k](α0 + α1)
+

α1Rq[k − 1]
γ q[k − 1](α0 + α1)

)
= R

(10)

And consequently, we can demonstrate that in steady
state we achieve null traffic loss with the following simple
computation:

lim
k→∞

d[k] = lim
k→∞

(q[k] − y[k])

= Q− lim
k→∞

min(q[k],
q[k]
x[k]

) = 0 (11)

Corollary 1: Consider an application graphG(V ,E) com-
posed of autonomous services operating independently.
If every service in the graph fulfills the requirements in The-
orem 1, then the service graph G is globally asymptotically
stable.

This corollary follows directly from Theorem 1. If every
autonomous service in the graph G satisfies the conditions,
then each service is stable, exhibits no deviation error, and
has no traffic loss in steady state. Since these services operate

FIGURE 3. Microservice model performance.

independently, their stability ensures the overall stability of
the graph G.

V. RESULTS
To further illustrate the stability demonstrated through the
analytical solutions, this section presents the results obtained
from both numerical simulations and real deployment
experiments. These results provide graphical insights that
validate the theoretical findings on HPA stability.

A. NUMERICAL SIMULATIONS
We have conducted numerical simulations using Matlab
Simulink [16] for both the microservice model, with time
complexity O(N !), and the service graph model. These
simulations aim to visualize the stability behavior and
dynamic response of the Kubernetes HPA under various
conditions, providing a controlled environment to verify our
theoretical analysis.

Figure 3 shows the main signals of the microservice model,
the incoming load q[k] (blue line), the CPU utilization x[k]
(red) and the control signal u[k] (green line) discussed in
the previous sections for a user-defined HPA threshold of
R = 0, 8, meaning that in steady state we desire an average
CPU utilization of x[k] = 0, 8. It can be seen that given
an input load the system reacts and starts autoscaling by
allocating more CPU resources and reducing them until the
desired steady state is achieved at k = 14.
It is important to note that typical values for the

CPU-targeted HPA threshold are around 30%, as applications
in production cannot afford to lose traffic and typically
overprovision to prevent this. However, for verification
purposes, we use a threshold of R = 0.8 (80%) CPU
consumption to observe the model’s behavior under more
stressful conditions.

When we extend these results to the service graph,
as depicted in Fig. 4, we observe that the stability achieved
by each independent and stable service is reflected in the
overall system behavior. As shown, for each of the three
independent services deployed in a chain-like configuration
the CPU utilization follows a similar pattern to the results
achieved in the microservice model simulations, meaning
that all three of them are able to independently adjust their
resources to reach a steady state without being impacted by
the autoscaling decisions of other nodes in the graph.

7164 VOLUME 13, 2025



B. Serracanta et al.: On the Stability of the Kubernetes Horizontal Autoscaler Control Loop

FIGURE 4. Service graph model performance.

In summary, these results demonstrate that the entire
system can reach the desired steady state after a transitional
period, where CPU utilization aligns with the target threshold
and traffic loss is eliminated.

B. EXPERIMENTAL RESULTS
To verify our theoretical analysis in a real-world scenario,
we deployed a Kubernetes testbed focusing on the general
case of the service graph model for a CPU-intensive
application. This real deployment aims to observe the HPA’s
performance and stability in a practical setting, ensuring
that the analytical and simulation results hold true in live
environments.

The experimental setup comprises three interconnected
microservices configured in a cascading topology, as detailed
in [17]. Each service is CPU load generator that, upon
receiving a request, executes arithmetic operations for 8ms.
The request is then forwarded to the subsequent service in
the sequence.

We deployed Kubernetes’ HPA (v2) on each microservice.
HPA is configured to auto-scale based on CPU consumption
and configured to trigger an autoscaling event to deploy
another replica when CPU utilization reaches 80% of the
requested 100mcore per service. This mimics the previous
analysis for direct comparison.

To generate the requests we use K6 [18], a well-established
synthetic load generator. Specifically we define an initial
virtual spike of 20 users that plateaus at 22 virtual users.
In total each experiments lasts 20 minutes.

Figure 5 illustrates the CPU usage for each microservice
involved in our system. The first microservice initially
receives the incoming load, leading to an early rise in its CPU
consumption. As this service processes the traffic, the load is
then transferred to the second microservice, which exhibits a
similar increase in CPU usage. Eventually, the load reaches
the third and final microservice. The vertical lines represent
the active pods for each service, highlighting the points at
which CPU usage at each service meets the Horizontal Pod
Autoscaler (HPA) threshold, prompting an autoscaling event
to deploy a new replica.

It demonstrates the impact of CPU saturation on service
performance. Until a new replica is successfully deployed, the

FIGURE 5. Kubernetes 3-Service chain deployment performance.

affected service’s CPU remains saturated, making it unable
of processing additional incoming requests. This results in
the loss of traffic. Notably, the request failures start when
autoscaling events are triggered. These losses remain until
the deployment of additional replicas sufficiently increases
resource availability, allowing the system to manage the
incoming load effectively.

These experimental results validate the theoretical model
and testbed configuration. They demonstrate that the system
effectively reaches the desired steady state where CPU
utilization meets the threshold and traffic loss is minimized
after the initial transitory period. This confirms the practical
applicability and reliability of the HPA under real-world
conditions.

VI. CONCLUSION
Kubernetes, with its extensive deployment over the past
several years, has proven to be a crucial platform for man-
aging containerized applications in large-scale production
environments [1]. Many organizations depend on Kubernetes
for its robust and dynamic scaling capabilities, underscoring
its importance and effectiveness.

This work not only models and validates the stability of
HPA in both single and multi-service scenarios but also lays
the groundwork for future advancements in cloud application
scaling and resource management. This can further enhance
application performance in Kubernetes environments, i.e.,
by optimizing resource allocation and scheduling, which is
critical given the platform’s widespread industrial adoption.

In conclusion, our research builds on the extensive use
and proven success of Kubernetes and HPA in production
environments. By addressing the analytical gaps, we provide
initial steps towards a more in-depth study and open up
research possibilities in optimizing Kubernetes’ scaling
mechanisms.

ACKNOWLEDGMENT
The authors would like to express their gratitude to the
editor and the reviewers for their valuable comments and
constructive feedback. Their insightful suggestions have
greatly contributed to the improvement of this manuscript.
They deeply appreciate their time and effort in reviewing their
work.

VOLUME 13, 2025 7165



B. Serracanta et al.: On the Stability of the Kubernetes Horizontal Autoscaler Control Loop

REFERENCES
[1] Cloud Native Computing Foundation. (2023). 2023 Annual Survey.

Accessed: May 29, 2024. [Online]. Available: https://www.cncf.io/reports/
cncf-annual-survey-2023/

[2] T. Salah, M. J. Zemerly, C. Y. Yeun, M. Al-Qutayri, and Y. Al-Hammadi,
‘‘The evolution of distributed systems towardsmicroservices architecture,’’
in Proc. 11th Int. Conf. Internet Technol. Secured Trans. (ICITST),
Dec. 2016, pp. 318–325.

[3] B. Burns, J. Beda, K. Hightower, and L. Evenson, Kubernetes: Up and
Running, 3rd ed., New York, NY, USA: O’Reilly Media, 2022.

[4] C. Qu, R. N. Calheiros, and R. Buyya, ‘‘Auto-scaling web applica-
tions in clouds: A taxonomy and survey,’’ ACM Comput. Surveys,
vol. 51, no. 4, pp. 1–33, Jul. 2018. [Online]. Available: https://doi-
org.recursos.biblioteca.upc.edu/10.1145/3148149

[5] T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano, ‘‘A review of
auto-scaling techniques for elastic applications in cloud environments,’’
J. Grid Comput., vol. 12, no. 4, pp. 559–592, Dec. 2014.
C. Qu, R. N. Calheiros, and R. Buyya, ‘‘Auto-scaling web applica-
tions in clouds: A taxonomy and survey,’’ ACM Comput. Surveys,
vol. 51, no. 4, pp. 1–33, Jul. 2018. [Online]. Available: https://doi-
org.recursos.biblioteca.upc.edu/10.1145/3148149

[6] E. Incerto, R. Pizziol, and M. Tribastone, ‘‘µOpt: An efficient optimal
autoscaler for microservice applications,’’ in Proc. IEEE Int. Conf.
Autonomic Comput. Self-Organizing Syst. (ACSOS), Sep. 2023, pp. 67–76.

[7] X. Zhu, G. She, B. Xue, Y. Zhang, Y. Zhang, X. K. Zou, X. Duan,
P. He, A. Krishnamurthy, M. Lentz, D. Zhuo, and R. Mahajan,
‘‘Dissecting overheads of service mesh sidecars,’’ in Proc. ACM Symp.
Cloud Comput., New York, NY, USA, Oct. 2023, pp. 142–157, doi:
10.1145/3620678.3624652.

[8] J. Park, B. Choi, C. Lee, and D. Han, ‘‘GRAF: A graph neural
network based proactive resource allocation framework for SLO-oriented
microservices,’’ in Proc. 17th Int. Conf. Emerg. Netw. Exp. Technol., 2021,
pp. 154–167, doi: 10.1145/3485983.3494866.

[9] H. Qiu, S. S. Banerjee, S. Jha, Z. Kalbarczyk, and R. K. Iyer, ‘‘FIRM:
An intelligent fine-grained resource management framework for SLO-
oriented microservices,’’ in Proc. 14th USENIX Symp. Operating Syst.
Design Implement. (OSDI), Aug. 2020, pp. 805–825. [Online]. Available:
https://www.usenix.org/conference/osdi20/presentation/qiu

[10] D. Borsatti, W. Cerroni, L. Foschini, G. Ya Grabarnik, L. Manca,
F. Poltronieri, D. Scotece, L. Shwartz, C. Stefanelli, M. Tortonesi, and
M. Zaccarini, ‘‘KubeTwin: A digital twin framework for Kubernetes
deployments at scale,’’ IEEE Trans. Netw. Service Manage., vol. 21, no. 4,
pp. 3889–3903, Aug. 2024.

[11] A. U. Gias, G. Casale, and M. Woodside, ‘‘ATOM: Model-driven
autoscaling for microservices,’’ in Proc. IEEE 39th Int. Conf. Distrib.
Comput. Syst. (ICDCS), Jul. 2019, pp. 1994–2004.

[12] M. D. Hill and M. R. Marty, ‘‘Amdahl’s law in the multicore era,’’
Computer, vol. 41, no. 7, pp. 33–38, Jul. 2008.

[13] A. Oppenheim, A. Willsky, and I. Young, Signals and Systems
(Prentice-Hall Signal Processing Series). Upper Saddle River, NJ,
USA: Prentice-Hall, 1983. [Online]. Available: https://books.google.es/
books?id=UQJRAAAAMAAJ

[14] Horizontal Pod Autoscaling: Algorithm Details. Accessed: Jun. 28, 2024.
[Online]. Available: https://kubernetes.io/docs/tasks/run-application/
horizontal-pod-autoscale/

[15] M. Kulenovic and G. Ladas, Dynamics of Second Order Rational
Difference Equations: With Open Problems and Conjectures, 1st ed., Boca
Raton, FL, USA: CRC Press, 2001, doi: 10.1201/9781420035384.

[16] MathWorks, Inc., Natick, MA, USA. (2022). Matlab Version: 9.13.0
(r2023a). [Online]. Available: https://www.mathworks.com

[17] Kubernetes Horizontal Autoscaling Benchmark. Accessed: May 2, 2024.
[Online]. Available: https://github.com/rg0now/k8s-hpa-benchmark/tree/
main?tab=readme-ov-file

[18] K6. Accessed: May 2, 2024. [Online]. Available: https://k6.io/docs/

BERTA SERRACANTA is currently pursuing the Ph.D. degree with
UPC BarcelonaTech. Her research focuses on network-enabled application
acceleration, exploring the integration of network and application layers, and
the optimization of distributed systems for enhanced operational efficiency.

ANDOR LUKÁCS received the Ph.D. degree in mathematics from Utrecht
University. He is currently a Lecturer with Babeş-Bolyai University. His
research interests include abstract homotopy theory, operads, dendroidal sets,
and metric fixed point theory.

ALBERTO RODRIGUEZ-NATAL received the Ph.D. degree from
BarcelonaTech, with a thesis on software-defined networking. He is a Senior
Technology Lead with the Enterprise Networking CTO Team, Cisco, where
he works in the intersection of network and applications.

ALBERT CABELLOS received the Ph.D. degree in 2008. He has been
a Full Professor with the Computer Architecture Department, Universitat
Politècnica de Catalunya, since 2020. He is the co-founder of Barcelona
Neural Networking (https://bnn.upc.edu/) and the NaNoNetworking Center
in Catalunya (https://www.n3cat.upc.edu/).

GÁBOR RÉTVÁRI (Member, IEEE) received the M.Sc. and Ph.D. degrees
in electrical engineering from Budapest University of Technology and
Economics (BME), and the D.Sc. degree from the Hungarian Academy
of Sciences. He is currently an Associate Systems Professor with the
Department of Telecommunications and Artificial Intelligence, BME. He is
interested in all theoretical and practical aspects of distributed systems and
data networking.

7166 VOLUME 13, 2025

http://dx.doi.org/10.1145/3620678.3624652
http://dx.doi.org/10.1145/3485983.3494866
http://dx.doi.org/10.1201/9781420035384

