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ABSTRACT The proliferation of Internet of Things (IoT) devices has brought about an increased threat
of botnet attacks, necessitating robust security measures. In response to this evolving landscape, deep
learning (DL)-based intrusion detection systems (IDS) have emerged as a promising approach for detecting
and mitigating botnet activities in IoT environments. Therefore, this paper thoroughly reviews existing
literature on botnet detection in the IoT using DL-based IDS. It consolidates and analyzes a wide range
of research papers, highlighting key findings, methodologies, advancements, shortcomings, and challenges
in the field. Additionally, we performed a qualitative comparison with existing surveys using author-defined
metrics to underscore the uniqueness of this survey. We also discuss challenges, limitations, and future
research directions, emphasizing the distinctive contributions of our review. Ultimately, this survey serves
as a guideline for future researchers, contributing to the advancement of botnet detection methods in IoT
environments and enhancing security against botnet threats.

INDEX TERMS Intrusion detection system (IDS), botnet, deep learning, Internet of Things (IoT), IoT
Botnet, neural networks.

I. INTRODUCTION
In 2016, several prominent companies and government
institutions in Europe and America fell victim to the
Mirai botnets [1], which primarily conducted Distributed
Denial of Service (DDoS) attacks. These botnets exploited
vulnerabilities in IoT devices to launchmassive traffic floods,
overwhelming the targeted systems and causing significant
disruptions. While DDoS attacks are the traditional objective
of botnets, recent trends have shown a diversification in
botnet activities, including data theft, spam distribution, and
in some cases, ransomware attacks. The primary goal remains
to exploit the compromised devices for various malicious
activities.

The associate editor coordinating the review of this manuscript and

approving it for publication was Lei Shu .

Cybersecurity analysts employ various techniques to detect
these malicious networks, including intercepting packets,
analyzing botnet structures, assessing network traffic, and
employing signature detection [1], [2]. However, botnet
structures constantly evolve, with attackers even utilizing
local network connections to evade detection. The Internet of
Things (IoT) faces persistent threats from botnets partly due
to the absence of standards and the complexities of designing
IoT protocols and sensors. Security experts face significant
challenges when investigating and mitigating these security
incidents [3]. Detecting botnet attacks in IoT networks is
critical due to their potential harm to the entire system.
While Deep Learning (DL) models have demonstrated
remarkable performance in identifying botnet attacks in IoT
networks, existing studies have primarily focused on using
a single DL model [4], [5], [6]. This approach may not be
effective in adapting to dynamic network conditions and the

11792

 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 13, 2025

https://orcid.org/0000-0003-3215-6862
https://orcid.org/0000-0002-7026-6408
https://orcid.org/0000-0003-4378-1954
https://orcid.org/0000-0002-2275-3201
https://orcid.org/0000-0002-6700-9347


T. Al-Shurbaji et al.: DL-Based Intrusion Detection System for Detecting IoT Botnet Attacks: A Review

ever-evolving nature of botnets. Moreover, relying solely on
a single DL model may struggle with data heterogeneity,
class imbalance, and achieving a balanced trade-off among
multiple objectives.

There is a compelling need to explore the potential
benefits of ensemble learning models for botnet detection in
IoT networks, aiming to address the limitations. However,
a significant gap exists in the literature regarding using
ensemble learning models for botnet detection within IoT
networks. Consequently, an investigation into the compara-
tive performance of ensemble learning models versus single
DL models is warranted. Such an inquiry holds promise
for enhancing the effectiveness and robustness of botnet
detection systems in IoT networks.

This review aims to comprehensively examine the current
state of DL-based intrusion detection systems (IDS) for
botnet detection in IoT environments. It consolidates and
analyzes a wide range of research papers, highlighting
key findings, methodologies, advancements, shortcomings,
and challenges in the field. By focusing explicitly on the
application of DL techniques for botnet detection, this review
delves into the intricacies of various DL models such as
CNNs, RNNs, and GANs in IoT environments.

In this context, we outline the main contributions of this
paper as follows.

• Comprehensive review: The paper thoroughly reviews
existing literature on botnet detection in the IoT
using DL-based IDS. It consolidates and analyzes a
wide range of research papers, highlighting the key
findings, methodologies, advancements, shortcomings,
and challenges in the field.

• Specialized focus: The paper emphasizes the specific
application of DL techniques for botnet detection in the
IoT. By narrowing the scope, it digs deeper into the
intricacies and nuances of DL models such as CNNs,
RNNs, and GANs in IoT environments.

• The review paper distinguishes itself by having a
specific domain focus on the application that utilizes DL
techniques to detect botnets on the IoT.

• The proposed review paper discusses different DL
models, including CNNs, RNNs, and GANs, utilized for
botnet detection.

• It examines the effectiveness and applicability of
different DL models utilized for botnet detection within
IoT environments and the coverage compared with
existing surveys and reviews.

• By addressing challenges posed by IoT networks, the
proposed review offers valuable insights for researchers
and practitioners aiming to develop robust and efficient
DL-based IDSs for botnet detection in IoT.

• Future research directions: The paper identifies key
areas for future research in botnet detection in IoT
using DL. It suggests avenues for further explo-
ration, such as hybrid ensemble methods, dynamic
ensemble feature selection techniques, multi-objective
optimization approaches, and domain-specific feature

selection methods. These future research directions
guide researchers and practitioners in advancing the
field and addressing emerging challenges.

This review paper is organized as follows: Section II intro-
duces the research background, detailing the IoT concepts,
applications, privacy, security, vulnerabilities, IDSs, and DL.
Section III thoroughly analyzes related studies, exploring
their methodologies, techniques, and findings to understand
the existing field’s status. Section IV offers a critical review.
Section V focuses on potential future research directions in
botnet detection in IoT using DL. It pinpoints areas needing
more exploration and emphasizes new trends and challenges,
guiding researchers and practitioners. Section VI compares
related reviews in the field qualitatively, underscoring this
paper’s distinctive contributions and insights and affirming
its originality and worth. Section VII concludes the paper,
summarizing its significant findings, contributions, and
implications.

II. BACKGROUND
This section provides an overview of IoT technology and
discusses the security challenges faced by IoT. Additionally,
it presents an overview of the DL-based Intrusion Detection
System (IDS) used for detecting cyber-attacks in IoT
networks.

A. BASIC CONCEPTS OF IoT
Despite its widespread use, there is no standardized definition
of ‘IoT’ [7]. Although various definitions have been proposed
in the literature by researchers [8], [9], [10], the overarching
goal of IoT remains the same: to collect and share data
through networks of uniquely identifiable endpoints or
‘‘things.’’ This paper adopts the following definition of IoT:
‘‘a network of devices embedded with electronics, software,
sensors, and actuators capable of exchanging information
through communication networks, such as the Internet’’
[11]. The architecture of IoT consists of multiple layers
of technology that work together to achieve its goals.
Therefore, to fully understand IoT, it is essential to review
its architecture. According to [12](p. 355), there is currently
no standardization for IoT systems’ technical specifications
and reference architectures. Typically, IoT communication
architectures allow devices to connect to the internet and
communicate autonomously. Although there is no agreed-
upon standard for IoT architecture, researchers, authors, and
practitioners have developed five architectural models, all of
which share similar components. Generally, an IoT system is
composed of three layers: (i) a physical perception layer, (ii)
a network layer, and (iii) an application layer. Reference [7]
describe an IoT technology stack consisting of three core
layers: (i) the device layer, (ii) the connectivity layer, and
(iii) the IoT cloud layer. Reference [13] Also, IoT has
three layers: (i) the device layer, (ii) the connection layer,
and (iii) the application layer. Sensors collect and analyze
data; cloud-based applications are crucial for interpreting and
transmitting data from multiple sensors. presents a simplified
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FIGURE 1. Simplified IoT architecture, source: [14].

IoT architectural model. Although understanding IoT archi-
tecture is essential for development teams, researchers and
practitioners are likely more interested in IoT applications.

IoT serves as a network infrastructure that facilitates the
connection of various devices through sensory, communi-
cation, networking, and information-processing technolo-
gies [15]. Among the key technologies employed in IoT,
Radio-Frequency Identification (RFID) plays a significant
role. As discussed by [16], RFID enables the wireless
transmission of identification information from microchips
to a reader, allowing objects equipped with RFID tags to
be automatically identified, tracked, and monitored. From
the 1980s onwards, RFID technology has been widely
applied in various sectors, including logistics, pharmaceutical
production, retail, and supply chain management [17].
Another pivotal technology for IoT is Wireless Sensor
Networks (WSNs), which utilize interconnected intelligent
sensors to gather data and monitor the environment. WSNs
have diverse applications in areas such as environmental
monitoring, healthcare monitoring, industrial monitoring,
traffic monitoring, and more [18]. The progress of IoT
has been significantly aided by advancements in RFID
and WSN technology. Other technologies such as barcodes,
smartphones, social networks, and cloud computing are also
employed to support IoT [19], [20], as shown in Figure 2.

FIGURE 2. Technologies associated with IoT, source: [21].

The logistics, manufacturing, retail, and pharmaceutical
industries have embraced IoT in recent years. The advance-
ments in wireless communication, smartphone technology,
and sensor networks have facilitated the integration of many

smart objects into the IoT ecosystem. These IoT-related
technologies have transformed how businesses operate and
profoundly impacted the development of new Information
and Communication Technology (ICT) and enterprise system
technologies, as shown in Figure 3.

FIGURE 3. IoT-related technology, source: [21].

• Service-Oriented Architecture (SOA) for IoT:
IoT aims to establish connections between diverse devices

and systems using networks. Service-oriented architecture
(SOA) can be a pivotal technology for integrating het-
erogeneous systems or devices [22]. SOA has proven
effective in various research domains, including cloud
computing, WSNs, and vehicular networks [23], [24].
Various approaches have been proposed to develop multi-
layer SOA frameworks tailored to the IoT, considering
selected technologies, business requirements, and technical
specifications. The International Telecommunication Union
recommends an IoT architecture composed of five layers: (i)
sensing, (ii) accessing, (iii) networking, (iv) middleware, and
(v) application layers. Additionally, alternative architectures
have been proposed, such as three-layeredmodels that consist
of (i) a perception layer, (ii) a network layer, and (iii) a service
layer or application layer. Another three-layered model
encompasses (i) an application layer, (ii) a network layer,
and (iii) a sensing layer [21]. Figure 4 illustrates an SOA
comprising four layers, showcasing the interconnectedness
of each layer. The architectural design of IoT encompasses
various factors, including architecture styles, networking
and communication protocols, integration of smart objects,
development of web services and applications, consider-
ation of business models and processes, cooperative data
processing, and ensuring security measures. Additionally,
an IoT architecture should possess extensibility, scalability,
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modularity, and interoperability to accommodate diverse and
heterogeneous devices effectively. It is crucial to employ
an adaptive architecture that enables dynamic interactions
among connected entities to accommodate IoT devices’
mobility and real-time interaction requirements. Given IoT’s
decentralized and heterogeneous nature, architecture must
offer efficient event-driven capabilities to support seamless
communication. SOA is widely recognized as an effective
approach to achieving interoperability between diverse and
heterogeneous devices in multiple contexts [25], [26].

FIGURE 4. SOA for IoT, source: [21].

• Sensing layer:
The IoT’s sensing layer comprises a globally intercon-

nected network of physical devices that allow remote control
and connectivity. As more devices incorporate RFID or smart
sensors, linking objects becomes simpler. Wireless intelligent
systems equipped with tags or sensors automatically detect
and exchange information among various devices within
the sensing layer. These technological advancements signif-
icantly enhance the IoT’s ability to identify and perceive
objects and the environment. Each device or service is
assigned a unique Universal Unique Identifier (UUID)
for intelligent service deployment across industry sectors.
UUIDs enable effortless recognition and retrieval of devices,
making them essential for successful service deployment in a
vast network like the IoT [27].

• Networking layer:
The networking layer is critical in connecting and sharing
information between interconnected devices. It also can
aggregate data from various IT infrastructures, including
transportation, healthcare, and power grids. Under the SOA-
IoT paradigm, services offered by devices are usually
deployed in a heterogeneous network, and all relevant devices

are brought into the service internet. Quality-of-service
(QoS) management and control might be necessary to satisfy
user and application requirements. In a dynamic network,
it is imperative to discover and map devices automatically.
Devices must be assigned roles that enable them to deploy,
manage, and schedule their behavior and change to other
roles as necessary to accomplish tasks collaboratively. The
designers responsible for the networking layer in IoT systems
face various challenges that necessitate careful consideration.
These challenges include incorporating networkmanagement
technologies suitable for heterogeneous networks (such as
fixed, wireless, and mobile networks), optimizing energy
efficiency, meeting QoS requirements, implementing effi-
cient service discovery and retrieval mechanisms, managing
data and signal processing, and ensuring robust security and
privacy measures [27], [28].

• Service layer:
Middleware technology plays a crucial role in the service
layer of IoT by providing functionalities to integrate services
and applications seamlessly. This cost-efficient platform also
enables the reuse of hardware and software platforms. Devel-
oping service specifications for middleware is a primary
activity in the service layer, and various organizations are
currently undertaking it. A well-designed service layer can
identify common application requirements and provide APIs
and protocols to support necessary services, applications,
and user needs. This layer handles service-oriented issues
such as information exchange and storage, data management,
search engines, and communication. One of the essential
components of the service layer is service discovery, which
efficiently locates objects capable of offering the required
services and information [21].

• Interface layer:
Within the realm of IoT, devices sourced from different
manufacturers or vendors often adhere to distinct protocols
or standards, leading to potential complications in terms of
their interoperability. These challenges can manifest in infor-
mation exchange, communication, and collaborative event
processing. Moreover, the escalating quantity of devices
involved in IoT introduces difficulties in dynamically estab-
lishing connections, facilitating communication, terminating
connections, and overall device operation. Implementing an
interface layer becomes essential to mitigate these complexi-
ties and streamline the management and interconnection of
IoT devices. An Interface Profile (IFP) serves as a subset
of service standards that facilitates seamless interaction
between applications on a network. A reliable and effective
IFP can be realized by leveraging Universal Plug and Play
(UPnP), a protocol that defines a standardized approach for
interconnecting services offered by diverse devices. Interface
profiles are crucial in describing the specifications and
requirements for the interaction between applications and
services. Services on the service layer are directly deployed
on constrained network infrastructures, enabling applications
to discover and utilize new services as they connect to the
network. The SOCRADES Integration Architecture (SIA)
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has become a proposed solution to foster efficient interaction
between applications and services. While the service layer
has traditionally provided a universal Application Program-
ming Interface (API) for applications, recent research in the
context of Service-Oriented Architecture for IoT (SOA-IoT)
has revealed that the Service Provisioning Process (SPP)
can also facilitate the interaction between applications and
services. The SPP commences by sending a service request
in a generic Web Services Description Language (WSDL)
format, utilizing a ‘‘type of queries’’ approach. Subsequently,
a ‘‘candidate search’’ mechanism is employed to identify
potential services. The services are then ranked based on
the ‘‘Application context’’ and QoS information. Finally,
an ‘‘On-Demand service provisioning’’ mechanism is utilized
to identify the most suitable service instance that aligns with
the application’s specific requirements [21], [29]. Finally, a
‘‘Process Evaluation’’ is used to evaluate the process.

B. APPLICATIONS OF IoT
As stated in [9], the IoT can be used in personal and
large-scale business environments. While devices and net-
works enable physical connections, IoT applications offer
reliable interactions between devices and humans. [30] IoT
applications are classified into four domains: transportation
and logistics, healthcare, smart environment, and personal
and social [9], [31] identified manufacturing, retail trade,
information services, finance, and insurance as the most
valuable industries in terms of IoT adoption. A study involv-
ing 500 senior executives leading IoT initiatives revealed
that energy, financial services, healthcare, and manufacturing
were the most essential areas in their organizations [11].
[32] observed that smart homes, wearables, and smart cities
dominated searches, tweets, and written content. Refer-
ence [33] classified the top 10 enterprise IoT projects into
connected industry, smart city, and smart energy categories.
Researchers have identified significant application areas in
IoT, as summarized in Table 1 [9], [11], [30], [32], [33].

C. PRIVACY AND SECURITY IN IoT
Every technological advancement has challenges, and the IoT
is no different. IoT solutions comprise various technologies,
leading to a complex and dynamic environment. The
most significant obstacles to developing IoT capabilities
include investment, security concerns, cooperation between
departments, integration of different data, and a shortage of
skilled personnel [11], Effective communication is crucial for
maintaining data privacy and confidentiality within various
IoT architectures. Regulations governing data collection,
storage, and exchange should prioritize safeguarding users’
records to uphold data privacy standards. Implementing
secure key management practices and leveraging physically
unclonable functions can significantly enhance security
measures.

As IoT becomes increasingly integrated into daily life, the
adoption of IoT-based devices is rising. Predictions suggest

TABLE 1. Examples of IoT applications.

that 70% of devices will be IoT-based, with Cisco estimating
a staggering 14.4 trillion devices in use by 2025. Machine-to-
machine (M2M) traffic is projected to constitute up to 45%
of Internet traffic by 2022.

In the healthcare sector, IoT-based applications are
expected to contribute $1.1 trillion to $2.5 trillion in
annual growth by 2025, with a global impact estimated at
$2.7 trillion to $6.2 trillion. By 2025, an astounding 75 billion
IoT devices will operate worldwide. However, the growth
of IoT devices also attracts malicious actors seeking to
exploit the technology. Symantec reported a 300%increase
in cyber-attacks in 2019 compared to the previous year, with
approximately 3 billion attacks recorded [34]. Figure 5 shows
the common types of IoT-based network security in different
aspects.

FIGURE 5. Taxonomy of IoT security, source: [34].
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The expanding number and diverse nature of IoT devices
contribute to a broadening attack surface, which is further
compounded by factors such as population, heterogeneity,
diversity, interoperability, portability, mobility, location,
topology, and distribution of devices, controllers, connectiv-
ity, consumers, and services [35], [36].

Various enablers, including networks, protocols, and
entities such as devices, methods, and information, influence
the attack surface of IoT networks. It is determined by the
interconnectivity of system components and the permissions
granted to devices for system access. Attack surfacesmanifest
in different components of an IoT architecture, including
administrative and device/cloud web interfaces, update
mechanisms, mobile applications, physical interfaces, device
firmware, and device memory. These attack surfaces are
potential entry points for attackers, allowing them to exploit
vulnerabilities and gain unauthorized access to a system.
Consequently, attackers can manipulate or compromise
sensitive information [37].

Each attack surface encompasses specific elements and
device functionalities with inherent security vulnerabilities.
As a result, comprehensive protection measures are essential.
Despite traditional security approaches, IoT nodes with
limited resources remain susceptible to attacks. Notably, the
Mirai botnet and its derivatives exemplify threats – hijacking
IoT devices to launch destructive DDoS attacks [31], [38].
Therefore, developing effective security solutions is crucial
to address these challenges [39].

D. IoT VULNERABILITIES
The rise of IoT devices brings exciting experiences for con-
sumers but also introduces security threats. Cybercriminals
can exploit large quantities of data in this interconnected
world, leading to data breaches if adequate security measures
are not in place, which could expose sensitive informa-
tion [34]. IoT devices lack built-in security features to
protect against threats due to their low cost, limited power,
and minimal computing capacity. Moreover, the scale and
diversity of networks pose additional risks to these devices.
Users’ lack of security awareness and third-party apps
further contribute to risks. Additionally, physical security is
a concern since IoT components are accessible to users and
malicious actors. These smart devices remain vulnerable for
several reasons [40].

• Limited computing capabilities and hardware limita-
tions: IoT devices are designed for specific applications,
often requiring minimal processing power, leaving
little space for integrating security and data protection
measures.

• Heterogeneous transmission technology: These devices
communicate with various devices and often use differ-
ent communication technologies, making establishing
uniform protection measures and protocols challenging.

• Vulnerable device components: Millions of smart
devices can be compromised by insecure or outdated
fundamental elements.

• Lack of security awareness among users: Due to a
lack of knowledge regarding security measures, users
may expose smart devices to risk zones and attack
possibilities. Third-party apps can also introduce risks
to IoT devices.

• Weak physical security: Unlike data centers for Internet
services, IoT components are accessible to users and
malicious actors.

Reference [41] considered the level of vulnerabilities
and impacts to create the pyramid of threat factors shown
in Figure 6. The topmost elements of the pyramid are
more vulnerable but are less likely to have a significant
impact. In contrast, the lower-level elements have a higher
likelihood of causing significant impact. However, they
are less susceptible, implying cyber threats usually target
the lower levels of the stack to gain greater control and
opportunities.

FIGURE 6. Pyramid of IoT devices vulnerability, source: [34].

E. INTRUSION DETECTION SYSTEM
IDS is a software or device that employs various detection
techniques to identify attacks on a system and notify
the system administrator. It can be a standalone device
that monitors an individual system or a network system
that conducts local analysis to detect potential attacks.
Furthermore, IDSs provide three critical security services: (i)
ensuring data confidentiality by verifying the secure storage
of data within the system, (ii) ensuring data availability
by checking if authorized users can access the data, and
(iii) ensuring data integrity by verifying the accuracy and
consistency of the data with other system data [42], [43].

1) TYPES OF IDS
Standalone IDSs include both network-based IDS and host-
based IDS. In order to enhance the performance of IDS in
large-scale IT ecosystems, multiple detectors are employed
to correlate alerts and share information, forming what
is known as Collaborative IDSs (CIDSs). CIDSs can be
implemented using three network architectures: centralized,
hierarchical, and distributed [44], as illustrated in Figure 7.
In a centralized CIDS, multiple IDSs monitor the network,
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where each IDS connects to a single analysis unit to exchange
data. In contrast, hierarchical and decentralized CIDSs also
utilize multiple IDSs, but the analysis units are linked in
a hierarchical configuration to oversee different network
points. This configuration helps address the problem of
a single point of failure. Finally, in a distributed CIDS,
a peer-to-peer network architecture is adopted, where each
participant has its own analysis unit and shares information
with others in a distributed manner [45].

FIGURE 7. IDS categorization-based location.

2) IDS APPROACHES
The two primary approaches for IDS are the signature
and anomaly approaches. The signature approach identifies
attacks by matching predefined signatures or patterns in
a database. It is effective in detecting known attacks,
but it may not be able to detect new attacks that have
no existing signatures. On the other hand, the anomaly
approach monitors the behavior of the system to identify
unknown attacks. It detects abnormal activities and alerts
the network administrator. While the anomaly approach
can detect unknown attacks, it may also generate false
positive alarms. Both approaches utilize multiple techniques,
as depicted in Figure 8.

FIGURE 8. Detection approaches.

• Pattern Matching is a technique used in IDS to
compare incoming strings with strings stored in the

system’s database to detect malicious attacks. When
a matching pattern is found, the system generates
an alarm to notify the administrator of a possible
attack. There are two types of pattern-matching algo-
rithms: single and multiple. Single pattern-matching
algorithms are simpler as they search for one pattern
at a time. In contrast, multiple pattern-matching algo-
rithms search for all patterns simultaneously, which
requires more time and resources. The Boyer-Moore
algorithm is a well-known single pattern-matching
algorithm commonly used in IDS. It compares strings
from the rightmost character and has been proven to
detect patterns effectively. Although the Boyer-Moore
algorithm excels in search operations, it may face
limitations regarding feature scalability. On the other
hand, the Aho-Corasick and Wu-Manber algorithms are
multiple pattern-matching algorithms that can search
for multiple patterns simultaneously. However, the Aho-
Corasick algorithm requires more memory than the
Wu-Manber algorithm. Selecting a pattern-matching
algorithm involves balancing search speed and memory
usage. To enhance the detection performance of IDSs,
researchers have proposed optimization techniques and
the development of new algorithms [46].

• The Rule-Based technique is utilized in both the
signature and anomaly approaches. In signature detec-
tion, malicious attacks are detected by diagnosing
packets using predefined rules in the system. Mean-
while, in anomaly detection, the system’s behaviour
is diagnosed to detect differences between normal and
abnormal behaviour based on predefined rules, such as
programmers’ sequence of system calls. Updating the
rules in both detection methods is essential to increase
the network’s security. The signature approach makes
updating the rules simple, easy, and automatic, whereas
the anomaly detection approach requires more time to
record new training rules, making updating the rules
more complex [47].

• The State-Based approach employs signature detec-
tion to represent attack scenarios and consists of two
main components: state and arc. The state represents
a user or process, while the arc represents an action.
An attack is identified when the user or process reaches
the final state. The Unix State Transition Analysis Tool
pioneered the state transition analysis technique, primar-
ily used for host-based intrusion detection. It operates
as a rule-based expert system that examines the audit
traces of multi-user computer systems to identify known
attacks. However, the tool has limitations, including
challenges in extending or adapting its features to
different operating systems [48].

• Data Mining techniques can enhance the signature
detection approach by discovering new patterns for IDS
and addressing itsmain disadvantage.While datamining
is commonly used in the signature-based approach,
there is also substantial research on applying it to
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anomaly detection. However, data mining relies on
various machine learning techniques, including rule-
based methods, classification, and clustering, to gather
knowledge for network intrusion detection [49].

• Statistical-based IDS Statistical-based IDS utilizes two
profiles: one for monitoring current network traffic and
the other for statistical training. When an event occurs,
the system compares the two behaviors to assess it.
If the anomaly score surpasses a predefined threshold,
the IDS generates an alarm, indicating a potential
intrusion [50]. Model-based statistics often employ
multivariate statistical techniques, such as the chi-square
statistic, Canberra technique, and Hotelling’s T-squared
distribution. These techniques help detect outliers in the
dataset by analyzing behavioral patterns. Each element
in the dataset possesses specific features and a local
outlier factor, which can be utilized to identify abnormal
behavior [51].

• Biological Models: Previous research has drawn paral-
lels between the human immune system and computer
network security, highlighting their similarities in com-
plex network structures and the common objective of
protecting nodes from malicious attacks. Both systems
also employ security policies andmaintain various levels
of security. The human immune system utilizes natural
selection phenomena to establish policies that fulfill
disposability, correction, integrity, and accountability
requirements. Similarly, computer networks establish
rules to defend against attacks and detect unauthorized
actions that violate specific security levels. In recent
years, researchers have applied algorithms inspired by
biological processes, such as genetic algorithms and
artificial neural networks, to enhance the performance
of intrusion detection within the anomaly detection
approach [52].

• Learning models: have significantly enhanced the
effectiveness of anomaly detection techniques. Anomaly
detection can be categorized into two types: supervised
and unsupervised. In supervised anomaly detection, the
model is trained using labeled datasets that distinguish
between normal and abnormal behavior. Support vector
machines and k-nearest neighbor algorithms are exam-
ples of supervised anomaly detection techniques. On the
other hand, unsupervised anomaly detection relies on
unlabelled datasets and utilizes various techniques to
differentiate between normal and abnormal behavior.
One commonly used technique is clustering, which
is applied in intrusion detection to identify outliers
displaying anomalous behavior. The k-means cluster-
ing algorithm is the most popular among clustering
algorithms and has been widely employed in intrusion
detection [53].

DL has become a prominent area of machine learning in
the realm of IDSs, as it employs artificial neural networks
that emulate the structure and operation of the human
brain to identify patterns in data. DL has demonstrated

remarkable effectiveness in detecting and categorizing net-
work intrusions by extracting high-level features from raw
data. A significant advantage of DL-based IDSs is their
adaptability to dynamic network environments and emerging
types of attacks. Considering the burgeoning network traffic
and sophisticated threats, DL-based IDSs are increasingly
essential for safeguarding network security. Compared to
machine learning-based techniques, DL techniques are more
effective when dealing with large datasets. Consequently,
DL has emerged as the most used IDS in network secu-
rity. However, while DL models have shown considerable
promise in IoT botnet detection, they are not without
limitations. These limitations include generalization issues,
lack of diversity, and challenges in handling imbalanced
datasets, as discussed in [5] and [54]. Such challenges
can adversely impact the effectiveness and reliability of
IDS implementations, emphasizing the need for further
optimization and complementary approaches. Ensemble
learning methods, for instance, have demonstrated superior
performance in addressing these challenges and enhancing
detection robustness in specific contexts [55]. While DL
remains a cornerstone in IDS development due to its ability
to process large-scale data and adapt to sophisticated threats,
comparative studies underline the importance of evaluating
its performance alongside alternative methods to ensure
comprehensive and resilient network security solutions. The
following subsection introduces DL models in detail.

F. DEEP LEARNING
DL is a type of machine learning that uses artificial neural
networks to learn from data [56]. Neural networks are
inspired by the structure and function of the human brain,
and they can learn complex patterns from large amounts of
data. DL is a machine learning methodology with several
features, including the ability to represent data effectively
by transforming it into features that can be utilized to
develop superior approaches for managing large amounts of
data, resulting in a significant enhancement of classification
performance and helping to overcome the constraints of
shallow learning models. When analyzing network data and
identifying intrusions, DL is more efficient and capable of
detecting intrusions faster than other methods [57], [58], [59].
Figure 9. illustrates the performance of DL in contrast to
machine learning.

DL is a specialized branch of Neural Networks (NNs) that
falls under the broader umbrella of ML. DL has garnered
significant attention due to its remarkable capabilities: it can
automatically learn features from raw data, achieve outstand-
ing outcomes, and operate comprehensively and efficiently.
Additionally, DL architectures incorporate multiple hidden
layers, as depicted in Figure 10, making them a preferred
choice for handling vast amounts of data [60], [61], [62].

DL networks use two distinct learningmethodologies: gen-
erative and discriminative learning. Identifying correlations
among data to detect patterns in unsupervised learning is
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FIGURE 9. Performance of DL vs. ML [60].

FIGURE 10. DL structure [61].

known as generative learning in deep networks. On the other
hand, deep neural networks primarily employ supervised
learning for classification purposes, while unsupervised
learning is the focus of discriminative learning. For instance,
as per [63], the Convolutional Neural Network (CNN) is a
discriminative model.

1) CONVOLUTIONAL NEURAL NETWORK
CNNs find extensive applications in computer vision and
image processing, including tasks like image classifica-
tion, segmentation, face recognition, and object detection.
Specifically designed for 2D images, the CNN architecture
extracts pixel information during training and automatically
learns relevant features. Figure 11 illustrates the fundamental
components of CNNs, which typically include an input
layer, convolution layers, pooling layers, one or more fully
connected layers, and an output layer [64], [65].
In recent years, researchers have explored various inno-

vative ideas for enhancing the performance of CNNs, such
as parameter optimization and regularization techniques.

FIGURE 11. Architecture of CNN [66].

Furthermore, CNNs have been applied to numerous domains,
including IDSs, where they have been shown to reduce the
number of parameters required and streamline the training
process once the intrusion type has been identified. This
approach has been used in various domains [67].

2) RECURRENT NEURAL NETWORK
The Recurrent Neural Network (RNN) comprises three types
of units: (i) input units, (ii) hidden units, and (iii) output
units. The information flow in RNN is unidirectional, passing
through the input, hidden, and output units. The hidden units
in the RNNmodel play a crucial role, serving asmemory units
that retain information processed at time t. This mechanism is
depicted in Figure 12 and has been studied by [68] and [69].

FIGURE 12. RNN architecture [63].

RNN is a well-established type of recurrent neural network
that can be trained using supervised or unsupervised learning
approaches. However, RNN has some limitations, such
as the issue of vanishing gradients, which can impede
further neural network training. RNN has been extended
with various learning models, such as the Long Short-Term
Memory (LSTM) network, to overcome these limitations.
LSTM effectively resolves the vanishing gradient problem in
RNN [70], [71].

3) LONG-SHORT TERM MEMORY (LSTM)
RNNs have feedback loops in their recurrent layer, allowing
them to store information in their ‘memory’ over time. LSTM
networks are a type of RNN that uses specialized units to
address the vanishing gradient problem. These units include a
‘memory cell’ storing data for extended periods. Three gates
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control the functioning of LSTM units: the ‘Forget Gate,’
’Input Gate,’ and ‘Output Gate.’ These gates work together
to regulate the information flow in an LSTM unit, as depicted
in Figure 13. The Forget Gate determines which information
from the previous state cell should be remembered and
discarded, the Input Gate controls the information that enters
the cell state, and the Output Gate controls the output [72].

FIGURE 13. LSTM architecture, source: [72].

LSTM networks offer unique advantages in handling and
analyzing sequential data, setting them apart from traditional
networks. As a result, LSTM has found wide applica-
tions in various domains, including time-series prediction,
time-series anomaly detection, natural language processing,
question-answering chatbots, machine translation, speech
recognition, and more. Given the abundance of sequential
data in cybersecurity, such as network traffic flows and
time-dependent malicious activities, LSTM models can also
be effectively utilized in cybersecurity. Numerous security
solutions leveraging LSTM models have been investigated
in diverse areas, including intrusion detection [73], identi-
fication and categorization of malicious apps [74], phishing
detection [75], and time-based botnet detection [76]. While
the key advantage of recurrent networks over traditional ones
lies in their ability to model sequential data, training them
may demand substantial resources and time. Consequently,
developing an effective LSTM-RNN network can enhance
security models, particularly in detecting threats character-
ized by temporal dynamic behaviors.

4) GENERATIVE ADVERSARIAL NETWORKS (GAN)
In 2014, Ian Goodfellow and his colleagues introduced the
Generative Adversarial Network (GAN), a DL model that
can synthesize new images. GAN comprises two primary
neural network models: (i) generative, which produces fake
samples indistinguishable from the original samples, and
(ii) discriminative, distinguishing between the original and
fake samples. The objective of the discriminative model
is to differentiate between the real and fake samples. The
architecture of GAN is illustrated in Figure 14 and has been
studied by [77], [78], [79].

GANs have been applied in image generation, natural
language processing, time-series synthesis, and other fields.
Researchers have also developed several methods to enhance

FIGURE 14. GAN architecture [80].

GAN training, such as modifying the architecture, loss
function, game theory, multi-agent, and gradient-based
approaches. Figure 15 provides a taxonomy of different types
of GAN variants. These advances in GAN technology have
been discussed in [81] study. The standard GAN and its
variants are popular models that have been used in several
fields, as they can train data without the need for annotations.
GAN is versatile and can be adapted for various applications
based on unsupervised or semi-supervised learning, such as
image classification and synthesis. Furthermore, GANs can
be utilized to generate additional training samples, and they
have achieved state-of-the-art performance on tasks such as
pose and gaze estimation [82].

5) COMPARISON OF DEEP LEARNING MODELS FOR IoT
INTRUSION DETECTION
In the previous sections, we discussed the various DLmodels,
including CNNs, RNNs, LSTM networks, and Generative
GANs. These models are widely used for various tasks
in machine learning and have shown significant potential
in IDS, particularly in IoT environments. A comparison
of these models is provided below, summarizing their
key characteristics, strengths, weaknesses, and applications,
as presented in Table 2. This comparison will help clarify
the distinctions between each model and outline their unique
features, making it easier to understand how they contribute to
improving IoT-based intrusion detection systems. Themodels
discussed are essential for efficiently handling the challenges
associated with IoT data, particularly the high volume,
complexity, and dynamic nature of IoT environments.

III. RELATED WORKS
This section thoroughly examines existing literature and
related works relevant to the research topic. Its primary
objective is to provide an overview of the current knowledge
in the field, pinpoint the research gaps that require attention,
and critically analyze the limitations of existing approaches.
The literature review is further divided into subsections,
as shown in Figure 16. 3.1 Single detector-based IDS
and 3.2 Ensemble detector-based IDS provide an in-depth
analysis of the existing literature on the research topic,
with a particular focus on the single detector-based IDS
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FIGURE 15. GANs variants [81].

TABLE 2. Comparison of deep learning models for IoT intrusion detection.

and ensemble detector-based IDS approaches that have
been proposed. Additionally, a dedicated subsection titled
‘‘Discussion on Limitations of DL Models’’ highlights
critical challenges in existing DL-based IDS methodologies,
including issues such as computational complexity, mode
collapse, data heterogeneity, and interpretability. This critical
discussion aims to set the stage for exploring innovative
solutions to address these limitations. Lastly, Tables 3 and 4
summarize the related works.

To evaluate the performance of single DL models and
ensemble models in IDS for IoT environments, we propose
the following framework and criteria for comparison:

• Model Selection and Preparation: Single DL Models:
Select representative single DL models such as CNNs,
RNNs, and GANs. Ensemble Models: Choose various

FIGURE 16. Taxonomy for related work - existing work.

ensemble methods, including bagging (e.g., Random
Forests), boosting (e.g., XGBoost), and hybrid ensem-
bles that combine different base learners.

• Datasets: Utilize benchmark datasets relevant to IoT
botnet detection, such as the N-BaIoT dataset, Bot-IoT
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dataset, and CICIDS2017 dataset. These datasets should
include a mix of normal and malicious traffic to ensure
a comprehensive evaluation.

• Evaluation Metrics: Accuracy: Measure the overall
correctness of the model in classifying benign and mali-
cious traffic. Precision, Recall, and F-Score: Evaluate
the model’s performance in detecting true positives and
minimizing false positives. Area Under the Receiver
Operating Characteristic Curve (AUC-ROC): Assess
the model’s ability to discriminate between classes.
Computation Time: Measure the training and inference
times to evaluate the efficiency of the models.

• Experimental Setup: Training and Validation: Use cross-
validation techniques, such as k-fold cross-validation,
to ensure the robustness and generalizability of the
results. Hyperparameter Tuning: Optimize hyperparam-
eters for both single DL models and ensemble models to
achieve the best possible performance.

• Comparative Analysis: Performance Comparison: Com-
pare the single DL models and ensemble models based
on the evaluation metrics. Highlight the strengths and
weaknesses of each approach. Scalability and Resource
Utilization: Assess the models’ scalability and resource
utilization, particularly in resource-constrained IoT
environments. Robustness and Generalization: Evaluate
the robustness of the models against various attack
scenarios and their ability to generalize to new, unseen
data.

• Interpretation and Insights: Feature Importance: Ana-
lyze the importance of different features in the
detection process to understand the decision-making
of the models. Model Interpretability: Discuss the
interpretability of the models, emphasizing techniques
like SHAP, LIME, and attention mechanisms for better
transparency.

A. SINGLE DETECTOR-BASED IDS
A single detector-based IDS entails using a single detection
method to detect botnets in IoT. This subsection will explore
the strengths and weaknesses of various single detector-based
IDS approaches, their detection capabilities, and limitations.
The rise of IoT botnets, which exploit vulnerabilities in
IoT devices, poses a significant threat, resulting in massive
traffic to attack target nodes. The increased use of IoT
devices in the smart health area has also increased the risk.
Although researchers have proposed several botnet detection
systems, applying them to resource-constrained IoT devices
is challenging, and early detection of botnets is difficult due
to slight traffic differences. However, IoT botnets produce
recognizable power consumption patterns, which can be used
to identify malicious behavior in IoT devices. A DL model
based on CNN architecture has been proposed to tackle this
issue, consisting of a data processing module and an 8-layer
CNN [54]. The power consumption data collected is seg-
mented and normalized to enhance the accuracy of the CNN
model. The 8-layer CNN is responsible for classifying the

processed data into four categories, specifically focusing on
the botnet class. Various tests were conducted to evaluate the
model’s performance, including self-evaluation, cross-device
evaluation, leave-one-device-out, and leave-one-botnet-out
tests. The tests were performed on three commonly used
IoT devices: Security Cameras, routers, and Voice Assistants.
The self-tests achieved an impressive classification accuracy
of up to 96.5%, while the cross-evaluation tests achieved
an accuracy of approximately 90%. The leave-one-out tests
also demonstrated a detection accuracy of over 90% for
botnets. The article proposed by [4] addresses the challenges
associated with implementing an IoT smart environment,
highlighting the importance of protecting it from various
attacks, including IoT Botnet attacks. To effectively detect
these attacks, the paper proposes a detection approach
that uses the interpolation reasoning method. The approach
was evaluated using an open-source benchmark dataset of
IoT Botnet attacks and achieved a high detection rate of
96.4%. The method is considered a competitive alternative
to other approaches and effectively reduces false positives
while being able to detect IoT Botnet attacks even with
a limited rule base. As aforementioned, botnets are now
a significant concern in cybersecurity, and conventional
detection techniques like reverse engineering are ineffective
in identifying botnets that use covert technologies such as
fast flux. Available detection methods for fast-flux botnets
are active or passive but have limitations. Reference [5]
presents a novel approach for detecting fast-flux botnets
using a combination of CNNs and RNN models to address
these issues. Their method leverages the spatiotemporal
features of network traffic to identify fast-flux botnets
in both spatial and temporal dimensions. To evaluate the
effectiveness of their approach, the researchers conducted
experiments using the CTU-13 and ISOT public datasets.
The results demonstrate that their proposed method achieves
impressive performance metrics. Specifically, it achieves
an accuracy rate of 98.3%, a recall rate of 96.7%, and
an accuracy of 97.5%. It is important to note that the
accuracy rate (98.3%) refers to the overall performance
of the proposed method across all evaluation scenarios,
while accuracy (97.5%) pertains to a specific aspect of
the evaluation, such as performance on a particular dataset
or configuration. These results surpass the performance of
existing methods for fast-flux botnet detection. Reference [6]
examine the susceptibility of IoT applications in smart cities
to Advanced Persistent Threats (APT) posed by botnets.
The paper proposes a botnet detection system that employs
a two-level DL framework to address this concern. This
framework focuses on semantically differentiating between
botnet activities and legitimate behaviors at the application
layer of the Domain Name System (DNS) services. The first
level of the proposed framework utilizes Siamese networks to
estimate similarity measures of DNS queries. Thesemeasures
are then compared against a predefined threshold to identify
potential botnet activities. The second level of the framework
employs a DL-based Domain Generation Algorithm (DGA)
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to classify domain names as normal or abnormal. This
approach utilizes DL architectures and is designed to be
scalable on a commodity hardware server. The proposed
framework was evaluated using two datasetsand compared
with recent DL models, the NSRL Dataset, which provides
reliable and verified data for cybersecurity systems, and the
AmritaDGA Dataset, which specializes in analyzing DGA
behavior for botnet detection. The experimental results show
significant improvements in F1-score, detection speed, and
false alarm rate, demonstrating the system’s effectiveness,
although specific numerical values for these metrics were
not provided. However, the study identifies limitations,
such as the lack of integration of contextual data like
HTTP headers and passive DNS, which could enhance
accuracy. Future work should focus on incorporating these
elements and exploring DGA malware families to improve
the robustness and performance of the detection system in
real-world scenarios. In addition, [83] address the serious
threat posed by botnets to Internet-connected computers,
particularly the use of DGAs by advanced bots to generate
random domain names for malware communication with
Command and Control (C&C) servers. In response to this
challenge, the paper introduces a Two-Stream network-based
DL framework named TS-ASRCaps, which incorporates
multimodal information to capture the characteristics of
DGAs. The proposed framework leverages an Attention
Sliced Recurrent Neural Network (ATTSRNN) to extract
underlying semantics from the data and a Capsule Network
(CapsNet) with dynamic routing to model high-level visual
information. By combining these two components, TS-
ASRCaps effectively analyzes and understands the complex
patterns and structures inherent in DGAs. The multimodal
approach of TS-ASRCaps, which combines semantic and
visual information, enhances the detection and characteri-
zation of DGAs. The framework was evaluated using four
benchmark datasets: OSINT, Lab360, AR, and XJU. These
datasets provide comprehensive insights into DGA behavior,
enabling robust evaluation of classification models. The
experimental results, as detailed in Tables 3, 4, 5, and
6 of the study, demonstrate significant improvements in
F1-score (ranging from 0.08% to 0.82%) and classification
accuracy compared to six state-of-the-art models, including
Endgame, CMU, NYU, Invincea,MIT, and LSTM-MI. These
results validate the superior performance of TS-ASRCaps
in both binary and multiclass domain name classification
tasks. Additionally, the combination of semantic and visual
information contributed to its enhanced capability to detect
botnet-related activities and distinguish them from legitimate
traffic. Reference [84] present a new IDS based on reinforce-
ment learning to identify infected hosts within P2P botnets,
including new bots with previously unknown behaviors and
payloads. The proposed IDS includes a traffic reduction
method to manage the high volume of network traffic and
an early detection mechanism during the propagation phase,
specifically during the peer discovery and secondary update

stages. The researchersminimize false positives by adaptively
setting a set of features representing the host traffic to
distinguish between P2P bot-infected hosts and legitimate
network hosts. In summary, the proposed system effectively
detects and identifies P2P botnets whileminimizing false pos-
itives. Also, [85] examines the severe threat botnets pose to
Internet security and highlights the vulnerability of DL-based
detection models to adversarial attacks. Recent research in
adversarial DL has revealed that attackers can exploit vul-
nerabilities in detection models by crafting specific samples
that contain nearly imperceptible input perturbations. The
research introduces a Deep Reinforcement Learning (DRL)
framework to address this issue and generate adversarial
traffic flows capable of deceiving detection models [85].
The proposed framework automates adding perturbations
to samples by leveraging a reinforcement learning agent.
This agent continuously updates the adversarial samples by
incorporating feedback from the target model and employing
a sequence of actions. These actions alter the temporal and
spatial characteristics of the traffic flows while ensuring their
original functionality and executability. Experimental results
demonstrate significant improvements in the evasion rates
of adversarial botnet flows when employing the proposed
DRL framework. By leveraging reinforcement learning and
incorporating perturbations into traffic flows, the framework
effectively enhances the ability to deceive detection models.
It highlights the importance of developing robust defenses
against adversarial attacks in the context of botnet detection.

Building on the findings of previous studies, Single DL
models, while powerful, often face significant limitations
when applied to IDS in IoT environments. These limitations
include generalization issues, lack of diversity in detecting
various attack types, and vulnerability to adversarial attacks.
For instance,in, a CNN-based DL model achieved high
accuracy in self-tests but faced generalization issues during
cross-evaluation tests, indicating a need for improved adapt-
ability to diverse data. Moreover, Niu et al. in [5] combined
CNN and RNN models for fast-flux botnet detection and
achieved impressive performance metrics. However, they
noted adaptability issues and a lack of diversity in detecting
evolving attack patterns, highlighting the need for more
robust solutions. Additionally, Owen et al. in [2] discussed
the vulnerability of DL-based detection models to adversarial
attacks, where attackers can craft specific samples to
deceive the models. This vulnerability further emphasizes the
limitations of relying solely on single DL models. Ensemble
learning models address these limitations by combining
multiple models to leverage their individual strengths,
resulting in more robust and accurate detection systems.
For example, the BoostedEnsML model employs boosted
machine learning classifiers, achieving superior accuracy,
precision, recall, and F-score compared to existing ensemble
models by using stacking and majority voting techniques.
Another study introduced DeL-IoT, a deep ensemble learning
framework that combines deep and stacked autoencoders
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with ensemble learning techniques, significantly improving
detection performance even when dealing with imbalanced
datasets. These examples demonstrate that ensemble learning
models can effectively address the limitations of single DL
models, providing enhanced robustness, adaptability, and
accuracy in detecting diverse and sophisticated attacks in IoT
environments.

Table 3 summarizes the related works for single detector-
based IDS.

B. ENSEMBLE DETECTOR-BASED IDS
This subsection scrutinizes the ensemble detector-based IDS,
which combines multiple detection methods to improve
the detection rate and reduce false alarms. This subsection
will explore the various ensemble-based IDS techniques,
their effectiveness, and their limitations. Reference [86]
discusses the cybersecurity challenges posed by the IoT,
which is vulnerable to cyberattacks and can be exploited by
botnets to launch devastating DDoS attacks against Internet
services. Botnets are a significant security concern for the IoT
because they can infect and control private network devices
without the owners’ knowledge, leading to various malicious
activities. Despite the potential ofML technology in detecting
botnets, previous studies have been either inaccurate or lim-
ited to specific types of botnets or devices. In this study, the
authors propose an ensemble learning model that combines
supervised, unsupervised, and regression learning methods
to enhance botnet detection accuracy on the IoT while
minimizing the required features. After conducting various
experiments with different combinations of ML algorithms,
the proposed model achieves high accuracy in detecting
botnets on the IoT with just 20 features. Further, [87]
address the security threats associated with the widespread
adoption of IoT systems enabled by recent advancements
in wireless communication. The authors emphasize the
need for reliable IDS to detect cyberattacks and network
intrusions in IoT environments. While ML algorithms
have demonstrated potential in mitigating attacks on IoT
devices, intruders’ dynamics in IoT networks necessitate
improved IDS models with higher detection rates and lower
computational resource requirements. Ensemble methods
have been proposed leveraging various ML classifiers such
as decision trees and random forests. The authors present
BoostedEnsML, an efficient IDSmodel that employs boosted
ML classifiers to detect cyberattacks and network intrusions.
They train six different ML classifiers, use the stacking
method and majority voting approach to obtain an ensemble,
and evaluate and test the IDS model on two datasets
containing high-profile attacks. Data balancing with SMOTE
and ADASYN techniques is performed, and a stratified K-
fold is used to split the data into training, validation, and
testing sets. Based on the best two models, BoostedEnsML
is constructed using LightGBM and XGBoost. Experimental
results demonstrate that BoostedEnsML surpasses existing
ensemble models in accuracy, precision, recall, F-score, and
area under the curve (AUC).

Also, [88] discuss the potential of attackers exploiting
vulnerabilities in application protocols such as DNS, HTTP,
and MQTT, leading to security breaches and data leakage
in IoT services. The paper presents an ensemble intrusion
detection technique that targets botnet attacks on these
protocols to counter such threats. The technique described
in the study involves generating new statistical flow features
by examining the inherent properties of protocols. These
novel features, including mean, variance, skewness, and
kurtosis, were normalized and scaled, and features with zero
variance were removed to enhance computational efficiency
and classification accuracy. These features were utilized
in an ensemble learning method called AdaBoost, which
combines three machine learning techniques: Decision Tree,
Naive Bayes, and Artificial Neural Network. The ensemble
approach aims to accurately detect malicious events in
network traffic while mitigating class imbalance by assigning
higher weights to misclassified samples. The UNSW-NB15
and NIMS botnet datasets were employed, simulating data
from IoT sensors. The selection of DNS, HTTP, and MQTT
protocols was justified as these are frequently exploited
in IoT-based attacks, making them high-priority targets.
The data was divided into training and testing subsets
to evaluate the method’s performance. The experimental
results demonstrate that the proposed features exhibit distinct
characteristics related to normal and malicious activities,
as indicated by correntropy and correlation coefficients.
Moreover, the ensemble technique introduced in the study
outperforms each classification technique employed in the
framework and three other advanced techniques regarding
detection and false positive rates. This suggests that com-
bining multiple machine learning algorithms in the ensemble
approach contributes to superior performance in identifying
malicious events.

Reference [89] explore the use of honeypots in various
computer security defense systems, which have proven
effective in attracting botnet attacks and revealing the
membership and behavior of attackers. However, botnet
creators must find ways to avoid these honeypot traps.
The article employs machine learning techniques to aid
in detecting and preventing botnet attacks. The Ensemble
Classifier Algorithm with Stacking Process (ECASP) is
proposed to select optimal features that will serve as input
for machine learning classifiers to determine botnet detection
performance. The proposed method achieves an accuracy
rate of 94.08%, a sensitivity rate of 86.5%, a specificity
rate of 85.68%, and an F-measure of 78.24%. In addition,
[90] study the security challenges associated with IoT
devices, including their inherent vulnerability due to insecure
design, implementation, and configuration. These challenges
are compounded by the increasingly sophisticated tactics
employed by attackers and the heterogeneity of IoT data.
To tackle the challenges mentioned above, the authors present
DeL-IoT, a deep ensemble learning framework designed for
anomaly detection and prediction in IoT systems using SDN.
DeL-IoT comprises three main modules: anomaly detection,
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TABLE 3. Summary of related works- single-based detector.

intelligent flow management, and device status forecasting.
The framework leverages deep and stacked autoencoders to
extract informative features, which are then utilized to build
an ensemble learning model. By employing this approach,

DeL-IoT can efficiently detect anomalies, dynamically
manage flows, and provide short- and long-term forecasts
of device status to enable proactive actions. The proposed
framework is thoroughly tested and validated using testbed
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and benchmark datasets. Experimental results demonstrate
that the deep feature extraction combined with the deep
ensemble learning model outperforms a single model by
approximately 3%, even when dealing with imbalanced
datasets as small as 1%. DeL-IoT presents an effective
IoT anomaly detection and prediction solution, offering
improved performance through deep feature extraction and
ensemble learning techniques. The framework’s capabilities
are demonstrated through extensive testing, confirming its
potential for enhancing IoT system security andmanagement.
Reference [91] explore the benefits of integrating fog
computing with IoT to facilitate swift detection of attacks,
as the distance between IoT devices and fog devices is
relatively shorter than between IoT devices and the cloud.
However, due to resource constraints such as processing
power and memory, fog devices may not be capable of
detecting attacks in real-time using machine learning. The
paper introduces an approach that distributes the machine-
learning model selection task to the cloud and a real-time
prediction task to fog nodes to overcome this obstacle. The
approach constructs an ensemble machine-learning model in
the cloud based on historical data and employs fog nodes
to detect real-time attacks. The efficacy of the proposed
approach is tested on the NSL-KDD dataset, and the experi-
mental results demonstrate its efficiency in terms of various
performance measures, including execution time, precision,
recall, accuracy, and ROC curve. Reference [92] argued
that smart cities’ connectivity and intelligence features allow
connected vehicles to collaborate and perform complex
tasks that they cannot achieve individually. However, this
connectivity also poses cybersecurity risks to connected
vehicles, as cybercriminals use various techniques such as
botnets, phishing, zero-days, and rootkits to disrupt vehicle
communication. Botnets are a significant threat due to
their ability to launch DDoS attacks using compromised
devices. Therefore, early detection of botnet attacks is crucial
for cybersecurity analysts. However, current research lacks
precision in identifying botnet attacks in their early stages.
In their study, they put forth a novel approach that utilizes
machine learning algorithms to accurately detect botnet
attacks early on by analyzing common network traffic pat-
terns and temporal characteristics. The approach explores the
effectiveness of decision trees, probabilistic neural networks,
sequential minimal optimization, and Adaboost classifiers
while examining the significance of temporal features in
botnet detection. By employing this approach, the researchers
achieve a commendable true positive rate, indicating the
approach’s ability to identify botnet attacks accurately.
The results obtained through their experiments showcase
the approach’s efficiency, surpassing the performance of
existing studies in the field. Reference [93] focus on the
seriousness of cyber threats posed by the growth of botnets
in the past decade. Due to their complex attack behaviors
and communication patterns, the detection of botnets is
challenging, and researchers have used machine learning

techniques to improve detection rates. This paper proposes
an ensemble classification framework incorporating noise
filtering to enhance detection performance. Experimental
results demonstrate that this framework outperforms other
ensemble classification models in terms of accuracy and false
alarm rate reduction.

Due to the limited computing, storage, and communication
capabilities of endpoint devices in IoT infrastructures, they
are vulnerable to various cyber-attacks, including Darknet
and blackholes attacks [94]. Such attacks are relatively new
and have targeted numerous IoT communication services.
To address this issue, [95] developed, investigated, and
assessed the performance ofmachine-learning-basedDarknet
Traffic Detection Systems (DTDS) in IoT networks. They
employed six supervised machine-learning techniques and
evaluated the implemented DTDS models using the CIC-
Darknet-2020 dataset, covering four distinct classes of IoT
communication traffic. The analysis revealed that the bagging
ensemble techniques yielded better accuracy and lower error
rates than supervised learning techniques. The proposed
model achieves high classification accuracy with a low
inferencing overhead of 9.09 seconds. It also compared
their BAG-DT-DTDS with other existing DTDS models and
demonstrated that its best results improved by 1.9% over the
former state-of-the-art models.

Botnet attacks are a significant threat to IoT systems
as they can manipulate devices to carry out malicious
activities on a large scale. Various IDSs based on ML and
DL have been proposed to detect such attacks. However,
optimizing IDSs for IoT networks is challenging due to
limited battery power and constrained resources. To tackle
this concern, [96] present a novel approach that enhances the
detection of IoT botnet attacks through aggregated mutual
information-based feature selection using machine learning
techniques. The proposed method utilizes the N-BaIoT
benchmark dataset, which comprises genuine traffic data
from nine commercial IoT devices, to train and evaluate the
botnet attack detection system. Within the feature selection
stage, Mutual Information, Principal Component Analysis,
and ANOVA f-test are employed at a granular level to
identify the most relevant features. For the classification
step, the approach employs various individual and ensemble
classifiers such as Random Forest, XGBoost, Gaussian Naïve
Bayes, KNN, Logistic Regression, and SVM. By integrating
these classifiers, the system aims to improve the accuracy
and robustness of the botnet attack detection mechanism.
Through their experiments and evaluations, [96] demonstrate
the effectiveness of their approach in detecting IoT botnet
attacks. Utilizing feature selection techniques and diverse
classifiers contributes to achieving superior performance
compared to existing methods. Reference [97] introduce a
novel host-based IDS (HIDS) that leverages the C5 and the
One-Class SVM classifier to achieve high detection accuracy
and low false alarm rates for detecting well-known intrusions
and zero-day attacks. The HIDS combines the strengths of
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signature-based IDS (SIDS) and anomaly-based IDS (AIDS).
To evaluate the effectiveness of the HIDS, the researchers
employed the Bot-IoT dataset, consisting of both normal IoT
network traffic and different attack types. The experimental
results demonstrate that the proposed HIDS outperforms both
SIDS and AIDS techniques, achieving a higher detection
rate and lower false positive rate. To further explore the
potential of ensemble learning methods in IDS development,
[55] investigated the application of automated machine
learning (AutoML) to enhance the performance of ensemble-
based techniques. Their study focused on comparing various
machine learning algorithms, including Random Forest
(RF), Naïve Bayes (NB), Multilayer Perceptron (MLP), and
Sequential Minimal Optimization (SMO), using AutoML
tools like Auto-WEKA and RapidMiner. By leveraging the
NSL-KDD dataset, they demonstrated that RF, when opti-
mized with Auto-WEKA, achieved a remarkable accuracy
of 99.98%, significantly outperforming other models. The
findings highlight the advantages of ensemble learning in
achieving superior accuracy and reducing manual hyperpa-
rameter tuning. However, the study noted certain limitations,
including the dependency on dataset characteristics and
challenges in scaling AutoML solutions to more complex and
dynamic IoT environments. This underscores the need for
further exploration of ensemble learning techniques tailored
specifically for real-world IoT applications.

Reference [98] introduced a novel deep learning approach
named DeBot for detecting bots in industrial network
environments. DeBot leverages a unique Cascade Forward
Back Propagation Neural Network (CFBPNN) that employs
a Correlation-based FS method to identify a critical subset
of features. It further utilizes a time series-based Nonlinear
Auto-regressive Network with eXogenous inputs (NARX)
to assess and predict the influential factors on the outcome
variable, understanding the behavioral trends. This model
is pioneering in integrating optimal feature selection with
a cascading deep learning framework for botnet detection
in Industrial IoTs. They evaluated the proposed on five
renowned bot datasets and comparing the performance of
CFBPNN against other neural network models. The findings
reveal that DeBot’s CFBPNN achieves highest accuracy
across all datasets with a subset evaluation, alongside optimal
F1-scores and precision.

Besides, [99] focus on creating an ML-based IDS for
IoT applications, called Ens-IDS. They utilized the Bot-
IoT dataset to enhance attack detection in IoT networks,
combining real and simulated IoT network traffics with
various attack types. They generated two databases, with
the second one being reduced in size, and addressed the
issue of imbalance in the third database. The implementation
involved applying five ML algorithms— DTs, ensemble
bag, K-nearest neighbor, linear discriminant, and support
vector machine—which achieved high performance scores.
This study assesses classifier differences using key metrics
such as accuracy, error rate, recall, specificity, precision,

and f-measure. Research on IoT using the Bot-IoT dataset
is not common in existing literature. The contribution is
significant, offering a novel AI system based on ML to
safeguard IoT networks and detect attacks, particularly DoS
attacks. The Bot-IoT dataset was pivotal in evaluating the
proposed approach, and the results demonstrate a notable
enhancement in detection capabilities compared to current
methods.

As steted by [100], many ML and DL models struggle
with misclassification of malicious traffic, often due to poor
feature selection. A key unresolved challenge is identifying
effective features for precise detection of malevolent traffic
in IoT networks. To tackle this issue, they introduced a
new framework. Initially, they proposed a novel feature
selection metric called CorrAUC, followed by the creation of
a CorrAUC-based feature selection algorithm. This algorithm
employs a wrapper technique for accurate feature filtering,
selecting the most effective features for the chosen ML
algorithm, using the Area Under the Curve (AUC) metric.
Additionally, they utilized an integrated TOPSIS and Shan-
non entropy method within a bijective soft set framework to
validate the chosen features for identifying malicious traffic
in IoT networks. The approach is tested using the Bot-
IoT dataset and four distinct ML algorithms. The results
from the experiments indicate that the proposed method
is effective, consistently achieving over high accuracy on
average. Extending the analysis to feature selection methods,
Current feature selection methods often rely on simple or
multi-objective functions that may not fully capture the
complexity of IoT network data. One such study [96]
an aggregated mutual information-based feature selection
approach using machine learning methods to improve the
detection of IoT botnet attacks. They employed Mutual
Information, Principal Component Analysis, and ANOVA f-
test during the feature selection stage and various individual
and ensemble classifiers for classification. Despite achieving
superior performance compared to existing methods, the
study highlights that using a single objective function can
only optimize one criterion at a time, which may not reflect
the complexity of the problem. Another study [86] discusses
the use of ensemble learning techniques for detecting
botnets in IoT. The proposed ensemble learning model
combines supervised, unsupervised, and regression learning
methods to enhance detection accuracy while minimizing
the number of features. However, the study points out
mode collapse issues, lack of diversity, and the need for
performance improvement, emphasizing that current feature
selection models might not effectively detect evolving bot-
nets’ sophisticated behaviors. These examples illustrate the
limitations of current feature selection methods in handling
the dynamic and complex nature of IoT environments,
reinforcing the need for more advanced and comprehensive
approaches.

Table 4 summarizes the related works for Ensemble-based
detector.
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TABLE 4. Summary of related works- ensemble-based detector.

C. DISCUSSION ON LIMITATIONS OF DL MODELS
While DL models, such as CNNs, RNNs, and GANs, have
demonstrated significant promise in IDS for IoT botnet
detection, they are not without limitations. These limitations
can adversely affect the effectiveness and reliability of IDS
implementations.

• Mode Collapse in GANs: GANs are particularly prone
to a phenomenon known as mode collapse, where
the generator produces a limited diversity of outputs,
neglecting significant portions of the data distribution.
This issue arises because the generator learns to produce
only a few types of outputs that can easily fool the
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TABLE 4. (Continued.) Summary of related works- ensemble-based detector.

discriminator, leading to a lack of variety in the gener-
ated samples.Mode collapse reduces the effectiveness of
GANs in IDS by limiting their ability to generate diverse
adversarial samples needed for robust training. This
can compromise the IDS’s ability to generalize across
different types of botnet attacks, potentially missing new

or evolving threats. Addressing mode collapse often
requires careful tuning of the GAN architecture, loss
functions, and training processes, but these solutions can
be complex and computationally intensive.

• Lack of Diversity: In addition to mode collapse,
DL models often struggle with data heterogeneity.
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TABLE 4. (Continued.) Summary of related works- ensemble-based detector.
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TABLE 4. (Continued.) Summary of related works- ensemble-based detector.
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IoT networks generate vast amounts of diverse data,
including different types of traffic and various device
behaviors. A single DL model might not effectively
capture all these variations, leading to suboptimal
performance. This lack of diversity in the training
data can result in a higher rate of false positives or
negatives, thereby affecting the IDS’s reliability. For
instance, if the training data does not include examples
of certain types of botnet attacks, the IDS may fail to
detect those attacks in real-world scenarios. Enhancing
data diversity through comprehensive data collection
and augmentation techniques is crucial but can be
challenging to implement effectively.

• Training Instability: Training instability is another
significant challenge, especially with GANs. The adver-
sarial nature of GANs means that the training process
is a dynamic game between the generator and the
discriminator, which can lead to instability and make
it difficult to achieve convergence. This instability
affects the model’s ability to learn effectively, leading to
potential gaps in the IDS’s coverage of botnet behaviors.
Techniques such as spectral normalization, improved
optimization algorithms, and stabilization strategies can
help mitigate these issues but often require sophisticated
adjustments and additional computational resources.

• Computational Complexity: DL models, particularly
deep architectures like GANs and large CNNs, are com-
putationally intensive. Training these models requires
significant processing power, memory, and time. This
complexity can be a barrier to deploying DL-based IDS
on resource-constrained IoT devices, which often have
limited computational capabilities. Solutions such as
model compression, pruning, and the use of lightweight
architectures can help, but these approaches might com-
promise the model’s accuracy and detection capabilities.

• Interpretability and Explainability: DL models are often
criticized for their lack of interpretability. Understand-
ing the decision-making process of a DL-based IDS
can be challenging, making it difficult for security
analysts to trust and verify the model’s predictions.
This black-box nature hinders the ability to explain
why certain traffic patterns are flagged as malicious,
complicating the process of refining and improving
the IDS. Developing methods for interpretable machine
learning, such as attention mechanisms and explainable
AI techniques, is essential to address this issue.

• Data Labeling and Quality: Effective training of DL
models requires large amounts of labeled data, which
can be difficult and expensive to obtain. The quality of
the labeled data is also crucial, as noisy or incorrect
labels can degrade the model’s performance. In the
context of IDS for IoT, collecting and accurately labeling
diverse and representative datasets is a significant
challenge. Approaches such as semi-supervised learn-
ing, transfer learning, and the use of synthetic data

generation can help alleviate some of these challenges
but come with their own set of complexities.

• Impact on IDS Performance: These limitations can
significantly impact the performance of DL-based
IDS. Mode collapse and lack of diversity reduce
the robustness of the IDS, making it less effective
against varied and sophisticated botnet attacks. Training
instability can lead to incomplete learning, further
compromising the detection capabilities of the IDS.
Computational complexity can limit the applicability
of these models in real-world IoT environments, where
resources are constrained. The lack of interpretability
and the challenges in data labeling further exacerbate
these issues, making it difficult to achieve and maintain
high-performance IDS.

Addressing these limitations requires a multifaceted
approach, including the development of more advanced
training techniques, the collection of diverse and high-quality
datasets, the implementation of computationally efficient
model architectures, and the incorporation of interpretability
methods. By tackling these challenges, researchers and
practitioners can enhance the effectiveness and reliability of
DL-based IDS for securing IoT environments against botnet
attacks.

IV. CRITICAL REVIEW
IoT’s vulnerability to botnets is mainly due to the absence
of standardized protocols and the intricacies of designing
IoT sensors and protocols. Consequently, security experts
encounter significant challenges when investigating and
addressing security incidents within IoT networks. Detecting
botnet attacks in these networks is paramount due to the
potential harm they can inflict on the system. Although
DL models have demonstrated remarkable performance
in identifying botnet attacks in IoT, current studies have
predominantly focused on employing a single DL model.
However, this singular approach may not effectively adjust
to changing network conditions and the evolving character-
istics of botnets. Additionally, it may encounter difficulties
handling diverse data and class imbalances, resulting in
suboptimal trade-offs among multiple objectives, such as
maximizing detection accuracy, minimizing false alarms,
reducing computation time, and ensuring resilience against
various attack scenarios. Addressing these limitations neces-
sitates thoroughly exploring the potential benefits ensemble
learning models can offer to detect botnets in IoT networks.
However, the current literature lacks adequate research on
applying ensemble learning models for botnet detection in
IoT networks. Therefore, it is imperative to investigate and
assess the advantages that ensemble learning models could
bring to botnet detection and to conduct a comparative
analysis of their performance against single DLmodels. Such
research endeavors have the potential to significantly enhance
the efficiency and robustness of botnet detection systems in
IoT networks. The existing literature on DL-based IDS for
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botnet detection in IoT can be divided into two categories,
as the summary of the related works in Table 3 and Table 4
illustrates: (i) single-based IDS [4], [5], [6]; and (ii) ensemble
detector-based IDS [86], [87], [89]. Despite the abundance
of IDS proposed in the literature, including those by [4]
and [89], there is room for improvement in their detection
accuracy for several reasons:

1) Reliance on features extracted based on simple or
simple multi-objective functions for feature subset
selection.

2) Dependency on a single feature selection model to
choose the feature subset.

3) A single DL model instead of an ensemble might not
effectively detect evolving botnets’ sophisticated and
complex behaviors.

4) Inability to detect adversarial attacks that can alter bot-
nets’ behaviors, potentially allowing evasive actions.

Although DL has proven its superiority over traditional
methods, especially in handling large datasets, it still faces
challenges such as mode collapse, lack of diversity, and
training instability, which are commonly encountered in
traditional GANs [101], [102], [103]. These issues can
significantly compromise the performance of DL-based IDS.

Moreover, practical challenges such as computational
efficiency and real-time detection remain critical in IoT envi-
ronments. Studies such as [87, 89] emphasize the necessity
of balancing computational overhead and detection accuracy,
particularly in resource-constrained settings. Simpler models,
such as Decision Trees and Random Forests, are advanta-
geous for initial analysis due to their efficiency, but their
limitations in detecting complex attack patterns highlight
the need for complementary approaches. The integration of
lightweight models for rapid detection with more robust DL
models for detailed analysis offers a promising direction.
These trade-offs and their implications for real-time detection
will be explored in the following section.

A. REAL-TIME DETECTION CHALLENGES IN DL MODELS
Real-time detection is crucial for promptly identifying and
mitigating botnet attacks in IoT environments. Despite the
advancements in DL-based IDS, several challenges hinder
the achievement of real-time detection, which necessitate a
variety of approaches to address these limitations effectively.
As we have outlined the key obstacles in real-time detection,
we will now explore the various existing methods that have
been developed to tackle these challenges. The following
section will detail these approaches, demonstrating how they
contribute towards overcoming the complexities of real-time
detection in IoT environments.

• Computational Complexity: DL models, particularly
deep architectures like CNNs and GANs, are computa-
tionally intensive. The high computational requirements
for training and inference can lead to delays, making
real-time detection challenging, especially in resource-
constrained IoT devices. The complexity arises from the
need to process large amounts of data through multiple

layers of neural networks, each requiring significant
computational resources. Implementing these complex
models on devices with limited processing power,
memory, and energy resources remains a significant
challenge. Solutions such as edge computing, where data
processing occurs closer to the source, can help mitigate
some of these issues by distributing the computational
load.

• Latency Issues: Latency is a critical factor in real-
time detection. The time taken for data to be processed
and analyzed by the DL models can result in delayed
responses to attacks. This delay can be detrimental in a
real-time scenario where immediate action is required to
mitigate threats. Techniques such asmodel compression,
pruning, and the use of lightweight architectures have
been explored to reduce latency but often at the cost of
model accuracy and effectiveness. For instance, pruning
involves removing less important neurons or weights in
the network to speed up computation, but it can lead
to a loss of valuable information, reducing the model’s
ability to detect complex attack patterns.

• Online Learning and Adaptation: Real-time detection
requires models that can continuously learn and adapt
to new data. Traditional DL models are typically
trained offline on static datasets and may not effec-
tively adapt to evolving threats in real-time. Online
learning techniques, which allow models to update and
refine themselves as new data arrives, are essential
for maintaining the efficacy of IDS in dynamic envi-
ronments. However, implementing online learning in
DL models is complex and can introduce additional
computational overhead. This overhead comes from
the need to continuously integrate new data, retrain
models, and adjust parameters, all of which require
significant computational resources and can slow down
the detection process.

• Data Stream Management: Managing and process-
ing data streams in real-time is another significant
challenge. IoT networks generate massive amounts of
data continuously, and the IDS must efficiently handle
and analyze these data streams to detect anomalies
promptly. Ensuring that the DL models can process
high-throughput data streams without bottlenecks is
critical for effective real-time detection. This involves
not only fast data processing but also efficient data
storage and retrieval mechanisms. Stream processing
frameworks like Apache Kafka and Apache Flink are
often used to manage real-time data, but integrating
these with DL models can be challenging and requires
careful tuning and optimization.

• Trade-off Between Accuracy and Speed: Achieving
a balance between detection accuracy and processing
speed is a persistent challenge. High accuracy often
requires more complex models and extensive compu-
tations, which can slow down the detection process.
Conversely, simpler models that offer faster processing

11814 VOLUME 13, 2025



T. Al-Shurbaji et al.: DL-Based Intrusion Detection System for Detecting IoT Botnet Attacks: A Review

times may not provide the desired level of accuracy and
robustness in detecting sophisticated attacks. This trade-
off necessitates the exploration of hybrid approaches
that can optimize both aspects. For example, a layered
approach could be used where a lightweight model
performs initial detection, and more complex models are
employed for detailed analysis of suspected threats. This
can help achieve a balance between speed and accuracy,
ensuring that real-time requirements are met without
compromising the detection capabilities.

1) EXISTING REAL-TIME DETECTION METHODS:
Several approaches have been proposed to address these
challenges:

• Edge and Fog Computing: Fog computing reduces
latency by processing data closer to the source rather
than in a centralized cloud. In this approach, compu-
tational tasks are distributed between the cloud and
fog nodes, with real-time prediction tasks handled by
the latter to enhance detection speed. This reduces the
amount of data that needs to be sent to the cloud for
processing, thereby decreasing latency and improving
response times.

• Ensemble Learning Methods: Ensemble learning meth-
ods, which combine multiple classifiers, have shown
promise in improving detection accuracy and robust-
ness. Techniques such as stacking, boosting, and bag-
ging can be used to aggregate the strengths of different
models, providing a more comprehensive detection
system. However, these methods also face challenges
related to computational efficiency and real-time appli-
cability. Managing multiple models and combining
their outputs in real-time can be resource-intensive and
requires efficient parallel processing capabilities.

• Incremental Learning: Incremental learning methods
allow DL models to update themselves with new data
without the need for complete retraining. This approach
helps maintain the model’s relevance over time as
new attack patterns emerge. However, ensuring that the
model does not forget previously learned information
(catastrophic forgetting) while integrating new data
is a complex challenge that requires sophisticated
algorithms and careful balancing of old and new data.

• Model Optimization Techniques: Techniques such as
quantization, where the precision of the model param-
eters is reduced, and knowledge distillation, where a
smaller model learns from a larger, more complex
model, can help reduce the computational demands
of DL models. These techniques aim to create more
efficient models that can perform real-time detection
without significant loss of accuracy.

• Stream Processing Frameworks: Integrating DL models
with stream processing frameworks like Apache Kafka
and Apache Flink can enhance real-time data handling
capabilities. These frameworks provide robust tools for
managing high-throughput data streams, ensuring that

data is processed and analyzed in real-time. However,
the integration process can be complex and requires
careful tuning to ensure seamless operation.

• Hybrid Approaches: Hybrid approaches that combine
traditional machine learning methods with DL models
can leverage the strengths of both. For example, initial
anomaly detection can be performed using lightweight
traditional methods, followed by detailed analysis using
DLmodels. This can help balance the trade-offs between
speed and accuracy, ensuring that real-time detection
requirements are met.

V. FUTURE DIRECTIONS
Despite the extensive research conducted on botnet detection
in the IoT, the prior section has provided a thorough review
of the existing techniques, shedding light on their respective
merits and limitations. However, it is vital to recognize that
several crucial considerations in future research endeavors
must be addressed. These considerations include:

• Overcoming the shortage of labeled training data is a
crucial obstacle in botnet detection, and future research
can focus on exploring specialized data augmentation
techniques designed specifically for IoT environments.
Techniques like GANs or synthetic data generation
can help augment the limited labeled data, resulting
in more robust and accurate DL models. GANs are a
powerful tool for data augmentation, particularly in IoT
environments where labeled data is often scarce. GANs
consist of two neural networks—a generator and a
discriminator—that are trained simultaneously through
adversarial processes. The generator creates synthetic
data samples, while the discriminator evaluates their
authenticity. This process helps generate high-quality,
realistic data that can be used to augment the training
datasets for DL models, improving their performance
and robustness. GANs can generate synthetic data
that closely mimics real-world IoT data. For example,
in the context of network traffic, GANs can create
additional traffic patterns that include both normal and
malicious activities. This augmented dataset can be
used to train DL models, enhancing their ability to
detect diverse and previously unseen attack patterns.
Since IoT datasets often suffer from class imbalance,
where benign data significantly outweighs malicious
data, thus GANs can help balance these datasets by
generating more samples of the underrepresented class.
This approach improves the model’s ability to detect
rare attack types and reduces the likelihood of bias
towards the majority class. Also, GANs can also be
used to generate adversarial examples that expose the
weaknesses of DL models. By training models with
these adversarial examples, researchers can improve the
robustness of IDS against sophisticated attacks designed
to evade detection. These applications illustrate the
practical benefits of using GANs for data augmentation
in IoT environments, providing a robust framework for
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enhancing DL-based IDS. By generating synthetic data,
balancing datasets, and enhancing model robustness,
GANs offer a promising approach to overcoming the
challenges associated with limited and imbalanced IoT
data.

• Leveraging transfer learning can improve the perfor-
mance of botnet detection models in IoT. Researchers
can pre-train DL models on more extensive and diverse
datasets, such as general network traffic or related
domains, and then fine-tune them on specific IoT
datasets. This approach allows the transfer of learned
representations and enhances detection performance.
Transfer learning has shown great potential in enhancing
the performance of DL models by leveraging pre-
trained models on extensive datasets and fine-tuning
them on specific tasks with limited data. In the context
of IoT environments, transfer learning can help address
the challenge of scarce labeled data by transferring
knowledge from related domains. Current research in
this area includesworks such asAbdelhamid et al., 2024;
Nandanwar and Katarya, 2024)], which investigates the
use of transfer learning to improve the detection of
botnet attacks in IoT networks. The study highlights
how pre-trained models on general network traffic
can be fine-tuned with specific IoT data to enhance
detection accuracy. However, the research also points
out limitations, such as the need for domain-specific
adjustments and the potential for overfitting when
transferring knowledge from significantly different
domains. These examples demonstrate the potential
benefits of transfer learning in IoT environments, as well
as the current limitations that future research needs
to address. By highlighting these studies, we provide
a clearer understanding of the existing landscape and
underscore the importance of further exploring transfer
learning techniques to improve IDS performance in IoT
networks.

• Real-time detection is essential in IoT environments to
promptly identify and mitigate botnet attacks. Future
research can explore online learning techniques that
enable continuous learning and adaptation of IDSs as
new data arrives. This approach enhances the system’s
ability to detect emerging botnet behaviors and adapt to
evolving attack strategies in real-time.

• DL models often lack transparency and interpretabil-
ity, making understanding the reasoning behind their
decisions difficult. Future research should focus on
developing techniques that provide explainable and
interpretable botnet detection models. By incorporating
domain knowledge and designing model architectures
that offer insights into decision-making, stakeholders
can better understand the detection process and build
trust in the system. Specific techniques and frameworks
for explainable AI (XAI) in the context of DL-based
IDS for botnet detection can be used. Techniques such
as SHAP (SHapley Additive exPlanations) and LIME

(Local Interpretable Model-agnostic Explanations) help
in understanding feature importance and how individual
predictions are made. Visualization methods like activa-
tion maps, heatmaps, and saliency maps can highlight
the regions of input data that strongly influence the
model’s decisions. Additionally, attention mechanisms
in RNNs and Transformers, as well as autoencoders and
generative models, enhance the interpretability by show-
ing the model’s focus and learned data distributions.
Model-specific interpretability can also be achieved
through rule extraction and surrogate models, where
simpler models approximate the behavior of complex
DL models to provide understandable decision logic.
Frameworks such as IBM’s AI Explainability 360 and
Microsoft’s InterpretML offer comprehensive tools for
implementing various XAI techniques. These methods
collectively aim to build trust in IDS by providing trans-
parency in the decision-making processes of DLmodels,
ultimately improving their reliability and effectiveness
in detecting botnet attacks.

• Implementing complex DL models on resource-
constrained IoT devices presents challenges due to their
limited computational resources. Future research should
investigate techniques to optimize DL models for such
devices, including model compression, quantization,
and lightweight architectures, for efficient and practical
deployment of botnet detection systems on a wide
range of IoT devices. Specific techniques such as
pruning, quantization, and knowledge distillation.
Pruning reduces the model’s complexity by elimi-
nating less significant weights and neurons, while
quantization lowers the precision of model parameters,
thereby decreasing memory footprint and computational
demands. Knowledge distillation trains a smaller model
to mimic the performance of a larger one, maintaining
accuracywith fewer resources. Additionally, lightweight
architectures like MobileNet and SqueezeNet, designed
for efficiency, are well-suited for IoT devices with
constrained resources. Furthermore, edge and fog
computing paradigms offer practical solutions by
distributing computational tasks. Edge computing
processes data closer to the source, reducing latency and
bandwidth requirements, while fog computing creates a
hierarchical architecture that balances the computational
load between cloud servers, fog nodes, and edge devices.
Existing research, such as the DeL-IoT framework,
leverages deep ensemble learning for efficient anomaly
detection in IoT systems, and ensemble machine
learning models distribute tasks between cloud and
fog nodes for real-time detection. These approaches
demonstrate the potential for improving IoT system
security and management while addressing resource
constraints.

• Hybrid Ensemble Approaches: Exploring hybrid ensem-
ble methods that integrate multiple feature selection
algorithms can yield more robust and dependable
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outcomes. By leveraging the strengths of diverse tech-
niques, such as filter, wrapper, and embedded methods,
researchers have the potential to devise ensemble
strategies that enhance the effectiveness of feature
selection and elevate the overall performance of IDSs.
Hybrid ensemble methods combine multiple learning
algorithms to leverage their individual strengths, result-
ing in more robust and accurate detection systems.
Several studies have demonstrated the effectiveness of
such approaches in various domains. For instance, the
BoostedEnsML model employs boosted machine learn-
ing classifiers, specifically LightGBM and XGBoost,
to detect cyberattacks and network intrusions. This
approach involves training multiple classifiers and
combining their outputs using stacking and majority
voting techniques. The ensemble model was evaluated
on the CICIDS2017 and CSE-CICIDS2018 datasets,
achieving superior accuracy, precision, recall, and F-
score compared to existing ensemble models. Another
example is the DeL-IoT framework, which utilizes
deep ensemble learning for anomaly detection in IoT
systems. This framework combines deep and stacked
autoencoders with ensemble learning techniques to
enhance performance, even when dealing with imbal-
anced datasets. The experimental results indicated a
performance improvement of approximately 3% over
single models. These examples highlight the potential
benefits of hybrid ensemble methods in enhancing the
robustness and accuracy of DL-based IDS, particularly
in dynamic and resource-constrained IoT environments.

• Dynamic Feature Selection Ensembles: The investiga-
tion of dynamic feature selection techniques within
ensemble frameworks can be highly advantageous.
These methods can adaptively select pertinent features
based on evolving data characteristics. By continuously
monitoring the importance and relevance of features
over time, these techniques enable efficient feature
selection in dynamic IoT environments where network
traffic patterns may change.

• Multi-Objective Ensemble Feature Selection: Future
studies should consider integrating multiple objectives
within ensemble feature selection approaches, which
include optimizing for high detection accuracy and
other evaluation metrics like computational efficiency,
scalability, and interpretability. Utilizingmulti-objective
optimization algorithms aids in striking a balance
between these objectives and guiding the selection of an
optimal feature subset.

• Domain-Specific Feature Selection: Given IoT net-
works’ varied domains and application scenarios, devel-
oping feature selection methods specific to each domain
is crucial. Researchers should formulate domain-
specific feature selection techniques considering differ-
ent IoT domains’ unique characteristics and require-
ments. This tailored approach will result in more
accurate and customized feature selection strategies for

specific IoT applications, including healthcare, smart
cities, and industrial control systems.

VI. QUALITATIVE COMPARISON WITH RELATED
REVIEWS:
This section compares this review paper with the existing
reviews on botnet detection in the IoT using DL-based IDS
to emphasize its distinctive contributions and novel insights.
Numerous literature reviews have been conducted on the
topic of botnet detection in the IoT [104], [105], [106],
[107], [108], focusing on various aspects such as conven-
tional detection methods, machine learning approaches, and
anomaly detection techniques. While these reviews have
offered valuable summaries of the existing research, this
review paper sets itself apart by explicitly concentrating
on applying DL techniques for botnet detection in the IoT,
allowing deeper focus into the intricacies and nuances of DL-
based approaches, resulting in amore comprehensive analysis
of their strengths, limitations, and future research directions.
Moreover, the proposed review paper distinguishes itself
by not only discussing different DL models utilized for
botnet detection, including CNNs, RNNs, and GANs but
also by examining their effectiveness and applicability
within the context of IoT environments and the coverage
compared with existing surveys and reviews, as illustrated
in Table 5. It highlights the unique challenges IoT networks
pose, such as the dynamic nature of IoT devices, limited
computational resources, and the heterogeneity of IoT data.
By addressing these challenges, the proposed review offers
valuable insights for researchers and practitioners aiming
to develop robust and efficient DL-based IDSs for botnet
detection in IoT. Furthermore, in addition to its specialized
focus and comprehensive analysis, the proposed review paper
provides a forward-looking perspective by identifying critical
areas for future research. It emphasizes exploring hybrid
ensemble methods, dynamic ensemble feature selection
techniques, multi-objective optimization approaches, and
domain-specific feature selection methods, which are critical
for advancing the field of botnet detection in IoT and tackling
the evolving challenges presented by sophisticated botnet
attacks.

This section provides a detailed evaluation of the IoT vul-
nerabilities, deep learning methodologies, and comparative
analyses of IoT-specific attacks presented in existing reviews
to further enrich the discussion. Table 5 systematically
highlights the distinctions between the proposed review
and prior works. It emphasizes critical gaps, particularly in
IoT vulnerabilities, deep learning methodologies, and recent
studies covered. Notably, prior reviews [106], [107], [108]
lack comprehensive coverage of deep learning frameworks
and fail to holistically address IoT-specific attacks. For
instance, while [107], [108] demonstrate comprehensive
insights into recent studies, their partial coverage of IoT-
specific challenges limits their applicability to dynamic IoT
environments.
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TABLE 5. Coverage comparison between the proposed review and
state-of-the-art reviews.

Conversely, the proposed review stands out by offering
comprehensive coverage across all dimensions, including
taxonomy of deep learning models, recent advancements,
and IoT-specific attack scenarios. This integrated perspective
provides a clearer understanding of the limitations in existing
works and addresses key IoT-specific challenges.

Table 5 further illustrates how prior reviews often focus
on isolated aspects of IoT security (e.g., [104] lacks IoT
vulnerability considerations and deep learning techniques) or
present only partial coverage of recent advancements [105],
[106]. In contrast, the proposed review bridges these gaps
by leveraging a multidimensional approach that incorporates
a broader evaluation of IoT-specific challenges and novel
solutions. The gaps highlighted in Table 5 further emphasize
the need for advanced methods like hybrid ensemble
techniques to overcome the challenges of IoT-specific attacks
and enhance the robustness of DL-based IDSs.

Hybrid ensemble methods combinemultiple learning algo-
rithms to leverage their individual strengths, resulting in more
robust and accurate detection systems. These approaches can
effectively address limitations such as mode collapse, lack of
diversity, and training instability in DL models. For instance,
the BoostedEnsMLmodel employs boostedmachine learning
classifiers, specifically LightGBM and XGBoost, to detect
cyberattacks and network intrusions. By using stacking and
majority voting techniques, this ensemble model outperforms
existing ensemble models in accuracy, precision, recall, and
F-score. Another notable example is the DeL-IoT frame-
work, which leverages deep ensemble learning for anomaly
detection and prediction in IoT systems. Combining deep
and stacked autoencoders with ensemble learning techniques,
DeL-IoT enhances performance even when dealing with
imbalanced datasets. This approach significantly improves
detection accuracy and robustness compared to single DL
models, addressing challenges like data heterogeneity and
class imbalance. These examples illustrate the potential of
hybrid ensemble methods to enhance the effectiveness and
reliability of DL-based IDS in dynamic IoT environments.

Table 5 not only illustrates the distinctions between the
proposed review and prior works but also emphasizes how the
comprehensive coverage of IoT vulnerabilities, deep learning

methodologies, and IoT-specific attacks provides a broader
and more actionable understanding of botnet detection in
IoT environments. This systematic evaluation highlights the
strengths of the proposed review in addressing key gaps and
sets a strong foundation for future advancements in DL-based
IDSs tailored to the unique challenges of IoT networks.

VII. CONCLUSION
This paper provides a comprehensive review of the utilization
of DL-based IDSs for botnet detection in the IoT. The
proliferation of IoT devices and the increasing sophistication
of botnet attacks underscore the urgency for advanced
detection techniques. With its ability to learn intricate
patterns and representations from data, DL emerges as a
promising solution to counter the evolving botnet threat
in IoT environments effectively. The review highlights the
successful applications of various DL techniques in botnet
detection, including CNNs, RNNs, and GANs. These tech-
niques enable extracting high-level features and identifying
anomalous behavior patterns, enhancing IDS accuracy and
efficiency. Several initiatives are currently underway to
develop standardized datasets and evaluation metrics for
IoT security and IDS. For instance, the Bot-IoT dataset is
widely used in research for evaluating the performance of
IDS in detecting various types of IoT-related cyberattacks.
This dataset provides comprehensive labeled data, simulating
different attack scenarios, which is crucial for training
and testing IDS models. Another notable effort is the
CICIDS2017 dataset, which includes diverse network traffic
data to benchmark IDS performance across various attack
vectors. Additionally, organizations such as the National
Institute of Standards and Technology and the European
Union Agency for Cybersecurity are actively working on
establishing guidelines and best practices for cybersecurity,
including the development of standardized metrics for
evaluating IDS effectiveness. These efforts collectively aim
to enhance the comparability and robustness of IDS research,
fostering collaboration and innovation in the field.
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